CN101638267A - 一种含氨废水短程硝化的快速启动方法 - Google Patents

一种含氨废水短程硝化的快速启动方法 Download PDF

Info

Publication number
CN101638267A
CN101638267A CN200810012685A CN200810012685A CN101638267A CN 101638267 A CN101638267 A CN 101638267A CN 200810012685 A CN200810012685 A CN 200810012685A CN 200810012685 A CN200810012685 A CN 200810012685A CN 101638267 A CN101638267 A CN 101638267A
Authority
CN
China
Prior art keywords
ammonia
concentration
ammonia nitrogen
controlled
accordance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200810012685A
Other languages
English (en)
Other versions
CN101638267B (zh
Inventor
高会杰
黎元生
乔凯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Petroleum and Chemical Corp
Sinopec Fushun Research Institute of Petroleum and Petrochemicals
Original Assignee
China Petroleum and Chemical Corp
Sinopec Fushun Research Institute of Petroleum and Petrochemicals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Petroleum and Chemical Corp, Sinopec Fushun Research Institute of Petroleum and Petrochemicals filed Critical China Petroleum and Chemical Corp
Priority to CN2008100126856A priority Critical patent/CN101638267B/zh
Publication of CN101638267A publication Critical patent/CN101638267A/zh
Application granted granted Critical
Publication of CN101638267B publication Critical patent/CN101638267B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

本发明涉及一种含氨废水短程硝化的快速启动方法,首先将接种物放入生物反应器,采用间歇操作方式,进水的氨氮初始浓度为200~300mg/L,pH值控制在7.8~8.5;逐步提高进水氨氮浓度,至氨氮浓度达400~700mg/L时改为连续操作方式;连续操作方式的水力停留时间设为14~20h,pH值控制在8.2~8.5范围内,在保持脱氮率70%以上的条件下,逐渐提高废水氨氮浓度或者逐渐降低高含氨废水的稀释倍数,直至进水氨氮浓度达800~1200mg/L。与现有技术相比,本发明方法具有启动要求不苛刻,启动速度快,可以处理高浓度含氨废水等优点。

Description

一种含氨废水短程硝化的快速启动方法
技术领域
本发明属于污水处理技术领域,具体地说涉及一种含氨废水短程硝化的快速启动方法,该方法可以实现炼油及催化剂生产中排放的含氨废水、特别是高浓度含氨废水的短程硝化工艺的快速启动。
背景技术
传统的生化法处理石化行业的催化剂、合成氨废水中的氨态氮时因为没有碳源或者碳源不足而受到一定的限制。新型生物脱氮工艺为低COD(化学耗氧量,表示碳源含量的指标)高氨氮废水的处理提供了可行的途径。特别是亚硝化生物脱氮技术由于具有降低能耗、节约碳源、减少污泥生产量等优点,受到人们的普遍关注,成为废水生物脱氮领域研究和应用的热点之一。
亚硝酸型生物脱氮技术的核心是将硝化过程控制在亚硝酸阶段,通常利用亚硝酸菌和硝酸菌动力学特性固有的差异,采用控制温度、溶解氧浓度、pH值、氨氮负荷及泥龄等对两类菌生长产生不同影响的微生物生命影响因素来实现。目前出现亚硝酸盐积累的报道很多,例如杨波等(武汉理工大学学报,2007(29).3:63~66)对亚硝化细菌处理氨氮废水进行了较详细的研究。
有人对单级自养脱氮生物膜SBR工艺的启动进行较详细的研究(方芳等,中国给水排水,2006,22(1):58~61),它的特点是在生物膜SBR反应器中接种普通好氧活性污泥和厌氧污泥,在温度为(30±2)℃、pH值为7.5~8.5、DO(溶解氧)为0.8~1.0mg/L和HRT(水力停留时间)为24h的条件下,处理中低浓度氨氮(60~120mg/L)废水,亚硝化选择期共历时80d,经过污泥驯化期、亚硝化选择期和污泥适应期三个较为典型的阶段后,亚硝化率达到了77%,脱氮能力为40%。
CN200410017477.7中提出了一种含氨废水短程硝化快速启动方法,它的特点是以好氧活性污泥作为接种物,采用连续操作方式,将温度控制在25℃~28℃,pH值控制在7.2~7.5,溶解氧浓度控制在2.5~3.0mg/L,富集足量的硝化菌;当氨氮去除率达98%且运行稳定时将pH值调到8.0~8.2,温度控制在32℃~35℃之间,溶解氧浓度控制在1.0~1.5mg/L,优选亚硝酸细菌,淘汰硝酸细菌。启动过程中含氨废水的初始浓度为5~6mmol/L,终浓度为30mmol/L,运行39d~46d可实现短程硝化的快速启动。
由于亚硝酸细菌是生长缓慢的自养细菌,运行条件中各控制因素之间又相互关联,使得目前成功运行的亚硝化反应器中普遍存在着负荷较小,去除率偏低,运行不稳定,启动时间长等不足,不能有效处理低COD高氨氮浓度的废水,这大大限制了短程硝化工艺的发展和应用。因此如何快速启动亚硝化、在较高负荷和氨氮去除率条件下能够保证反应器的长期稳定运行将是含氨废水处理领域研究的重点之一。
发明内容
针对现有技术的不足,本发明提供一种较高浓度含氨废水短程硝化的快速启动方法。
本发明含氨废水短程硝化的快速启动方法包括如下内容:
(1)首先将接种物放入生物反应器,接种物为富集的硝化细菌或者是硝化细菌与污水厂好氧活性污泥的混合物。
(2)先采用间歇操作方式,进水的氨氮初始浓度为200~300mg/L,温度为20℃~35℃,pH值控制在7.8~8.5,溶解氧浓度控制在2.0~7.0mg/L。逐步提高进水氨氮浓度,至氨氮浓度达400~700mg/L时改为连续操作方式。间歇式操作方式可以采取批次换水,在通空气条件下反应,然后停止通气,自然沉降后,排出上清液,留下菌体,然后往反应器中补入新的含氨废水。当氨氮去除率大于90%时提高进水氨氮浓度,每次提高的幅度为50~100mg/L。间歇操作方式也可以采取在不排水的情况下批次补加一定量的铵盐方式,同样当氨氮去除率大于90%时提高铵盐的补加量,每次补入的铵盐增加幅度以氨氮计为50~100mg/L。
(3)连续操作方式的水力停留时间设为14~20h,pH值控制在8.2~8.5范围内,溶解氧浓度控制在1.0~4.0mg/L。在保持脱氮率70%以上的条件下,逐渐提高废水氨氮浓度或者逐渐降低高含氨废水的稀释倍数,直至进水氨氮浓度达800~1200mg/L。
本发明的特点是:直接以硝化细菌或者硝化细菌与活性污泥的组合物作为接种物。启动时对环境温度要求不苛刻,可以低于25℃,在20℃时仍然可以正常启动。启动时将间歇式操作方式和连续式操作方式相结合,在较低氨氮浓度下以间歇式操作方式开始促进菌体的快速适应,然后以连续操作方式优选亚硝酸菌,淘汰硝酸菌。这种快速启动方法大大降低了短程硝化的启动难度并且明显缩短开工时间,并可保证反应器的长期稳定运行。可以将炼化工业和催化剂生产过程中产生的低浓度含氨废水处理控制在亚硝化阶段,也可将炼化工业和催化剂生产过程中产生的高浓度(1000mg/L以上)含氨废水处理控制在亚硝化阶段。
具体实施方式
为了将硝化反应控制在亚硝酸阶段,以实现短程硝化,本发明提出了一种新的亚硝化快速启动方法。该方法启动时间短,氨氮负荷高,使硝化产物中亚硝酸盐的比例高达95%以上,而且能够保证反应器长期稳定运行。
本发明提出的一种具体较高浓度含氨废水短程硝化的快速启动方法如下:
(1)以硝化细菌或者是硝化细菌与污水厂好氧活性污泥的组合物作为接种物。接种物为硝化细菌时接种量按照MLSS(悬浮固体含量)为1.0~1.5g/L来投加;接种物为组合物时,硝化细菌的MLSS为0.5~1.0g/L,活性污泥的接种量为生物反应器有效容积的10%~50%。
(2)启动过程中温度为20℃~35℃。
(3)先采用间歇操作方式,以250mg/L左右的含氨废水作为进水,逐渐提高进水氨氮浓度,此时将pH控制在7.8~8.2范围内,溶解氧浓度控制在2.0~7.0mg/L。
(4)当进水氨氮浓度达400~700mg/L时改为连续操作方式。连续操作方式的水力停留时间为14~20h,pH值控制在8.2~8.5范围内,溶解氧浓度控制在1.0~4.0mg/L。
(5)逐渐提高废水氨氮浓度或者逐渐降低高含氨废水的稀释倍数,直至进水氨氮浓度达800~1200mg/L,氨氮去除率达99%。
(6)当硝化产物中亚硝酸盐的比例高达95%以上时,完成短程硝化的启动过程。
使用的硝化细菌可以采用各种现有方案培养,培养的硝化细菌中包括硝酸菌和亚硝酸菌。
本发明的有益效果是:所提出的短程硝化快速启动方法对温度要求的范围较宽,在连续操作时高pH值高氨氮的条件下优选亚硝酸菌、淘汰硝酸菌,同时亚硝化阶段启动时间短,处理效率高,可直接应用于较高浓度含氨废水的短程硝化工艺。
实施例1
以实验室培养的硝化细菌作为接种物,接种后MLSS为1.0g/L,以自配浓度为300mg/L的含氨废水作为反应器进水,pH控制在7.9,将温度控制在20℃溶解氧浓度为2.0~3.0mg/L左右。先间歇进水,反应24h后停止通气,自然沉降后排出上清液,留下菌体,然后往反应器中补入新的含氨废水。当氨氮去除率大于90%时提高进水的氨氮浓度,每次提高的幅度为100mg/L。8d后进水的氨氮浓度达到700mg/L,此时改为连续式操作,水力停留时间为14h,pH值控制在8.3,溶解氧浓度为1.5~2.0mg/L。当氨氮去除率大于90%时,继续提高进水氨氮浓度,每次提高的幅度为100mg/L,直至进水氨氮浓度达到1200mg/L。运行稳定后氨氮去除率达到99%,检测反应器出水中的亚硝酸盐氮平均值达到95%,此时实现短程硝化的快速启动,共需时间22天。
实施例2
以实验室富集的硝化细菌作为接种物,接种后MLSS为1.0g/L,以自配浓度为300mg/L的含氨废水作为反应器进水,pH控制在7.9左右;将温度控制在20℃,溶解氧浓度为4.0~5.0mg/L;先间歇进水,当氨氮去除率大于90%时,向反应器内补加铵盐,使得补加铵盐后的氨氮浓度每次提高幅度为100mg/L;6d后进水的氨氮浓度达到600mg/L,此时改为连续操作方式,水力停留时间为16h;将pH值控制在8.3,溶解氧浓度为2.5~3.5mg/L。当氨氮去除率大于90%时,继续提高进水氨氮浓度,每次提高的幅度为100mg/L,直至进水氨氮浓度达到1200mg/L,运行稳定后氨氮去除率达到99%,检测反应器出水中的亚硝酸盐氮平均值达到95%,此时实现短程硝化的快速启动,共需时间20天。
实施例3
以实验室富集的硝化细菌作为接种物,接种后MLSS为1.5g/L,将某催化剂厂的高含氨废水稀释至250mg/L作为反应器进水,pH控制在7.8;将温度控制在30℃;溶解氧浓度为6.0~7.0mg/L。先间歇进水,反应24h后停止通气,自然沉降后除去上清液,留下菌体,然后往反应器中补入新的含氨废水,当氨氮去除率大于90%时降低原废水的稀释倍数使得进水的氨氮浓度提高,每次提高的幅度为50mg/L;6d后进水的氨氮浓度达到500mg/L,此时改为连续操作方式,水力停留时间为17.5h;将pH值控制在8.5,溶解氧浓度为3.5~4.5mg/L当氨氮去除率大于90%时,继续降低含氨废水的稀释倍数,使得氨氮浓度每次提高的幅度为50mg/L;直至原废水经过稀释后其中的氨氮浓度为1000mg/L,运行稳定后氨氮去除率达到99%,检测反应器出水中的亚硝酸盐氮平均值达到96%,此时实现短程硝化的快速启动,共需时间26天。
实施例4
以实验室富集的亚硝化菌和污水厂好氧活性污泥作为接种物,接种后MLSS为0.5g/L,将某催化剂厂的高含氨废水稀释至200mg/L作为反应器进水,pH控制在8.0;将温度控制在35℃,溶解氧浓度为4.5~5.5mg/L;先间歇进水,反应24h后停止通气,自然沉降后除去上清液,留下菌体,然后往反应器中补入新的含氨废水,当氨氮去除率大于90%时降低原废水的稀释倍数使得进水的氨氮浓度提高,每次提高的幅度为80mg/L;9d后进水的氨氮浓度达到520mg/L,此时改为连续操作方式,水力停留时间为20h;将pH值控制在8.4,溶解氧浓度为3.0~4.0mg/L当氨氮去除率大于90%时,继续降低含氨废水的稀释倍数,使得氨氮浓度每次提高的幅度为80mg/L;直至进水氨氮浓度达到840mg/L,运行稳定后氨氮去除率达到99%,检测反应器出水中的亚硝酸盐氮平均值达到95.3%,此时实现短程硝化的快速启动,共需时间24天。

Claims (8)

1、一种含氨废水短程硝化的快速启动方法,包括如下内容:
(1)首先将接种物放入生物反应器,接种物为富集的硝化细菌或者是硝化细菌与污水厂好氧活性污泥的混合物;
(2)先采用间歇操作方式,进水的氨氮初始浓度为200~300mg/L,pH值控制在7.8~8.5,溶解氧浓度控制在2.0~7.0mg/L;逐步提高进水氨氮浓度,至氨氮浓度达400~700mg/L时改为连续操作方式;
(3)连续操作方式的水力停留时间设为14~20h,pH值控制在8.2~8.5范围内,溶解氧浓度控制在1.0~4.0mg/L;在保持脱氮率70%以上的条件下,逐渐提高废水氨氮浓度或者逐渐降低高含氨废水的稀释倍数,直至进水氨氮浓度达800~1200mg/L。
2、按照权利要求1所述的方法,其特征在于步骤(1)接种物为硝化细菌,接种量按照MLSS为1.0~1.5g/L来投加。
3、按照权利要求1所述的方法,其特征在于步骤(1)接种物以硝化细菌与污水厂好氧活性污泥的组合物,硝化细菌的MLSS为0.5~1.0g/L,活性污泥的接种量为生物反应器有效容积的10%~50%。
4、按照权利要求1所述的方法,其特征在于启动过程中温度为20℃~35℃。
5、按照权利要求1所述的方法,其特征在于步骤(2)所述的间歇式操作方式采取批次换水,在通空气条件下反应,然后停止通气,自然沉降后,排出上清液,留下菌体,然后往反应器中补入新的含氨废水。
6、按照权利要求5所述的方法,其特征在于当氨氮去除率大于90%时提高进水氨氮浓度,每次提高的幅度为50~100mg/L。
7、按照权利要求1所述的方法,其特征在于步骤(2)所述的间歇操作方式采取在不排水的情况下批次补加铵盐的方式,当氨氮去除率大于90%时提高铵盐的补加量,每次补入的铵盐增加幅度以氨氮计为50~100mg/L。
8、按照权利要求1所述的方法,其特征在于当硝化产物中亚硝酸盐的比例高达95%以上时,完成短程硝化的启动过程。
CN2008100126856A 2008-08-02 2008-08-02 一种含氨废水短程硝化的快速启动方法 Active CN101638267B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2008100126856A CN101638267B (zh) 2008-08-02 2008-08-02 一种含氨废水短程硝化的快速启动方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2008100126856A CN101638267B (zh) 2008-08-02 2008-08-02 一种含氨废水短程硝化的快速启动方法

Publications (2)

Publication Number Publication Date
CN101638267A true CN101638267A (zh) 2010-02-03
CN101638267B CN101638267B (zh) 2011-04-20

Family

ID=41613476

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008100126856A Active CN101638267B (zh) 2008-08-02 2008-08-02 一种含氨废水短程硝化的快速启动方法

Country Status (1)

Country Link
CN (1) CN101638267B (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102153199A (zh) * 2011-01-26 2011-08-17 北京工业大学 一种高盐废水短程脱氮生物处理的装置及方法
CN102259975A (zh) * 2011-05-27 2011-11-30 甘肃金桥给水排水设计与工程(集团)有限公司 低温条件处理高氨氮废水的生物强化技术
CN102285717A (zh) * 2011-03-21 2011-12-21 哈尔滨工业大学 一种快速实现同步短程硝化-反硝化的污水脱氮方法
CN102311166A (zh) * 2010-07-07 2012-01-11 中国石油化工股份有限公司 一种实现高氨氮废水短程硝化的方法
CN102674539A (zh) * 2012-05-09 2012-09-19 浙江清华长三角研究院 一种基于膜生物反应器的硝化污泥高效富集培养系统及方法
CN103112945A (zh) * 2013-02-25 2013-05-22 北京工业大学 一种sbr亚硝化快速启动方法
CN103265121A (zh) * 2013-05-10 2013-08-28 杭州师范大学 一种半短程硝化工艺的启动方法
CN103373760A (zh) * 2012-04-29 2013-10-30 中国石油化工股份有限公司 一种a/o工艺处理含氨废水的快速启动方法
CN103496788A (zh) * 2013-09-26 2014-01-08 浙江工商大学 一种a/o工艺短程硝化反硝化的快速启动方法
CN104591507A (zh) * 2015-02-04 2015-05-06 中蓝连海设计研究院 一种两段式a/o工艺处理含氮废水中总氮的快速启动方法
CN105481087A (zh) * 2016-01-07 2016-04-13 河南师范大学 一种短程硝化系统快速启动方法
CN110054290A (zh) * 2019-04-01 2019-07-26 广州环投环境服务有限公司 垃圾渗滤液的处理方法
CN111348751A (zh) * 2018-12-21 2020-06-30 中国石油化工股份有限公司 一种生物膜反应器的快速挂膜方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1562799A (zh) * 2004-04-02 2005-01-12 浙江大学 含氨废水短程硝化的快速启动方法
US7294255B2 (en) * 2005-08-12 2007-11-13 Geyser Pump Tech. Co. Nitrification system and method
CN100498832C (zh) * 2007-07-06 2009-06-10 北京工业大学 盐度抑制结合模糊控制快速实现短程生物脱氮装置及方法

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102311166A (zh) * 2010-07-07 2012-01-11 中国石油化工股份有限公司 一种实现高氨氮废水短程硝化的方法
CN102311166B (zh) * 2010-07-07 2013-05-01 中国石油化工股份有限公司 一种实现高氨氮废水短程硝化的方法
CN102153199A (zh) * 2011-01-26 2011-08-17 北京工业大学 一种高盐废水短程脱氮生物处理的装置及方法
CN102153199B (zh) * 2011-01-26 2013-03-27 北京工业大学 一种高盐废水短程脱氮生物处理方法
CN102285717A (zh) * 2011-03-21 2011-12-21 哈尔滨工业大学 一种快速实现同步短程硝化-反硝化的污水脱氮方法
CN102259975A (zh) * 2011-05-27 2011-11-30 甘肃金桥给水排水设计与工程(集团)有限公司 低温条件处理高氨氮废水的生物强化技术
CN103373760A (zh) * 2012-04-29 2013-10-30 中国石油化工股份有限公司 一种a/o工艺处理含氨废水的快速启动方法
CN103373760B (zh) * 2012-04-29 2014-12-31 中国石油化工股份有限公司 一种a/o工艺处理含氨废水的快速启动方法
CN102674539A (zh) * 2012-05-09 2012-09-19 浙江清华长三角研究院 一种基于膜生物反应器的硝化污泥高效富集培养系统及方法
CN103112945A (zh) * 2013-02-25 2013-05-22 北京工业大学 一种sbr亚硝化快速启动方法
CN103265121A (zh) * 2013-05-10 2013-08-28 杭州师范大学 一种半短程硝化工艺的启动方法
CN103265121B (zh) * 2013-05-10 2014-10-15 杭州师范大学 一种半短程硝化工艺的启动方法
CN103496788A (zh) * 2013-09-26 2014-01-08 浙江工商大学 一种a/o工艺短程硝化反硝化的快速启动方法
CN104591507A (zh) * 2015-02-04 2015-05-06 中蓝连海设计研究院 一种两段式a/o工艺处理含氮废水中总氮的快速启动方法
CN105481087A (zh) * 2016-01-07 2016-04-13 河南师范大学 一种短程硝化系统快速启动方法
CN111348751A (zh) * 2018-12-21 2020-06-30 中国石油化工股份有限公司 一种生物膜反应器的快速挂膜方法
CN110054290A (zh) * 2019-04-01 2019-07-26 广州环投环境服务有限公司 垃圾渗滤液的处理方法
CN110054290B (zh) * 2019-04-01 2024-03-26 广州环投环境服务有限公司 垃圾渗滤液的处理方法

Also Published As

Publication number Publication date
CN101638267B (zh) 2011-04-20

Similar Documents

Publication Publication Date Title
CN101638267B (zh) 一种含氨废水短程硝化的快速启动方法
CN107265626B (zh) 一种快速高效驯化短程硝化污泥的方法
CN114772725B (zh) 一种硫自养短程反硝化耦合厌氧氨氧化强化生活污水脱氮除磷的装置和方法
Beylier et al. 6.27-Biological nitrogen removal from domestic wastewater
CN102583883B (zh) 分段并联厌氧氨氧化处理城市污水的工艺和方法
CN101723512A (zh) 一种含氨废水高效生化处理方法
Zafarzadeh et al. Performance of moving bed biofilm reactors for biological nitrogen compounds removal from wastewater by partial nitrification-denitrification process
CN103373764A (zh) 一种含氨废水短程硝化反硝化的快速启动方法
CN113772807B (zh) 一种氨氧化生物膜反应器驯化及运行的调控方法
CN111392865A (zh) 一种有机胺废水的处理方法
CN110683646A (zh) 一种皮革废水快速实现短程硝化反硝化的工艺
CN112939333B (zh) 厌氧氨氧化反应器快速启动和快速提高总氮去除负荷的方法
CN107235553B (zh) 一种基于污泥焚烧灰的低温好氧颗粒污泥快速培养方法
CN111410301A (zh) 一种培养氢自养反硝化颗粒污泥的方法
CN105585126B (zh) 一种在sbr反应器中维持稳定的污泥微膨胀及良好脱氮效果的方法
CN115745178B (zh) 一种复合颗粒污泥系统实现同步好氧缺氧脱氮除磷的方法
CN103373760B (zh) 一种a/o工艺处理含氨废水的快速启动方法
CN112250167A (zh) 一种快速实现短程硝化好氧颗粒污泥的装置和方法
CN111410311A (zh) 一种耦合膜过滤与厌氧氨氧化过程的高效脱氮方法
CN115259375B (zh) 通过分段进水强化aoa工艺厌氧氨氧化与反硝化除磷的装置与方法
KR100446577B1 (ko) 질산화 미생물 그래뉼을 이용한 질소의 제거방법
CN114804338A (zh) 一种应用于高盐高氨氮废水处理的短程硝化颗粒污泥及培养方法
CN114671512A (zh) 基于a-b法利用污泥发酵强化主流厌氧氨氧化实现碳氮磷同步去除的方法与装置
CN102942290A (zh) 一种微氧自养生物除氮的污水处理方法
CN109179649B (zh) 一种从亚硝化污泥中快速诱导富集厌氧氨氧化菌的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant