CN101581252B - 控制用于抽吸空气以提供冷却空气的设定点的方法和系统 - Google Patents

控制用于抽吸空气以提供冷却空气的设定点的方法和系统 Download PDF

Info

Publication number
CN101581252B
CN101581252B CN2009101389251A CN200910138925A CN101581252B CN 101581252 B CN101581252 B CN 101581252B CN 2009101389251 A CN2009101389251 A CN 2009101389251A CN 200910138925 A CN200910138925 A CN 200910138925A CN 101581252 B CN101581252 B CN 101581252B
Authority
CN
China
Prior art keywords
air
suction
compressor
sparger
pressure stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2009101389251A
Other languages
English (en)
Other versions
CN101581252A (zh
Inventor
P·蔡尔德斯
M·迪施
C·纽顿三世
D·W·小鲍尔
K·N·惠林
A·M·特鲁斯代尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of CN101581252A publication Critical patent/CN101581252A/zh
Application granted granted Critical
Publication of CN101581252B publication Critical patent/CN101581252B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/16Control of working fluid flow
    • F02C9/18Control of working fluid flow by bleeding, bypassing or acting on variable working fluid interconnections between turbines or compressors or their stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/04Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output
    • F02C6/06Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output providing compressed gas
    • F02C6/08Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output providing compressed gas the gas being bled from the gas-turbine compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/16Cooling of plants characterised by cooling medium
    • F02C7/18Cooling of plants characterised by cooling medium the medium being gaseous, e.g. air

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Control Of Positive-Displacement Air Blowers (AREA)
  • Control Of Turbines (AREA)
  • Jet Pumps And Other Pumps (AREA)

Abstract

本发明涉及控制用于抽吸空气以提供冷却空气的设定点的方法和系统,具体而言,涉及一种用于控制涡轮冷却空气的生成的方法,该涡轮冷却空气来自从燃气涡轮机(10)的压缩机(12)抽吸的空气,该方法包括:从压缩机的低压级和高压级抽吸压缩空气;在喷射器(34)中把来自低压级的压缩空气添加到来自高压级的空气,并且排出结合的空气作为涡轮冷却空气;用来自高压级的抽吸压缩空气的旁路部分绕过(40)喷射器;响应于转变来自低压级的抽吸压缩空气的流动,改变用于实际压力比(50)的设定点(52),该实际压力比(50)包括涡轮冷却空气的压力,以及响应于已改变的设定点调节(56)旁路流动以导致实际压力比接近已改变的设定点。

Description

控制用于抽吸空气以提供冷却空气的设定点的方法和系统
技术领域
本发明一般地涉及抽吸压缩机空气以为燃气涡轮机中的涡轮提供冷却空气,更特别地,涉及建立用于抽吸压缩机空气的控制设定点。
背景技术
在工业燃气涡轮发动机中,从压缩机的一个或多个级抽吸空气并且应用该空气以冷却涡轮。通常把抽吸压缩机空气称为从压缩机引气。抽吸的压缩机空气应用为冷却空气,其穿过内部冷却通道到达涡轮叶片和动叶(bucket)。
从压缩机抽吸的用于涡轮冷却的空气减小了流经压缩机并到达燃气涡轮机的燃烧部分的空气量。有时,到燃烧器的压缩空气的这种减小对燃烧器的性能和燃气涡轮机的整体性能会具有低于期望的效果。应用控制系统来调控压缩机空气的抽吸以最小化在燃气涡轮机性能上的这些不期望的效果,并且确保充足的冷却空气到达涡轮叶片和动叶。
调控压缩机空气的抽吸的一种方法是从压缩机的两个或多个级抽吸空气。从压缩机的较低压力级所抽吸的空气对于燃气涡轮机的性能所具有的影响趋向于比从较高压力级所抽吸的空气小。通过调节从两个压缩机级抽吸的空气的相对比例,控制系统能够降低或增加压缩机空气的对燃气涡轮机性能的抽吸影响,并且为涡轮提供充足的冷却空气。
传统地,使用空气喷射器以结合处于不同压力下的空气,比如从压缩机的不同级抽吸的空气。已经使用喷射器结合来自压缩机的不同级的空气以提供涡轮冷却空气。例如,已经从压缩机的第十三级抽吸压缩机空气以冷却涡轮的第二级喷嘴。还从压缩机的第九级抽吸压缩机空气,其中从第九级抽吸的空气比从第十三压缩机级抽吸的空气处于更低的压力和温度下。例如,来自压缩机的第十三级的抽吸空气对于期望的涡轮冷却空气而言可能处于过大的压力和温度下。通过应用喷射器,把从压缩机第九级抽吸的低压力和温度的空气与从第十三级抽吸的高压力和温度的空气混合,以提供大致与冷却涡轮级所需的压力和温度匹配的处于中间压力和温度下的空气流。
一般地,喷射器不具有运动部件,因此不提供相对于空气流的混合的调节。在燃气涡轮机的设计期间,喷射器可以将大小设置成提供在期望压力和温度下的涡轮冷却空气。然而,喷射器的大小可以假设燃气涡轮机运行在标准的环境条件下。日常的环境压力和温度变化将影响喷射器的运行特征。从喷射器排出的空气的压力和温度将随着环境条件的变化而变化。在热天时,喷射器会传送比涡轮机所需更多的冷却空气。因为从压缩机抽吸了比冷却涡轮所需更多的空气,且因此浪费了压缩过多抽吸空气所需的功,所以压缩机的性能被不必要地损害。在冷天时,喷射器可能不传送足够的空气来冷却涡轮。为了考虑这种冷天,已经使用旁路管路来允许来自第十三压缩机级的其中一些抽吸空气绕过喷射器并且直接流向涡轮。
取决于环境条件,已经提供了调控阀来调节旁路空气流。控制系统确定何时在喷射器中把从第九压缩机级抽吸的空气添加到从第十三压缩机级抽吸的空气上,并且确定在绕着喷射器延伸的旁路导管中调控阀的设定。控制系统基于供给到涡轮第二级的冷却空气和压缩机排出空气的压力比来确定期望的涡轮冷却空气量。该比值优选地维持在恒定的设定点处。为了在设定点处维持该比值,控制系统可以打开或关闭将第九级压缩机空气提供到喷射器的阀,并且可以调节调控旁路空气量的阀。
当控制系统打开或关闭允许第九级压缩机空气进入喷射器的阀时,涡轮冷却空气对压缩机排出压力的压力比会有立刻的变化。该变化是由于把第九级压缩机空气添加到喷射器,以及因此添加到涡轮冷却空气,或者是由于终止了添加到喷射器的这种第九级压缩机空气。压力比的该立刻变化导致控制器尝试调节阀以维持期望的压力比。然而,当前的控制系统可能不提供充分解决冷却空气对压缩机排出压力比的该立刻变化的控制。所以,期望有一种控制系统,该控制系统能够适应期望的涡轮冷却空气和压缩机排出压力比的快速变化。
发明内容
已经开发了用于控制涡轮冷却空气的生成的方法,该涡轮冷却空气来自从燃气涡轮机的压缩机抽吸的空气,该方法包括:从压缩机的低压级和从压缩机的高压级抽吸压缩空气;在喷射器中把来自低压级的压缩空气添加到来自高压级的空气,并从喷射器排出涡轮冷却空气;用抽吸压缩空气的来自高压级的旁路部分绕过喷射器,其中旁路部分进入从喷射器排出的涡轮冷却空气;关掉或打开从低压级到喷射器的抽吸压缩空气流动;响应于来自低压级的抽吸压缩空气流动的转变(turning),改变用于实际压力比的设定点,该实际压力比包括涡轮冷却空气的压力;响应于已改变的设定点而调节旁路流动以导致实际压力比接近已改变的设定点。
已经开发了用于控制旁路阀在系统中的位置的方法,以提供涡轮冷却空气,该涡轮冷却空气来自从燃气涡轮机中的压缩机抽吸的空气,其中旁路阀调控绕过喷射器的从高压缩机级抽吸的压缩空气,该喷射器把来自高压缩机级的抽吸压缩空气与来自低压缩机级的抽吸压缩空气混合,并且其中结合旁路抽吸压缩空气的流动和来自喷射器的压缩空气以形成涡轮冷却空气,该方法包括:在阻止抽吸压缩空气从低压级到喷射器的流动之后打开抽吸压缩空气从低压级到喷射器的流动;响应于打开来自低压级的抽吸压缩空气的流动,改变用于实际压力比的设定点,该实际压力比包括涡轮冷却空气的压力;响应于已改变的设定点调节旁路阀以允许额外的旁路空气流,并从而导致实际压力比接近已改变的设定点。
已经开发了用于控制涡轮冷却空气的旁路阀的在燃气涡轮机中的位置的系统,该燃气涡轮机具有压缩机和涡轮,该系统包括:来自压缩机低级的压缩空气的低压抽吸口;来自压缩机高级的压缩空气的高压抽吸口;接收来自低级和高级二者的抽吸压缩空气的一部分的喷射器;位于喷射器上游并且控制来自低级的抽吸压缩空气是否到达喷射器的阀;在旁路导管中绕开喷射器并且调控来自高级压缩机的抽吸压缩空气的第二部分的旁路阀,该抽吸压缩空气的第二部分绕过喷射器并且与由喷射器所排出的涡轮冷却空气结合;以及控制器,该控制器响应于打开在喷射器上游的阀的命令,改变用于实际压力比的设定点,该实际压力比包括涡轮冷却空气的压力,并且设定点的变化引起控制器调节旁路阀以允许额外的旁路空气流,由此引起实际压力比接近已改变的设定点。
附图说明
图1是燃气涡轮机的示意图,显示了从压缩机抽出或抽吸并且导向涡轮的气体。
图2是显示了用于燃气涡轮机的某些操作状态的时间线图表(timeline chart),其中没有调节压缩机抽吸的设定点。
图3是显示了用于燃气涡轮机的某些操作状态的时间线图表,其中调节了压缩机抽吸的设定点。
具体实施方式
图1是燃气涡轮机10的示意图,比如工业燃气涡轮机,该燃气涡轮机具有由多级轴向涡轮16通过驱动轴14驱动的多级轴向压缩机12。可以通过动力轴18将由涡轮所生成的动力传送到发电机(未图示)。空气进入到轴向级压缩机的入口并且通过压缩机的连续级被逐渐增压。把来自压缩机的最后级的高压空气通过导管输送到燃烧系统20,在该燃烧系统20中把空气和燃料以及燃烧剂(combust)混合。高压燃烧气体穿过涡轮的级,该涡轮一般包括动叶和导叶(vane)的交替的排。热的燃烧气体通过使涡轮中的环形阵列的动叶旋转来驱动涡轮。当气体穿过涡轮级时涡轮中的气体压力逐渐减小。
冷却空气冷却涡轮的动叶和导叶。典型地通过从压缩机中的不同级抽吸空气来提供冷却空气。例如,可以从在压缩机的第九级处的出口22和在压缩机的第十三级处的出口24抽吸增压空气。例如管道的空气导管26,28把增压空气从压缩机导向到涡轮。空气导管26把增压空气从在第九压缩机级处的孔口22导向用于到涡轮第三级的冷却空气的入口。从第九压缩机级抽吸的空气的压力处于适合用于第三涡轮级的涡轮动叶和叶片的冷却空气的压力水平。阀30调控导管26中的压缩机空气量并且可以把空气从完全打开调节到完全关闭和在打开位置与关闭位置之间的中间位置。阀30调节供给的压缩空气的量和压力以冷却第三涡轮级。基于燃气涡轮机的操作状态和燃气涡轮机的总体控制算法,计算机控制器32可以调节阀30。
在孔口24处从第十三压缩机级抽吸的增压空气处于比从第九压缩机级抽吸的空气更高的压力下。把来自第十三压缩机级的空气经由导管28穿过喷射器34导向导管36,该导管36把冷却空气引向涡轮第二级。可以把来自第九压缩机级的增压空气的一部分穿过导管37和隔离阀38输送到喷射器34,在该喷射器34中把一部分空气添加到流向第二涡轮级的增压空气。
隔离阀38是或者完全打开或者完全关闭并且没有中间位置的开关阀。该隔离阀防止压缩空气从抽吸器逆流到通向涡轮第三级的导管26。为了防止这种逆流,控制器32在某些环境条件期间切断隔离阀38。
喷射器34允许在较低压力下的空气,例如从第九压缩机级抽吸的空气,添加到较高压力下的空气,比如从压缩机第十三级抽吸的增压空气。固定区域喷射器(fixed area ejector)是公知的并且在美国专利申请出版物2007/0125092中公开了其中一种。喷射器34在位于从压缩机第十三级和第九级抽吸的空气的压力和温度之间的中间压力和温度下排出空气。从喷射器排出的空气的压力和温度处于适合到第二涡轮级的冷却空气的压力下。控制器32调节阀38以或者允许第九级压缩机空气进入喷射器,或者防止该空气进入喷射器。例如,取决于围绕燃气涡轮机的环境条件,控制器可以确定开关阀38的设定。例如,在冷天中,控制器可以打开阀38以允许第九级压缩机空气进入喷射器,并由此增加从喷射器到第二级涡轮的冷却空气流。
旁路导管40绕着喷射器34引导一部分第十三压缩机级的空气并且直接导向将冷却空气提供至涡轮第二级的导管36。阀42调控穿过旁路导管的空气流并且可以通过控制器32把该阀42从完全打开调节到完全关闭和中间阀位置。
喷射器34构造成用于特定的环境条件,比如特定的环境压力和温度。对于特定的环境条件,喷射器提供适当量的涡轮冷却空气。为了考虑环境条件的变化,当需要时,比如当环境条件明显不同于特定的环境条件时,旁路阀42和相关旁路导管40提供额外的涡轮冷却空气。例如,对于冷天的环境条件,旁路阀可以调节到更加打开的位置以提供额外的涡轮冷却空气。
控制器32调节阀42以调控从压缩机抽吸的空气量和提供给涡轮的冷却空气量。控制器执行算法,基于燃气涡轮机的操作状态,该算法确定阀30和阀42的适当设定。例如,控制器可以调节调控旁路导管40中的空气的阀42,以维持进入涡轮第二级的冷却空气的压力和压缩机所排出的空气的压力的预定比。
控制器32接收来自传感器的数据,传感器跟踪燃气涡轮机中的各个级的压力和温度,阀30、阀38和阀40的位置以及燃气涡轮机的其它状态,比如功率输出。压力和温度传感器44监测在压缩机中的各个位置处的压力和温度。压力和温度传感器46监测实际的环境压力和温度。压力和温度传感器48可以监测提供到涡轮第二级和第三级的涡轮冷却空气的压力和温度。在压缩机和涡轮中的压力传感器提供控制器所使用的数据,以确定在涡轮第二级和压缩机排出处的绝对压力。
控制器32确定旁路阀42的适当位置。基于被供给到涡轮第二级喷嘴(S2N)的冷却空气的绝对压力对在压缩机排出(CPD)处流动的空气的绝对压力的比(S2N/CPD),可以控制旁路阀42。S2N/CPD压力比的设定点可以是取决于压缩机排出空气的压力水平的变量,并且可以在高于一定负载水平的燃气涡轮机负载处具有固定的设定点值。基于实际的压缩机排出压力和存储在控制器中为了确定用于期望的S2N/CPD压力比的设定点的算法,控制器32可以确定适当的S2N/CPD设定点。通过比较实际压力比(S2N/CPD绝对值)和S2N/CPD压力比的设定点,控制器确定对于旁路阀42的设定,以导致实际压力比(S2N/CPD绝对值)匹配期望的设定点。
图2是显示了为了在期望的S2N/CPD压力比的设定点52处维持S2N/CPD实际压力比50的传统(现有技术)控制动作的图表。图表显示了作为以秒计算的时间的函数的S2N/CPD压力比50的值。该图表还显示了作为恒定值的期望的S2N/CPD压力比52。此外,该图表显示了S2N/CPD压力比的最小水平53,该最小水平53表示在正常操作中S2N/CPD比不应该到达的状态,并且如果到达了该状态,那么将导致控制器采取校正动作,包括可能的关停燃气涡轮机。在该实例中,最小水平53处于比值0.398。此外,该图表显示了隔离阀(图1中38)的位置54(开/关)和旁路阀(图1中42)的位置56。
切换隔离阀38改变流向涡轮的涡轮冷却空气量,因此导致S2N/CPD的实际压力比的阶跃变化。当隔离阀38在位置60打开和在位置62关闭时出现S2N/CPD的实际压力比的尖峰(spike)58。当隔离阀在位置60打开时,S2N/CPD的实际压力比在对于S2N/CPD的期望的设定点52之上出现尖峰58。一般地,对于向上尖峰没有有害影响。然而,控制器响应于向上尖峰会调节旁路阀42的位置以导致S2N/CPD的实际压力比返回到期望的S2N/CPD压力比的设定点52。当隔离阀在位置62关闭时,在S2N/CPD的实际压力比出现向下尖峰。
当S2N/CPD压力比出现尖峰时,控制器调节旁路阀以导致S2N/CPD的实际压力比返回到期望的S2N/CPD压力比的设定点。因为隔离阀几乎立刻在全开和全关之间切换,所以在S2N/CPD压力比中所得到的尖峰出现得快且大。向下尖峰会引起实际的S2N/CPD压力比暂时落到预定的最小S2N/CPD压力比53之下。该尖峰会持续,使得S2N/CPD的实际压力比保持在最小水平53之下几秒。
如果S2N/CPD压力比保持在最小水平53之下超过预定秒数,那么控制器会确定故障状态,例如,引起燃气涡轮机脱线(go off line)或停机。在控制器宣告故障状态之前,控制器可能不能足够快地调节旁路阀以把S2N/CPD的实际压力比增加到最小压力比53之上。例如,控制器用于调节旁路阀的比例积分(PI)控制算法可能反应太慢以致不能补偿实际的S2N/CPD压力比的向下尖峰变化。如果控制器没有及时将实际的S2N/CPD压力比带至最小压力比53之上且进入符合用于S2N/CPD压力比的期望的设定点的状态,那么控制器可以确定涡轮冷却空气流不足并且导致涡轮机停机。因为有必要避免或至少最小化停机状态,所以需要充分补偿当隔离阀关闭或打开时发生的S2N/CPD压力比的尖峰变化。
在宣告故障状态之前,在切换隔离阀之后,避免宣告故障状态的方法是增加时间延迟,例如30秒到几分钟。在该时间延迟期间,S2N/CPD会落到最小压力比53之下。该延迟防止宣告故障状态,除非在该时间延迟终止后S2N/CPD还保持在最小压力比之下。然而,延迟宣告故障状态并没有避免发生S2N/CPD压力比落到预定的最小压力比之下。当隔离阀关闭时将出现S2N/CPD的向下尖峰并且将违反预定的最小压力比。尖峰和对最小压力比的违反会不利地影响燃气涡轮机的寿命。尽管在某些情况下,包括时间延迟足以避免宣告故障状态和因此产生的燃气涡轮机停机,但是优选的是,衰减S2N/CPD的尖峰并且比值不会落到最小压力比之下。
图3是S2N/CPD的实际压力比50、S2N/CPD的设定点52和旁路阀的位置56与隔离阀的位置54的图表。S2N/CPD的设定点52不象如在图2中所示的保持恒定。相反地,当控制器确定隔离阀将要关闭时,以向上阶跃64来调节S2N/CPD压力比的设定点52。阶跃64是暂时的并且可以是几秒,比如五秒。在阶跃64增加之后,S2N/CPD压力比的设定点返回到它的先前值。
响应于对S2N/CPD压力比的设定点的阶跃64增加,控制器快速且显著地调节旁路阀的位置56,以导致S2N/CPD的实际压力比适应设定点值的增加。可以以快速阶跃70调节旁路阀的位置,该快速阶跃70导致S2N/CPD的实际压力比的快速增加66。对旁路阀的快速调节和S2N/CPD的实际压力比的增加66意在减小响应于在位置62关闭隔离阀而发生的S2N/CPD的实际压力比的降低68。尤其是,因为S2N/CPD的设定点以阶跃64增加并且旁路阀响应于设定点的阶跃64而被调节,所以S2N/CPD的实际压力比不会落到最小水平53之下。
通过对S2N/CPD压力比的设定点应用阶跃增加,防止了S2N/CPD的实际压力比落到预定的最小水平之下或以其它方式越过预定的水平。由于当关闭隔离阀时S2N/CPD压力比的变化,减小了控制器宣告故障状态的可能性。进一步,当打开隔离阀时,控制器可以对S2N/CPD的压力阶跃点应用阶跃降低,以减小向上尖峰67的严重性,否则该尖峰将出现在S2N/CPD的实际压力比中。
尽管已经结合当前被认为是最可行和最优选的实施例描述了本发明,但是可以理解的是,本发明并不限于所公开的实施例,而是相反地,本发明意在覆盖被包括在所附权利要求的精神和范围内的各种修改和等价布置。

Claims (10)

1.一种用于控制涡轮冷却空气的生成的方法,所述涡轮冷却空气来自从燃气涡轮机(10)的压缩机(12)抽吸的空气,所述方法包括:
从所述压缩机的低压级(22)和从所述压缩机的高压级(24)抽吸压缩空气;
在喷射器(34)中把来自所述低压级的所述抽吸压缩空气添加到来自所述高压级的抽吸的空气,并且从该喷射器将压缩空气排出至所述涡轮冷却空气;
用来自高压级的抽吸的压缩空气的旁路部分绕过所述喷射器,其中,所述旁路部分进入从所述喷射器排出的所述涡轮冷却空气;
关掉或打开从所述低压级到所述喷射器的该抽吸的压缩空气的流动;
响应于关掉或打开来自所述低压级的所述抽吸的压缩空气的流动,改变(64)用于实际压力比(50)的设定点(52),所述实际压力比(50)包括所述涡轮冷却空气的压力;
响应于已改变的设定点调节(70)该旁路流动,以导致所述实际压力比接近已改变的设定点。
2.根据权利要求1所述的方法,其特征在于,所述低压级(22)是不高于所述压缩机的第十级的级,而所述高压级(24)是不低于所述压缩机的第十一级的级。
3.根据权利要求1所述的方法,其特征在于,所述压力比(50)具有所述涡轮冷却空气的压力,以及从所述压缩机排向所述燃气涡轮机的燃烧器的压缩空气的压力。
4.根据权利要求1所述的方法,其特征在于,所述设定点(52)的改变(64)是阶跃变化,其中所述设定点随着从所述低压级到所述喷射器的抽吸压缩空气的流动的关掉或打开而同时立刻增加,并且随后所述设定点减小。
5.根据权利要求4所述的方法,其特征在于,所述阶跃变化(64)发生不超过十秒。
6.根据权利要求4所述的方法,其特征在于,所述阶跃变化(64)足够大以防止所述实际压力比(50)越过预定的压力水平。
7.根据权利要求1所述的方法,其特征在于,响应于关掉或打开抽吸的压缩空气的从所述低压级到所述喷射器的流动,并且调节旁路阀以进行旁路流动调节来改变所述设定点(52)。
8.一种用于控制旁路阀(42)在系统中的位置的方法,以提供涡轮冷却空气,所述涡轮冷却空气来自从燃气涡轮机(10)中的压缩机(12)抽吸的空气,其中所述旁路阀调控绕过喷射器(34)从高压级抽吸的压缩空气,所述喷射器(34)把来自所述高压级的抽吸的压缩空气与来自低压级的抽吸的压缩空气混合,并且其中将旁路抽吸的压缩空气的流与来自所述喷射器的压缩空气结合,以形成涡轮冷却空气,所述方法包括:
打开或关掉该抽吸的压缩空气的从所述低压级到所述喷射器的流动;
响应于打开或关掉来自所述低压级的抽吸的压缩空气的流动,改变用于实际压力比(50)的设定点(52),所述实际压力比(50)包括所述涡轮冷却空气的压力;以及
响应于已改变的设定点调节所述旁路阀,以允许额外的旁路空气流,并从而导致实际压力比接近所述已改变的设定点。
9.根据权利要求8所述的方法,其特征在于,所述低压级(22)是不高于所述压缩机的第十级的级,而所述高压级(24)是不低于所述压缩机的第十一级的级。
10.根据权利要求8所述的方法,其特征在于,所述压力比(50)是所述涡轮冷却空气的压力以及压缩空气的从所述压缩机排向所述燃气涡轮机的燃烧器的压力的比。
CN2009101389251A 2008-05-14 2009-05-12 控制用于抽吸空气以提供冷却空气的设定点的方法和系统 Expired - Fee Related CN101581252B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/120,621 2008-05-14
US12/120621 2008-05-14
US12/120,621 US8240153B2 (en) 2008-05-14 2008-05-14 Method and system for controlling a set point for extracting air from a compressor to provide turbine cooling air in a gas turbine

Publications (2)

Publication Number Publication Date
CN101581252A CN101581252A (zh) 2009-11-18
CN101581252B true CN101581252B (zh) 2013-12-04

Family

ID=40897416

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009101389251A Expired - Fee Related CN101581252B (zh) 2008-05-14 2009-05-12 控制用于抽吸空气以提供冷却空气的设定点的方法和系统

Country Status (4)

Country Link
US (1) US8240153B2 (zh)
EP (1) EP2119892A3 (zh)
JP (1) JP5039085B2 (zh)
CN (1) CN101581252B (zh)

Families Citing this family (122)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030097872A1 (en) * 2001-11-29 2003-05-29 Granitz Charles Robert System for reducing oil consumption in gas turbine engines
US9027321B2 (en) 2008-03-28 2015-05-12 Exxonmobil Upstream Research Company Low emission power generation and hydrocarbon recovery systems and methods
MY156350A (en) 2008-03-28 2016-02-15 Exxonmobil Upstream Res Co Low emission power generation and hydrocarbon recovery systems and methods
AU2009228062B2 (en) 2008-03-28 2014-01-16 Exxonmobil Upstream Research Company Low emission power generation and hydrocarbon recovery systems and methods
ES2370949T3 (es) * 2008-07-16 2011-12-26 Siemens Aktiengesellschaft Válvula controlada por fluído para una turbina de gas y para una cámara de combustión.
CA2737133C (en) 2008-10-14 2017-01-31 Exxonmobil Upstream Research Company Methods and systems for controlling the products of combustion
US8267122B2 (en) * 2009-06-30 2012-09-18 Ge Aviation Systems Llc Method and systems for bleed air supply
IT1395820B1 (it) * 2009-09-25 2012-10-26 Nuovo Pignone Spa Sistema di raffreddamento per una turbina a gas e relativo metodo di funzionamento
US8337139B2 (en) * 2009-11-10 2012-12-25 General Electric Company Method and system for reducing the impact on the performance of a turbomachine operating an extraction system
JP4958967B2 (ja) * 2009-12-15 2012-06-20 川崎重工業株式会社 換気構造を改良したガスタービンエンジン
US8303695B2 (en) * 2010-05-17 2012-11-06 General Electric Company Systems for compressing a gas
CA2801499C (en) 2010-07-02 2017-01-03 Exxonmobil Upstream Research Company Low emission power generation systems and methods
BR112012031499A2 (pt) 2010-07-02 2016-11-01 Exxonmobil Upstream Res Co combustão estequiométrica com recirculação de gás de exaustão e resfriador de contato direto
EP2588729B1 (en) 2010-07-02 2020-07-15 Exxonmobil Upstream Research Company Low emission triple-cycle power generation systems and methods
CA2801494C (en) 2010-07-02 2018-04-17 Exxonmobil Upstream Research Company Stoichiometric combustion of enriched air with exhaust gas recirculation
GB201015029D0 (en) 2010-09-10 2010-10-20 Rolls Royce Plc Gas turbine engine
ITTO20100824A1 (it) * 2010-10-06 2012-04-07 Ansaldo Energia Spa Metodo di controllo per raffreddare uno stadio di turbina in una turbina a gas
US20120167587A1 (en) * 2010-12-30 2012-07-05 Robert Earl Clark Gas turbine engine with bleed air system
TWI593872B (zh) 2011-03-22 2017-08-01 艾克頌美孚上游研究公司 整合系統及產生動力之方法
TWI563166B (en) 2011-03-22 2016-12-21 Exxonmobil Upstream Res Co Integrated generation systems and methods for generating power
TWI564474B (zh) 2011-03-22 2017-01-01 艾克頌美孚上游研究公司 於渦輪系統中控制化學計量燃燒的整合系統和使用彼之產生動力的方法
TWI563165B (en) 2011-03-22 2016-12-21 Exxonmobil Upstream Res Co Power generation system and method for generating power
FR2979136B1 (fr) * 2011-08-16 2014-11-14 Snecma Dispositif d'activation d'une vanne passive d'ejecteur pour pressurisation d'une enceinte de turboreacteur d'aeronef
EP2562369B1 (de) * 2011-08-22 2015-01-14 Alstom Technology Ltd Verfahren zum Betrieb einer Gasturbinenanlage sowie Gasturbinenanlage zur Durchführung des Verfahrens
US8973373B2 (en) * 2011-10-31 2015-03-10 General Electric Company Active clearance control system and method for gas turbine
GB201121428D0 (en) 2011-12-14 2012-01-25 Rolls Royce Plc Controller
GB201121426D0 (en) 2011-12-14 2012-01-25 Rolls Royce Plc Controller
US9260974B2 (en) * 2011-12-16 2016-02-16 General Electric Company System and method for active clearance control
WO2013095829A2 (en) 2011-12-20 2013-06-27 Exxonmobil Upstream Research Company Enhanced coal-bed methane production
US9169782B2 (en) * 2012-01-04 2015-10-27 General Electric Company Turbine to operate at part-load
US9322333B2 (en) * 2012-01-06 2016-04-26 General Electric Company System and method for determining a cooling flow parameter downstream from a gas turbine combustor
US9376931B2 (en) * 2012-01-27 2016-06-28 General Electric Company Turbomachine passage cleaning system
US10724431B2 (en) * 2012-01-31 2020-07-28 Raytheon Technologies Corporation Buffer system that communicates buffer supply air to one or more portions of a gas turbine engine
US20130192251A1 (en) * 2012-01-31 2013-08-01 Peter M. Munsell Buffer system that communicates buffer supply air to one or more portions of a gas turbine engine
US9353682B2 (en) 2012-04-12 2016-05-31 General Electric Company Methods, systems and apparatus relating to combustion turbine power plants with exhaust gas recirculation
CN104736817B (zh) * 2012-04-26 2017-10-24 通用电气公司 再循环用于燃气涡轮发动机中多个流动路径中的排气的系统和方法
US10273880B2 (en) 2012-04-26 2019-04-30 General Electric Company System and method of recirculating exhaust gas for use in a plurality of flow paths in a gas turbine engine
US9784185B2 (en) 2012-04-26 2017-10-10 General Electric Company System and method for cooling a gas turbine with an exhaust gas provided by the gas turbine
KR101933585B1 (ko) * 2012-07-25 2018-12-28 한화에어로스페이스 주식회사 가스 터빈 장치
US9003762B2 (en) * 2012-10-02 2015-04-14 General Electric Company Turbine exhaust plume mitigation system
US9869279B2 (en) 2012-11-02 2018-01-16 General Electric Company System and method for a multi-wall turbine combustor
US9803865B2 (en) 2012-12-28 2017-10-31 General Electric Company System and method for a turbine combustor
US9611756B2 (en) 2012-11-02 2017-04-04 General Electric Company System and method for protecting components in a gas turbine engine with exhaust gas recirculation
US9631815B2 (en) 2012-12-28 2017-04-25 General Electric Company System and method for a turbine combustor
US10215412B2 (en) 2012-11-02 2019-02-26 General Electric Company System and method for load control with diffusion combustion in a stoichiometric exhaust gas recirculation gas turbine system
US9708977B2 (en) 2012-12-28 2017-07-18 General Electric Company System and method for reheat in gas turbine with exhaust gas recirculation
US10100741B2 (en) 2012-11-02 2018-10-16 General Electric Company System and method for diffusion combustion with oxidant-diluent mixing in a stoichiometric exhaust gas recirculation gas turbine system
US9599070B2 (en) 2012-11-02 2017-03-21 General Electric Company System and method for oxidant compression in a stoichiometric exhaust gas recirculation gas turbine system
US10107495B2 (en) 2012-11-02 2018-10-23 General Electric Company Gas turbine combustor control system for stoichiometric combustion in the presence of a diluent
US9574496B2 (en) 2012-12-28 2017-02-21 General Electric Company System and method for a turbine combustor
US9175783B2 (en) * 2012-11-16 2015-11-03 Ford Global Technologies, Llc Vacuum-actuated wastegate
US9562475B2 (en) * 2012-12-19 2017-02-07 Siemens Aktiengesellschaft Vane carrier temperature control system in a gas turbine engine
US10208677B2 (en) 2012-12-31 2019-02-19 General Electric Company Gas turbine load control system
US9581081B2 (en) 2013-01-13 2017-02-28 General Electric Company System and method for protecting components in a gas turbine engine with exhaust gas recirculation
ITMI20130089A1 (it) * 2013-01-23 2014-07-24 Ansaldo Energia Spa Impianto a turbina a gas per la produzione di energia elettrica e metodo per operare detto impianto
US9512759B2 (en) 2013-02-06 2016-12-06 General Electric Company System and method for catalyst heat utilization for gas turbine with exhaust gas recirculation
US9938861B2 (en) 2013-02-21 2018-04-10 Exxonmobil Upstream Research Company Fuel combusting method
TW201502356A (zh) 2013-02-21 2015-01-16 Exxonmobil Upstream Res Co 氣渦輪機排氣中氧之減少
WO2014133406A1 (en) 2013-02-28 2014-09-04 General Electric Company System and method for a turbine combustor
TW201500635A (zh) 2013-03-08 2015-01-01 Exxonmobil Upstream Res Co 處理廢氣以供用於提高油回收
US20140250945A1 (en) 2013-03-08 2014-09-11 Richard A. Huntington Carbon Dioxide Recovery
CA2902479C (en) 2013-03-08 2017-11-07 Exxonmobil Upstream Research Company Power generation and methane recovery from methane hydrates
US9618261B2 (en) 2013-03-08 2017-04-11 Exxonmobil Upstream Research Company Power generation and LNG production
US9482236B2 (en) 2013-03-13 2016-11-01 Rolls-Royce Corporation Modulated cooling flow scheduling for both SFC improvement and stall margin increase
US9447702B2 (en) 2013-06-21 2016-09-20 Sankar K. Mohan Cooling system and cooling method for use with closed loop systems
TWI654368B (zh) 2013-06-28 2019-03-21 美商艾克頌美孚上游研究公司 用於控制在廢氣再循環氣渦輪機系統中的廢氣流之系統、方法與媒體
US9631542B2 (en) 2013-06-28 2017-04-25 General Electric Company System and method for exhausting combustion gases from gas turbine engines
US9835089B2 (en) 2013-06-28 2017-12-05 General Electric Company System and method for a fuel nozzle
US9617914B2 (en) 2013-06-28 2017-04-11 General Electric Company Systems and methods for monitoring gas turbine systems having exhaust gas recirculation
EP3022421B1 (en) 2013-07-17 2020-03-04 United Technologies Corporation Gas turbine engine comprising a cooling airflow conduit
US9903588B2 (en) 2013-07-30 2018-02-27 General Electric Company System and method for barrier in passage of combustor of gas turbine engine with exhaust gas recirculation
US9587510B2 (en) 2013-07-30 2017-03-07 General Electric Company System and method for a gas turbine engine sensor
US9951658B2 (en) 2013-07-31 2018-04-24 General Electric Company System and method for an oxidant heating system
EP2857656A1 (en) * 2013-10-01 2015-04-08 Alstom Technology Ltd Gas turbine with cooling air cooling system and method for operation of a gas turbine at low part load
US10030588B2 (en) 2013-12-04 2018-07-24 General Electric Company Gas turbine combustor diagnostic system and method
US9752458B2 (en) 2013-12-04 2017-09-05 General Electric Company System and method for a gas turbine engine
CN103697281A (zh) * 2013-12-27 2014-04-02 北京华清燃气轮机与煤气化联合循环工程技术有限公司 燃气轮机低压引气管路和高压引气管路之间的节流结构
US10227920B2 (en) 2014-01-15 2019-03-12 General Electric Company Gas turbine oxidant separation system
US9915200B2 (en) 2014-01-21 2018-03-13 General Electric Company System and method for controlling the combustion process in a gas turbine operating with exhaust gas recirculation
US9863267B2 (en) 2014-01-21 2018-01-09 General Electric Company System and method of control for a gas turbine engine
US10079564B2 (en) 2014-01-27 2018-09-18 General Electric Company System and method for a stoichiometric exhaust gas recirculation gas turbine system
US9580180B2 (en) 2014-03-07 2017-02-28 Honeywell International Inc. Low-pressure bleed air aircraft environmental control system
US9644542B2 (en) * 2014-05-12 2017-05-09 General Electric Company Turbine cooling system using an enhanced compressor air flow
US10047633B2 (en) 2014-05-16 2018-08-14 General Electric Company Bearing housing
CN106460677B (zh) * 2014-05-21 2018-09-18 西门子能源公司 在燃气涡轮机中将冷却流动从压缩机提供到涡轮机的方法
EP2957746B1 (en) * 2014-06-17 2021-04-28 Raytheon Technologies Corporation High pressure turbine cooling
US9885290B2 (en) 2014-06-30 2018-02-06 General Electric Company Erosion suppression system and method in an exhaust gas recirculation gas turbine system
US10060359B2 (en) 2014-06-30 2018-08-28 General Electric Company Method and system for combustion control for gas turbine system with exhaust gas recirculation
US10655542B2 (en) 2014-06-30 2020-05-19 General Electric Company Method and system for startup of gas turbine system drive trains with exhaust gas recirculation
US10767562B2 (en) * 2014-12-10 2020-09-08 Pratt & Whitney Canada Corp. Modulated cooled P3 air for impeller
US9869247B2 (en) 2014-12-31 2018-01-16 General Electric Company Systems and methods of estimating a combustion equivalence ratio in a gas turbine with exhaust gas recirculation
US9819292B2 (en) 2014-12-31 2017-11-14 General Electric Company Systems and methods to respond to grid overfrequency events for a stoichiometric exhaust recirculation gas turbine
US10788212B2 (en) 2015-01-12 2020-09-29 General Electric Company System and method for an oxidant passageway in a gas turbine system with exhaust gas recirculation
US10253690B2 (en) 2015-02-04 2019-04-09 General Electric Company Turbine system with exhaust gas recirculation, separation and extraction
US10316746B2 (en) 2015-02-04 2019-06-11 General Electric Company Turbine system with exhaust gas recirculation, separation and extraction
US10094566B2 (en) 2015-02-04 2018-10-09 General Electric Company Systems and methods for high volumetric oxidant flow in gas turbine engine with exhaust gas recirculation
US10267270B2 (en) 2015-02-06 2019-04-23 General Electric Company Systems and methods for carbon black production with a gas turbine engine having exhaust gas recirculation
US10145269B2 (en) 2015-03-04 2018-12-04 General Electric Company System and method for cooling discharge flow
US10480792B2 (en) 2015-03-06 2019-11-19 General Electric Company Fuel staging in a gas turbine engine
US10024197B2 (en) 2015-03-19 2018-07-17 General Electric Company Power generation system having compressor creating excess air flow and turbo-expander using same
US9863285B2 (en) 2015-03-19 2018-01-09 General Electric Company Power generation system having compressor creating excess gas flow for supplemental gas turbine system
US20160273401A1 (en) * 2015-03-19 2016-09-22 General Electric Company Power generation system having compressor creating excess air flow and eductor for process air demand
JP5897180B2 (ja) * 2015-04-03 2016-03-30 三菱日立パワーシステムズ株式会社 ガスタービン
US9850819B2 (en) * 2015-04-24 2017-12-26 United Technologies Corporation Intercooled cooling air with dual pass heat exchanger
US10830148B2 (en) 2015-04-24 2020-11-10 Raytheon Technologies Corporation Intercooled cooling air with dual pass heat exchanger
KR101790146B1 (ko) * 2015-07-14 2017-10-25 두산중공업 주식회사 외부 케이싱으로 우회하는 냉각공기 공급유로가 마련된 냉각시스템을 포함하는 가스터빈.
US10502137B2 (en) * 2015-10-19 2019-12-10 General Electric Company Gas turbine with a valve cooling system
US10480342B2 (en) * 2016-01-19 2019-11-19 Rolls-Royce Corporation Gas turbine engine with health monitoring system
JP6801968B2 (ja) * 2016-02-15 2020-12-16 三菱パワー株式会社 ガスタービンの制御装置および制御方法、並びにガスタービン
GB2547674A (en) * 2016-02-25 2017-08-30 Rolls Royce Plc Gas turbine engine
CN105736080B (zh) * 2016-04-29 2017-12-05 华电郑州机械设计研究院有限公司 一种新型火电厂小汽轮机轴封抽汽系统
US20180057171A1 (en) * 2016-08-23 2018-03-01 Ge Aviation Systems, Llc Advanced method and aircraft for pre-cooling an environmental control system using a three wheel turbo-machine
US10731568B2 (en) 2016-11-23 2020-08-04 General Electric Company Systems and methods for reducing airflow imbalances in turbines
GB201619960D0 (en) 2016-11-25 2017-01-11 Rolls Royce Plc Gas turbine engine
US10473037B2 (en) 2017-05-22 2019-11-12 United Technologies Corporation Passively-driven bleed source switching
US11739697B2 (en) 2017-05-22 2023-08-29 Raytheon Technologies Corporation Bleed flow safety system
US11578668B2 (en) 2017-05-30 2023-02-14 Raytheon Technologies Corporation Gas turbine engine control based on characteristic of cooled air
FR3072414B1 (fr) * 2017-10-16 2019-11-01 Safran Aircraft Engines Dispositif et procede de refroidissement d'une turbine basse pression dans une turbomachine
DE102018125748A1 (de) * 2018-10-17 2020-04-23 Rolls-Royce Deutschland Ltd & Co Kg Ausfallerkennungssystem eines Kühlluftzufuhrsystems und Ausfallerkennungsverfahren für ein Kühlluftzufuhrsystemeiner Hochdruckturbine
US11047313B2 (en) * 2018-12-10 2021-06-29 Bell Helicopter Textron Inc. System and method for selectively modulating the flow of bleed air used for high pressure turbine stage cooling in a power turbine engine
US11738833B1 (en) 2020-03-31 2023-08-29 Bombardier Recreational Products Inc. Fender system for a watercraft
US11828223B2 (en) * 2021-05-28 2023-11-28 Honeywell International Inc. Variable jet pump

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6550253B2 (en) * 2001-09-12 2003-04-22 General Electric Company Apparatus and methods for controlling flow in turbomachinery
EP1442203B1 (de) * 2001-11-02 2006-05-24 ALSTOM Technology Ltd Verfahren zur steuerung der kühlluftmassenströme einer gasturbogruppe
CN1991142A (zh) * 2005-12-19 2007-07-04 通用电气公司 涡轮机叶轮空间温度控制
US7328098B1 (en) * 2007-04-03 2008-02-05 United Technologies Corporation Determining bleed valve failures in gas turbine engines

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL143765A0 (en) 1999-01-20 2002-04-21 Mykrolis Corp Flow controller
GB0224625D0 (en) * 2002-10-23 2002-12-04 Honeywell Normalair Garrett Method of balancing the supply of bleed air from a plurality of engines
US7536865B2 (en) * 2005-02-09 2009-05-26 Honeywell International Inc. Method and system for balancing bleed flows from gas turbine engines
US7536864B2 (en) 2005-12-07 2009-05-26 General Electric Company Variable motive nozzle ejector for use with turbine engines
US8136361B2 (en) 2006-05-04 2012-03-20 General Electric Company Methods and apparatus for assembling a low noise ejector motive nozzle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6550253B2 (en) * 2001-09-12 2003-04-22 General Electric Company Apparatus and methods for controlling flow in turbomachinery
EP1442203B1 (de) * 2001-11-02 2006-05-24 ALSTOM Technology Ltd Verfahren zur steuerung der kühlluftmassenströme einer gasturbogruppe
CN1991142A (zh) * 2005-12-19 2007-07-04 通用电气公司 涡轮机叶轮空间温度控制
US7328098B1 (en) * 2007-04-03 2008-02-05 United Technologies Corporation Determining bleed valve failures in gas turbine engines

Also Published As

Publication number Publication date
US20120117977A1 (en) 2012-05-17
EP2119892A3 (en) 2017-11-29
CN101581252A (zh) 2009-11-18
JP2009275702A (ja) 2009-11-26
EP2119892A2 (en) 2009-11-18
US8240153B2 (en) 2012-08-14
JP5039085B2 (ja) 2012-10-03

Similar Documents

Publication Publication Date Title
CN101581252B (zh) 控制用于抽吸空气以提供冷却空气的设定点的方法和系统
US9879610B2 (en) Pnuematic system for an aircraft
CN103541815B (zh) 用于燃气涡轮发动机喘振控制的方法和布置
JP4571273B2 (ja) 最適性能を得るための工業用ガスタービンの運転方法
US7762084B2 (en) System and method for controlling the working line position in a gas turbine engine compressor
US6898939B2 (en) Methods for rotor overspeed and overboost protection
CA2451049C (en) Control of gas turbine combustion temperature by compressor bleed air
US8356486B2 (en) APU bleed valve with integral anti-surge port
US20050144957A1 (en) Methods for operating gas turbine engines
CN1991142A (zh) 涡轮机叶轮空间温度控制
CA2535094C (en) Methods and apparatus for operating gas turbine engines
WO2009060889A1 (ja) ガスタービンの運転制御装置および運転制御方法
WO2011045400A3 (de) Lastregelungsvorrichtung und verfahren zur lastregelung für einen motor
JP2004100612A (ja) ガスコンプレッサー制御装置およびガスタービンプラント制御機構
US7024860B2 (en) Gas-turbine installation
EP3572640B1 (en) Gas turbine engine compressor control method
JP4163131B2 (ja) 二軸式ガスタービン発電システム及びその停止方法
CN101509499B (zh) 一种风机防喘振的方法及系统
CN109372631B (zh) 一种相继增压润滑系统及其控制方法
CN112902023A (zh) 一种蒸汽管道增压系统及其全自动控制方法
CN217499056U (zh) 一种能够实现气压控制的系统
CN110469408A (zh) 一种数字式燃气系统
JPS61182426A (ja) 二軸ガスタ−ビン制御装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20131204

CF01 Termination of patent right due to non-payment of annual fee