CN101667326A - 滑坡对管道影响的监测预警方法和系统 - Google Patents
滑坡对管道影响的监测预警方法和系统 Download PDFInfo
- Publication number
- CN101667326A CN101667326A CN200810119556A CN200810119556A CN101667326A CN 101667326 A CN101667326 A CN 101667326A CN 200810119556 A CN200810119556 A CN 200810119556A CN 200810119556 A CN200810119556 A CN 200810119556A CN 101667326 A CN101667326 A CN 101667326A
- Authority
- CN
- China
- Prior art keywords
- pipeline
- fiber
- monitoring
- landslide
- optic grating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000012544 monitoring process Methods 0.000 title claims abstract description 138
- 238000000034 method Methods 0.000 title claims abstract description 29
- 239000000835 fiber Substances 0.000 claims abstract description 76
- 239000002689 soil Substances 0.000 claims abstract description 75
- 239000013307 optical fiber Substances 0.000 claims description 26
- 238000006073 displacement reaction Methods 0.000 claims description 22
- 238000012806 monitoring device Methods 0.000 claims description 21
- 229910000831 Steel Inorganic materials 0.000 claims description 10
- 230000015572 biosynthetic process Effects 0.000 claims description 10
- 239000010959 steel Substances 0.000 claims description 10
- 238000004891 communication Methods 0.000 claims description 8
- 238000005538 encapsulation Methods 0.000 claims description 8
- 239000004568 cement Substances 0.000 claims description 3
- 238000012545 processing Methods 0.000 claims description 3
- 238000005516 engineering process Methods 0.000 description 12
- 238000005259 measurement Methods 0.000 description 11
- 230000003287 optical effect Effects 0.000 description 11
- 238000004458 analytical method Methods 0.000 description 7
- 230000005540 biological transmission Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 6
- 230000008901 benefit Effects 0.000 description 5
- 230000008859 change Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 239000011435 rock Substances 0.000 description 4
- 230000035945 sensitivity Effects 0.000 description 4
- 238000013461 design Methods 0.000 description 3
- 230000005484 gravity Effects 0.000 description 3
- 238000011835 investigation Methods 0.000 description 3
- 239000003345 natural gas Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 206010034972 Photosensitivity reaction Diseases 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000036211 photosensitivity Effects 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000013467 fragmentation Methods 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000000116 mitigating effect Effects 0.000 description 1
- 230000006855 networking Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000003209 petroleum derivative Substances 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000002317 scanning near-field acoustic microscopy Methods 0.000 description 1
- 230000001953 sensory effect Effects 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000002463 transducing effect Effects 0.000 description 1
- 230000004304 visual acuity Effects 0.000 description 1
Images
Landscapes
- Testing Or Calibration Of Command Recording Devices (AREA)
Abstract
本发明是一种滑坡对管道影响的监测预警方法和系统。它将监测分为滑坡对管道的推力监测及管道应变监测两部分:滑坡对管道的推力监测方法是:用固定在管道(14)上的封装土压力盒光纤光栅传感器(4)并土压力盒光纤光栅传感器(4)感受压力的敏感面朝向滑坡(13)的滑动方向测压力;这样土压力盒光纤光栅传感器(4)测量的压力就是滑坡(13)对管道的正面推力;管道应变监测方法是:在滑坡(13)的两侧边缘及滑坡的中心位置的管道(14)上,均匀布置管道(14)监测截面,且监测截面的间距不宜超过60m;在管道(14)的每个监测截面上均匀布置3个管体应变光纤光栅传感器(3),监测管道(14)轴向的应变。
Description
技术领域
本发明是一种基于光纤光栅的滑坡对管道影响的监测预警方法和系统。涉及测量应力及管道系统技术领域。
背景技术
滑坡是指构成斜坡的岩土体在重力作用下伴随其下部软弱面上的剪切作用过程而产生整体运动现象。滑坡灾害是造成人类生命财产损失的地质灾害的主要形式之一。长距离输油或输气管道输送距离可达数千公里,穿越众多地质地貌单元,常不可避免地要穿过地质条件复杂的地区,如山区、冻土区等。因为选线的不充分或管道建设诱发滑坡或地震诱发滑坡等原因,在山区敷设的管道有可能在活动滑坡体内通过,管道的安全运营遭受这些活动滑坡的严重威胁。这些有可能要威胁管道安全的滑坡称之为管道滑坡。
在过去四十年的管道运输历史中,以滑坡为主的地质灾害曾多次造成管道事故。欧洲天然气管道事故数据小组(EGIG)调查的1970年到2001年的西欧管道事故中,7%是由地质灾害导致的;美国交通部统计的1984年到2001天然气输送数据表明,8.5%的事故是由地质灾害引起的;加拿大国家能源委员会调查显示影响加拿大运营的管道事故的12%是地质灾害导致的。1987年3月由地震导致的巨型滑坡使横贯厄瓜多尔管道发生40km长的断裂,停输两个星期,经济损失达7亿美元。1995年及1996年冬天,由于华盛顿西部的特强降雨诱发滑坡,导致美国西北输气管线三处管道发生断裂。
我国的管道工业正处在蓬勃发展之中,这些管道大多将我国西部丰富的石油天然气输送到我国的东部,而我国的西部、西南部集中了我国大多数山地,管道就不可避免地要穿越地质灾害严重地区。忠武输气管道忠县-宜昌409公里段处于渝东鄂西山区,山峰层峦叠嶂、高差显著,地形、地质条件复杂,发育有多组地质灾害易发岩层,是滑坡、危岩崩塌的频发地段。2003年建成投产的兰成渝成品油管道兰州至广元段,构造活跃,岩性破碎,地形切割发育,投产后投入巨资用于地质灾害防治,但2007年的调查显示威胁管道安全的地质灾害仍有530处之多。西气东输工程干线总长约4000公里,遭受各种地质灾害严重威胁,其中查明的滑坡灾害达39处之多。
面对众多的管道滑坡灾害,我国的管道运营公司经常采取积极的工程治理措施,但这些措施也存在一些的弊端,首先是成本高,其次是防治工程也并非“一劳永逸”,设计施工的不确定因素较多,再者治理的周期长。而监测则是一种高效、低成本的防治措施。意大利SNAM公司将监测管道作为防治滑坡灾害的主要方式,他们对管道进行了长达三十年的监测,成功避免了大量的管道事故。我国的西气东输、忠武线等管道投产后对滑坡也进行有效的监测。
传统的滑坡深部位移监测主要采用多点位移计或钻孔测斜仪,表部变形采用全站仪或GPS手段,这些方法的实时性都较差,难以满足滑坡监测长期实时的要求。传统的管道应变监测以电阻式应变计、振弦式应变计为主,在耐腐蚀、抗干扰方面较差,稳定性也难以满足要求。近年兴起的分布式光纤传感技术(以BOTDR为代表)在滑坡或管道监测已有一定的应用。
分布式光纤技术已应用于监测滑坡变形,有两种方式。一种是不选任何物体作为载体,光纤直接感受土体的变形,因为土体颗粒松散且容易大变形,这样光纤很难与土体协调变形,且局部土体的大变形容易破坏光纤。另一种方式是选构筑体作为载体,通过监测构筑体的变形间接反映滑坡的变形。通常的方法是选滑坡治理工程的构筑物作为载体,这种方法一般应用于滑坡治理工程的效果监测;另外的方法是选取滑坡体上的已有的其他构筑物(如自上而下的阶梯)作为变形载体,这种方法可操作性强,但监测结果难以定量计算变形。
目前的这些监测方式均局限于对滑坡(致灾体)或管道(承灾体)进行独立监测,还未对滑坡及其影响下的管道进行系统的联合监测。联合监测不仅能判断滑坡的活动情况、发育发展规律、破坏机理,还能查明滑坡对管道的影响方式和程度,更重要的是能掌握钢质管道的应力位移变化规律,判断管道的安全等级。综合以上的信息,就能对管道滑坡进行安全预警,提前预报管道的危险状态,为减灾方案的设计实施提供依据。联合监测代表了管道滑坡监测的趋势。
发明内容
本发明的目的是发明一种空间分辨率高、成本低的滑坡对管道影响的监测预警方法和系统。
本发明提出了一种基于光纤光栅传感技术的滑坡对管道影响的监测预警方法和系统。这种系统采用光纤光栅传感技术,对滑坡及其影响下的管道进行联合监测,监测内容包括滑坡对管道的推力监测及管道应变监测。并构建了监测系统,实现了数据的实时自动采集、远程传输和自动分析。
光纤布喇格光栅(Fiber Bragg Grating,FBG,简称光纤光栅)是近20年来迅速发展起来的微光学元件,是利用光纤中的光敏性制成的。所谓光纤中的光敏性是指激光通过掺杂光纤时,光纤的折射率将随光强的空间分布发生相应变化的特性。而在纤芯内形成的空间相位光栅,其作用的实质就是在纤芯内形成一个窄带的(透射或反射)滤波器或反射镜。
光纤光栅传感是一种在由光纤刻制而成的波长选择反射器,其背向反射光中心波长λB与光栅周期Λ和纤芯折射率neff有关,即
λB=2neffΛ
FBG光纤光栅传感的基本原理是,当光栅周围的温度、应变、应力或其它待测物理量发生变化时,将导致光栅周期或纤芯折射率的变化,从而使光纤光栅的中心波长产生位移ΔλB,通过检测光栅波长的位移情况,即可获得待测物理量的变化情况。即
ΔλB=Kε·Δε+KT·ΔT
式中Kε为应变传感灵敏度系数,KT为光纤光栅温度传感灵敏度系数。
对于FBG纤芯为纯石英的情况,Kε为1pm/uε,KT为10pm/℃。光纤材质、写入工艺和封装材料都会影响FBG的应变和温度传感灵敏度系数,应用前必须对以上参数进行标定。
光纤光栅可制成各种传感器件,在传感领域得到广泛应用。与传统的电传感器相比,光纤光栅传感器具有自己独特的优点:1.传感头结构简单、体积小、重量轻、外形可变,适合埋入各种大型结构中,可测量结构内部的应力、应变及结构损伤等,稳定性、重复性好;2.与光纤之间存在天然的兼容性,易与光纤连接、光损耗低、光谱特性好、可靠性高;3.具有非传导性,对被测介质影响小,又具有抗腐蚀、抗电磁干扰的特点,适合在恶劣环境中工作;4.轻巧柔软,可以在一根光纤中写入多个光栅,构成传感阵列,与波分复用和时分复用系统相结合,实现分布式传感;5.测量信息以波长编码,因而光纤光栅传感器不受光源的光强波动、光纤连接与耦合损耗、光波偏振态变化等因素的影响,具较强的抗干扰能力;6.高灵敏度、高分辩力。
与广泛使用的布里渊光时域反射计BOTDR相比,光纤光栅传感器的优点有:1.对测量点能精确定位,分辨率高;2.成本低;3.能对传感部分进行加工、封装,使其更适合现场的恶劣环境。
由于这些优点,在岩土工程领域中,光纤光栅传感器很容易埋入岩土体中对其内部的应变和温度进行高分辨率和大范围测量,技术优势非常明显,尤其体现在能获得长期、可靠的岩土体变形数据。
本发明提出的基于光纤光栅传感技术的滑坡对管道影响的监测预警方法如图1所示,是将监测分为滑坡对管道的推力监测及管道应变监测两部分。这是因为不论是滑坡深部位移还是滑坡表部位移,终将表现为对管道的推力,而对管道的推力又体现在管道应变上。因此,滑坡对管道的推力监测和管道应变监测就是滑坡对管道影响监测的主要内容。
滑坡对管道的推力监测方法是:用固定在管道上的封装土压力盒光纤光栅传感器4测压力;土压力盒光纤光栅传感器4通过土压力盒支架21固定在管道14上,并土压力盒光纤光栅传感器4感受压力的敏感面朝向滑坡13的滑动方向。这样土压力盒光纤光栅传感器4测量的压力就是滑坡13对管道14的正面推力。
管道应变监测方法是:在滑坡13的两侧边缘及滑坡的中心位置的管道14上,均匀布置管道监测截面,且监测截面的间距不宜超过60m;在管道14的每个监测截面上均匀布置3个管体光纤光栅应变传感器3,监测管道14轴向的应变。
大量的研究表明,滑坡13对管道14作用应力关键表现在轴向上,对管道14轴向应力的测量就能较好地判断管道14的可接受应力状态。因此管体光纤光栅应变传感器3仅测量管道轴向的应变,基于钢材弹性理论,已知应变就可求出应力。
按照上述的方法构建的滑坡对管道影响的监测预警系统如图1和图2所示,是由滑坡对管道的推力监测装置、管道应变监测装置、现场监测站、办公室的接收终端组成。以一定结构形式安装在滑坡内管道上的现场滑坡对管道推力监测装置的土压力盒应变光纤光栅传感器4和管道应变监测装置的管体应变光纤光栅传感器3输出分别接现场监测站的自动光转换开关6,自动光转换开关6输出接光纤光栅解调仪7的输入,另外上位计算机8的一端输出接自动光转换开关6的一端输入;光纤光栅解调仪7的输出也接上位计算机8的输入;上位计算机8的输出接GPRS传输模块9,由办公室的接收终端GPRS接收模块10接下位计算机11的输入,下位计算机11的输出接报警器12和显示器。
该系统的电原理如图3所示,分别监测滑坡对管道的推力和管道应变的两个光纤光栅传感器--土压力盒光纤光栅传感器4、管体光纤光栅传感器3的PC接头用光纤与光转换开关6的PC接头连接,光转换开关6的R232直接接上位计算机8的R232,光转换开关6的PC接头连接光纤光栅解调仪7SM125的CH1端,光纤光栅解调仪7SM125的LAN端口接上位计算机8的LAN端口,上位计算机8的R232端口接GPRS传输模块9西门子MC35i的R232端口,GPRS传输模块9经天线GSM、GPRS网络,被GPRS接收模块10天线GSM接收后由R232接到下位计算机11的R232,下位计算机11的输出由R232接报警器12DS-7400的R232,下位计算机11的输出由VGA端接显示器的VGA端。
监测滑坡对管道的推力和管道应变的两种光纤光栅传感器的输出信号经逐一导通给光纤光栅解调仪7,光纤光栅解调仪7解调出各光纤光栅传感器的中心波长位移量输给上位计算机8,光转换开关6给光纤光栅解调仪7导通信号的周期由上位机8控制。上位计算机8自动计算出各监测量输给GPRS传输模块9并接受GPRS传输模块9的信号进行控制,GPRS传输模块9将上位计算机8计算的各监测量通过公众无线通信网络传输到位于办公室的接受终端GPRS接收模块10,也可接受接收终端的信号,发送给下位计算机11处理后,由显示器显示并由报警器12报警。
滑坡对管道的推力监测装置的构成如图4所示,是滑坡13对管道14推力监测的土压力盒光纤光栅传感器4输出接光转换开关6输入,光转换开关6输出接光栅解调仪7输入,光栅解调仪的输出接现场上位计算机8。而滑坡13对管道14推力监测的光纤光栅传感器采用光纤光栅封装土压力盒光纤光栅传感器4;土压力盒光纤光栅传感器4通过土压力盒支架21固定在管道14上,并土压力盒光纤光栅传感器4感受压力的敏感面朝向滑坡13的滑动方向。这样土压力盒光纤光栅传感器3测量的压力就是滑坡13对管道14的正面推力。
具体构成是:土压力盒光纤光栅传感器4通过土压力盒支架21固定在管道14上,土压力盒光纤光栅传感器4感受压力的敏感面朝向滑坡13的滑动方向。这样土压力盒光纤光栅传感器4测量的压力就是滑坡13对管道14的正面推力。土压力盒支架21由两块圆弧形钢板卡箍组成,其中一段圆弧形钢板上焊有底座,土压力盒光纤光栅传感器4嵌入底座中,并保持一定的裕量,使土压力盒能自由变形。土压力盒支架21两端的卡箍连接件23通过螺帽连接。当滑坡13滑动时,滑坡13对土压力盒的推力可通过土压力盒光纤光栅传感器4测量,该测量值减去土压力盒光纤光栅传感器4承受的土体自重压力,即为滑坡13变形对管道14产生的推力。
管体应力的监测装置的构成如图5和图6所示,是在滑坡的两侧边缘及滑坡的中心位置各布置一管道监测截面,在管道14的每个监测截面的外周均匀布置3个管体光纤光栅传感器3且3个管体光纤光栅传感器3布置在与管道14轴线垂直的平面上。管体光纤光栅传感器3输出接光转换开关6输入,光转换开关6输出接光纤光栅解调仪7输入,光纤光栅解调仪7的输出接现场上位计算机8。
具体构成是:在滑坡的两侧边缘及滑坡的中心位置各布置一管道监测截面,且监测截面的间距不宜超过60m。在管道14的每个监测截面的外周均匀布置3个管体光纤光栅传感器3且3个管体光纤光栅传感器3布置在与管道14轴线垂直的平面上。安装管体光纤光栅传感器3时,完全刮开管道14防腐层,并打磨管道14表面至光滑,用快干胶3粘贴管体光纤光栅传感器封装24封装好管体光纤光栅传感器3。待三个管体光纤光栅传感器3全部粘贴好后,将管体光纤光栅传感器3的引纤一并引至地面,并进行保护。
当管道14轴向承受拉/压应力时,三个管体光纤光栅传感器3承受拉/压应变;按照一定的算法,由该截面三处应变,即可求出该管道14截面上最大应变的大小和位置。基于钢材弹性理论,即可求出管道14截面上最大的拉/压应力的大小。监测截面的选择对监测效果很重要。
大量的研究表明,滑坡13对管道14作用应力关键表现在轴向上,对管道14轴向应力的测量就能较好地判断管道14的可接受应力状态。因此,管体光纤光栅传感器3仅测量管道14轴向的应变。
现场监测站设置在滑坡现场,包括光纤接线盒、连接光缆5、光转换开关6、光纤光栅解调仪7、上位计算机8、GPRS传输模块9;由各光纤光栅传感器的光纤接线盒和连接光缆5将滑坡13上各个位置的光纤光栅传感器接到监测站的光转换开关6,光转换开关6输出接光纤光栅解调仪7,光纤光栅解调仪7输出接上位计算机8,上位计算机8输出接GPRS传输模块9。各光纤光栅传感器的光纤接线盒和连接光缆5将滑坡13上各个位置的光纤光栅传感器信号集中传输到监测站的光转换开关6,光转换开关6将各通道信号依次转换给光纤光栅解调仪7,光纤光栅解调仪7解调出各光纤光栅传感器的中心波长位移量给上位计算机8,上位计算机8自动计算出各监测量输给GPRS传输模块9并接受GPRS传输模块9的信号进行控制,GPRS传输模块9将上位计算机8计算的各监测量通过公众无线通信网络传输到位于办公室的接受终端,也可接受接收终端的信号,发送给下位计算机11。
其中:
光转换开关6:由于监测滑坡和管道的光纤光栅传感器不止一个,信号通道多,无法一次连接到光纤光栅解调仪7上,用光转换开关6将各通道信号依次转换给光纤光栅解调仪7分析;该光转换开关6选用市销产品;
光纤光栅解调仪7:用于解调出各光纤光栅传感器的中心波长位移量;选用市销产品;
上位计算机8及程序:用于控制光纤光栅解调仪7解调的频率,并将光纤光栅解调仪7解调出的中心波长位移量自动计算出各监测量,如滑坡的深部位移、表部位移、管体最大应变等,将监测量发送给GPRS传输模块9,并接受GPRS传输模块9的信号进行控制;上位计算机8选用市销产品,程序自编;
GPRS传输模块9:用于将上位计算机8计算的各监测量通过公众无线通信网络传输到位于办公室的接受终端,也可接受接收终端的信号,发送给下位计算机11。
位于办公室的接收终端包括如下2个部分:
1)GPRS接收模块10,用于接收现场监测站GPRS传输模块9发送的监测量,并传输给终端下位计算机11,也可给现场GPRS传输模块9发送反馈指令;
2)下位计算机11及程序,用于下载终端GPRS接收模块10的信号,并调用程序进行自动分析,将分析结果与报警阀值进行对比,必要的时候实施报警;
3)报警器12,用于当分析结果超过报警阀值时,发生声音警示信号;报警器12由下位计算机11及程序控制。
该系统的工作原理是这样的,滑坡13活动过程中,管道14承受滑坡13推力而发生管体14应变变化,通过管体光纤光栅传感器3测量;在管道14与滑坡13的接触面上,滑坡13对管道14的推力通过土压力盒光纤光栅传感器4测量。
通过连接光缆5,将滑坡上各个位置的传感器信号集中传输到光转换开关6,光转换开关6将各通道信号依次转换给光纤光栅解调仪7,光纤光栅解调仪7解调出各传感器波长中心波长位移量并传感给上位计算机8,上位计算机8将解调仪解调出的中心波长位移量自动计算为各监测量,如滑坡13的深部位移、表部位移、管体最大应变、界面推力等,并将监测量发送给现场GPRS传输模块9,GPRS传输模块9通过公众无线通信网络将信号传输给终端GPRS接收模块10,终端GPRS接收模块10发送给终端下位计算机11,终端下位计算机11将各监测量与报警阀值对比,必要的时候给出报警。
本方法和系统的优点表现在:
1)提出对滑坡13影响下管道14进行联合监测的方法,用多指标进行滑坡13影响下的管道14的安全预警,极大避免了管道14滑坡监测预警中的不确定性或错误预警;
2)将光纤光栅传感技术应用于管道滑坡13的系统监测,该技术抗干扰、耐腐蚀、易于组网等有时明显;通过构筑特定的载体,实现了用光纤光栅传感技术监测滑坡对管道的影响,与传统的技术手段相比,光纤光栅传感技术易于实现自动实时监测,空间分辨率高,且成本较低;
3)管道应变监测,是在每个监测截面均匀安装3个传感器,通过特定的算法得出该监测截面的最大应变分布,用最少的监测点实现了监测目的,节约了成本,也减少的安装时间及对管道的损伤;
4)所有的监测量均通过光纤光栅传感技术来实现,易于构建监测系统,易于实现管道滑坡联合监测数据的实时自动采集分析及远程发布,远程实时自动报警;避免了繁琐的人工采集数据,减少了报警时间,这对管道应急措施的采取至关重要。
附图说明
图1滑坡对管道影响的监测预警系统构成示意图
图2滑坡对管道影响的监测预警系统原理框图
图3滑坡对管道影响的监测预警系统电原理图
图4土压力传感器示意图
图5管体应力的监测装置示意图(横断面图)
图6管体应力的监测装置示意图
其中
3-管体光纤光栅传感器 4-土压力盒光纤光栅传感器
5-光缆 6-光转换开关
7-光纤光栅解调仪 8-上位计算机
9-GPRS传输模块 10-GPRS接收模块
11-下位计算机 12-报警器
13-滑坡 14-管道
15-滑动面 18-边坡
21-土压力盒支架 22-支架卡箍
23-卡箍连接件 24-管体光纤光栅传感器封装
具体实施方式
实施例.本例是一试验方法和系统,并在一宽300m、滑坡厚29m、基覆截面即为滑面的覆盖层慢速滑坡体上作试验。本管道滑坡监测预警系统原理如图2所示,是由滑坡对管道的推力监测装置、管道应变监测装置、现场监测站、办公室的接收终端组成。以一定结构形式安装在滑坡内管道上的现场滑坡对管道的推力监测装置的土压力盒应变光纤光栅传感器4和管道应变监测装置的管体应变光纤光栅传感器3输出分别接现场监测站的自动光转换开关6,自动光转换开关6输出接光纤光栅解调仪7的输入,另外上位计算机8的一端输出接自动光转换开关6的一端输入;光纤光栅解调仪7的输出也接上位计算机8的输入;上位计算机8的输出接GPRS传输模块9,由办公室的接收终端GPRS接收模块10接下位计算机11的输入,下位计算机11的输出接报警器12和显示器。
该系统的电原理如图3所示,分别监测滑坡对管道的推力和管道应变的两个光纤光栅传感器--土压力盒光纤光栅传感器4、管体光纤光栅传感器3的PC接头用光纤与光转换开关6的PC接头连接,光转换开关6的R232直接接上位计算机8的R232,光转换开关6的PC接头连接光纤光栅解调仪7SM125的CH1端,光纤光栅解调仪7SM125的LAN端口接上位计算机8的LAN端口,上位计算机8的R232端口接GPRS传输模块9西门子MC35i的R232端口,GPRS传输模块9经天线GSM、GPRS网络,被GPRS接收模块10天线GSM接收后由R232接到下位计算机11的R232,下位计算机11的输出由R232接报警器12DS-7400的R232,下位计算机11的输出由VGA端接显示器的VGA端。
监测滑坡对管道的推力和管道应变的两种光纤光栅传感器的输出信号经逐一导通给光纤光栅解调仪7,光纤光栅解调仪7解调出各光纤光栅传感器的中心波长位移量输给上位计算机8,光转换开关6给光纤光栅解调仪7导通信号的周期由上位机控制8。上位计算机8自动计算出各监测量输给GPRS传输模块9并接受GPRS传输模块9的信号进行控制,GPRS传输模块9将上位计算机8计算的各监测量通过公众无线通信网络传输到位于办公室的接受终端GPRS接收模块10,也可接受接收终端的信号,发送给下位计算机11处理后,由显示器显示并由报警器12报警。
滑坡对管道的推力监测装置的构成如图4所示,是滑坡13对管道14推力监测的土压力盒光纤光栅传感器4输出接光转换开关6输入,光转换开关6输出接光栅解调仪7输入,光栅解调仪的输出接现场上位计算机8。而滑坡13对管道14推力监测的光纤光栅传感器采用光纤光栅封装土压力盒光纤光栅传感器4;土压力盒光纤光栅传感器4通过土压力盒支架21固定在管道14上,并土压力盒光纤光栅传感器4感受压力的敏感面朝向滑坡13的滑动方向。这样土压力盒光纤光栅传感器4测量的压力就是滑坡13对管道14的正面推力。
具体是:土压力盒光纤光栅传感器4通过土压力盒支架21固定在管道14上,土压力盒光纤光栅传感器4感受压力的敏感面朝向滑坡13的滑动方向。这样土压力盒光纤光栅传感器4测量的压力就是滑坡13对管道14的正面推力。土压力盒支架21由两块圆弧形钢板卡箍组成,其中一段圆弧形钢板上焊有底座,土压力盒光纤光栅传感器4嵌入底座中,并保持一定的裕量,使土压力盒能自由变形。土压力盒支架21两端的卡箍连接件23通过螺帽连接。当滑坡13滑动时,滑坡13对土压力盒的推力可通过土压力盒光纤光栅传感器4测量,该测量值减去土压力盒光纤光栅传感器4承受的土体自重压力,即为滑坡13变形对管道14产生的推力。
该装置单通道的电原理如图3所示,滑坡13对管道14推力监测的土压力盒光纤光栅传感器4的PC接头用光纤与光转换开关6的PC接头连接,光转换开关6的R232直接接上位计算机8的R232,光转换开关6的PC接头连接光纤光栅解调仪7SM125的CH1端,光纤光栅解调仪7SM125的LAN端口接上位计算机8的LAN端口。
管体应力的监测装置的构成如图5和图6所示,是在滑坡的两侧边缘及滑坡的中心位置各布置一管道监测截面,在管道14的每个监测截面的外周均匀布置3个管体光纤光栅传感器3且3个管体光纤光栅传感器3布置在与管道14轴线垂直的平面上。管体光纤光栅传感器3输出接光转换开关6输入,光转换开关6输出接光纤光栅解调仪7输入,光纤光栅解调仪7的输出接现场上位计算机8。
该装置单通道的电原理如图3所示,管体光纤光栅传感器3的PC接头用光纤与光转换开关6的PC接头连接,光转换开关6的R232直接接上位计算机8的R232,光转换开关6的PC接头连接光纤光栅解调仪7SM125的CH1端,光纤光栅解调仪7SM125的LAN端口接上位计算机8的LAN端口。
具体构成是:在100m宽的滑坡13的两侧边缘及滑坡的中心位置各布置一管道监测截面,监测截面的间距为50m。在管道14的每个监测截面的外周均匀布置3个管体光纤光栅传感器3且3个管体光纤光栅传感器3布置在与管道14轴线垂直的平面上。安装管体光纤光栅传感器3时,完全刮开管道14防腐层,并打磨管道14表面至光滑,用快干胶3粘贴管体光纤光栅传感器封装24封装好管体光纤光栅传感器3。待三个管体光纤光栅传感器3全部粘贴好后,将管体光纤光栅传感器3的引纤一并引至地面,并进行保护。
当管道14轴向承受拉/压应力时,三个管体光纤光栅传感器3承受拉/压应变;按照一定的算法,由该截面三处应变,即可求出该管道14截面上最大应变的大小和位置。基于钢材弹性理论,即可求出管道14截面上最大的拉/压应力的大小。监测截面的选择对监测效果很重要。
大量的研究表明,滑坡13对管道14作用应力关键表现在轴向上,对管道14轴向应力的测量就能较好地判断管道14的可接受应力状态。因此,管体光纤光栅传感器3仅测量管道14轴向的应变。
上述监测装置中:
光纤光栅传感器:选用自行设计封装的光纤光栅传感器。
光转换开关选用光隆SUM-FSW;
光栅解调仪选用SM125。
现场监测站设置在滑坡现场,包括光纤接线盒、连接光缆5、光转换开关6、光纤光栅解调仪7、上位计算机8、GPRS传输模块9;由各光纤光栅传感器的光纤接线盒和连接光缆5将滑坡13上各个位置的光纤光栅传感器接到监测站的光转换开关6,光转换开关6输出接光纤光栅解调仪7,光纤光栅解调仪7输出接上位计算机8,上位计算机8输出接GPRS传输模块9。各光纤光栅传感器的光纤接线盒和连接光缆5将滑坡13上各个位置的光纤光栅传感器信号集中传输到监测站的光转换开关6,光转换开关6将各通道信号依次转换给光纤光栅解调仪7,光纤光栅解调仪7解调出各光纤光栅传感器的中心波长位移量给上位计算机8,上位计算机8自动计算出各监测量输给GPRS传输模块9并接受GPRS传输模块9的信号进行控制,GPRS传输模块9将上位计算机8计算的各监测量通过公众无线通信网络传输到位于办公室的接受终端,也可接受接收终端的信号,发送给下位计算机11。
其中:
光转换开关:选用光隆科技SUM-FSW;
光纤光栅解调仪:选用SM125;
上位计算机及程序:选用研华IPC-610,程序自编;
GPRS传输模块:西门子MC35i
位于办公室的接收终端包括如下2个部分:
(1)GPRS接收模块10,用于接收现场监测站GPRS传输模块9发送的监测量,并传输给终端下位计算机11,也可给现场GPRS传输模块9发送反馈指令;
(2)下位计算机11及程序,用于下载终端GPRS接收模块10的信号,并调用程序进行自动分析,将分析结果与报警阀值进行对比,必要的时候实施报警;
(3)报警器12,用于当分析结果超过报警阀值时,发生声音警示信号;报警器12由下位计算机11及程序控制。
该系统的工作原理是这样的,当滑坡13滑动时,埋于滑坡13深部的测斜管1受滑坡13土体推力而发生弯曲应变,测斜管1上的测斜管光纤光栅传感器16感受到拉应变,通过计算可得出测斜管上的水平位移,即滑坡13深部的水平位移;埋于滑坡13浅表部的地梁2在承受滑坡13推力的过程中产生伸长应变,地梁2上的地梁光纤光栅传感器20感受到拉应变,通过计算可得出地梁水平向的位移分布,即滑坡表部的水平位移分布;滑坡13活动过程中,管道14承受滑坡13推力而发生管体14应变变化,通过管体光纤光栅传感器3测量;在管道14与滑坡13的接触面上,滑坡13对管道14的推力通过土压力盒光纤光栅传感器4测量。
通过连接光缆5,将滑坡上各个位置的传感器信号集中传输到光转换开关6,光转换开关6将各通道信号依次转换给光纤光栅解调仪7,光纤光栅解调仪7解调出各传感器波长中心波长位移量并传感给上位计算机8,上位计算机8将解调仪解调出的中心波长位移量自动计算为各监测量,如滑坡13的深部位移、表部位移、管体最大应变、界面推力等,并将监测量发送给现场GPRS传输模块9,GPRS传输模块9通过公众无线通信网络将信号传输给终端GPRS接收模块10,终端GPRS接收模块10发送给终端下位计算机11,终端下位计算机11将各监测量与报警阀值对比,必要的时候给出报警。
其中:
GPRS接收模块10:选用西门子MC35i;
下位计算机11及程序:下位机选用研华IPC-610;程序自编。
报警器12:选用博世DS-7400。
用上述方法构建的系统在进行监测时,滑坡13活动过程中,管道14承受滑坡13推力而发生管体14应变变化,通过管体光纤光栅传感器3测量;在管道14与滑坡13的接触面上,滑坡13对管道14的推力通过封装土压力盒光纤光栅传感器4测量;由此,就可完整地测量出管道14上所受到的各种应力。
经长时间的监测,本例易于构建监测系统,易于实现管道滑坡13联合监测数据的实时自动采集分析及远程发布,远程实时自动报警。避免了繁琐的人工采集数据,减少了报警时间,这对管道应急措施的采取至关重要。
Claims (5)
1.一种滑坡对管道影响的监测预警方法,其特征是将监测分为滑坡对管道的推力监测及管道应变监测两部分:
滑坡对管道的推力监测方法是:用固定在管道(14)上的封装土压力盒光纤光栅传感器(4)并土压力盒光纤光栅传感器(4)感受压力的敏感面朝向滑坡(13)的滑动方向测压力;这样土压力盒光纤光栅传感器(4)测量的压力就是滑坡(13)对管道的正面推力;
管道应变监测方法是:在滑坡(13)的两侧边缘及滑坡的中心位置的管道(14)上,均匀布置管道(14)监测截面,且监测截面的间距不宜超过60m;在管道(14)的每个监测截面上均匀布置3个管体应变光纤光栅传感器(3),监测管道(14)轴向的应变。
2.一种如权利要求1所述滑坡对管道影响的监测预警方法的滑坡对管道影响的监测预警系统,其特征是由滑坡对管道的推力监测装置、管道应变监测装置、现场监测站、办公室的接收终端组成;以一定结构形式安装在滑坡内管道上的现场滑坡对管道的推力监测装置的土压力盒光纤光栅传感器(4)和管道应变监测装置的管体光纤光栅传感器(3)输出分别接现场监测站的自动光转换开关(6),自动光转换开关(6)输出接光纤光栅解调仪(7)的输入,光纤光栅解调仪(7)的输出也接上位计算机(8)的输入;上位计算机(8)的输出接GPRS传输模块(9),由办公室的接收终端GPRS接收模块(10)接下位计算机(11)的输入,下位计算机(11)的输出接报警器(12)和显示器。
3.根据权利要求2所述的滑坡对管道影响的监测预警系统,其特征是该系统的电原理是:分别监测滑坡对管道的推力和管道应变的两个光纤光栅传感器--土压力盒光纤光栅传感器(4)、管体光纤光栅传感器(3)的PC接头用光纤与光转换开关(6)的(PC)接头连接,光转换开关(6)的(R232)直接接上位计算机(8)的(R232),光转换开关(6)的(PC)接头连接光纤光栅解调仪(7)SM125的(CH1)端,光纤光栅解调仪(7)SM125的(LAN)端口接上位计算机(8)的(LAN)端口,上位计算机(8)的(R232)端口接GPRS传输模块(9)西门子MC35i的(R232)端口,GPRS传输模块(9)经天线GSM、GPRS网络,被GPRS接收模块(10)天线GSM接收后由(R232)接到下位计算机(11)的(R232),下位计算机(11)的输出由(R232)接报警器(12)DS-7400的(R232),下位计算机(11)的输出由(VGA)端接显示器的(VGA)端;
监测滑坡对管道的推力和管道应变的两光纤光栅传感器的输出信号经光纤光栅解调仪(7)光纤光栅(7)解调出各光纤光栅传感器的中心波长位移量输给上位计算机(8);上位计算机(8)自动计算出各监测量输给GPRS传输模块(9)并接受GPRS传输模块(9)的信号进行控制,GPRS传输模块(9)将上位计算机(8)计算的各监测量通过公众无线通信网络传输到位于办公室的接受终端GPRS接收模块(10),也可接受接收终端的信号,发送给下位计算机(11)处理后,由显示器显示并由报警器(12)报警。
4.根据权利要求2所述的滑坡对管道影响的监测预警系统,其特征是所述滑坡对管道的推力监测装置的构成是:
土压力盒光纤光栅传感器(4)通过土压力盒支架(21)固定在管道(14)上,土压力盒光纤光栅传感器(4)感受压力的敏感面朝向滑坡(13)的滑动方向;土压力盒支架(21)由两块圆弧形钢板卡箍组成,其中一段圆弧形钢板上焊有底座,土压力盒光纤光栅传感器(4)嵌入底座中,并保持一定的裕量,使土压力盒能自由变形;土压力盒支架(21)两端的卡箍连接件(23)通过螺帽连接。
5.根据权利要求2所述的滑坡对管道影响的监测预警系统,其特征是所述管体应力的监测装置的构成是:
在滑坡的两侧边缘及滑坡的中心位置各布置一管道监测截面,且监测截面的间距不宜超过60m;在管道(14)的每个监测截面的外周均匀布置3个管体光纤光栅传感器(3),且3个管体光纤光栅传感器(3)布置在与管道(14)轴线垂直的平面上;管体光纤光栅传感器(3)安装在光滑的管道(14)表面上,用快干胶粘贴管体光纤光栅传感器封装(24)封装好管体光纤光栅传感器(3);将管体光纤光栅传感器(3)的引纤一并引至地面,并进行保护。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2008101195567A CN101667326B (zh) | 2008-09-03 | 2008-09-03 | 滑坡对管道影响的监测预警方法和系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2008101195567A CN101667326B (zh) | 2008-09-03 | 2008-09-03 | 滑坡对管道影响的监测预警方法和系统 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101667326A true CN101667326A (zh) | 2010-03-10 |
CN101667326B CN101667326B (zh) | 2012-01-11 |
Family
ID=41803935
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2008101195567A Active CN101667326B (zh) | 2008-09-03 | 2008-09-03 | 滑坡对管道影响的监测预警方法和系统 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101667326B (zh) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103727980A (zh) * | 2013-12-26 | 2014-04-16 | 无锡波汇光电科技有限公司 | 一种用于边坡滑坡状况实时监测的光纤传感系统 |
CN104880233A (zh) * | 2015-06-12 | 2015-09-02 | 武汉理工大学 | 一种新型翻车机溜槽料位检测系统及方法 |
CN106370124A (zh) * | 2016-11-03 | 2017-02-01 | 南京派光信息技术有限公司 | 基于分布式应力测量的主动网形变实施监控系统 |
CN107490359A (zh) * | 2016-06-13 | 2017-12-19 | 中铁隆工程集团有限公司 | 超前沉降自动监测系统 |
CN107643136A (zh) * | 2017-09-01 | 2018-01-30 | 北京化工大学 | 一种使用光纤传感对海管安全状况的监测方法 |
CN110006565A (zh) * | 2019-04-26 | 2019-07-12 | 浙江广川工程咨询有限公司 | 一种监测隧洞爆破过程对边坡影响的装置 |
CN110159934A (zh) * | 2019-06-11 | 2019-08-23 | 中国石油天然气股份有限公司 | 应变传感器及管道安全判别方法 |
CN110487449A (zh) * | 2019-07-03 | 2019-11-22 | 南方科技大学 | 一种滑坡实时监测系统及方法 |
CN110895865A (zh) * | 2018-09-12 | 2020-03-20 | 中国石油天然气股份有限公司 | 管道地质灾害监测预警系统 |
CN111521303A (zh) * | 2020-03-30 | 2020-08-11 | 成都理工大学 | 岩体应力无线实时监测装置及测量方法 |
CN115188166A (zh) * | 2021-04-02 | 2022-10-14 | 中国石油天然气股份有限公司 | 管土压力报警装置、系统及方法 |
CN117077496A (zh) * | 2023-10-16 | 2023-11-17 | 西南石油大学 | 滑坡作用下含腐蚀缺陷管道的安全评价方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2567548Y (zh) * | 2002-09-13 | 2003-08-20 | 西安石油学院 | 一种用于油气管道检测的光纤光栅传感器 |
JP2006010455A (ja) * | 2004-06-24 | 2006-01-12 | Godai Kaihatsu Kk | 長体複合センサ |
CN100383556C (zh) * | 2004-11-23 | 2008-04-23 | 中国地质科学院探矿工艺研究所 | 一种崩塌滑坡岩体光纤推力监测方法 |
-
2008
- 2008-09-03 CN CN2008101195567A patent/CN101667326B/zh active Active
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103727980A (zh) * | 2013-12-26 | 2014-04-16 | 无锡波汇光电科技有限公司 | 一种用于边坡滑坡状况实时监测的光纤传感系统 |
CN104880233A (zh) * | 2015-06-12 | 2015-09-02 | 武汉理工大学 | 一种新型翻车机溜槽料位检测系统及方法 |
CN107490359A (zh) * | 2016-06-13 | 2017-12-19 | 中铁隆工程集团有限公司 | 超前沉降自动监测系统 |
CN106370124A (zh) * | 2016-11-03 | 2017-02-01 | 南京派光信息技术有限公司 | 基于分布式应力测量的主动网形变实施监控系统 |
CN107643136A (zh) * | 2017-09-01 | 2018-01-30 | 北京化工大学 | 一种使用光纤传感对海管安全状况的监测方法 |
CN110895865A (zh) * | 2018-09-12 | 2020-03-20 | 中国石油天然气股份有限公司 | 管道地质灾害监测预警系统 |
CN110006565A (zh) * | 2019-04-26 | 2019-07-12 | 浙江广川工程咨询有限公司 | 一种监测隧洞爆破过程对边坡影响的装置 |
CN110159934A (zh) * | 2019-06-11 | 2019-08-23 | 中国石油天然气股份有限公司 | 应变传感器及管道安全判别方法 |
CN110487449A (zh) * | 2019-07-03 | 2019-11-22 | 南方科技大学 | 一种滑坡实时监测系统及方法 |
CN111521303A (zh) * | 2020-03-30 | 2020-08-11 | 成都理工大学 | 岩体应力无线实时监测装置及测量方法 |
CN115188166A (zh) * | 2021-04-02 | 2022-10-14 | 中国石油天然气股份有限公司 | 管土压力报警装置、系统及方法 |
CN115188166B (zh) * | 2021-04-02 | 2024-04-30 | 中国石油天然气股份有限公司 | 管土压力报警装置、系统及方法 |
CN117077496A (zh) * | 2023-10-16 | 2023-11-17 | 西南石油大学 | 滑坡作用下含腐蚀缺陷管道的安全评价方法 |
CN117077496B (zh) * | 2023-10-16 | 2024-01-23 | 西南石油大学 | 滑坡作用下含腐蚀缺陷管道的安全评价方法 |
Also Published As
Publication number | Publication date |
---|---|
CN101667326B (zh) | 2012-01-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101667326B (zh) | 滑坡对管道影响的监测预警方法和系统 | |
CN201293693Y (zh) | 一种基于光纤光栅的滑坡内管道应力监测装置 | |
CN101667328B (zh) | 管道滑坡表部位移监测预警方法和系统及系统的构建方法 | |
CN101667327B (zh) | 管道滑坡深部位移监测预警方法和系统及系统的构建方法 | |
CN201278198Y (zh) | 滑坡对管道影响的监测预警系统 | |
CN101667324B (zh) | 一种管道滑坡监测预警方法和系统及系统的构建方法 | |
CN201278199Y (zh) | 基于光纤光栅的管道滑坡深部位移监测预警系统 | |
CN201278201Y (zh) | 基于光纤光栅的管道滑坡监测预警系统 | |
CN110912605B (zh) | 一种光缆或光电复合缆的安全监测预警装置及方法 | |
CN101592475B (zh) | 全分布式光纤瑞利与拉曼散射光子应变、温度传感器 | |
CN201561826U (zh) | 基于应变的高风险区管道本体应力监测系统 | |
CN102345795B (zh) | 一种采空塌陷区油气管道管土相对位移监测方法和系统 | |
CN102346016B (zh) | 一种采空塌陷区土体水平变形监测方法和系统 | |
CN201779455U (zh) | 一种采空塌陷区油气管道监测系统 | |
CN202582505U (zh) | 管道光纤光栅远程自动预警装置 | |
CN102345472A (zh) | 一种采空塌陷区土体水平变形监测方法和系统及系统的构建方法 | |
CN102345793A (zh) | 一种采空塌陷区油气管道监测方法和系统及系统的构建方法 | |
CN201885733U (zh) | 一种融合光纤拉曼频移器的超远程全分布式光纤瑞利与拉曼散射传感器 | |
CN102829807A (zh) | Botda和potdr相结合的分布式光纤传感系统 | |
CN102345796A (zh) | 一种采空塌陷区油气管道监测方法 | |
CN201322605Y (zh) | 温度自补偿式光纤光栅应变传感器 | |
CN109099948B (zh) | 分布式光纤地质沉降与管道应力危害预警监测装置和方法 | |
CN103528749B (zh) | 基于光纤光栅的煤矿巷道顶板水压在线监测系统及方法 | |
CN102080954A (zh) | 超远程100km全分布式光纤瑞利与拉曼散射传感器 | |
CN102080953A (zh) | 融合光纤拉曼频移器的超远程全分布式光纤瑞利与拉曼散射传感器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20211110 Address after: Room 08-10, 6 / F, block a, No. 5, Dongtucheng Road, Chaoyang District, Beijing 100013 Patentee after: National Petroleum and natural gas pipeline network Group Co.,Ltd. Address before: Intercontinental building, 16 ande Road, Dongcheng District, Beijing 100011 Patentee before: PetroChina Company Limited |