CN101673673B - Method for forming epitaxial wafer and epitaxial wafer formed by using same - Google Patents

Method for forming epitaxial wafer and epitaxial wafer formed by using same Download PDF

Info

Publication number
CN101673673B
CN101673673B CN 200910196119 CN200910196119A CN101673673B CN 101673673 B CN101673673 B CN 101673673B CN 200910196119 CN200910196119 CN 200910196119 CN 200910196119 A CN200910196119 A CN 200910196119A CN 101673673 B CN101673673 B CN 101673673B
Authority
CN
China
Prior art keywords
epitaxial layer
doping
epitaxial
portion
forming
Prior art date
Application number
CN 200910196119
Other languages
Chinese (zh)
Other versions
CN101673673A (en
Inventor
吴小利
许丹
Original Assignee
上海宏力半导体制造有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海宏力半导体制造有限公司 filed Critical 上海宏力半导体制造有限公司
Priority to CN 200910196119 priority Critical patent/CN101673673B/en
Publication of CN101673673A publication Critical patent/CN101673673A/en
Application granted granted Critical
Publication of CN101673673B publication Critical patent/CN101673673B/en

Links

Abstract

本发明提出一种外延片形成方法及使用该方法形成的外延片,所述外延片形成方法,包括如下步骤(a)形成第一外延层,其掺杂率随所述外延层的厚度而变化;(b)在所述第一外延层上形成第二外延层,其掺杂率恒定。 The present invention provides a method of forming an epitaxial wafer and an epitaxial wafer using the method of forming an epitaxial wafer forming method, comprising the steps of (a) forming a first epitaxial layer, which is doped with a thickness of the epitaxial layer varies ; (b) forming a second epitaxial layer on said first epitaxial layer, which is doped with a constant rate. 本发明的外延片具有两层不同的外延层。 An epitaxial wafer of the present invention having two layers of different epitaxial layers. 其中第二外延层的掺杂率保持恒定,而第一外延层的掺杂率随厚度的变化而变化。 Wherein the doping of the second epitaxial layer is kept constant, while the rate of the first epitaxial layer is doped with varying thickness changes. 这样通过对靠近基底的第一外延层的掺杂率进行调节从而改进使用所述外延层的功率MOSFET的BVDSS和RDSON特性。 Thereby improving the characteristics of the power MOSFET RDSON BVDSS and using the epitaxial layer thus adjusted by doping the first epitaxial layer close to the rate of the substrate.

Description

外延片形成方法及使用该方法形成的外延片 Forming an epitaxial wafer and a method of forming an epitaxial wafer using the method

技术领域[0001] 本发明涉及半导体器件,由其涉及用于功率MOSFET的外延片。 Technical Field [0001] The present invention relates to a semiconductor device, it relates to a wafer therefrom for the power MOSFET.

背景技术 Background technique

[0002] 现今,功率MOSFET (Power M0SFET)在业界已有极其广泛的应用,所谓功率MOSFET系指它能输出较大的工作电流(几安到几十安),用于功率输出级的器件。 [0002] Nowadays, power MOSFET (Power M0SFET) in the industry has been very widely used, it refers to the so-called power MOSFET output larger operating current (several amps to tens An), a power output stage devices.

[0003] 一般地,功率MOSFET都采用外延片。 [0003] Generally, the power MOSFET are used epitaxial wafer. 所谓外延片即在原始的低阻衬底(substrate)硅片上向外延伸一层高阻层。 I.e., so-called epitaxial wafer (Substrate) a layer of high resistivity layer extends in the original low-resistance silicon substrate outwardly. 高阻层用来耐受电压,低阻衬底作为支撑又不增加很多电阻。 High resistivity layer to withstand voltage, low-resistance substrate is used as the support without increasing much resistance. 器件一般会使用P+硅衬底加一定厚度的P-外延层,使用P+衬底是为了源端能很好地从背面引出;P_外延层是为了提高器件的源漏击穿电压。 Devices typically use the P-P + epitaxial layer plus a thickness of the silicon substrate, a P + substrate is used for the source well drawn out from the rear surface; of P_ epitaxial layer in order to improve the source-drain breakdown voltage of the device.

[0004] 作为功率MOSFET来说,有两项参数是最重要的。 [0004] As a power MOSFET, there are two parameters are the most important. 一个是Rds (on),即通态时的漏源电阻。 It is a Rds (on), i.e., when the drain-source on-state resistance. 另一个是BVDSS,即漏源击穿电压。 Another is BVDSS, i.e., the drain-source breakdown voltage. 一般地,总是希望Rds (on)较小而BVDSS较大。 In general, always want Rds (on) BVDSS small and large.

[0005] 就Rds (on)而言,主要需降低漂移层电阻RD。 [0005] In terms of Rds (on), the main need to reduce the drift layer resistance RD. 对MOSFET来说,载流子(电子或空穴)在这些区域是在外界电压下作漂移(Drift)运动,故而相关的电阻称为RD。 For a MOSFET, the carriers (electrons or holes) drift in these areas (Drift) movement of perishable external voltage, therefore the resistance associated referred RD. 若要求MOSFET的耐压高,就必须提高高阻层的电阻率,但当外延层的电阻率提高时,RD也随之提高。 If the required high voltage MOSFET, it is necessary to increase the resistivity of the high resistivity layer, but when the resistivity of the epitaxial layer is increased, the RD increases. 这也是很少出现一千伏以上的高压MOSFET的原因。 This is why more than one kilovolt high-voltage MOSFET rarely occurs. 而BVDSS —般取决于器件的类型。 The BVDSS - generally depends on the type of the device.

[0006] 现有技术中,外延片一般为单层,并且其杂质掺杂浓度也是恒定的,S卩外延片为均匀掺杂的单层外延片。 [0006] In the prior art, epitaxial wafers typically a single layer, and the impurity doping concentration which is constant, S Jie wafer is uniformly doped epitaxial single sheet. 图I示出了一种常见的外延片,其系厚度为45um的单层。 FIG I shows a common epitaxial wafer, which is based 45um thickness of a single layer. 该外延片中掺杂有浓度为2. 24el4/cm-3的磷。 The epitaxial film is doped with a concentration of 2. 24el4 / cm-3 phosphorus.

[0007] 因此,业界并没有通过对外延片的层数以及掺杂浓度进行调谐而改变Rds (on)和BVDSS。 [0007] Accordingly, the industry and not by the number of layers and the doping concentration of the epitaxial wafer tuning changes Rds (on) and BVDSS.

发明内容 SUMMARY

[0008] 有鉴于现有技术的上述缺陷,本发明所要解决的技术问题是提供一种可改进功率MOSFET的BVDSS和RDSON的外延片制造方法。 [0008] In view of the above drawbacks of the prior art, the present invention is to solve the technical problem of providing a method for manufacturing an epitaxial wafer and BVDSS RDSON of the power MOSFET can be improved.

[0009] 为了达到上述目的,本发明提供了一种外延片形成方法,包括如下步骤(a)形成第一外延层,其掺杂率随所述外延层的厚度而变化;(b)在所述第一外延层上形成第二外延层,其掺杂率恒定。 [0009] To achieve the above object, the present invention provides a method of forming epitaxial wafer, comprising the steps of (a) forming a first epitaxial layer, which is doped with the thickness of the epitaxial layer is changed; (b) in the forming a second epitaxial layer on said first epitaxial layer, which is doped with a constant rate.

[0010] 较佳地,所述第一外延层包括第一部分和第二部分,其中所述第一部分的掺杂率不同于第二部分的掺杂率。 [0010] Preferably, the first epitaxial layer comprises a first portion and a second portion, wherein the doping of the first portion is different from the doping of the second portion.

[0011] 较佳地,所述第一外延层的掺杂率可由斜率大于零小于I的直线函数表示。 [0011] Preferably, the doping of first epitaxial layer may be greater than zero and less than the slope of the linear function represented by I.

[0012] 较佳地,所述第二外延层的掺杂率为2. 24el4/cm_3。 [0012] Preferably, the doped second epitaxial layer was 2. 24el4 / cm_3.

[0013] 较佳地,所述第一部分的掺杂率大于所述第二外延层的掺杂率,而所述第二部分的掺杂率小于所述第二外延层的掺杂率。 [0013] Preferably, the doping ratio of the first portion is greater than the doping of the second epitaxial layer, the doping ratio of the second portion is smaller than the doping of the second epitaxial layer.

[0014] 本发明的外延片具有两层不同的外延层。 [0014] The epitaxial wafer of the present invention having two layers of different epitaxial layers. 其中第二外延层的掺杂率保持恒定,而第一外延层的掺杂率随厚度的变化而变化。 Wherein the doping of the second epitaxial layer is kept constant, while the rate of the first epitaxial layer is doped with varying thickness changes. 这样通过对靠近基底的第一外延层的掺杂率进行调节从而改进使用所述外延层的功率MOSFET的BVDSS和RDSON特性。 Thereby improving the characteristics of the power MOSFET RDSON BVDSS and using the epitaxial layer thus adjusted by doping the first epitaxial layer close to the rate of the substrate.

附图说明 BRIEF DESCRIPTION

[0015] 图I为现有技术的外延片的示意图; [0015] Figure I is a prior art schematic diagram of an epitaxial wafer;

[0016] 图2为本发明的外延片的示意图; [0016] FIG. 2 is a schematic view of an epitaxial wafer of the present invention;

[0017] 图3为本发明的掺杂率的示意图。 [0017] FIG. 3 is a schematic doping ratio of the present invention.

具体实施方式 Detailed ways

[0018] 下面结合附图和具体实施方案,对本发明的外延片形成方法作进一步的说明。 [0018] The following specific embodiments and in conjunction with the accompanying drawings, a method of forming an epitaxial wafer according to the present invention will be further described.

[0019] 根据本发明的外延片形成方法中,首先制备第一外延层,其厚度为30um。 [0019] The method of forming an epitaxial wafer according to the present invention, the first epitaxial layer is first prepared, having a thickness of 30um. 所述第一·外延层靠近基底。 · The first epitaxial layer adjacent to the substrate. 第一外延层中掺杂有磷,并且磷的掺杂浓度随厚度的变化而变化。 A first epitaxial layer is doped with phosphorus, and the doping concentration of phosphorus varies with varying thickness. 第一外延层的靠近基底下半部分(约15um厚)的磷掺杂浓度大于靠近第二外延层的上半部分(约15um厚)的磷掺杂浓度,并且在所述上半部分和下半部分中,越靠近基底(未示)之部分的磷掺杂浓度越小,而越靠近第二外延层之部分的磷掺杂浓度越大。 Close to the lower half of the substrate P (approximately 15um thick) of the first epitaxial layer is doped with phosphorus concentration greater than a doping concentration half (approximately 15um thick) adjacent to the second epitaxial layer, and said upper and lower halves half, the closer the substrate (not shown) of the smaller part of the phosphorous doping concentration, and a second portion closer to the phosphorus of the epitaxial layer doping concentration greater. 具体地,如图3所示,所述上半部分、下半部分、以及所述第一外延层的磷掺杂浓度可用斜率为A(OI)的斜线表示。 Specifically, as shown in FIG. 3, the upper half, lower half, and the phosphorous concentration of the first epitaxial layer is doped available hatched slope A (OI) FIG. 其中,所述下半部分中的磷掺杂浓度大于2. 24el4/cm-3且小于3el4/cm-3,而所述上半部分中的磷掺杂浓度小于2. 24el4/cm-3且大于lel4/cm-3。 Wherein the phosphorus doping concentration of the lower half is greater than 2. 24el4 / cm-3 and less than 3el4 / cm-3, and the upper half of the phosphorus dopant concentration of less than 2. 24el4 / cm-3 and greater than lel4 / cm-3. 即,所述下半部分中的磷掺杂浓度大于第二外延层的掺杂浓度,而所述上半部分的磷掺杂浓度小于第二外延层的掺杂浓度。 I.e., the phosphorus doping concentration of the lower half is greater than the doping concentration of the second epitaxial layer, and the upper half of the phosphorus concentration is less than the second doping concentration of the epitaxial layer. 当然,所述上半部分和下半部分的掺杂情况可相反,即,所述下半部分中的磷掺杂浓度小于第二外延层的掺杂浓度,而所述上半部分的磷掺杂浓度大于第二外延层的掺杂浓度。 Of course, the upper half and a lower half case of doping may be reversed, i.e., a phosphorus doping concentration of the lower half is smaller than the doping concentration of the second epitaxial layer, and the upper part of the phosphorus-doped heteroaryl concentration greater than a doping concentration of the second epitaxial layer.

[0020] 此后,在所述第一外延层上制备第二外延层。 [0020] Thereafter, a second epitaxial layer is prepared on said first epitaxial layer. 所述第二外延层的厚度为15um。 The thickness of the second epitaxial layer is 15um. 第二外延层中掺杂有磷,并且磷的掺杂浓度保持恒定。 The second epitaxial layer is doped with phosphorus, and the doping concentration of phosphorus is maintained constant. 如图3所示,所述第二外延层的磷掺杂浓度可用斜率为零的水平线表示。 3, the phosphorous dopant concentration of the second epitaxial layer, available horizontal lines indicate zero slope. 具体的,本实施中第二外延层中的磷掺杂浓度为2. 24el4/cm—3。 Specifically, the present embodiment the second phosphorus doping concentration of the epitaxial layer 2. 24el4 / cm-3.

[0021] 由此,得到包括第一外延层和第二外延层的外延片。 [0021] Thus, to obtain an epitaxial wafer comprising a first epitaxial layer and the second epitaxial layer.

[0022] 现描述本发明的外延片形成方法的第二实施例。 [0022] The second embodiment of the present invention will now be described an epitaxial wafer forming method. 本实施例的方法与第一实施例基本相同,不同之处在于第一外延层的掺杂浓度不同于第一实施例。 The method of the present embodiment is substantially the same as the first embodiment, except that the doping concentration of the first embodiment differs from the first epitaxial layer. 具体的,如图3所示,所述上半部分、下半部分、以及所述第一外延层的磷掺杂浓度可用斜率为B(OI)的斜线表示。 Specifically, as shown in FIG. 3, the upper half, lower half, the first epitaxial layer, and a phosphorus dopant concentration of available slope B (OI) of the diagonal lines. 其中,所述下半部分中的磷掺杂浓度大于2. 24el4/cm-3且小于3el4/cm-3,而所述上半部分中的磷掺杂浓度小于2. 24el4/cm-3且大于lel4/cm_3。 Wherein the phosphorus doping concentration of the lower half is greater than 2. 24el4 / cm-3 and less than 3el4 / cm-3, and the upper half of the phosphorus dopant concentration of less than 2. 24el4 / cm-3 and greater than lel4 / cm_3.

[0023] 本实施例中,所述上半部分的掺杂浓度小于所述第二外延层的掺杂浓度,由此,采用根据本发明的外延片的功率MOSFET的BVDSS得以增大。 [0023] In this embodiment, the doping concentration of the upper half portion is less than the doping concentration of the second epitaxial layer, whereby use is increased according to the power MOSFET BVDSS epitaxial wafer of the present invention. 此外,所述下半部分的掺杂浓度大于所述第二外延层的掺杂浓度,由此,采用根据本发明的外延片的功率MOSFET的RDSON的增大得以抵消。 In addition, the doping concentration greater than a doping concentration of the lower half of the second epitaxial layer, thus, be offset using power MOSFET according to an increase RDSON epitaxial wafer of the present invention.

[0024] 表I示出了基于由本发明的外延片形成方法形成的外延片A和B的功率MOSFET与基于由现有外延片形成方法所形成的外延片功率MOSFET的元胞和边缘结构处的BVDSS和RDSON的对比,由表可知,通过本发明的外延片形成方法,使得功率MOSFET的BVDSS增大,并且对RDSON进行了补偿。 [0024] Table I shows based cellular forming method of an epitaxial wafer according to the present invention is formed of a power MOSFET of the epitaxial substrates A and B and the wafer power MOSFET based on a method of forming a conventional epitaxial wafer is formed and the edge structure at comparison of BVDSS RDSON and, seen from the table, the epitaxial wafer by forming method of the present invention, such BVDSS power MOSFET is increased, and RDSON compensated for.

Figure CN101673673BD00051

[0026] 本发明具有如下的优点。 [0026] The present invention has the following advantages.

[0027] (I)本发明的外延片具有两层不同的外延层。 [0027] (I) of the present invention is an epitaxial wafer having two layers of different epitaxial layers. 其中第二外延层的掺杂率保持恒定,而第一外延层的掺杂率随厚度的变化而变化。 Wherein the doping of the second epitaxial layer is kept constant, while the rate of the first epitaxial layer is doped with varying thickness changes. 这样通过对靠近基底的第一外延层的掺杂率进行调节从而改进使用所述外延层的功率MOSFET的BVDSS和RDSON特性。 Thereby improving the characteristics of the power MOSFET RDSON BVDSS and using the epitaxial layer thus adjusted by doping the first epitaxial layer close to the rate of the substrate.

[0028] (2)第一外延层的上半部分的掺杂浓度小于所述第二外延层的掺杂浓度,由此,采用根据本发明的外延片的功率MOSFET的BVDSS得以增大。 [0028] The dopant concentration of the upper part (2) of the first epitaxial layer is smaller than the doping concentration of the second epitaxial layer, whereby use is increased according to the power MOSFET BVDSS epitaxial wafer of the present invention.

[0029] (3)第一外延层的下半部分的掺杂浓度大于所述第二外延层的掺杂浓度,由此,采用根据本发明的外延片的功率MOSFET的RDSON的增大得以抵消。 [0029] (3) the doping concentration of the lower half of the first epitaxial layer is greater than the second doping concentration of the epitaxial layer, thus, be offset using power MOSFET according to an increase RDSON epitaxial wafer of the present invention. .

[0030] (4)在第二外延层中还进行不同掺杂率的掺杂,进一步增加了使用所述外延片的MOSFET的BVDSS以及补偿了RDOSON降级。 [0030] (4) in the second epitaxial layer is further doped with different doping rates, further increasing the use of the epitaxial wafer and the BVDSS MOSFET compensated RDOSON degraded.

[0031] 上文仅用于阐述本发明的具体实施例,其具体的参数选择不应理解为对本发明的限制。 [0031] The above embodiments are illustrative of specific embodiments of the present invention, the specific parameter selection should not be construed as limiting the present invention.

[0032] 具体地,本发明可实现为如下方式。 [0032] In particular, the present invention may be implemented as follows.

[0033] 第一外延层的掺杂浓度范围不限于3el4/Cm-3-le14/Cm-3,而可为其它范围。 Doping concentration range [0033] of the first epitaxial layer is not limited to 3el4 / Cm-3-le14 / Cm-3, but may be other ranges.

[0034] 第二外延层的掺杂率不限于2. 24el4/cm_3,而可为其它浓度。 [0034] The doping of the second epitaxial layer is not limited to 2. 24el4 / cm_3, but may be other concentrations.

[0035] 第一外延层的掺杂率不限于随厚度的变化而变化,即所述上半部分、下半部分、以及所述第一外延层的磷掺杂浓度不限于用斜率为A(OI)的斜线表示,而是例如可用正弦函数表示,只要第二外延层中的掺杂率为变化的即可。 [0035] The doping of the first epitaxial layer with varying thickness is not limited to changes, i.e., the upper half, lower half, and the first phosphorus doping concentration of the epitaxial layer is not limited to use as a slope A ( OI) of the diagonal lines, but is represented by a sine function, for example, can be used, as long as the second epitaxial layer doping rate can be changed.

[0036] 第一外延层和第二外延层的厚度不限于上述实施例给出的具体数值,而是可为其它数值。 [0036] The thickness of the first epitaxial layer and the second epitaxial layer is not limited to the specific numerical examples given above, but may be other values.

[0037] 第一外延层和第二外延层不限于掺杂磷,而是可掺杂其它元素。 [0037] The first epitaxial layer and the second epitaxial layer is doped with phosphorus are not limited to, but may be doped with other elements.

[0038] 以上介绍的仅仅是基于本发明的几个较佳实施例,并不能以此来限定本发明的范围。 [0038] Described above are merely based on several preferred embodiments of the present invention, and are not intended to limit the scope of the present invention. 任何对本发明的装置作本技术领域内熟知的部件的替换、组合、分立,以及对本发明实施步骤作本技术领域内熟知的等同改变或替换均不超出本发明的揭露以及保护范围。 Any replacement of parts for the apparatus of the present invention are well known in the art, combinations, discrete, and embodiments of the present invention, the step for changed or replaced equivalents well known in the art without departing the scope of the present disclosure and invention.

Claims (6)

1. ー种外延片形成方法,其特征在于,包括如下步骤: (a)形成第一外延层,其掺杂率随所述外延层的厚度而变化; (b)在所述第一外延层上形成第二外延层,其掺杂率恒定; (c)所述第一外延层包括第一部分和第二部分,其中所述第一部分的掺杂率不同于第ニ部分的掺杂率; (d)所述第一部分的掺杂率大于所述第二外延层的掺杂率,而所述第二部分的掺杂率小于所述第二外延层的掺杂率。 1. ー species wafer forming method comprising the steps of: (a) forming a first epitaxial layer, which is doped with the thickness of the epitaxial layer is changed; (b) in the first epitaxial layer forming a second epitaxial layer on which doping ratio constant; (c) the first epitaxial layer comprises a first portion and a second portion, wherein the doping of the first portion is different from the first doping ratio ni portion; ( d) doping ratio is greater than said first portion of said second doped epitaxial layer, the doping ratio of the second portion is smaller than the doping of the second epitaxial layer.
2.如权利要求1所述的方法,其特征在于,所述第一外延层的掺杂率可由斜率大于零小于1的直线函数表示。 2. The method according to claim 1, wherein said first epitaxial layer doping ratio may be greater than zero and less than the slope of the linear function 1.
3.如权利要求1所述的方法,其特征在于,所述第二外延层的掺杂率为2. 24el4/cm-30 3. The method according to claim 1, characterized in that the doping ratio of the second epitaxial layer 2. 24el4 / cm-30
4. ー种外延片,其特征在于,包括: 第一外延层,其掺杂率随所述外延层的厚度而变化; 形成在所述第一外延层上的第二外延层,其掺杂率恒定; 所述第一外延层包括第一部分和第二部分,其中所述第一部分的掺杂率不同于第二部分的掺杂率; 所述第一部分的掺杂率大于所述第二外延层的掺杂率,而所述第二部分的掺杂率小于所述第二外延层的掺杂率。 4. ー species epitaxial wafer, characterized by comprising: a first epitaxial layer doping ratio varies with the thickness of the epitaxial layer; forming a second epitaxial layer on said first epitaxial layer, doped rate constant; the first epitaxial layer comprises a first portion and a second portion, wherein the doping of the first portion is different from the doping of the second portion; doping ratio of the first portion is greater than said second epitaxial the doping of the layer, the doping ratio of the second portion is smaller than the doping of the second epitaxial layer.
5.如权利要求4所述的外延片,其特征在于,所述第一外延层的掺杂率可由斜率大于零小于1的直线函数表示。 The epitaxial wafer as claimed in claim 4, wherein said first epitaxial layer doping ratio may be greater than zero and less than the slope of the linear function 1.
6.如权利要求4所述的外延片,其特征在干,所述第二外延层的掺杂率为2. 24el4/cm—3。 6. The epitaxial wafer according to claim 4, characterized in that the dry, the doping rate is 2. 24el4 / cm-3 of the second epitaxial layer.
CN 200910196119 2009-09-22 2009-09-22 Method for forming epitaxial wafer and epitaxial wafer formed by using same CN101673673B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200910196119 CN101673673B (en) 2009-09-22 2009-09-22 Method for forming epitaxial wafer and epitaxial wafer formed by using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200910196119 CN101673673B (en) 2009-09-22 2009-09-22 Method for forming epitaxial wafer and epitaxial wafer formed by using same

Publications (2)

Publication Number Publication Date
CN101673673A CN101673673A (en) 2010-03-17
CN101673673B true CN101673673B (en) 2013-02-27

Family

ID=42020823

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200910196119 CN101673673B (en) 2009-09-22 2009-09-22 Method for forming epitaxial wafer and epitaxial wafer formed by using same

Country Status (1)

Country Link
CN (1) CN101673673B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201417150A (en) * 2012-10-31 2014-05-01 Lg Innotek Co Ltd Epitaxial wafer
CN103489761A (en) * 2013-09-17 2014-01-01 杭州立昂微电子股份有限公司 Growing method of special epitaxial slice for Schottky chip
CN108615768B (en) * 2018-05-02 2019-07-30 深圳吉华微特电子有限公司 A kind of anti-radiation VDMOS device and preparation method thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1180924A (en) 1996-09-05 1998-05-06 哈里公司 Method of forming power semiconductor devices with controllable integrated buffer
CN1628370A (en) 2002-02-08 2005-06-15 克里公司 Methods of treating a silicon carbide substrate for improved epitaxial deposition and resulting structures and devices
CN1894777A (en) 2003-12-18 2007-01-10 皇家飞利浦电子股份有限公司 A semiconductor substrate with solid phase epitaxial regrowth with reduced junction leakage and method of producing same
JP2007150261A (en) 2005-11-24 2007-06-14 Samsung Electro Mech Co Ltd Photodiode element and photo diode array
CN101211851A (en) 2006-12-30 2008-07-02 上海先进半导体制造股份有限公司 1.0Micrometre high voltage CMOS fabrication process
CN101228636A (en) 2005-07-25 2008-07-23 飞思卡尔半导体公司 Power semiconductor device as well as method for making the same
CN101226881A (en) 2007-01-16 2008-07-23 北京大学 Method for manufacturing dent source leakage field effect transistor
CN101369538A (en) 2007-08-15 2009-02-18 北方工业大学 Production method for low-conducting impedance power field effect pipe VDMOS
CN101478006A (en) 2009-01-19 2009-07-08 西安电子科技大学 Terahertz GaN Gunn diode based on conducting type SiC substrate and manufacturing process thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6723621B1 (en) * 1997-06-30 2004-04-20 International Business Machines Corporation Abrupt delta-like doping in Si and SiGe films by UHV-CVD
US6657254B2 (en) * 2001-11-21 2003-12-02 General Semiconductor, Inc. Trench MOSFET device with improved on-resistance

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1180924A (en) 1996-09-05 1998-05-06 哈里公司 Method of forming power semiconductor devices with controllable integrated buffer
CN1628370A (en) 2002-02-08 2005-06-15 克里公司 Methods of treating a silicon carbide substrate for improved epitaxial deposition and resulting structures and devices
CN1894777A (en) 2003-12-18 2007-01-10 皇家飞利浦电子股份有限公司 A semiconductor substrate with solid phase epitaxial regrowth with reduced junction leakage and method of producing same
CN101228636A (en) 2005-07-25 2008-07-23 飞思卡尔半导体公司 Power semiconductor device as well as method for making the same
JP2007150261A (en) 2005-11-24 2007-06-14 Samsung Electro Mech Co Ltd Photodiode element and photo diode array
CN101211851A (en) 2006-12-30 2008-07-02 上海先进半导体制造股份有限公司 1.0Micrometre high voltage CMOS fabrication process
CN101226881A (en) 2007-01-16 2008-07-23 北京大学 Method for manufacturing dent source leakage field effect transistor
CN101369538A (en) 2007-08-15 2009-02-18 北方工业大学 Production method for low-conducting impedance power field effect pipe VDMOS
CN101478006A (en) 2009-01-19 2009-07-08 西安电子科技大学 Terahertz GaN Gunn diode based on conducting type SiC substrate and manufacturing process thereof

Also Published As

Publication number Publication date
CN101673673A (en) 2010-03-17

Similar Documents

Publication Publication Date Title
US20070057262A1 (en) Semicoductor device and manufacturing method thereof
US20050133816A1 (en) III-nitride quantum-well field effect transistors
CN100521228C (en) Power semiconductor element
US7449762B1 (en) Lateral epitaxial GaN metal insulator semiconductor field effect transistor
CN102007596B (en) Semiconductor device
US10084037B2 (en) MOSFET active area and edge termination area charge balance
US7776700B2 (en) LDMOS device and method
US7989910B2 (en) Semiconductor device including a resurf region with forward tapered teeth
CN100385676C (en) Silicon carbide horizontal channel buffered gate semiconductor devices
US20070013000A1 (en) Semiconductor device and manufacturing method of the same, and non-isolated DC/DC converter
CN102272889B (en) Epitaxial substrate for electronic device and manufacturing method thereof
US8431974B2 (en) Silicon carbide semiconductor device
WO2007097264A1 (en) Semiconductor element
JP2010045363A (en) Mesa termination structure for power semiconductor device and method of forming power semiconductor device with mesa termination structure
JP2003273355A (en) Semiconductor element and method for manufacturing the same
JP4309967B2 (en) Semiconductor device and manufacturing method thereof
JP2009218566A (en) Semiconductor device
JP2007294528A (en) Nitride semiconductor element
CN100565919C (en) Charge compensation semiconductor device and related manufacturing process
US7498633B2 (en) High-voltage power semiconductor device
US9312343B2 (en) Transistors with semiconductor interconnection layers and semiconductor channel layers of different semiconductor materials
US20090085064A1 (en) Heterojunction semiconductor device and method
CN102150270B (en) MOSFET and method for manufacturing MOSFET
US8785912B2 (en) Graphene electronic device including a plurality of graphene channel layers
CN101752421A (en) Semiconductor device and method for manufacturing the same

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
C14 Granted
C41 Transfer of the right of patent application or the patent right
ASS Succession or assignment of patent right

Owner name: SHANGHAI HUAHONG GRACE SEMICONDUCTOR MANUFACTURING

Free format text: FORMER OWNER: HONGLI SEMICONDUCTOR MANUFACTURE CO LTD, SHANGHAI

Effective date: 20140514