Connect public, paid and private patent data with Google Patents Public Datasets

用于三维心腔内超声心动图的导管和包括该导管的系统

Info

Publication number
CN101578069B
CN101578069B CN 200880001961 CN200880001961A CN101578069B CN 101578069 B CN101578069 B CN 101578069B CN 200880001961 CN200880001961 CN 200880001961 CN 200880001961 A CN200880001961 A CN 200880001961A CN 101578069 B CN101578069 B CN 101578069B
Authority
CN
Grant status
Grant
Patent type
Prior art keywords
acoustic
catheter
transducer
distal
body
Prior art date
Application number
CN 200880001961
Other languages
English (en)
Other versions
CN101578069A (zh )
Inventor
A·费尔南德斯
B·H·W·亨德克斯
C·霍尔
F·苏伊吉维尔
N·范德瓦特
R·塔巴克斯布莱特
S·凯珀
Original Assignee
皇家飞利浦电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/12Diagnosis using ultrasonic, sonic or infrasonic waves in body cavities or body tracts, e.g. by using catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4444Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
    • A61B8/445Details of catheter construction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/483Diagnostic techniques involving the acquisition of a 3D volume of data
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/18Methods or devices for transmitting, conducting, or directing sound
    • G10K11/26Sound-focusing or directing, e.g. scanning
    • G10K11/30Sound-focusing or directing, e.g. scanning using refraction, e.g. acoustic lenses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0883Detecting organic movements or changes, e.g. tumours, cysts, swellings for diagnosis of the heart

Abstract

一种导管装置(100,2000,3000,4000,540)包括具有近端(112)和远端(114)的细长本体(110)、靠近细长本体(110)的远端(114)设置的声换能器(130,2300,3300,4300,544)以及可变折射的声透镜(140,2200,3200,4200,542),该可变折射的声透镜适于响应于向其提供的一个或多个控制信号来动态调节与耦合到声换能器的声波相关联的方向。

Description

用于三维心腔内超声心动图的导管和包括该导管的系统

[0001] 本发明涉及导管,并且更具体地涉及用于三维心腔内超声心动图(ICE)的ICE导 管和系统。

[0002] 声波(尤其包括超声)可用于很多科学或技术领域,诸如医学诊断、机械部件的无 损控制和水下成像等。声波能够作为光学观察的补充来进行诊断和控制,因为声波可以在 对电磁波不透明的介质中行进。

[0003] 例如,心腔内超声心动图(ICE)日益成为诊断和治疗诸如心内膜炎、房间隔缺损 (ASD)、卵圆孔未闭(PFO)、室间隔缺损(VSD)的很多心脏异常、左心耳封堵术和治疗心房颤 动的主要工具。心腔内超声心动图(ICE)已经用于引导射频导管消融术和房间隔穿刺。尤 其是在心房颤动的诸如消融的治疗过程中,具有心脏内部的良好解剖信息是非常重要的。 将ICE和消融过程组合在一起对临床医师是非常有价值的。

[0004] 为了这个目的,已经开发出很多ICE导管。

[0005] 例如,标题为“ Ultrasound catheter and method for imaging an (!hemodynamic monitoring"的美国专利5,713,363描述了一种导管,其具有安装在导管远端附近的线性 相控阵列的超声换能器,用于流动测量和成像。同样公开的还有多平面相控阵列的超声换 能器的使用。

[0006] 同 时, 标 题 为“Ultrasonic transducer assembly with extended flexiblecircuits"的美国专利5,795,299描述了一种改进的驱动器电路,其与可用在体 腔内的超声换能器组件一起使用。

[0007] 同 #, f 示 IS % "Catheter-mounted, phased-array ultrasound transducer withimproved imaging"的美国专利5,846,205描述了一种在导管远端处的相控阵列的超 声换能器,其中该换能器被基本上不对超声聚焦的出射窗覆盖,以允许更小的导管尺寸。

[0008] 另 夕卜,标题为"Volumetric image ultrasound transducer underfIuid catheter”的美国专利6,039,693描述了一种用于生成三维图像的体积超声换能器潜流 (underfluid)导管系统。它能够得到组织的潜流特征的实时三维图像,而不需要频繁地旋 转、弯曲或伸展导管。

[0009] 此夕卜,标 题 为"Volumetric image ultrasound transducer underfluid cathetersystem”的美国专利6,306, 096描述了一种通过美国专利6,039, 693中描述的设

备来观察心脏血管的潜流结构的方法。

[0010] 总之,在专利文献中描述了 ICE导管,其包括一维(“1D”)和二维(“2D”)相控 阵列的声换能器,用于实现体内的实时二维和三维超声成像。

[0011 ] 在利用一维声换能器阵列的设备中,经常以一种方式布置声换能器元件以优化在 单个平面内的聚焦。这允许在轴向维度(即传播方向)和横向维度(即沿着ID阵列的方 向)上聚焦所发射和所接收的声压波。

[0012] 一维声换能器阵列允许对心脏内部进行二维成像。尽管这种二维信息是有价值 的,但仅利用二维信息来定位ICE导管的能力是有限的。需要有三维视图以便能够精确引 导消融设备到心脏中的正确区域。[0013] 如上所述,已经考虑到二维换能器阵列,但是这些设备受到用于驱动换能器的复 杂电子电路的影响,这使得这些设备非常昂贵。此外,换能器阵列的尺寸以及驱动该阵列 所需的所有电线使得其难以适合进入有限的导管空间。这些电线也可能导致磁共振成像 (MRI)的兼容性问题。通常在单用途方案中使用导管,因此导管和成像组件的成本对最终用 户和厂商来说变得非常重要。

[0014] 因此,可能期望提供一种ICE导管,其能够提供心脏内部的三维视图,而不需要利 用受到高成本的复杂电子电路和MRI兼容性问题的影响的二维超声换能器阵列。可能进一 步期望提供一种利用不需要复杂且昂贵的二维超声换能器阵列的ICE导管来获得心脏内 部的三维视图的方法。

[0015] 在本发明的一个方面,一种导管装置包括:细长本体,其具有近端和远端;声换能 器,其被设置为靠近细长本体的远端;以及可变折射声透镜,其耦合到声换能器,该可变折 射声透镜适于响应于对其施加的至少一个选择电压来调节其至少一个声信号处理特性。

[0016] 在本发明的另一方面,一种导管装置包括具有近端和远端的细长本体以及靠近细 长本体的远端设置的声换能器,并且还包括可变折射声透镜,该可变折射声透镜适于响应 于向其提供的一个或多个控制信号来动态调节与耦合到声换能器的声波相关联的方向。

[0017] 在本发明的又一方面,一种系统包括导管、声信号处理器和电压发生器。该导管包 括:细长本体,其具有近端和远端的;声换能器,其被设置为靠近细长本体的远端;以及可 变折射声透镜,其耦合到所述声换能器,该可变折射声透镜适于响应于对其施加的选择电 压来调节其至少一个声信号处理特性。声信号处理器耦合到导管的声换能器,且电压发生 器适于施加选择电压到导管的可变折射声透镜。

[0018] 图1示出ICE导管的一个实施例;

[0019] 图2A-B示出ICE导管的一个实施例的垂直横截面视图,该ICE导管包括声换能器 和可变折射声透镜;

[0020] 图3示出ICE导管的一个实施例的轴向横截面视图,该ICE导管包括与可变折射 声透镜相结合的声换能器;

[0021] 图4示出ICE导管的一个实施例的垂直横截面视图,该ICE导管包括与可变折射 声透镜相结合的声换能器,该可变折射声透镜适于偏转和聚焦超声波束;

[0022] 图5示出包括ICE导管的系统的实施例的框图,该ICE导管包括与可变折射声透 镜相结合的声换能器;

[0023] 图6示出操作包括与可变折射声透镜相结合的声换能器的ICE导管的方法的一个 实施例的流程图。

[0024] 现在将在下文通过参考附图来更全面地描述本发明,在附图中示出本发明的优选 实施例。然而,本发明可以体现为不同的形式并且不应被解读为局限于本文所述的实施例。 相反,提供这些实施例作为本发明的教导示例。如本文所使用的,术语“声”指的是由声波进 行的或通过声波进行的操作,所述声波尤其包括频率在人的正常听力范围以上的超声波。 在下面的讨论中,描述了导管,尤其是ICE导管,以及包括可变折射声透镜的相关系统。在 本申请中所使用的术语“可变折射声透镜”的背景中,词语“透镜”被定义为用于引导或聚 焦除了光以外(可能包括光)的辐射(尤其是声辐射,例如超声辐射)的设备。虽然可变 折射声透镜可以聚焦声波,在这一背景中词语“透镜”的使用并不暗示这种聚焦。一般地,本文所使用的可变折射声透镜适于折射声波,其可以偏转和/或聚焦声波。

[0025] 变焦流体透镜技术是最初为允许光通过具有特定折射率的填充有流体的腔室 的物理边界的变化而被聚焦的专门目的而发明的方案(M专利合作条约(PCT)公开 W02003/069380,其全部内容以引用的方式合并于此,正如其在此处完全记载一样)。被称为 “电润湿”的过程实现了流体表面的运动,其中通过在导电电极两端施加电压来移动腔室内 的流体。这一表面拓扑结构的变化允许光以这样一种方式被折射以便改变行进路径,从而 使该光聚焦。

[0026] 同时,超声在流体介质中传播。实际上人体经常被称为不能承载除了压缩波以外 的高频声波的流体。从这一意义上说,这些波对变形敏感,该变形由在大块组织中传播的声 速差异造成,并且由声速在界面处的急剧变化造成。PCT公开W02005/122139中采用了这 一特性,该公开的全部内容以引用的方式合并于此,正如其在此处完全记载一样。PCT公开 W02005/122139公开了使用具有与透镜接触的大块组织不同的声速的变焦流体透镜,以聚 焦到达声换能器和来自声换能器的超声。然而,PCT公开W02005/122139并未公开或教导 将变焦流体透镜技术应用于用于心腔内超声心动图的导管中的一维声换能器阵列。

[0027] 下面公开的是包括声换能器和可变折射声透镜的ICE导管的一个或多个实施例, 该可变折射声透镜具有能够可变地折射声波的声界面。

[0028] 图1图示说明一种ICE导管100,其包括细长的导管本体110、声换能器130、可变 折射声透镜140、声学透明窗150以及电导体160。ICE导管100可以包括一个或多个其他 元件,诸如用于支撑可能经过导管的治疗设备、导线等的一个或多个接入口。

[0029] 本体110具有近端112和远端114,其中ICE导管100通常被插入静脉,例如远端 首先进入。本体110是可能为柔性或刚性的管状结构,并且例如可能由塑料制成。

[0030] 有益的是,声换能器130包括一维阵列的声换能器元件。在一个实施例中,换能器 元件可以包括压电材料如锆钛酸铅(PZT),其被提供在反射由PZT生成的大部分超声能量 的背衬层或基板上。PZT的有效表面可以覆盖有声匹配层。作为替代,声换能器130可以包 括单个大孔径换能器。

[0031] 可变折射声透镜140适于响应于至少一个对其施加的选择电压来调节其至少一 个声信号处理特性。例如,有益的是可变折射声透镜140包括改变沿着传播轴线(“聚焦”) 和/或垂直于这一平面(“偏转”)的声波的仰角焦距(elevation focus)的能力,这在下 面更详细地描述。关于可变折射声透镜140的实施例的更多细节将在下面参考图2A-B至 图4进行描述。

[0032] 声学透明窗150提供接入口以使声波在可变折射声透镜140与ICE导管100所在 的区域(诸如人心脏的内部)之间经过。

[0033] 电导体160可以包括一个或多个分离的电导线,以便提供各种信号和电压,这些 信号和电压到达和来自:(1)声换能器130和/或可变折射声透镜140 ;以及(¾ ICE导管 100的外部。

[0034] 尽管在图1的实施例中声换能器130、可变折射声透镜140和声学透明窗150被 设置为沿着导管本体110的侧壁并靠近其远端114,应该理解其他配置也是可能的。具体 地,在一些应用中可以采用一实施例,其中声换能器130、可变折射声透镜140和声学透明 窗150被设置在远端114处以产生所谓的“前视” ICE导管。[0035] 图2A-B示出ICE导管2000的一个实施例的垂直横截面视图,该ICE导管包括与可 变折射声透镜相结合的声换能器。ICE导管2000包括导管本体2100以及与声换能器2300 耦合的可变折射声透镜2200。

[0036] 有益的是,可变折射声透镜2200包括改变沿着传播轴线(“聚焦”)以及垂直于 这一平面(“偏转”)的声波的仰角焦距的能力,这在下面更详细地描述。可变折射声透镜 2200包括外壳2210、第一流体介质2241和第二流体介质2242、第一电极2250和第二电极 2260a 和 2260b。

[0037] 外壳2210包括顶表面2211和底表面2212、第一侧壁2213和第二侧壁2214以及 第三侧壁和第四侧壁(在图2A-B中未示出),第三侧壁和第四侧壁被提供在第一侧壁2213 和第二侧壁2214的两端并且在两端将第一侧壁2213和第二侧壁2214连接在一起,以便与 顶表面2211和底表面2212 —起限定出外壳2210内的腔室。有益的是,外壳2210的顶表面 2211和底表面2212在声学上基本透明,而声波不穿透外壳2210的第一侧壁2213和第二侧 壁2214。有益的是,声换能器2300通过一个或多个声匹配层(未示出)耦合到外壳2210 的底表面2212。在一个示例性实施例中,通过在相应的一个第二电极2260a/2260b上覆盖 例如10微米的聚对二甲苯-N(用于电绝缘)和顶覆(例如lOnm)非晶含氟聚合物(用于 以低磁滞切换)来形成外壳2210的第一侧壁2213和第二侧壁2214。

[0038] 因此,外壳2210包围具有体积的密封腔室,在该密封腔室内提供第一流体介质 2241和第二流体介质2242。

[0039] 有利地,第一流体介质2241和第二流体介质2242中的声速彼此不同(即声波在 流体介质2241中传播的速度不同于其在流体介质2242中传播的速度)。同样,第一流体 介质2241和第二流体介质2242彼此不易混合。因此它们在腔室中总是保持为分离的流体 相。第一流体介质2241和第二流体介质2242之间的分离是接触表面或弯液面,其限定出 第一流体介质2241和第二流体介质2242之间的边界或界面,而不需要任何固体部件。同 样有利地,两种流体介质2241、2M2中的一种是导电的,而另一种是基本不导电的,或是电 绝缘的。

[0040] 在一个实施例中,第一流体介质2241主要由水构成。例如,它可以是盐溶液,其离 子含量足够高以具有电极性性能,或者是导电的。在这种情况下,第一流体介质2241可以 包含钾离子和氯离子,二者的浓度均为例如0. Imol. Γ1。作为替代,它可以是水和乙醇的混 合物,其由于诸如钠离子或钾离子的离子(例如浓度为0. Imol. Γ1)的存在而具有充分的导 电性。第二流体介质2242例如可以包括对电场不敏感的硅油。下面的表1列出可以用作 第一流体介质2241或第二流体介质2242的若干示例性流体。

[0041] 表 1

[0042]

[0043] 有益的是,第一电极2250被提供在外壳2210中,以便与两种流体介质2241、2M2 中导电的一种相接触。在图2A-B的示例中,假设流体介质2241是导电的流体介质,而流体 介质2242是基本不导电的流体介质。然而应该理解,流体介质2241可以是基本不导电的 流体介质,而流体介质2242可以是导电的流体介质。在这种情况下,第一电极2250可以被 布置为与流体介质2242相接触。

[0044] 同时,分别在外壳2210的外侧(侧)壁2213和2214上提供第二电极2260a、 2260b。在图2A-B的示例中,电极和连接到在ICE导管2000外部的电压发 生器或可变电压源的两个输出(参见图2A),并且电极2250接地。当然,其他布置也是可 能的,例如施加到电极2250上的电压不接地的情况。可以借助于设置在导管2000的本体 2100内的电导体160(参见图1)来提供这些和其他电连接。

[0045] 有益的是,声换能器2300包括一维阵列的声换能器元件。在一个实施例中,换能 器元件可以包括压电材料,诸如锆钛酸铅(PZT),其被提供在反射由PZT生成的大部分超声 能量的背衬层或基板上。PZT的有效表面可以覆盖有声匹配层。作为替代,声换能器2300 可以包括单个大孔径换能器。

[0046] 在一个实施例中,ICE导管2000适于发射和接收声波。对于这种情况,在发射模 式下,声换能器2300将对其输入的电信号转换成其输出的声波。在接收模式下,声换能器 2300将其接收的声波转换成其输出的电信号。

[0047] 在可替代的实施例中,ICE导管2000可以改为适于在仅接收模式下操作,其中从 一些外部设备发射超声能量。在这种情况下,分离地提供发射换能器。

[0048] 在操作上,可变折射声透镜2200如下地结合声换能器2230进行操作。由导电流体 2241与绝缘流体2242之间的界面或弯月面形成透镜。通过直接施加作用力(例如电压) 到导电流体2241的至少一部分,导致流体2241与2242之间的界面的至少一部分移位,结 果弯月面被倾斜,以便将所施加的声束偏转离开包含一维换能器阵列2300的平面。PCT公 开TO2004051323提供了关于倾斜可变折射流体透镜的弯月面的详细描述,该公开的全部 内容以引用的方式合并于此。

[0049] 具体地,界面相对于外壳2210的绝缘侧壁2213和2214的接触角可以利用施加到 电极2250、2^0a和2260b的(多个)电压或控制信号进行调节。对于施加到电极2260a和 2260b的电压Vl和V2的某一组合,第一流体介质2241与第二流体介质2242之间的界面或

9弯月面是平坦的。在图2A的示例性实施例中,当由可变电压源施加到电极2260a与 两端或之间的电压为第一电压Mk = V1-V2时,第一流体介质2241与第二流体介质2242 之间的界面如图2A所示。同时,因为声波在第一流体介质2241与第二流体介质2242中具 有不同的传播速度,填充有第一流体介质2241与第二流体介质2242的体积表现为折射该 声波并由此将声波偏转到第一方向上,例如相对于一平面成-α角,该平面沿着一维换能 器阵列2300排列的方向(下面图3中的χ轴)延伸经过该一维换能器阵列2300,并且基本 垂直于换能器阵列2300所在的、由χ轴和如图2Β所示的ζ轴定义的平面。

[0050] 当施加到电极2260a与两端的电压变化时,弯月面的形状将会由于电极 2260a与之间的电场而变化。具体地,当由可变电压源施加到电极2260a与2260b 两端或之间的电压变化到第二电压ΔΥΒ = V3-V4时,第一流体介质2241与第二流体介质 2242之间的接触表面如图2Β所示。在这种情况下,第一流体介质2241与第二流体介质 2242表现为将声波偏转到相对于所述平面成+ α角的第二方向,所述平面沿着一维换能器 阵列2300排列的方向(参见下面图3中的χ轴)延伸经过该一维换能器阵列2300。注意 到在可变折射声透镜2200的壁2213与2214为对称设计的情况下,AVB = - AVA。

[0051] 当可变电压源在电极与两端或之间施加从AVA到AVB的不同电压 时,声束将被偏转到相对于所述平面成从到+ α的相应角度来偏转声,所述平面沿着一 维换能器阵列2300排列的方向延伸经过该一维换能器阵列2300,并且基本垂直于换能器 阵列2300所在的平面。在一个实施例中,α = 10度。

[0052] 图3示出导管3000的一个实施例的轴向横截面视图,该导管包括与可变折射声透 镜相结合的声换能器。ICE导管3000包括导管本体3100和耦合到声换能器3300的可变 折射声透镜3200。导管本体3100、可变折射声透镜3200和声换能器3300与图2Α-Β的导 管2000中的相应元件大致相同,因此不再重复对这些元件的描述,在此仅解释图3中示出 的附加特征。

[0053] 从图3可以看出,可变折射声透镜3200包括设置在第三侧壁2215和第四侧壁 2216处的第二对电极2270a和2270b,这两个侧壁是与第一侧壁2213和第二侧壁2214连 接在一起以限定出外壳2210中的腔室的第三侧壁和第四侧壁,如上面关于图2A-B所解释 的那样。

[0054] 电极2270a和2270b被用于保持第一流体介质2241与第二流体介质2242之间 的界面在可变折射声透镜3200的短侧上是平坦的。有利的是,第三侧壁2215和第四侧壁 2216如图所示是倾斜的,以便降低保持界面平坦所需的电压。

[0055] 有益的是,可变折射声透镜3200沿着与一维阵列排列的方向(图3中的χ方向) 相同的方向具有一长度,该长度基本大于在垂直于阵列的长度的方向(图2A-B中的ζ方 向)上的宽度。因此,由于这一特征,可变折射声透镜3200可以将其发射和/或接收声束 的方向改变到垂直于换能器阵列的方向(ζ方向),而声束的形状在沿着换能器阵列的方向 (χ方向)上保持平移不变。由于这一特征,可变折射声透镜3200的宽度可以做得较小,从 而产生快速完全三维扫描。

[0056] 仅作为示例,在一个实施例中,可变折射声透镜3200在垂直于换能器阵列的维度 (y方向)上具有3mm的尺寸(宽度),从而产生IOms的完全切换时间。对于由50-100个 元件构成的一维换能器阵列3300(以〜5MHz),可以以100 μ s的量级执行二维扫描。当只有距导管3000近距离的区域需要成像时(在ICE类应用中经常如此,其中通常需要几厘米 深的场),二维扫描可以被记录得快达〜35 μ S。为了可变折射声透镜3200在垂直于换能 器阵列的方向(y方向)上的完全切换,超声波束可以相对于一平面在-α至+ α的范围内 弯曲,该平面沿着一维换能器阵列3300排列的方向(χ方向)延伸穿过该一维换能器阵列 3300。在一个实施例中,α =10度。典型的多元件换能器阵列3300可以在χ方向扫描〜 25度(在_6dB的点处)的视场。结果,当需要在沿着χ方向延伸穿过一维换能器阵列3300 的不同平面上得到5-10个二维扫描时,可以以250ms的量级覆盖25*20度2的总视场。这 允许具有大约4Hz的帧率的三维超声成像,但是可以通过可变折射声透镜3200和换能器阵 列3300的智能驱动方案来进一步增大这一帧率。

[0057] 在一个实施例中,ICE导管在超声消融模式下进行操作。由于消融需要高超声强 度,因此重要的是将超声聚焦到尽可能小的光斑中。

[0058] 图4示出导管4000的一个实施例的垂直横截面视图,该导管包括与可变折射声透 镜相结合的声换能器,该可变折射声透镜适于偏转和聚焦超声波束。ICE导管4000包括导 管本体4100以及耦合到声换能器4300上的可变折射声透镜4200。导管本体4100、可变折 射声透镜4200和声换能器4300与图2A-B的导管2000以及图3的导管3000中的相应元 件大致相同,因此不再重复对这些元件的描述,在此仅解释图4中示出的附加特征。

[0059] 具体地,响应于由可变电压源施加到电极2260a和2260b两端或之间的电压,AVC =V5-V6,则第一流体介质2241与第二流体介质2242之间的界面如图4所示。可以看出, 以这样的一种方式调节电极与两端的电压,从而使得第一流体介质2241与第 二流体介质2242之间的界面变得弯曲。有益的是,流体2241、2242具有经选择的声速以 使声波的聚焦和折射的灵活性最大化。因此,可变折射声透镜4200不仅适于偏转声束,而 且适于聚焦声束。这意味着由声换能器4300产生的超声现在可以被聚焦到允许消融的高 强度斑。有益的是,通过包括一维换能器阵列的声换能器4300的操纵能力来增强来自可变 折射声透镜4200在χ方向和y方向上的聚焦能力的几何增益。通过使用可变折射声透镜 4200的聚焦能力,在实验上已经展示了焦点的强度可以被充分增大。

[0060] 图5示出包括ICE导管的系统500的实施例的框图,该ICE导管具有与可变折射 声透镜相结合的声换能器。声成像系统500包括处理器/控制器510、发射信号源520、发 射/接收开关530、ICE导管M0、滤波器550、增益/衰减器级560、声信号处理级570、仰角 焦距控制器580和可变电压源590。同时,ICE导管540包括耦合到声换能器544的可变折 射声透镜M2。ICE导管540可以体现为上面关于图1-4所示和所描述的任何一种ICE导 管。

[0061] 在操作上,声成像装置500如下进行操作。

[0062] 仰角焦距控制器580控制由可变电压源590施加到可变折射声透镜542的电极上 的一个或多个电压。如上所述,这进而控制可变折射声透镜542的折射角和/或焦距。

[0063] 当由可变折射声透镜M2中的两种流体限定出的弯月形表面达到正确地拓扑结 构时,处理器/控制器510控制发射信号源520以生成期望的电信号,该期望的电信号要被 施加到声换能器M4以生成期望的声波。

[0064] 在一种情况下,可以控制发射信号源520以生成在M模式下操作的短时(宽带) 信号,其有可能是短的猝发声列以允许脉冲波Doppler或用于其他成像技术的其他相关信号。典型的用途可能是对调整到临床感兴趣区域的具有固定仰角焦距的平面进行成像。另 一用途可能是对具有多个焦距的平面进行成像,其中调节仰角焦距以使递送给轴向焦距区 域的能量最大化。声信号可以是时域分辨的信号,诸如正常回声、M模式或PW Doppler,或 者甚至是非时域分辨的信号,诸如CW Doppler。

[0065] 又一用途可能是聚焦高能超声波以执行消融。

[0066] 在图5的实施例中,ICE导管540适于以发射模式和接收模式操作。如以上所解释 的,在可替代的实施例中,声探头540可以改为适于在仅接收模式(或者甚至仅发射模式) 下操作。在这种情况下,分离地提供发射换能器,并且可以省略发射/接收开关530。

[0067] 图6示出操作包括与可变折射声透镜相结合的声换能器的ICE导管的方法的一个 实施例的流程图。

[0068] 在第一步骤605,将ICE导管540引入患者体内,例如经由静脉进入心脏。

[0069] 然后,在步骤610,仰角焦距控制器580控制由可变电压源590施加到可变折射声 透镜M2的电极上的电压,以操纵声波束到目标仰角。

[0070] 接着,在步骤615,处理器/控制器510控制发射信号源520和发射/接收开关530 以施加(多个)期望的电信号到声换能器M4。可变折射声透镜542与声换能器544 —起 操作以生成声波并将该声波聚焦到患者的目标区域中,该目标区域包括目标仰角。

[0071] 随后,在步骤620,可变折射声透镜542与声换能器544 —起操作以接收从患者的 目标区域返回的声波。此时。处理器/控制器510控制发射/接收开关530将声换能器 544连接到滤波器550以从声换能器544输出(多个)电信号到滤波器550。

[0072] 接着,在步骤630,滤波器550、增益/衰减器级560和声信号处理级570 —起操作 以调适来自声换能器M4的电信号,并据此产生接收到的声数据。

[0073] 然后,在步骤640,接收到的声数据被存储在声成像装置500的声信号处理级570 的存储器(未示出)中。

[0074] 接下来,在步骤645,处理器/控制器510确定是否在另一个仰角平面内聚焦。如 果是这样,则在步骤650,选择新的仰角平面,并且在步骤610重复处理过程。如果不是这 样,则在步骤655声信号处理级570处理接收到的声数据(可能联合处理器/控制器510) 以产生并输出图像。

[0075] 最后,在步骤660,声成像装置500输出图像。

[0076] 总体上,方法600能够适用于进行测量,其中声波是时域分辨的信号,诸如正常回 声、M模或PW Doppler,或者甚至是非时域分辨的信号,诸如CW Doppler。

[0077] 虽然在此公开了优选实施例,在本发明的概念和范围内很多变化仍然有可能。对 于本领域普通技术人员,在检查此处的说明书、附图和权利要求书之后,这些变化将变得显 而易见。因此本发明只受到随附的权利要求的精神和范围的限制。

Claims (15)

1. 一种导管装置(100,2000,3000,4000,540),其包括: 细长本体(110),其具有近端(112)和远端(114);声换能器(130,2300,3300,4300,544),其被设置为靠近所述细长本体(110)的所述远 端(114);禾口可变折射声透镜(140,2200,3200,4200,542),其耦合到所述声换能器(130,2300, 3300,4300,544),所述可变折射声透镜(140,2200,3200,4200,542)适于响应于对其施加 的至少一个选择电压来调节其至少一个声信号处理特性,其中,所述可变折射声透镜(140,2200,3200,4200,¾¾包括: 限定出腔室的外壳(2210),所述外壳Q210)包括第一侧壁(2213)、第二侧壁(2214)、 第三侧壁(2215)和第四侧壁(2216);设置在所述腔室内的第一流体介质OMl)和第二流体介质(2242),其中,在所述第一 流体介质QMl)和所述第二流体介质0¾¾中声音速度不同,所述第一流体介质OMl) 和所述第二流体介质0¾¾彼此不能混合并且具有彼此不同的电导率;和 电极,在所述电极两端施加所述选择电压,所述电极包括: 设置在所述第一侧壁处的第一电极O^Oa), 设置在所述第二侧壁0214)处的第二电极O^Ob), 设置在所述第三侧壁021¾处的第三电极O270a),以及 设置在所述第四侧壁0216)处的第四电极Q270b)。
2.如权利要求1所述的导管装置(100,2000,3000,4000,540),其中,所述声换能器 (130,2300,3300,4300,544)包括布置成一维阵列的多个声换能器元件,并且其中,所述可 变折射声透镜(140,2200,3200,4200,¾¾沿着与所述一维阵列排列的方向相同的方向具 有一长度,所述长度大于在垂直于所述长度的方向上的宽度,并且其中,所述可变折射声透 镜(140,2200,3200,4200,M2)适于将对其施加的声信号偏转到离开所述一维阵列所在的 平面的方向上。
3.如权利要求2所述的导管装置,其中,所述第一流体介质和所述第二流体介质之间 的弯月面是弯曲的且倾斜的,以便将施加的声束偏转到离开包含布置成一维阵列的所述多 个声换能器元件的平面。
4.如权利要求1所述的导管装置(100,2000,3000,4000,540),其中,声波在所述第一流体介质OMl)中的声速不同于所述声波在所述第二流体介 质QM2)中的相应声速,其中,所述第一流体介质OMl)和所述第二流体介质0¾¾彼此不能混合, 其中,所述第一流体介质OMl)具有与所述第二流体介质0¾¾不同的电导率,并且 其中,所述第一流体介质和所述第二流体介质具有相等的密度。
5.如权利要求1所述的导管装置(100,2000,3000,4000,540),其中,所述可变折射声 透镜(140,2200,3200,4200,542)的被调节的所述至少一个声信号处理特性包括所述可变 折射声透镜(140,2200,3200,4200,¾¾的焦距和仰角中的至少一个。
6.如权利要求1所述的导管装置,其中,所述第三侧壁021¾和所述第四侧壁0216) 是倾斜的。
7. 一种导管装置(100,2000,3000,4000,540),其包括具有近端(112)和远端(114)的细长本体以及靠近所述细长本体(110)的所述远端(114)设置的声换能器(130,2300, 3300,4300,544),并且还包括可变折射声透镜(140,2200,3200,4200,542),所述可变折 射声透镜适于响应于向其提供的一个或多个控制信号来动态调节与耦合到所述声换能器 (130,2300,3300,4300,544)的声波相关联的方向,其中,所述可变折射声透镜(140,2200,3200,4200,¾¾包括: 限定出腔室的外壳(2210),所述外壳Q210)包括第一侧壁(2213)、第二侧壁(2214)、 第三侧壁(2215)和第四侧壁(2216);设置在所述腔室内的第一流体介质OMl)和第二流体介质(2242),其中,在所述第一 流体介质QMl)和所述第二流体介质0¾¾中声音速度不同,所述第一流体介质OMl) 和所述第二流体介质0¾¾彼此不能混合并且具有彼此不同的电导率;和 电极,在所述电极两端施加选择电压,所述电极包括: 设置在所述第一侧壁处的第一电极O^Oa), 设置在所述第二侧壁0214)处的第二电极O^Ob), 设置在所述第三侧壁021¾处的第三电极O270a),以及 设置在所述第四侧壁0216)处的第四电极Q270b)。
8.如权利要求7所述的导管装置(100,2000,3000,4000,540),其中,所述声换能器 (130,2300,3300,4300,544)包括布置成一维阵列的多个声换能器元件,并且其中,所述可 变折射声透镜(140,2200,3200,4200,¾¾沿着与所述一维阵列排列的方向相同的方向具 有一长度,所述长度大于在垂直于所述长度的方向上的宽度,并且其中,所述可变折射声透 镜(140,2200,3200,4200,542)适于将声波偏转到离开包括所述一维阵列及其表面的垂线 的平面的方向上。
9.如权利要求8所述的导管装置,其中,所述第一流体介质和所述第二流体介质之间 的弯月面是弯曲的且倾斜的,以便将施加的声束偏转到离开包含布置成一维阵列的所述多 个声换能器元件的平面。
10.如权利要求7所述的导管装置(100,2000,3000,4000,540),其中,声波在所述第一流体介质中的声速不同于所述声波在所述第二流体介 质QM2)中的相应声速,其中,所述第一流体介质OMl)和所述第二流体介质0¾¾彼此不能混合, 其中,所述第一流体介质OMl)具有与所述第二流体介质0¾¾不同的电导率,并且 其中,所述第一流体介质OMl)和所述第二流体介质0¾¾具有相等的密度。
11.如权利要求7所述的导管装置(100,2000,3000,4000,540),其中,所述可变折射声 透镜(140,2200,3200,4200,542)的被调节的所述至少一个声信号处理特性包括所述可变 折射声透镜(140,2200,3200,4200,¾¾的焦距和仰角中的至少一个。
12.如权利要求7所述的导管装置,其中,所述第三侧壁021¾和所述第四侧壁 (2216)是倾斜的。
13. 一种导管系统,其包括:导管(100,2000,3000,4000,540),其包括: 细长本体(110),其具有近端(112)和远端(114),声换能器(130,2300,3300,4300,544),其被设置为靠近所述细长本体(110)的所述远端(114),和可变折射声透镜(140,2200,3200,4200,542),其耦合到所述声换能器(130,2300, 3300,4300,544),所述可变折射声透镜(140,2200,3200,4200,542)适于响应于对其施加 的选择电压来调节其至少一个声信号处理特性;声信号处理器(570),其耦合到所述导管(100,2000,3000,4000,M0)的所述声换能器 (130,2300,3300,4300,544);和电压发生器(590),其适于施加所述选择电压到所述导管(100,2000,3000,4000,M0) 的所述可变折射声透镜(140,2200,3200,4200,542),其中,所述可变折射声透镜(140,2200,3200,4200,¾¾包括: 限定出腔室的外壳(2210),所述外壳Q210)包括第一侧壁(2213)、第二侧壁(2214)、 第三侧壁(2215)和第四侧壁(2216);设置在所述腔室内的第一流体介质OMl)和第二流体介质0¾¾其中,在所述第一 流体介质QMl)和所述第二流体介质0¾¾中声音速度不同,所述第一流体介质OMl) 和所述第二流体介质0¾¾彼此不能混合并且具有彼此不同的电导率;和 电极,在所述电极两端施加所述选择电压,所述电极包括: 设置在所述第一侧壁处的第一电极O^Oa), 设置在所述第二侧壁0214)处的第二电极O^Ob), 设置在所述第三侧壁021¾处的第三电极O270a),以及 设置在所述第四侧壁0216)处的第四电极Q270b)。
14.如权利要求13所述的导管系统,其中,所述第三侧壁0215)和所述第四侧壁 (2216)是倾斜的。
15.如权利要求13所述的导管系统,其中,所述声换能器(130,2300,3300,4300,544) 包括布置成一维阵列的多个声换能器元件,并且其中,所述第一流体介质和所述第二流体 介质之间的弯月面是弯曲的且倾斜的,以便将施加的声束偏转到离开包含布置成一维阵列 的所述多个声换能器元件的平面。
CN 200880001961 2007-01-11 2008-01-10 用于三维心腔内超声心动图的导管和包括该导管的系统 CN101578069B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US88448107 true 2007-01-11 2007-01-11
US60/884,481 2007-01-11
PCT/IB2008/050080 WO2008084455A1 (en) 2007-01-11 2008-01-10 Catheter for three-dimensional intracardiac echocardiography and system including the same

Publications (2)

Publication Number Publication Date
CN101578069A true CN101578069A (zh) 2009-11-11
CN101578069B true CN101578069B (zh) 2011-08-03

Family

ID=39271184

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200880001961 CN101578069B (zh) 2007-01-11 2008-01-10 用于三维心腔内超声心动图的导管和包括该导管的系统

Country Status (5)

Country Link
US (1) US8702612B2 (zh)
JP (1) JP5623749B2 (zh)
CN (1) CN101578069B (zh)
EP (1) EP2117437A1 (zh)
WO (1) WO2008084455A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8764665B2 (en) * 2007-05-03 2014-07-01 Koninklijke Philips N.V. Methods and apparatuses of microbeamforming with adjustable fluid lenses
EP2166951A2 (en) * 2007-07-11 2010-03-31 Philips Electronics N.V. Ultrasonic assembly with adjustable fluid lens
CN102170938B (zh) * 2008-09-30 2015-01-14 皇家飞利浦电子股份有限公司 用于超声治疗处置的系统和方法
JP2012518455A (ja) * 2009-02-20 2012-08-16 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 可変な屈折性のレンズでの超音波イメージング
US20110319768A1 (en) * 2009-03-04 2011-12-29 Panasonic Corporation Ultrasonic transducer, ultrasonic probe, and ultrasonic diagnostic device
RU2012101805A (ru) * 2009-06-19 2013-07-27 Конинклейке Филипс Электроникс Н.В. Система визуализации для визуализации вязкоупругой среды
US9694213B2 (en) * 2009-12-31 2017-07-04 St. Jude Medical, Atrial Fibrillation Division, Inc. Acoustic coupling for assessment and ablation procedures
JP5803917B2 (ja) * 2010-07-23 2015-11-04 日本電気株式会社 発振装置および電子機器
DE102011083724A1 (de) * 2011-09-29 2013-04-04 Siemens Ag Verfahren und Vorrichtung zur Formung eines Ultraschallsignals
KR20140140711A (ko) 2013-05-30 2014-12-10 삼성메디슨 주식회사 초음파 프로브 및 그 제조방법
JP6078732B1 (ja) * 2015-08-04 2017-02-15 本多電子株式会社 超音波プローブ

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5477736A (en) 1994-03-14 1995-12-26 General Electric Company Ultrasonic transducer with lens having electrorheological fluid therein for dynamically focusing and steering ultrasound energy
US5720287A (en) 1993-07-26 1998-02-24 Technomed Medical Systems Therapy and imaging probe and therapeutic treatment apparatus utilizing it
CN2384576Y (zh) 1999-07-07 2000-06-28 上海麦迪逊医疗器械有限公司 短轴方向复合聚焦的凸阵换能器

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4037160C2 (zh) * 1990-11-22 1992-09-10 Dornier Medizintechnik Gmbh, 8000 Muenchen, De
US5713363A (en) * 1991-11-08 1998-02-03 Mayo Foundation For Medical Education And Research Ultrasound catheter and method for imaging and hemodynamic monitoring
US5325860A (en) * 1991-11-08 1994-07-05 Mayo Foundation For Medical Education And Research Ultrasonic and interventional catheter and method
US5704361A (en) * 1991-11-08 1998-01-06 Mayo Foundation For Medical Education And Research Volumetric image ultrasound transducer underfluid catheter system
JPH08173432A (ja) * 1994-12-21 1996-07-09 Olympus Optical Co Ltd 電子走査型超音波プローブ
US5507294A (en) * 1995-01-17 1996-04-16 Hewlett Packard Company Ultrasound diagnostic probe having non-rotating acoustic imaging waveguide
JP3407169B2 (ja) * 1995-10-12 2003-05-19 富士写真光機株式会社 超音波画像立体表示装置及び超音波画像立体表示方法
US5795299A (en) * 1997-01-31 1998-08-18 Acuson Corporation Ultrasonic transducer assembly with extended flexible circuits
US5846205A (en) * 1997-01-31 1998-12-08 Acuson Corporation Catheter-mounted, phased-array ultrasound transducer with improved imaging
DE60310037D1 (de) 2002-02-14 2007-01-11 Koninkl Philips Electronics Nv Linse mit variablem fokus
KR20050085243A (ko) * 2002-12-03 2005-08-29 코닌클리케 필립스 일렉트로닉스 엔.브이. 가변 유체 메니스커스 구성 형성장치
US20080264716A1 (en) * 2004-06-07 2008-10-30 Koninklijke Philips Electronics N.V. Acoustic Device With Variable Focal Length
US7413306B2 (en) * 2004-11-18 2008-08-19 Amo Manufacturing Usa, Llc Sphero cylindrical eye refraction system using fluid focus electrostatically variable lenses
EP2018551B1 (en) * 2006-05-02 2015-02-25 Koninklijke Philips N.V. Method and apparatus for elevation focus control of acoustic waves

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5720287A (en) 1993-07-26 1998-02-24 Technomed Medical Systems Therapy and imaging probe and therapeutic treatment apparatus utilizing it
US5477736A (en) 1994-03-14 1995-12-26 General Electric Company Ultrasonic transducer with lens having electrorheological fluid therein for dynamically focusing and steering ultrasound energy
CN2384576Y (zh) 1999-07-07 2000-06-28 上海麦迪逊医疗器械有限公司 短轴方向复合聚焦的凸阵换能器

Also Published As

Publication number Publication date Type
CN101578069A (zh) 2009-11-11 application
WO2008084455A1 (en) 2008-07-17 application
US20100280390A1 (en) 2010-11-04 application
EP2117437A1 (en) 2009-11-18 application
JP5623749B2 (ja) 2014-11-12 grant
JP2010515522A (ja) 2010-05-13 application
US8702612B2 (en) 2014-04-22 grant

Similar Documents

Publication Publication Date Title
US6066096A (en) Imaging probes and catheters for volumetric intraluminal ultrasound imaging and related systems
US6059731A (en) Simultaneous side-and-end viewing underfluid catheter
US6695785B2 (en) Catheter including ultrasound transducer with emissions attenuation
US5957850A (en) Multi-array pencil-sized ultrasound transducer and method of imaging and manufacture
US4507582A (en) Matching region for damped piezoelectric ultrasonic apparatus
US4207901A (en) Ultrasound reflector
US8708935B2 (en) System and method for variable depth ultrasound treatment
US8480585B2 (en) Imaging, therapy and temperature monitoring ultrasonic system and method
US5031626A (en) Extracorporeal lithotripsy apparatus with an ultrasound locating system
US20100168583A1 (en) Enhanced ultrasound imaging probes using flexure mode piezoelectric transducers
US4333474A (en) Ultrasonic imaging system
US7255678B2 (en) High frequency, high frame-rate ultrasound imaging system
US6500121B1 (en) Imaging, therapy, and temperature monitoring ultrasonic system
US4084582A (en) Ultrasonic imaging system
US5577506A (en) Catheter probe having a fixed acoustic reflector for full-circle imaging
US20100249598A1 (en) Ultrasound probe with replaceable head portion
US20070167814A1 (en) Capacitive ultrasonic probe device
US5505088A (en) Ultrasound microscope for imaging living tissues
US20090010459A1 (en) Multi-twisted acoustic array for medical ultrasound
US20080125659A1 (en) Helical acoustic array for medical ultrasound
US20070239007A1 (en) Ultrasound method for enhanced visualization of thermal lesions and other features of biological tissues
JP2001258879A (ja) 超音波トランスデューサシステムおよび超音波トランスデュー
US20140180128A1 (en) Focused Rotational IVUS Transducer Using Single Crystal Composite Material
WO2014109879A1 (en) Method for focused acoustic computed tomography (fact)
US20030173870A1 (en) Piezoelectric ultrasound transducer assembly having internal electrodes for bandwidth enhancement and mode suppression

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
C14 Granted