CN101593806A - 叠层型压电元件及其制造方法 - Google Patents

叠层型压电元件及其制造方法 Download PDF

Info

Publication number
CN101593806A
CN101593806A CNA2009101327096A CN200910132709A CN101593806A CN 101593806 A CN101593806 A CN 101593806A CN A2009101327096 A CNA2009101327096 A CN A2009101327096A CN 200910132709 A CN200910132709 A CN 200910132709A CN 101593806 A CN101593806 A CN 101593806A
Authority
CN
China
Prior art keywords
electrode
layer
type piezoelectric
laminate type
internal electrode
Prior art date
Application number
CNA2009101327096A
Other languages
English (en)
Inventor
中村成信
鹤丸尚文
冈村健
Original Assignee
京瓷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2004094019A priority Critical patent/JP4817610B2/ja
Priority to JP2004094019 priority
Priority to JP2004137696 priority
Application filed by 京瓷株式会社 filed Critical 京瓷株式会社
Publication of CN101593806A publication Critical patent/CN101593806A/zh

Links

Abstract

本发明提供一种叠层型压电元件,其具有:叠层体,其具有活性部,该活性部是交替叠层至少1个压电体与由第一内部电极及第二内部电极构成的多个内部电极而成的,活性部与外加在第一内部电极及第二内部电极之间的电压相对应进行伸缩,和外部电极,其分别形成在叠层体的2个侧面上,其中之一与第一内部电极相连接、其中之另一个与第二内部电极相连接,各外部电极是包含与叠层体的侧面相接形成的第1层和形成在该第1层上的第2层在内的3层以上的层。因此,这种叠层型压电元件的耐久性优越。

Description

叠层型压电元件及其制造方法

[0001] 技术领域

[0002] 本发明涉及叠层型压电元件(以下也简称为“元件”),例如,涉及搭载在汽车发动机的燃料喷射装置、喷墨等液体喷射装置、光学装置等的精密定位装置或振动防止装置等中的驱动元件,搭载在燃烧压力传感器、测震传感器、加速度传感器、负荷传感器、超声波传感器、压敏传感器、偏航速率传感器等中的传感器元件,以及搭载在压电陀螺、压电开关、压电变压器、压电断路器等中的电路元件上使用的叠层型压电元件。

[0003] 背景技术

[0004] 以往,作为叠层型压电元件,公知有交替叠层压电体和内部电极的叠层型压电执行机构。叠层型压电执行机构分类为同时烧成类型、和交替叠层由1个压电体构成的压电瓷器与板状体的内部电极的层叠类型两种,但出于有利于低压电化、降低制造成本方面、薄层化、以及有利于耐久性的考虑,同时烧成类型的叠层型压电执行机构表现出优异性。

[0005] 图7是表示专利文献1中公开的以往的叠层型压电元件的图。该叠层型压电元件由叠层体20和形成在相互对置的一对侧面上的外部电极54构成。叠层体20交替叠层有构成其的压电体51和内部电极52,不过,内部电极52并不是形成在压电体51的整个主面上,而成为所谓的局部电极结构。该局部电极结构的内部电极52左右相异地叠层,使内部电极52每隔一层向不同的叠层体20侧面露出。而且,在叠层体20的相互对置的一对侧面与每隔一层露出的内部电极52导通地形成外部电极54。

[0006] 此外,在叠层体20的叠层方向上两端面叠层有惰性层104。该惰性层62也称作保护层,该保护层一般不包含电极51。但是,在这种构成中,有时包含内部电极层52的部分和惰性层62之间在烧成时产生收缩差,而产生应力或产生裂缝。为了防止这种情况,专利文献3中公开了一种方法,如图8所示,在惰性层62上叠层与活性层63相同的电极61,来防止在烧成后产生裂缝。此外,由于包括与外部电极相连接的内部电极层52在内的部分是与外加的电压相对应进行伸缩的部分,所以称为活性层。

[0007] 这样的叠层型压电元件通过以下的方法来制造。首先,在包含压电体51原料的陶瓷生片上以成为规定的电极结构的图形印刷内部电极膏,制作通过将涂布了该内部电极膏的生片叠层多个而得到的叠层成形体,再通过对其进行烧成而制作叠层体20。然后,在叠层体20的一对侧面上通过烧成形成外部电极54而得到叠层型压电元件(例如,参照专利文献1)。

[0008] 此外,作为内部电极52采用银与钯的合金,并且,为了同时烧成压电体51和内部电极52,内部电极52的金属组成设为:银70质量%、钯30质量%(例如,参照专利文献2)。

[0009] 这样,不采用只由银的金属组成构成的内部电极52、而采用由含有银-钯合金(含有钯)的金属组成构成的内部电极52是因为:在不含有色而只有银的组成中,当赋予对置的一对内部电极52之间电位差的情况下,会产生该一对内部电极52中的银从正极向负极沿元件表面传播移动即所谓银迁移现象。在高温、高湿的环境中该银迁移现象尤其明显。

[0010] 在将以往的叠层型压电元件使用为压电执行机构的情况下,进一步利用软钎料将导线固定在外部电极54上(未图示),通过在外部电极54之间外加规定的电位而进行驱动。尤其,近年来,小型的叠层型压电元件由于要求在较大的压力下确保较大的位移量,所以需要外加更高的电场并使其长时间连续驱动。

[0011] 专利文献1:日本特开昭61-133715号公报

[0012] 专利文献2:日本实开平1-130568号公报

[0013] 专利文献3:日本特开平9-270540号公报

[0014] 但是,在叠层型压电元件中,如上述那样,活性层可伸缩,而形成在其周围的外部电极、惰性层不能伸缩,由此会产生以下那样的问题。

[0015] 首先,由于在驱动时活性层反复产生尺寸变化,所以在高电场、高压力下长期间连续驱动的情况下,外部电极与压电体之间会剥离、或外部电极自身产生龟裂,从而,有时在外部电极与内部电极的连接部产生接点不良。据此,不能给一部分压电体供给电压,若长时间使用,位移特性会变化,产生火花导致驱动停止。

[0016] 近年来,对于小型的叠层型压电元件,为了获得较大的位移量,而外加更高的电场、长期间连续进行驱动,因此,这样的问题会变得明显。

[0017] 另外,在专利文献3所示的惰性层,虽然活性层与惰性层之间的收缩差被缓和,但在外加高电压、尤其长时间连续进行驱动的情况下,会在形成惰性层62的电极61与压电层(活性部)63的界面产生裂缝,耐久性上存在问题。

[0018] 发明内容

[0019] 为此,本发明是鉴于上述的问题点而做出的,其目的在于提供一种在高电压、高压力下可增大压电执行机构的位移量,并且,即使长期连续驱动时位移量也不会变化的耐久性优越的叠层型压电元件。

[0020] 为了实现上述目的,本发明的第1叠层型压电元件,其特征在于,具有:叠层体,其具有活性部,该活性部是交替叠层至少1个压电体与由第一内部电极及第二内部电极构成的多个内部电极而成的,所述活性部与外加在所述第一内部电极及所述第二内部电极之间的电压相对应进行伸缩,和外部电极,其分别形成在所述叠层体的2个侧面上,其中之一与所述第一内部电极相连接、其中之另一个与所述第二内部电极相连接,

[0021] 所述各外部电极是包含与所述叠层体的侧面相接形成的第1层和形成在该第1层上的第2层在内的3层以上的层。

[0022] 另外,本发明的第1叠层型压电元件,其特征在于,具有:

[0023] 叠层体,其具有活性部和位于该活性部的两端部分别由压电材料构成的惰性层,所述活性部是交替叠层至少1个压电体与由第一内部电极及第二内部电极构成的多个内部电极而成的,所述活性部与外加在所述第一内部电极及所述第二内部电极之间的电压相对应进行伸缩,

[0024] 外部电极,其分别形成在所述叠层体的2个侧面上,其中之一与所述第一内部电极相连接、其中之另一个与所述第二内部电极相连接,

[0025] 所述叠层体的惰性层包含被分散的金属。

[0026] 进一步,本发明的叠层型压电元件的制造方法,其特征在于,包括:

[0027] 在交替叠层压电体生片与导电体层而成的生叠层体的两端面形成压电材料层;

[0028] 在所述压电材料层之上形成金属层;

[0029] 在对形成了所述压电材料层与所述金属层的所述生叠层体进行烧成后,除去所述金属层。

[0030] (发明效果)

[0031] 如上述那样构成的本发明的第1叠层型压电元件,由于所述各外部电极是包含与所述叠层体侧面相接形成的第1层和形成在该第1层上的第2层在内的3层以上的层,所以能够利用3层以上的层的界面来阻断龟裂(阻止龟裂扩大到上层或下层),而阻止产生贯穿外部电极整体的龟裂。

[0032] 据此,可防止因所述叠层体的尺寸变化产生外部电极龟裂,即使长期间连续驱动的情况下位移量也不会变化,能够提高叠层型压电元件的耐久性。

[0033] 另外,本发明的第1叠层型压电元件,由于所述叠层体的惰性层包含被分散的金属,所以可缓和(均匀化)烧成收缩时在惰性层与活性层之间产生的应力,在高电压、高压力下能够增大压电执行机构的位移量,并且,即使长期间连续驱动的情况下位移量也不会变化,能够提高在高电压及长时间连续使用情况下的耐久性。

[0034] 并且,本发明的叠层型压电元件的制造方法,在对在所述压电材料层之上形成了金属层的所述生叠层体进行烧成后,除去所述金属层,因此,能够制造出容易将金属分散在所述惰性层中的叠层型压电元件。

[0035] 附图说明

[0036] 图1A是表示本发明的实施方式1的叠层型压电元件的构成的立体图。

[0037] 图1B是表示实施方式1的叠层型压电元件的压电体层与内部电极层的叠层状态的立体展开图。

[0038] 图2是表示实施方式1的叠层型压电元件中形成在压电体侧面的外部电极的叠层结构的放大剖视图。

[0039] 图3A是表示本发明的实施方式2的叠层型压电元件的构成的立体图。

[0040] 图3B是实施方式2的叠层型压电元件的剖视图。

[0041] 图4A是在实施方式2的叠层型压电元件中进一步形成了导电性辅助部件时的立体图。

[0042] 图4B是图4A的剖视图。

[0043] 图5是在实施方式2的叠层型压电元件的制造过程中烧成前的叠层体的剖视图。

[0044] 图6是本发明的喷射装置的剖视图。

[0045] 图7是表示以往例的叠层型压电元件的构成的立体图。

[0046] 图8是表示与图7不同的以往例的叠层型压电元件的构成的剖视图。

[0047] 图中:1-压电体,2-内部电极,3-槽,4、15-外部电极,6-导线,7-导电性辅助部件,8-电极层,10-叠层型压电体元件,10a-生叠层体,11-活性部,12-惰性层,14-金属,15a-外部电极第1层,15b-中间层,15c-外部电极最外层,31-收容容器,33-喷射孔,35-阀,43-压电执行机构。

[0048] 具体实施方式

[0049] 以下,对本发明的实施方式的叠层型压电元件详细地进行说明。

[0050] 实施方式1.

[0051] 图1A、B是表示本发明的实施方式1的叠层型压电元件的构成的图,其中,图1A是立体图、图1B是表示压电体层与内部电极层的叠层状态的立体展开图。另外,图2是表示本发明的叠层型压电元件的形成在压电体侧面的外部电极的叠层结构的放大剖视图。

[0052] 本实施方式1的叠层型压电元件,如图1A、图1B所示,在由交替叠层压电体1和内部电极2而成的叠层体13的一对相对置的侧面分别形成外部电极15,在形成外部电极15的叠层体13侧面每隔一层露出内部电极2端部,并使外部电极15与该露出的内部电极2连接。

[0053] 另外,在叠层体13的叠层方向两端设有由压电体1形成的惰性层12a。这里,在将本实施方式1的叠层型压电元件作为叠层型压电执行机构使用的情况下,可以将导线用软钎料连接固定在外部电极15上,并将所述导线连接在外部电压供给部。

[0054] 在压电体层1之间配置内部电极2,该内部电极2例如由银-钯等金属材料形成。在叠层型压电元件中,通过内部电极2向各压电体1外加规定的电压,从而,使压电体1产生由反压电效应引起的位移。

[0055] 反之,由于惰性层12a是由不配设有内部电极12的多个压电体1的层构成的,所以即使外加电压也不会产生位移。

[0056] 这里,尤其在本实施方式1的叠层型压电元件中,如图2所示,其特征为:叠层3层以上的外部电极15而构成。这样,由3层以上的层构成外部电极15是为了提高叠层型压电元件的耐久性。

[0057] 即,在驱动外部电极15由单层或2层构成的叠层型压电元件的情况下,有时以外部电极15的表面为起点产生的龟裂和以外部电极15与压电体1的界面为起点产生的龟裂相接合,外部电极15产生断线。而且,在外部电极15为2层的情况下,若驱动叠层型压电元件使压电体连续反复产生尺寸变化,则存在在上述2层之间产生剥离的问题。尤其,在将为了提高外部电极15与压电体1的密接强度而添加了玻璃的外部电极层设为与压电体1相接的外部电极层、并将玻璃较少的外部电极层设在其外侧而构成2层结构的情况下,更容易发生上述剥离问题。

[0058] 因此,驱动时连续反复产生尺寸变化的叠层型压电元件的外部电极15,要求确保与压电体1的密接、且在叠层型压电体元件尺寸变化的同时能够伸缩。为了满足该要求,在本实施方式1中,将外部电极15设成以下那样的多层结构。即,外部电极15由包含外部电极层第1层15a、外部电极层最外层15c和其中间层的3层以上构成。

[0059] 在该外部电极15中,与压电体1相接的层即外部电极层第1层15a是与压电体的接合强度大的层,最远离压电体1叠层的最外层15c是杨氏模量小且电阻率小的电极层。而且,位于其中间的中间层是缓和因驱动叠层型压电元件时的尺寸变化产生的应力的层,同时,也是相对于与压电体相接的外部电极层第1层15a和位于最外侧的外部电极层最外层15c都具有密接力的层。

[0060] 另外,为了防止因叠层型压电元件连续驱动时的尺寸变化使压电体1与外部电极15之间产生剥离、或在外部电极层内产生剥离、或因驱动时在外部电极15产生的龟裂导致断线,优选叠层3层以上的外部电极15中各层连续地相连。并且,若考虑外部电极15的平滑性和量产性,更优选5层以下。

[0061] 此外,构成外部电极15的导电材料希望电阻率低、且硬度低(出于充分吸收因执行机构的伸缩产生的应力方面考虑)的金属。优选金、银或铜。更优选铜或银,从而制得具有耐久性的叠层型压电元件。最优选银,从而制得更具有耐久性的叠层型压电元件。

[0062] 并且,在本发明中,优选外部电极15中与压电体1相接的外部电极第1层15a的厚度为10μm以下。这里,所谓外部电极第1层15a的厚度是以SEM等显微镜观察叠层型压电元件的剖面后能够确认的外部电极第1层厚度的平均值。在厚度超过10μm驱动叠层型压电元件的情况下,与压电体相接的外部电极第1层随着元件的尺寸变化、尤其元件伸长的情况下,被施加拉伸应力,容易产生龟裂。因此,通过使厚度为10μm以下,则能够制得即使产生元件尺寸变化也不产生龟裂而具有耐久性的外部电极。优选5μm以下,更优选3μm以下,从而能够进一步提高耐久性。另外,最优选使外部电极第1层15a的厚度为0.5μm以上且2μm以下而极大地提高耐久性。

[0063] 而且,优选第1层15a以外的各外部电极层的厚度比第1层15a厚,这样一来,能够有效抑制在外部电极15最外层产生的龟裂进行传播。为了抑制上述的龟裂传播,第1层15a以外的各层厚度优选为5μm以上,更优选为10μm以上,最优选设为15μm以上。据此,外部电极15整体的耐久性增大。另外,如果外部电极15的叠层方向的整个厚度为15μm以上,则可承受叠层型压电元件连续驱动。并且,如果为20μm以上、优选为30μm以上,则能够防止因龟裂传播而产生断线,同时,由于可减小外部电极15的电阻值,所以可抑制外部电极15的发热。

[0064] 另一方面,在整个厚度超过100μm时,由于外部电极15不能跟随压电体1,所以位移量明显下降,因此,整个厚度更优选为30~100μm。

[0065] 并且,在本发明中,优选外部电极第1层15a比覆盖在该外部电极第1层15a上的外部电极第2层15b含有较多的金属氧化物。这是因为:在与压电体1相接的第1层15a的金属氧化物比第2层15b少时,第1层15a的电阻率比第2层15b小,因此,在驱动叠层型压电元件时,电流流向电阻率小的第1层15a,从而,第1层15a过热,使压电体1与第1层15a之间产生剥离或使叠层型压电元件的温度上升产生热失控。

[0066] 这里,作为金属氧化物可选用元素周期表中的1~15族中任意的氧化物,尤其,优选为可在1000℃以下的温度形成玻璃的Si、B、Bi、Pb、Zn、Al、Ca、Ba、Ti、Zr、稀土类的氧化物。并且,如果为Si、B、Bi、Pb、Zn的氧化物,则可进一步以低温形成非晶质,故更优选。据此,叠层型压电元件在构成外部电极的热处理条件下,第1层15a与压电体1牢固密接。尤其,为了制成耐久性高的叠层型压电元件,优选外部电极第1层的金属氧化物量为30体积%以上,更优选为50体积%以上,最优选为70体积%以上。

[0067] 并且,在本发明中,优选外部电极15的最外层15c中所含有的金属氧化物比其他任一个外部电极层少。据此,可减小最外层15c的杨氏模量,因此,即使连续驱动叠层型压电元件,外部电极随着元件的尺寸变化进行伸缩,可容易抑制外部电极产生的龟裂。并且,由于能够制得电阻率低的电极,所以即使连续驱动元件也不会过热,因此不存在热失控。另外,通过增多金属成分,而软钎焊或焊接变得容易、或者即使由导电性树脂进行接合的情况下也可减小接触电阻。

[0068] 这里,如果第1层15a以外的外部电极层的金属氧化物比第1层15a的电极层都少,则虽然可抑制元件的发热,但是为了提高外部电极层的密接力,不会在层内产生剥离,而更优选金属氧化物从第1层15a向外侧的电极层依次减少。也就是说,以外部电极15各层的金属氧化物的含有量为第1层>第2层>第3层>···>最外层的方式阶段地控制含有量,可使相邻外部电极层彼此间的热膨張係数接近,能够提高各层间的密接强度。

[0069] 此外,外部电极15的组成物的量通过EPMA(Electron Probe MicroAnalysis)法等分析方法来特定。尤其,为了制成耐久性高的叠层型压电元件,优选外部电极15中最外层15c的金属氧化物量为30体积%以下,更优选为10体积%以下,最好为5体积%以下。

[0070] 并且,在本发明中优选金属氧化物主要为玻璃。据此,可抑制因在外部电极15中形成金属间化合物使电极变脆的问题。而且,玻璃成分扩散到构成外部电极15的金属成分的晶间,能够使外部电极15牢固地与压电体1密接。

[0071] 接着,对本发明的叠层型压电元件的制法进行说明。

[0072] 在本方法中,首先,将由PbZrO3-PbTiO3等构成的钙钛矿(perovskite)型氧化物的压电陶瓷的预烧粉末、和由丙烯酸系、丁缩醛系等有机高分子构成的粘合剂、和DBP(酞酸二丁酯)、DOP(钛酸二辛酯)等增塑剂混合制成浆料。然后,利用公知的刮刀法或压延辊法等带成型法将该浆料制作成为压电体1的陶瓷生片。

[0073] 接着,在银-钯等构成内部电极2的金属粉末中添加混合氧化银等金属氧化物、粘合剂及增塑剂等制作导电膏,再通过丝网印刷等方法将其以1~40μm的厚度印刷在所述各生片的上表面。

[0074] 然后,叠层多个在上表面印刷了导电膏的生片,对该叠层体在规定温度下进行脱粘合剂后,以900~1200℃烧成,而制得叠层体13。

[0075] 这时,如实施方式2中所详细叙述,通过在惰性层12a的部分生片中添加银-钯等构成内部电极2的金属粉末,而可使惰性层12a与其他部分在烧结时的收缩动作状态及收缩率相一致,能够形成致密的叠层体。

[0076] 此外,叠层体13并不局限于通过上述制法来制作,只要是能够制造交替叠层多个压电体1与多个内部电极2而成的叠层体13,通过何种制法形成均可。

[0077] 然后,在叠层型压电元件侧面交替形成端部露出的内部电极2和端部不露出的内部电极2。

[0078] 接着,在玻璃粉末中添加粘合剂制作银玻璃导电膏,将其成形为片状,控制干燥(使溶剂挥发)后的片的原密度为6~9g/cm3,再将该片转印在柱状叠层体13的外部电极形成面上,在比玻璃软化点高的温度、且银的熔点(965℃)以下的温度、且叠层体13的烧成温度(℃)的4/5以下的温度下进行焙烧,使利用银玻璃导电膏制作的片中的粘合剂成分散失,能够形成由呈三维网状结构的多孔质导电体构成的外部电极15。

[0079] 这时,虽然可以将构成外部电极的膏叠层为多层片后进行焙烧、也可以每叠层1层就进行焙烧,但是,在层叠为多层的片后一次进行焙烧在量产性上优越。而且,在外部电极层的每层都改变玻璃成分的情况下,虽然可以每片都改变玻璃成分的量来达成,但如果想将最接近压电体的面构成为极薄的玻璃富集层,则也可利用丝网印刷等方法在叠层体上印刷玻璃富集膏后、再叠层多层片。这时,也可以不进行印刷而采用5μm以下的片。

[0080] 此外,出于有效地形成颈部、使银玻璃导电膏中的银和内部电极2扩散接合、而且使外部电极15中的空隙有效地残留、进而使外部电极15和柱状叠层体13侧面局部接合的考虑,所述银玻璃导电膏的焙烧温度优选500~800℃。另外,银玻璃导电膏中的玻璃成分的软化点优选500~800℃。

[0081] 在焙烧温度比800℃高时,银玻璃导电膏的银粉末过度烧结,不能形成呈有效的三维网状结构的多孔质导电体,会使外部电极15过于致密。其结果,外部电极15的杨氏模量过高,不能充分吸收驱动时的应力,外部电极15有可能产生断线。最好以玻璃软化点的1.2倍以内的温度进行焙烧。

[0082] 另一方面,在焙烧温度比500℃低的情况下,由于内部电极2端部和外部电极15之间没有充分地进行扩散接合,所以不形成颈部,驱动时有可能在内部电极2和外部电极15之间产生火花。

[0083] 接着,通过将形成了外部电极15的叠层体13浸渍在硅橡胶溶液中、并且对硅橡胶溶液进行真空脱气,而在叠层体13的槽内部填充硅橡胶,之后,从硅橡胶溶液提起叠层体13,将硅橡胶涂敷在叠层体13侧面。然后,通过使填充在槽内部及涂敷在柱状叠层体13侧面的所述硅橡胶硬化,而达成本发明的叠层型压电元件。

[0084] 而且,在外部电极15上连接导线,经由该导线给一对外部电极15外加0.1~3kV/mm的直流电压,对叠层体13进行极化処理,从而,达成利用了本发明的叠层型压电元件的叠层型压电执行机构。将导线与外部的电压供给部连接,在经由导线及外部电极15给内部电极2外加电压时,各压电体1因反压电效应而位移较大。据此,可发挥作为例如向发动机喷射供给燃料的汽车用燃料喷射阀的功能。

[0085] 实施方式2.

[0086] 下面,对本发明的实施方式2的叠层型压电元件进行说明。

[0087] 本实施方式2的叠层型压电元件的叠层体10中活性部11的基本构成与实施方式1的叠层型压电元件相同,其特征在于惰性层12的构成。

[0088] 图3A、B是表示本发明的实施方式2的叠层型压电元件的构成的图,其中,图3A是立体图、图3B是表示叠层内部电极层与压电体而成的活性部及保护层的叠层状态的剖视图。

[0089] 此外,如图3A、B所示,在本实施方式2的叠层型压电元件中,在交替叠层压电体1与内部电极2而成的活性部11的侧面,形成有用于将外部电极4与内部电极2之间每隔一层绝缘的槽,从而,以内部电极2与外部电极每隔一层电导通的方式形成外部电极4。

[0090] 以下,以具有本实施方式2的特征的构成的惰性层12为中心进行说明。

[0091] 在本实施方式2的叠层型压电元件中,惰性层12以与压电体1相同的压电体为基体来构成,其特征为在惰性层12中还含有被分散的金属14。

[0092] 即,实施方式2的叠层型压电元件的发明是由于本发明人如下的独特发现而基于此见解达成的,如图3B所示,通过使金属14分散在惰性层12中,从而,(1)在烧成叠层体10时,缓和惰性层12与活性部11的烧成收缩差,制得残留应力极少的叠层型压电元件;(2)另外,被分散的金属14在烧成叠层体10a时促进烧结,得到致密的叠层体10,也可承受在叠层型压电元件连续驱动时的振动产生的应力。

[0093] 从而,具有分散了金属14的惰性层12的实施方式2的叠层型压电元件,耐久性优越,即使长时间使用也不会产生劣化,可靠性高。

[0094] 这里,所谓“分散了金属”,意思是与例如交替形成压电体与内部电极的活性层那样含有层状金属的情况不同,典型地讲,是指将金属元素扩散到惰性层12的压电体内。此外,也可以使金属元素从惰性层12的表面向惰性层12的内部扩散。该金属14的分散能够通过EPMA(Electron ProbeMicro Analysis)法等分析方法来特定。具体地讲,若以EPMA分析惰性层的任意剖面,则可确认金属的分布状态。

[0095] 另外,分散在惰性层12中的金属14的熔点优选相对叠层型压电元件的烧成温度为1.6倍以下。这是因为:对于具有比上述的熔点高的熔点的金属14,在惰性层12中,金属的扩散效率变差。在金属14的熔点为叠层型压电元件的烧成温度的1.6倍以下时,可使金属元素容易地从惰性层12表面向惰性层12内部。

[0096] 此外,在添加了2种以上的金属1 4的情况下、或添加了由2种以上金属构成的合金的情况下,优选各个金属的熔点为叠层型压电元件的烧成温度的1.6倍以下。不过,对于不利于向惰性层12中分散的金属,无需为上述的熔点以下这是不言自明的。

[0097] 并且,在本发明中,分散在惰性层12中的金属14优选为Ag、Pd、Cu、Ca、Na、Pb、Ni中的至少1种以上。这是因为:这些金属的熔点在叠层体10a的烧成温度附近、或比烧成温度低,因此,在叠层体10a烧成过程中,向惰性层12中的扩散变得活跃,促进金属14在惰性层12中均匀地分散。

[0098] 另外,使金属14分散在惰性层12中的量优选为惰性层12的0.001~1.0质量%。这是因为:在为0.001质量%以下时,惰性层12与活性部11在烧成时的收缩差或收缩曲线不同,两者间产生较大的应变,最差时,烧成后产生脱层或长时间使用后容易产生脱层。

[0099] 另外,在分散的金属14比1.0质量%大时,惰性层12的绝缘性劣化,有损惰性层的功能。另外,为了进一步减小惰性层12烧成后的残留应力,不产生叠层型压电元件烧成后的不良,更优金属14相对于选惰性层12的含有量为0.05质量%~1.0质量%。另外,为了即使对于因叠层型压电元件连续驱动时的振动产生的应力也具有高的可靠性,最优选金属12的含有量为0.1质量%~1.0质量%。另外,金属14相对惰性层12的含有量可以通过ICP(Inductively Coupled Plasma Atomic)发光分析来进行定量测定。

[0100] 并且,惰性层12的厚度优选0.1mm~2.0mm。在为0.1mm以下时惰性层12薄,因此,有时由于叠层型压电元件连续驱动时的振动产生的应力使惰性层12破坏。另外,在比2.0mm厚时,金属14难分散到惰性层12中。这里,若金属14在惰性层12中的分散程度差,则金属分散多的部分和金属分散少的部分在烧成时的收缩量或收缩曲线会产生差,因此,在烧成收缩时产生较大的应变,在烧成后产生脱层或在长时间使用后容易产生脱层。此外,惰性层12被配置在叠层体10叠层方向的两端面上,所谓惰性层12厚度表示配置在所述两端面中某一个端面上的惰性层12的厚度。

[0101] 另外,分散在惰性层12中的金属14优选为构成内部电极2的金属组成。这是因为:在使用构成内部电极2的金属以外的金属时,在烧成叠层体10a时惰性层12与包含内部电极2的活性部11的烧成收缩曲线不同,有时因烧成收缩产生应力。

[0102] 以下,对实施方式2的惰性层以外的要件进行说明。

[0103] 在本实施方式2的叠层型压电元件中,在叠层体侧面端部露出的内部电极2与端部不露出的内部电极2交替构成,在所述端部不露出的内部电极2与外部电极4间的压电体1部分形成有槽3。在本发明中,优选在该槽内形成杨氏模量比压电体1低的绝缘体。这样,在这样的叠层型压电元件中,由于可缓和因驱动中的位移产生的应力,所以即使连续驱动也可抑制内部电极2的发热。

[0104] 另外,在本发明中叠层体的烧成温度优选为900℃以上且1200℃以下。这是因为:在烧成温度为900℃以下时,由于烧成温度低而使烧成不充分,难以制作致密的压电体1。另外,这是因为:在烧成温度超过1200℃时,烧成时内部电极2的收缩与压电体1的收缩的偏差产生的应力变大,在叠层型压电元件连续驱动时有可能产生裂缝。

[0105] 另外,在本实施方式2的叠层型压电元件中,在采用实施方式1中所述孤3层以上的外部电极时,也可得到与实施方式1相同的效果。

[0106] 并且,外部电极4优选由呈三维网状结构的多孔质导电体构成。如果外部电极4不由呈三维网状结构的多孔质导电体构成,则外部电极4不具有挠性,不能追随叠层型压电执行机构的伸缩,因此,有时产生外部电极4的断线或外部电极4与内部电极2的接点不良。

[0107] 这里,所述三维网状结构,并不是指在外部电极4中存在所谓球形的空穴的状态,而暗示为如下述那样的构成外部电极4的导电材料粉末和玻璃粉末三维连结接合状态,即,为了在比较低温的条件下焙烧构成外部电极4的导电材料粉末和玻璃粉末,空穴不阻止烧结进行而以某种程度连结的状态存在。

[0108] 优选这样的空穴在外部电极4中的空隙率为30~70体积%。这里,所谓空隙率是空隙在外部电极4中所占的比率。这是因为:如果外部电极4中的空隙率比30体积%小,则外部电极4不能承受因叠层型压电执行机构伸缩产生的应力,外部电极4有可能断线;在外部电极4中的空隙率超过70体积%时,由于外部电极4的电阻值变大,所以在流过大电流时外部电极4产生局部发热有可能导致断线。

[0109] 并且,优选外部电极4的压电体1侧表层部形成有玻璃富集层。这是因为:在不存在玻璃富集层时,与外部电极4中的玻璃成分的接合困难,因此,有可能导致外部电极4不容易与压电体1牢固接合。

[0110] 另外,优选构成外部电极4的玻璃的软化点(℃)是构成内部电极2的导电材料熔点(℃)的4/5以下。这是因为:构成外部电极4的玻璃的软化点超过构成内部电极2的导电材料的熔点的4/5时,由于构成外部电极4的玻璃的软化点和构成内部电极2的导电材料的熔点成为相同程度的温度,所以焙烧外部电极4的温度必然接近构成内部电极2的熔点,因此,在焙烧外部电极4时,内部电极2及外部电极4的导电材料凝聚而妨碍扩散接合、或、不能将焙烧温度设定在使外部电极4的玻璃成分充分软化的温度,所以有时不能得到由软化的玻璃形成的充分的接合强度。

[0111] 并且,优选构成外部电极4的玻璃为非晶质。这是因为在结晶质的玻璃中,外部电极4不能吸收由叠层型压电执行机构的伸缩引起的应力,因此,有时产生裂缝。

[0112] 此外,优选外部电极4的厚度比压电体层1的厚度薄。这是因为如果外部电极4的厚度比压电体层1的厚度厚,则由于外部电极4的强度增大,因此,在叠层体10伸缩时,外部电极4和内部电极2的接合部的负荷增大,有时发生接点不良的情况。

[0113] 接着,对本发明的叠层型压电元件的制法进行说明。

[0114] 在本方法中,首先,与实施方式1相同,制作成为压电体1的陶瓷生片。

[0115] 接着,将该生片切割成任意大小,固定在框架上。

[0116] 然后,在银-钯构成内部电极2的金属粉末中添加混合粘合剂、增塑剂等制作导电膏,再通过丝网印刷等方法将其以1~40μm的厚度印刷在所述各生片上表面,准备活性部11用的生片。

[0117] 接着,准备在惰性层12上没有印刷导电膏的生片。

[0118] 然后,叠层多个活性部11用生片与惰性层12用生片,使重叠惰性层12用生片的叠层部分位于重叠上表面印刷了导电膏的活性部11用生片的叠层部分上下,同时,施加压力使之密接。这里,成为惰性层12的部分在活性部11上下以0.1~2.0mm的厚度叠层多个。

[0119] 然后,将被叠层的生片切割成适当的大小,如图5所示,在配置了惰性层12的生叠层体10a两端面通过印刷分散在惰性层中的包含金属成分的导电膏(例如,Ag、Pd、Cu、Ca、Na、Ni、Pb等)而形成金属层8。之后,在规定的温度下进行脱粘合剂后,在900~1200℃温度下进行烧成,在烧成后通过平面磨床等除去金属层8从而制得烧成后的叠层体10。

[0120] 这里,形成的金属层8的厚度优选为5mm以下。这是因为:若金属层8的厚度超过5mm,则在叠层体10a烧成时有可能由于金属层8与惰性层12烧成的收缩差而在金属层8产生裂缝。

[0121] 然后,在叠层体10a侧面交替形成端部露出的内部电极2与端部不露出的内部电极2,在端部不露出的内部电极2与外部电极4间的压电体1部分形成槽3,在该槽3内形成杨氏模量比压电体1低的树脂或橡胶等绝缘体。这里,所述槽3通过内部切片装置等形成在活性部11侧面,出于充分吸收因叠层型压电元件的伸缩产生的应力的考虑,构成外部电极4的导电材料优选杨氏模量低的银或以银为主成分的合金。

[0122] 接着,在玻璃粉末中添加粘合剂制作银玻璃导电膏,将其成形为片状,控制干燥(使溶剂挥发)后的片的原密度为6~9g/cm3,再将该片转印在活性部11的外部电极形成面上,在比玻璃软化点高的温度、且银的熔点(965℃)以下的温度、且烧成温度(℃)的4/5以下的温度下进行焙烧,使利用银玻璃导电膏制作的片中的粘合剂成分散失,能够形成由呈三维网状结构的多孔质导电体构成的外部电极4。

[0123] 此外,出于有效地形成粒子间的颈部、使银玻璃导电膏中的银和内部电极2扩散接合、而且使外部电极4中的空隙有效地残留、进而使外部电极4和叠层体侧面局部接合的考虑,所述银玻璃导电膏的焙烧温度优选500~700℃。另外,银玻璃导电膏中的玻璃成分的软化点优选500~700℃。

[0124] 在焙烧温度比700℃高时,银玻璃导电膏的银粉末过度烧结,不能形成呈有效的三维网状结构的多孔质导电体,会使外部电极4过于致密。其结果,外部电极4的杨氏模量过高,不能充分吸收驱动时的应力,外部电极4有可能产生断线。最好以玻璃软化点的1.2倍以内的温度进行焙烧。

[0125] 另一方面,在焙烧温度比500℃低的情况下,由于内部电极2端部和外部电极4之间没有充分地进行扩散接合,所以不形成粒子间的颈部,驱动时有可能在内部电极2和外部电极4之间产生火花。

[0126] 此外,优选银玻璃导电膏片的厚度比压电体1的厚度薄。出于追随执行机构的伸缩的考虑,更优选为50μm以下。

[0127] 接着,通过将形成了外部电极4的活性部11浸渍在硅橡胶溶液中、并且对硅橡胶溶液进行真空脱气,而在活性部11的槽3内部填充硅橡胶,之后,从硅橡胶溶液提起活性部11,将硅橡胶涂敷在活性部11侧面。然后,通过使填充在槽3内部及涂敷在活性部11侧面的所述硅橡胶硬化,而达成本发明的叠层型压电元件。

[0128] 而且,在外部电极4上连接导线6,经由该导线6给一对外部电极4外加0.1~3kV/mm的直流电压,对活性部11进行极化処理,从而,达成利用了本发明的叠层型压电元件的叠层型压电执行机构。将导线6与外部的电压供给部连接,在经由导线及外部电极4给内部电极2外加电压时,各压电体1因反压电效应而位移较大。据此,可发挥作为例如向发动机喷射供给燃料的汽车用燃料喷射阀的功能。

[0129] 以下,对实施方式1及2中内部电极等的更优选的方式进行说明。

[0130] (内部电极)

[0131] 在本发明中,内部电极2中的金属组成物优选以8~10族金属及/或11族金属为主成分。这是因为:由于上述金属组成物具有高耐热性,所以可以对烧成温度的高压电体1和内部电极2同时进行烧成。因此,由于可使外部电极的烧结温度比压电体的烧结温度低地进行制作,所以能够抑制压电体与外部电极间剧烈的相互扩散。

[0132] 并且,在8~10族金属的含有量设为M1(质量%)、11族金属的含有量设为M2(质量%)时,优选内部电极2中的金属组成物以满足0<M1≤15、85≤M2<100、M1+M2=100的金属组成物为主成分。这是因为:在8~10族金属超过15质量%时,电阻率变大,在连续驱动叠层型压电元件的情况下,有时内部电极2发热,该发热作用于具有温度依赖性的压电体1使位移特性減小,因此叠层型压电元件的位移量变小;并且,在形成外部电极15时,虽然外部电极15与内部电极2相互扩散接合,但是在8~10族金属超过15质量%时,外部电极15中扩散了内部电极成分的部位的硬度变高,驱动时产生尺寸变化的叠层型压电元件中,耐久性降低。另外,为了抑制内部电极2中的11族金属向压电体1迁移,优选8~10族金属为0.001质量%以上且15质量%以下。另外,出于提高叠层型压电元件的耐久性这一点考虑,优选0.1质量%以上且10质量%以下。另外,在热传导优越、需要更高耐久性的情况下,更优选0.5质量%以上且9.5质量%以下。另外,在追求进一步高的耐久性的情况下,进一步优选2质量%以上且8质量%以下。

[0133] 这里还因为:在11族金属小于85质量%时,内部电极2的电阻率变大,在连续驱动叠层型压电元件的情况下,有时内部电极2发热。另外,为了抑制内部金属2中的11族金属向压电体1的迁移,优选11族金属为85质量%以上且99.999质量%以下。另外,出于提高叠层型压电元件的耐久性这一点考虑,优选90质量%以上且99.9质量%以下。另外,在需要更高的耐久性的情况下,更优选90.5质量%以上且99.5质量%以下。另外,在谋求进一步高的耐久性的情况下进一步优选92质量%以上且98质量%以下。

[0134] 上述的内部电极2中金属成分的示出质量%的8~10族金属、11族金属可通过EPMA(Electron Probe Micro Analysis)法等分析方法来特定。

[0135] 并且,本发明的内部电极2中的金属成分优选:8~10族金属是Ni、Pt、Pd、Rh、Ir、Ru、Os中至少1种以上、11族金属是Cu、Ag、Au中至少1种以上。这是因为:它们是近年来在合金粉末合成技术上量产性优越的金属组成。

[0136] 而且,内部电极2中的金属成分优选:8~10族金属是Pt、Pd中至少1种以上、11族金属是Ag、Au中至少1种以上。据此,可以形成耐热性优越、电阻率小的内部电极2。

[0137] 并且,内部电极2中的金属成分的8~10族金属优选为Ni。据此,可以形成耐热性优越的内部电极2。

[0138] 另外,内部电极2中的金属成分更优选:11族金属是Cu。据此,可以形成硬度低的热传导性优越的内部电极2。

[0139] 而且,优选在内部电极2中与上述的金属组成物一起添加氧化物、氮化物或碳化物。据此,内部电极的强度增加,叠层型压电元件的耐久性提高。尤其,氧化物与压电体相互扩散而提高内部电极与压电体的密接强度,故更加优选。并且,优选所述无机组成物为50体积%以下。据此,可使内部电极2与压电体1之间的接合强度比压电体1的强度小。更优选为30体积%以下,从而可提高叠层型压电元件的耐久性。

[0140] 优选所述氧化物为以由PbZrO3-PbTiO3构成的钙钛矿型氧化物为主成分。此外,添加的氧化物等的含有量可从叠层型压电元件的剖面SEM像的内部电极中的组成面积比来算出。

[0141] (压电体)

[0142] 在本发明中,压电体1优选以钙钛矿型氧化物为主成分。这样,例如在由以钛酸钡(BaTiO3)为代表的钙钛矿型压电陶瓷材料等形成时,由于表现其压电特性的压电应变常数d33高,所以可增大位移量,并且,也能够同时烧成压电体1和内部电极2。作为上述示出的压电体1,优选以由压电应变常数d33比较高的PbZrO3-PbTiO3构成的钙钛矿型氧化物为主成分。

[0143] 并且,烧成温度优选900℃以上且1000℃以下。这是因为:在烧成温度为900℃以下时,烧成温度低而烧成不充分,难以制成致密的压电体1;另外,若烧成温度超过1000℃,则内部电极2的收缩和压电体1的接合强度变大。

[0144] 另外,在本发明的叠层型压电元件的侧面端部露出的内部电极2与端部不露出的内部电极2交替构成,所述端部不露出的内部电极2与外部电极15之间的侧面形成槽的情况下,优选在该槽内形成杨氏模量比压电体1低的绝缘体。据此,在这样的叠层型压电元件中,可缓和驱动过程中的位移产生的应力,因此,即使连续驱动,也可抑制内部电极2的发热。

[0145] (外部电极4上的导电性辅助部件7)

[0146] 并且,在本发明中,优选如图4B所示那样在外部电极4的外表面设置由埋设了金属网或网状金属板的导电性粘结剂构成的导电性辅助部件7。若在外部电极4的外表面不设置导电性辅助构件7,则在向叠层型压电元件通入大电流进行驱动时,外部电极4不能承受大电流而产生局部发热,有可能断线。另外,由于在导电性粘结剂中埋设有金属网或网状金属板,所以可防止导电生粘结剂产生裂缝。

[0147] 此外,金属网是指编织金属线而成的结构,网状金属板是指在金属板上形成孔而形成网状的结构。

[0148] 另外,如果不在外部电极4的外表面使用金属网或网状金属板,则叠层型压电元件伸缩产生的应力直接作用于外部电极4,从而有可能因驱动过程中的疲劳使外部电极4容易从叠层型压电元件侧面剥离。

[0149] 此外,优选导电性粘结剂由分散了导电性粒子的聚酰亚胺树脂构成。这是因为:通过使用聚酰亚胺树脂,即使在高温下驱动叠层型压电元件时也能够具有比较高的耐热性,而且通过使用这样具有比较高的耐热性的聚酰亚胺树脂,导电性粘结剂也容易维持高的粘结强度。并且,导电性粒子优选为银粉末。这是因为:通过导电性粒子使用电阻值比较低的银粉末,易于抑制导电性粘结剂的局部发热。另外,通过将电阻值低的银粉末分散在耐热性高的聚酰亚胺树脂中,即使在高温下使用,也能够形成电阻值低且维持高粘结强度的导电性辅助构件7。

[0150] 此外,这里所用的导电性粒子优选为片状或针状等非球形的粒子。这是因为通过将导电性粒子的形状形成为片状或针状等非球形粒子,能够使该导电性粒子之间的聚合牢固,能够进一步提高该导电性粘结剂的剪切强度。

[0151] 以上对实施方式1及2的叠层型压电元件进行了具体详细地说明,不过,本发明的叠层型压电元件及其制造方法并不局限于此,在不脱离本发明的要旨的范围内可以进行多种变更。例如,在使金属14分散到惰性层中时,如上所述在配置惰性层12的叠层体10两端面印刷金属层8、进行烧成使金属14分散在惰性层12中,但是,也可以在形成惰性层12的生片中预先添加金属14。另外,在分散熔点比叠层体10的烧成温度较低的金属14的情况下,例如,也可以在坩锅中配置叠层体10a,在其附近设置金属14同时进行烧成,从而,使从金属14挥发的金属蒸气蒸镀分散到惰性层12中。

[0152] 另外,虽然如上所述对在活性部11的相对置的侧面形成外部电极4的例子进行了说明,但是,本发明也可以例如在相邻的侧面形成一对外部电极4。

[0153] 实施方式3.

[0154] 以下,对本发明的喷射装置进行说明。该喷射装置利用本发明的叠层型压电元件构成。

[0155] 图6表示本发明的喷射装置,在收容容器31一端设有喷射孔33,另外,在收容容器31内收容着可开闭喷射孔33的针阀35。

[0156] 在喷射孔33可连通地设置有燃料通路37,该燃料通路37与外部的燃料供给源连结,通常以一定的高压向燃料通路37供给燃料。从而,形成为当针阀35开放喷射孔33时,供给到燃料通路37的燃料以一定的高压向内燃机的未图示的燃料室内喷出。

[0157] 另外,针阀35的上端部的直径变大,构成为可与形成在收容容器31内的缸体39相滑动的活塞41。并且,在收容容器31内收容有上述的压电执行机构43。

[0158] 在这样的喷射装置中,如果压电执行机构43被施加电压而伸长,则活塞41被推压,针阀35堵塞喷射孔33,停止燃料的供给。另外,如果停止施加电压,则压电执行机构43收缩,碟形弹簧45推回活塞41,喷射孔33与燃料通路37连通,进行燃料的喷射。

[0159] 另外,本发明的喷射装置并不仅限于上述实施方式,例如,除了搭载在汽车发动机的燃料喷射装置、喷墨等的液体喷射装置、光学装置等的精密定位装置或振动防止装置等中的驱动元件,或者搭载在燃烧压力传感器、测震传感器、加速度传感器、负荷传感器、超音波传感器、压敏传感器、偏航速率传感器等中的传感器元件,以及搭载在压电陀螺、压电开关、压电变压器、压电断路器等中的电路元件之外,只要是利用压电特性的元件,当然就可以适用。

[0160] 【实施例】

[0161] 以下,对本发明的实施例进行说明。

[0162] (实施例1)

[0163] 作为实施例1,按以下所述的方式制作了由本发明实施方式1的叠层型压电元件构成的叠层型压电执行机构。

[0164] 首先,制成混合了以平均粒径为0.4μm的钛酸锆酸铅(PbZrO3-PbTiO3)为主成分的压电陶瓷的预烧粉末、粘合剂、及增塑剂的浆料,用刮刀法制成厚度为150μm的压电体1的陶瓷生片。

[0165] 在陶瓷生片的一面上通过丝网印刷法形成3μm厚度的导电膏,且该导电膏是在银-钯合金(银95质量%-钯5重量%)中加入了粘合剂而成的,叠层300张形成有该导电膏的片进行烧成。烧成是在800℃进行保持后、再在1000℃进行烧成。

[0166] 然后,通过切片装置在叠层体侧面的内部电极端部每隔一层形成深度为50μm、宽度为50μm的槽。

[0167] 接着,如表1所示的组成那样,向平均粒径为2μm的片状的银粉末和剩余部分以平均粒径为2μm的硅作为主成分的软化点为640℃的非晶质的玻璃粉末的混合物中添加相对银粉末和玻璃粉末的总计重量100质量份为8质量份的粘合剂,充分混合而制作银玻璃导电膏。通过丝网印刷在脱模薄膜上形成这样制成的银玻璃导电膏,干燥后,从脱模薄膜剥离,得到银玻璃导电膏的片。

[0168] 然后,如表1的叠层条件那样,将所述银玻璃膏的片转印在叠层体13的外部电极15面上进行叠层,在700℃下焙烧30分钟形成外部电极15。

[0169] 之后,将导线连接在外部电极15上,经由导线向正极及负极的外部电极15外加15分钟的3kV/mm的直流电场进行极化处理,制成利用了图1A、B所示那样的叠层型压电元件的叠层型压电执行机构。

[0170] 对得到的叠层型压电元件外加170V的直流电压,结果所有的叠层型压电执行机构得到沿叠层方向45μm的位移量。并且,室温下对该叠层型压电元件以150Hz的频率外加0~+170V的交流电压进行驱动试验,进行试验到连续驱动为1×109次,

[0171] 另外,外部电极15的层厚度与玻璃量通过SEM测量剖面来测定。厚度是从SEM像中5点的平均值算出的,玻璃量是从SEM及EPMA算出电极层的面积,再算出其中的玻璃部分的面积,算出得到的面积的面积比作为体积%。结果如表1所示。

[0172] 表1-1

[0173]

[0174] 在表1-1中,玻璃量按体积%表示。

[0175] 表1-2

[0176]

[0177] 在表1-2中,初期位移量A表示初期状态的位移量(μm),连续驱动后的最大位移量B表示在连续驱动后(1×109次)的最大位移量(μm)。

[0178] 另外,在表1-2中,移量变化率表示连续驱动后的位移量相对于初期状态的位移量的变化率(%),取作A、B,以|(A-B)/A×100|来表示。

[0179] 从表1可知,比较例的试样编号1、2、13,由于构成外部电极15的层数为2层以下,所以在连续驱动叠层型压电执行机构时,因压电体12的尺寸变化,加在压电体12与外部电极15的界面上的负荷变大,从所述界面向外部电极15产生龟裂,并且,在所述界面产生剥离。

[0180] 与此相对,在本发明实施例的试样编号3~12中,由于是外部电极以3层以上构成的叠层型压电执行机构,所以连续驱动1×109次后,元件位移量也不会明显降低,具有作为叠层型压电执行机构所需的有效位移量,另外,可制作不产生热失控及误动作具有优越的耐久性的叠层型压电执行机构。

[0181] (实施例2)

[0182] 改变实施例1的试样No.7的叠层型压电执行机构的内部电极2的材料组成,测定各试样的位移量的变化率。这里,所谓位移量的变化率是对各试样的叠层型压电元件达到驱动次数1×109次时的位移量(μm)和开始连续驱动前的叠层型压电元件初期状态的位移量(μm)进行比较得到的。其结果表示在表2中。

[0183] 表2

[0184]

[0185] 在表2中,内部电极中的金属以质量%表示内部电极中的各金属相对于金属整体量的比例。另外,位移量变化率表示连续驱动后的位移量相对于初期状态的位移量的变化率(%),破坏表示因迁移而损坏。

[0186] 从表2发现:在试样No.1将内部电极2设为100%银的情况下,叠层型压电元件由于银迁移而损坏不能连续驱动;另外,试样No.18,由于内部电极2中的金属组成物中,8~10族金属的含有量超过15质量%,另外,11族金属的含有量小于85质量%,所以内部电极2的电阻率大,而在连续驱动叠层型压电元件时发热,叠层型压电执行机构的位移量降低。

[0187] 与此相对,还发现:试样No.2~14,由于内部电极2中的金属组成物在将8~10族金属的含有量为M1质量%、将11族金属的含有量为M2质量%时以满足0<M1≤15、85≤M2<100、M1+M2=100质量%的金属组成物为主成分,所以可减小内部电极2的电阻率,即使连续驱动也可抑制在内部电极2产生发热,因此,能够制作元件位移量稳定的叠层型执行机构。

[0188] 并且,发现:试样No.15~17也可减小内部电极2的电阻率,即使连续驱动也可抑制在内部电极2产生发热,因此,能够制作元件位移量稳定的叠层型执行机构。

[0189] 此外,本发明并于局限于上述实施例,在不脱离本发明的要旨的範囲内是可以进行某种程度的多种变更的。

[0190] (实施例3)

[0191] 在实施例3中,如下述那样制作由本发明的叠层型压电元件构成的叠层型压电执行机构。

[0192] 首先,制作混合了以钛酸锆酸铅(PbZrO3-PbTiO3)为主成分的压电陶瓷的预烧粉末、粘合剂、及增塑剂而得到的浆料,利用刮刀法制作厚度150μm的成为压电体11的陶瓷生片。

[0193] 在该陶瓷生片的一面上通过丝网印刷法印刷导电膏而形成为3μm厚度的片,叠层300张这样的片准备用于活性层。除此之外另制作用于构成惰性层12的厚度100μm的生片(不形成导电膏),并且,依次叠层惰性层用生片5~20张、活性层用生片300张、惰性层用5~20张进行压制。其中该导电膏是在以任意的组成比形成的银-钯合金中添加了粘合剂而成的。

[0194] 接着,在具有惰性层12的叠层体10a两端面、即在惰性层12的端面通过丝网印刷法以5μm的厚度印刷导电膏来形成金属层8。之后,在1000℃下烧成一定时间后通过平面磨床等除去金属层8,其中该导电膏是在Pd、Ni、Cu、Ag、Na、Pb、W、或Mo中添加了粘合剂得到的导电膏、或者在银-钯合金中添加了粘合剂得到的导电膏。

[0195] 然后,通过切片装置在叠层体侧面的内部电极端部每隔一层形成深度50μm、宽度50μm的槽3,在该槽3中填充硅橡胶使之硬化。

[0196] 接着,向平均粒径为2μm的片状的银粉末90体积%和剩余部分以平均粒径为2μm的硅作为主成分的软化点为640℃的非晶质的玻璃粉末10体积%的混合物中添加相对银粉末和玻璃粉末的总计重量100为质量份为8质量份的粘合剂,充分混合而制作银玻璃导电膏。通过丝网印刷在脱模薄膜上形成这样制成的银玻璃导电膏,干燥后,从脱模薄膜剥离,得到银玻璃导电膏的片。经阿基米德法测定该片的原密度为6.5g/cm3。

[0197] 其次,将银玻璃膏的片转印在叠层体的外部电极面上,在650℃下焙烧30分钟,形成由呈三维网状结构的多孔质导电体构成的外部电极。还有,此时的外部电极的空隙率经图像解析装置解析外部电极的剖面照片测定的结果,为40%。此外,压电体1、内部电极2及外部电极4的原料中添加了K2CO3或Na2CO3粉末。得到的烧结体的压电体、内部电极及外部电极中所含的碱金属是利用ICP分析方法而检测出的。

[0198] 另外,作为比较例制作了如图8所示那样的在惰性层设置不与外部电极相通电的电极的叠层型压电元件。这里,所述叠层型压电元件的压电体与上述的本发明的组成相同,另外,比较例的内部电极中的银与钯的比率是以95∶5构成的。另外,在表3-1中,在比较例的试样编号1中,由于惰性层中不分散金属,所以分散金属的熔点比率及分散金属组成栏表示为空栏(-)。而且,依次叠层惰性层用10张、活性层用300张、惰性层用10张后,通过与上述的本发明相同的方法设置外部电极、导线等来制作叠层型压电元件(表3的试样编号1)。

[0199] 之后,将导线6连接在外部电极4上,经由导线6向正极及负极的外部电极4外加15分钟的3kV/mm的直流电场进行极化处理,制成利用了图3A、B所示那样的叠层型压电元件的叠层型压电执行机构。

[0200] 对得到的叠层型压电元件外加170V的直流电压,结果沿叠层方向得到45μm的位移量。并且,室温下对该叠层型压电元件以150Hz的频率外加0~+170V的交流电压进行驱动试验。

[0201] 而且,该叠层型压电元件进行连续驱动试验到1×109次,这时,将产生不良的数表示为不良率。另外,对于分散在惰性层12中的金属1 4,在惰性层12的任意剖面上通过EPMA分析3处,调查有无金属的分散。另一方面,惰性层12中金属14的含有量是在惰性层12的任意3处取出试样,并对各个试样进行ICP发光分析,取算出的含有量的平均值。结果如表3所示。此外,表3所示的分散金属的熔点相对于烧成温度的比率表示分散金属的熔点相对于叠层体10a的烧成温度的比例。

[0202] 表3-1

[0203]

[0204] 表3-2

[0205]

[0206] 从表3发现,比较例的试样编号1的叠层型压电执行机构,由于在惰性层设置电极,所以在连续驱动试验过程中,由于叠层型压电元件的振动产生的应力而在惰性层中的电极与活性部的界面产生裂缝,不良率变高。

[0207] 与此相对,本发明实施例3的试样编号2~21的叠层型压电执行机构,由于在惰性层12中分散金属,所以可使烧成收缩时在惰性层12与活性部11之间产生的应力缓和及均匀化,并且,在高电压、长时间连续使用下也可抑制惰性层12的裂缝等,耐久性优越,故不良率降低。

[0208] 另外,试样编号2、3,由于构成电极层8的金属熔点明显比叠层体10a的烧成温度高,所以难在惰性层12中分散金属14,难发挥上述的效果。

[0209] 另外,试样编号17,由于金属14的分散量相对于惰性层12超过1.0质量%,所以惰性层12的绝缘性劣化,引起绝缘破坏,不良率变高一些。

[0210] 另一方面,试样编号4~16、18~21,由于金属14的分散量相对于惰性层12为0.001~1.0质量%,所以容易发挥上述的效果。尤其,上述分散量为0.1质量%且金属14由银和钯构成、即、金属8含有构成内部电极2的金属的试样编号11~13、16、及18~21,由于确保惰性层12的绝缘性、且金属14容易向惰性层12扩散,所以在高电压、长时间连续使用,也可抑制惰性层12的裂缝等,而耐久性优越,故不良率明显降低。

Claims (16)

1.一种叠层型压电元件,其特征在于,具有:
叠层体,其具有活性部和位于该活性部的两端部分别由压电材料构成的惰性层,所述活性部是交替叠层至少1个压电体与由第一内部电极及第二内部电极构成的多个内部电极而成的,所述活性部与外加在所述第一内部电极及所述第二内部电极之间的电压相对应进行伸缩,
外部电极,其分别形成在所述叠层体的2个侧面上,其中之一与所述第一内部电极相连接、其中之另一个与所述第二内部电极相连接,
所述叠层体的惰性层包含被分散的金属。
2.根据权利要求1所述的叠层型压电元件,其特征在于:
所述金属是由选自Ag、Pd、Cu、Ca、Na、Pb、Ni构成的群组中的至少1种以上的金属构成的。
3.根据权利要求1或2所述的叠层型压电元件,其特征在于:
所述金属的分散量相对于所述惰性层为0.001~1.0质量%。
4.根据权利要求1或2所述的叠层型压电元件,其特征在于:
所述惰性层的厚度为0.1~2.0mm。
5.根据权利要求1或2所述的叠层型压电元件,其特征在于:
所述金属含有与构成所述内部电极的金属相同的金属。
6.根据权利要求1所述的叠层型压电元件,其特征在于:
所述内部电极中的金属组成物以8~10族金属及/或11族金属为主成分。
7.根据权利要求6所述的叠层型压电元件,其特征在于:
在所述内部电极中的8~10族金属的含有量设为M1质量%、11族金属的含有量设为M2质量%时,满足0<M1≤15、85≤M2<100、M1+M2=100。
8.根据权利要求6或7所述的叠层型压电元件,其特征在于:
所述8~10族金属是Ni、Pt、Pd、Rh、Ir、Ru、Os中的至少1种以上,11族金属是Cu、Ag、Au中的至少1种以上。
9.根据权利要求6所述的叠层型压电元件,其特征在于:
所述8~10族金属是Pt、Pd中的至少1种以上,11族金属是Ag、Au中的至少1种以上。
10.根据权利要求6或7所述的叠层型压电元件,其特征在于:
所述8~10族金属是Ni。
11.根据权利要求6或7所述的叠层型压电元件,其特征在于:
所述11族金属是Cu。
12.根据权利要求6或7所述的叠层型压电元件,其特征在于:
在所述内部电极中与所述金属组成物一起添加了氧化物、氮化物或碳化物。
13.根据权利要求12所述的叠层型压电元件,其特征在于:
所述氧化物以由PbZrO3-PbTiO3构成的钙钛矿型氧化物为主成分。
14.根据权利要求1所述的叠层型压电元件,其特征在于:
所述压电体以钙钛矿型氧化物为主成分。
15.根据权利要求14所述的叠层型压电元件,其特征在于:
所述压电体以由PbZrO3-PbTiO3构成的钙钛矿型氧化物为主成分。
16根据权利要求1所述的叠层型压电元件,其特征在于:
在所述叠层体的所述2个侧面中的一个侧面上的所述第二内部电极与所述外部电极之间形成有槽,在另一个侧面上的所述第一内部电极与所述外部电极之间形成有槽,
在所述槽中分别填充有杨氏模量比所述压电体低的绝缘体。
CNA2009101327096A 2004-03-29 2005-03-29 叠层型压电元件及其制造方法 CN101593806A (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004094019A JP4817610B2 (ja) 2004-03-29 2004-03-29 積層型圧電素子およびその製造方法ならびにこれを用いた噴射装置
JP2004094019 2004-03-29
JP2004137696 2004-05-06

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CNB2005800102964A Division CN100517789C (zh) 2004-03-29 2005-03-29 叠层型压电元件及其制造方法

Publications (1)

Publication Number Publication Date
CN101593806A true CN101593806A (zh) 2009-12-02

Family

ID=35183973

Family Applications (3)

Application Number Title Priority Date Filing Date
CNA2009101327096A CN101593806A (zh) 2004-03-29 2005-03-29 叠层型压电元件及其制造方法
CN2009101327081A CN101593808B (zh) 2004-03-29 2005-03-29 叠层型压电元件及其制造方法
CNB2005800102964A CN100517789C (zh) 2004-03-29 2005-03-29 叠层型压电元件及其制造方法

Family Applications After (2)

Application Number Title Priority Date Filing Date
CN2009101327081A CN101593808B (zh) 2004-03-29 2005-03-29 叠层型压电元件及其制造方法
CNB2005800102964A CN100517789C (zh) 2004-03-29 2005-03-29 叠层型压电元件及其制造方法

Country Status (2)

Country Link
JP (1) JP4817610B2 (zh)
CN (3) CN101593806A (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007207881A (ja) * 2006-01-31 2007-08-16 Denso Corp 積層型圧電素子及びその製造方法
JP5303823B2 (ja) * 2006-02-28 2013-10-02 Tdk株式会社 圧電素子
JPWO2008068975A1 (ja) * 2006-12-06 2010-03-18 株式会社村田製作所 積層型圧電素子及びその製造方法
DE102007046077A1 (de) * 2007-09-26 2009-04-02 Epcos Ag Piezoelektrisches Vielschichtbauelement
EP2259353B1 (en) * 2008-04-21 2012-06-27 Murata Manufacturing Co. Ltd. Multilayer piezoelectric actuator
JP5334972B2 (ja) * 2008-06-30 2013-11-06 京セラ株式会社 積層型圧電素子、これを備えた噴射装置および燃料噴射システム
JP5612824B2 (ja) * 2009-03-08 2014-10-22 株式会社富士セラミックス 積層圧電セラミックス素子及びその製造方法
JP4915435B2 (ja) * 2009-06-19 2012-04-11 株式会社村田製作所 圧電アクチュエータ
DE102010008775A1 (de) * 2010-02-22 2011-08-25 Epcos Ag, 81669 Piezoelektrisches Vielschichtbauelement und Verfahren zur Herstellung eines piezoelektrischen Vielschichtbauelements
CN102208528B (zh) * 2011-05-31 2013-06-05 广州市番禺奥迪威电子有限公司 一种多层压电元件电极表面保护层的制造工艺
JP2017011125A (ja) * 2015-06-23 2017-01-12 京セラ株式会社 積層型圧電素子およびこれを備えた噴射装置ならびに燃料噴射システム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0556031B2 (zh) * 1987-05-20 1993-08-18 Nippon Electric Co
DE10042893A1 (de) * 1999-08-31 2001-04-26 Kyocera Corp Laminiertes piezoelektrisches Stellglied
US6411012B2 (en) * 1999-12-08 2002-06-25 Tdk Corporation Multilayer piezoelectric element and method of producing the same
JP3730893B2 (ja) * 2001-09-20 2006-01-05 京セラ株式会社 積層型圧電素子及びその製法並びに噴射装置

Also Published As

Publication number Publication date
CN101593808B (zh) 2011-05-11
JP4817610B2 (ja) 2011-11-16
JP2005285883A (ja) 2005-10-13
CN1938873A (zh) 2007-03-28
CN101593808A (zh) 2009-12-02
CN100517789C (zh) 2009-07-22

Similar Documents

Publication Publication Date Title
CN101728479B (zh) 层叠型压电元件及使用它的喷射装置
US6951048B2 (en) Method for producing a stacked piezoelectric element
US6663015B2 (en) Piezoelectric device for injector
US8314535B2 (en) Piezoelectric multilayer component
US7276841B2 (en) Thick film electrode and multilayer ceramic electronic device
US6700306B2 (en) Laminated piezo-electric device
CN101317280B (zh) 层叠型电子部件及其制造方法
JP4358220B2 (ja) 積層型圧電素子
US6414417B1 (en) Laminated piezoelectric actuator
JP4422973B2 (ja) 積層圧電体、アクチュエータ及び印刷ヘッド
CN103098251B (zh) 层叠型压电元件以及使用其的喷射装置和燃料喷射系统
JP4808915B2 (ja) 積層型圧電素子及び噴射装置
CN101197421B (zh) 层叠型压电元件
JP2005515641A (ja) ピエゾ電気構成素子およびその製造方法
JP2008535228A (ja) 機械的な分離層を備えたモノリシックな圧電性の構成部分、並びに該構成部分を製造するための方法、並びに当該構成部分の使用
CN101390228B (zh) 陶瓷构件的制造方法、陶瓷构件、气体传感器元件、燃料电池元件、过滤元件、层叠型压电元件、喷射装置以及燃料喷射系统
JP2006303044A (ja) 積層型圧電体素子
EP0247540A2 (en) Electrostriction effect element
US7705525B2 (en) Multi-layer piezoelectric element and method for manufacturing the same
US8209827B2 (en) Method of manufacturing a piezoelectric element
JPWO2006087871A1 (ja) 積層型圧電素子
US8049397B2 (en) Laminated piezoelectric element, jetting device provided with the laminated piezoelectric element and fuel jetting system
EP1988585B1 (en) Multi-layer piezoelectric device
CN1898812B (zh) 层压压电器件
CN201741727U (zh) 压电组件

Legal Events

Date Code Title Description
PB01 Publication
C06 Publication
SE01 Entry into force of request for substantive examination
C10 Entry into substantive examination
WD01 Invention patent application deemed withdrawn after publication

Open date: 20091202

C02 Deemed withdrawal of patent application after publication (patent law 2001)