CN101552535A - Cylinder type flux-reversal linear machine - Google Patents
Cylinder type flux-reversal linear machine Download PDFInfo
- Publication number
- CN101552535A CN101552535A CNA2009100720622A CN200910072062A CN101552535A CN 101552535 A CN101552535 A CN 101552535A CN A2009100720622 A CNA2009100720622 A CN A2009100720622A CN 200910072062 A CN200910072062 A CN 200910072062A CN 101552535 A CN101552535 A CN 101552535A
- Authority
- CN
- China
- Prior art keywords
- phase
- armature
- phase unit
- core
- teeth
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004804 winding Methods 0.000 claims abstract description 29
- 230000004907 flux Effects 0.000 claims abstract description 15
- 230000005415 magnetization Effects 0.000 claims description 21
- 125000006850 spacer group Chemical group 0.000 claims description 13
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 9
- 239000000696 magnetic material Substances 0.000 claims description 4
- 239000000463 material Substances 0.000 claims description 2
- 230000035699 permeability Effects 0.000 claims description 2
- 239000011295 pitch Substances 0.000 claims 3
- 230000005389 magnetism Effects 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 9
- 230000008569 process Effects 0.000 abstract description 4
- BGPVFRJUHWVFKM-UHFFFAOYSA-N N1=C2C=CC=CC2=[N+]([O-])C1(CC1)CCC21N=C1C=CC=CC1=[N+]2[O-] Chemical compound N1=C2C=CC=CC2=[N+]([O-])C1(CC1)CCC21N=C1C=CC=CC1=[N+]2[O-] BGPVFRJUHWVFKM-UHFFFAOYSA-N 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- 238000010586 diagram Methods 0.000 description 4
- 238000003475 lamination Methods 0.000 description 3
- 230000001360 synchronised effect Effects 0.000 description 3
- 239000007787 solid Substances 0.000 description 2
- 229910000976 Electrical steel Inorganic materials 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
Images
Landscapes
- Linear Motors (AREA)
Abstract
圆筒型磁通反向直线电机。它涉及电机领域,它解决了现有直线电机效率低、涡流损耗大、工艺复杂;以及影响控制精度和动态特性的问题。本发明的相单元电枢铁心为在内圆周上均匀设置有2n个齿的圆环铁心,其中n为自然数;相单元电枢绕组为集中绕组,其每个线圈都对应绕在相单元电枢铁心的每个齿上,相邻齿上的线圈绕向相反,同一个相单元电枢铁心的齿上所有线圈串联为一个相单元电枢绕组,相单元电枢绕组串联或并联为每相电枢绕组;永磁体粘贴在相单元电枢铁心的齿上;沿轴向相邻两个相电枢单元之间的相单元电枢铁心中心距τt与沿轴向次级齿的齿距τp之间满足关系τt=kτp±(1/m)τp,k、m为自然数,m为相数,m≥3。它可作电动机,也可作发电机。
Cylindrical flux reversing linear motor. It relates to the field of motors, and solves the problems of low efficiency, large eddy current loss, complicated process, and influence on control precision and dynamic characteristics of existing linear motors. The phase unit armature core of the present invention is a ring core with 2n teeth uniformly arranged on the inner circumference, wherein n is a natural number; the phase unit armature winding is a concentrated winding, and each coil of the phase unit armature is correspondingly wound on the phase unit armature On each tooth of the core, the coils on adjacent teeth are wound in opposite directions. All the coils on the teeth of the same phase unit armature core are connected in series to form a phase unit armature winding, and the phase unit armature windings are connected in series or in parallel to form a phase unit armature winding. armature winding; the permanent magnet is pasted on the teeth of the phase unit armature core; the center distance τ t of the phase unit armature core between two adjacent phase armature units along the axial direction and the tooth pitch τ of the secondary teeth along the axial direction p satisfies the relationship τ t =kτ p ±(1/m)τ p , k and m are natural numbers, m is the number of phases, and m≥3. It can be used as a motor or as a generator.
Description
技术领域 technical field
本发明涉及到电机技术,具体涉及到一种圆筒型磁通反向直线电机。The invention relates to motor technology, in particular to a cylindrical magnetic flux reverse linear motor.
背景技术 Background technique
现有的圆筒型永磁直线同步电机的结构如图10所示。当电枢铁心采用硅钢片叠成时,由于叠片方向为轴向,永磁体以及绕组通电产生的电枢磁场方向有一部分会与叠片方向相同,在铁心中形成较大的涡流,产生较大的涡流损耗,并且铁心叠片工艺复杂,加工成本高;如果采用实心铁心,虽然工艺简单、成本低,但铁心会产生更大的涡流损耗,大大降低电机的效率。同时,由于相与相之间都存在磁耦合,这一方面会因互感的存在影响电流的控制精度和电机的动态特性;另一方面也会因每一相绕组通电产生的磁通所经过的磁路较长而使定子铁耗较大,从而限制了电机效率的进一步提高。The structure of an existing cylindrical permanent magnet linear synchronous motor is shown in FIG. 10 . When the armature core is made of silicon steel sheets, since the direction of the laminations is axial, the direction of the armature magnetic field generated by the permanent magnet and the winding is partly in the same direction as the laminations, forming a large eddy current in the core, resulting in a larger Large eddy current loss, and the iron core lamination process is complicated, and the processing cost is high; if a solid iron core is used, although the process is simple and the cost is low, the iron core will generate greater eddy current loss, which greatly reduces the efficiency of the motor. At the same time, due to the magnetic coupling between phases, on the one hand, the existence of mutual inductance will affect the current control accuracy and the dynamic characteristics of the motor; The longer the circuit, the greater the iron loss of the stator, which limits the further improvement of the efficiency of the motor.
发明内容 Contents of the invention
本发明为了解决现有直线同步电机效率低、涡流损耗大,叠片铁心工艺复杂,加工成本高;实心铁心存在更大的涡流损耗;以及存在影响电流的控制精度和电机的动态特性的互感问题,而提出了一种圆筒型磁通反向直线电机。The present invention solves the problems of low efficiency, large eddy current loss, complex laminated iron core process and high processing cost of the existing linear synchronous motor; greater eddy current loss in the solid iron core; and mutual inductance problems that affect the control accuracy of the current and the dynamic characteristics of the motor. , and a cylindrical flux inversion linear motor is proposed.
本发明圆筒型磁通反向直线电机包括初级、次级和气隙;次级包括次级齿、间隔环和轴筒;次级齿和间隔环依次相间排列固定套在轴筒上;初级包括相电枢单元和机壳;相电枢单元由相单元电枢铁心和相单元电枢绕组组成;相单元电枢铁心为在内圆周上均匀设置有2n个齿的圆环铁心,其中n为自然数;相单元电枢绕组为集中绕组,相单元电枢绕组的每个线圈都对应绕在相单元电枢铁心的每个齿上,相单元电枢铁心相邻齿上的线圈绕向相反,同一个相单元电枢铁心的齿上所有线圈串联为一个相单元电枢绕组,同相的相单元电枢绕组串联或并联为每相电枢绕组;各相电枢单元沿轴向依次排列在机壳内,沿轴向相邻两个相电枢单元之间的相单元电枢铁心中心距τt与沿轴向次级齿的齿距τp之间满足关系τt=kτp±(1/m)τp,其中k、m均为自然数,当电机为两相电机时,取m=4,其余情况m等于电机的相数。The cylindrical magnetic flux reverse linear motor of the present invention includes a primary, a secondary and an air gap; the secondary includes secondary teeth, a spacer ring and a shaft barrel; the secondary teeth and spacer rings are arranged alternately and fixedly sleeved on the shaft barrel; the primary includes The phase armature unit and the casing; the phase armature unit is composed of the phase unit armature core and the phase unit armature winding; the phase unit armature core is a ring core with 2n teeth uniformly arranged on the inner circumference, where n is Natural number; the armature winding of the phase unit is a concentrated winding, and each coil of the armature winding of the phase unit is correspondingly wound on each tooth of the armature core of the phase unit, and the coils on the adjacent teeth of the armature core of the phase unit are wound in opposite directions. All the coils on the teeth of the armature core of the same phase unit are connected in series to form a phase unit armature winding, and the phase unit armature windings of the same phase are connected in series or in parallel to form each phase armature winding; the armature units of each phase are arranged in sequence along the axial direction on the machine In the shell, the relationship between the armature core center distance τ t of the phase unit armature core between two adjacent phase armature units along the axial direction and the tooth pitch τ p of the secondary teeth along the axial direction satisfies the relationship τ t =kτ p ±(1 /m)τ p , where k and m are both natural numbers, when the motor is a two-phase motor, m=4, and in other cases m is equal to the number of phases of the motor.
本发明采用特殊的电枢结构,构成一种圆筒型磁通反向直线电机,消除了相间互感,提高了电机的电流及电磁力控制精度、推力密度和动态特性。该电机既可以作为电动机使用,也可以作为发电机使用。本发明的直线电机具有推力密度高、容错能力强、结构简单、次级质量小、动态特性好以及易实现模块化等优点,既可以作为电动机使用,也可以作为发电机使用,具有广阔的应用前景。The invention adopts a special armature structure to form a cylindrical magnetic flux reverse linear motor, which eliminates the mutual inductance between phases, and improves the current and electromagnetic force control accuracy, thrust density and dynamic characteristics of the motor. The motor can be used both as a motor and as a generator. The linear motor of the present invention has the advantages of high thrust density, strong fault tolerance, simple structure, small secondary mass, good dynamic characteristics and easy realization of modularization, etc. It can be used not only as a motor but also as a generator, and has wide applications prospect.
附图说明 Description of drawings
图1是本发明圆筒型磁通反向直线电机的结构示意图;图2是具体实施方式二的结构示意图;图3是具体实施方式二的一组相电枢单元1结构示意图;图4是具体实施方式三的结构示意图;图5是具体实施方式三的一组相电枢单元1结构示意图;图6是具体实施方式四的结构示意图;图7是具体实施方式四的一组相电枢单元1结构示意图;图8是次级齿6沿轴向上开有扇形的槽的结构示意图;图9是次级齿6沿轴向上开有半圆形的槽的结构示意图;图10是现有的圆筒型永磁直线同步电机的结构示意图。Fig. 1 is a schematic structural view of a cylindrical magnetic flux reversal linear motor of the present invention; Fig. 2 is a schematic structural view of a second embodiment; Fig. 3 is a schematic structural view of a group of phase armature units 1 of a second embodiment; Fig. 4 is A schematic structural view of the third embodiment; FIG. 5 is a schematic structural view of a group of phase armature units 1 of the third embodiment; FIG. 6 is a schematic structural view of the fourth embodiment; FIG. 7 is a group of phase armatures of the fourth embodiment Schematic diagram of the structure of unit 1; FIG. 8 is a schematic structural diagram of the
具体实施方式 Detailed ways
具体实施方式一:结合图1至图9说明本实施方式,本实施方式的圆筒型磁通反向直线电机由初级、次级和气隙组成;Specific Embodiment 1: This embodiment is described with reference to Fig. 1 to Fig. 9. The cylindrical magnetic flux reverse linear motor of this embodiment is composed of a primary, a secondary and an air gap;
次级包括次级齿6、间隔环7和轴筒8;次级齿6和间隔环7依次相间排列固定套在轴筒8上;其特征在于初级包括相电枢单元1和机壳2;相电枢单元1由相单元电枢铁心3和相单元电枢绕组4组成;相单元电枢铁心3为在内圆周上均匀设置有2n个齿的圆环铁心,其中n为自然数;相单元电枢绕组4为集中绕组,相单元电枢绕组4的每个线圈都对应绕在相单元电枢铁心3的每个齿上,相单元电枢铁心3相邻齿上的线圈绕向相反,同一个相单元电枢铁心3的齿上所有线圈串联为一个相单元电枢绕组4,同相的相单元电枢绕组4串联或并联为每相电枢绕组;各相电枢单元1沿轴向依次排列在机壳2内,沿轴向相邻两个相电枢单元1之间的相单元电枢铁心3中心距τt与沿轴向次级齿6的齿距τp之间满足关系τt=kτp±(1/m)τp,其中k、m均为自然数,当电机为两相电机时,取m=4,其余情况m等于电机的相数。The secondary includes
具体实施方式二:结合图1、图2和图3说明本实施方式,本实施方式与具体实施方式一不同点在于相单元电枢铁心3为一体式圆环铁心,并且它还包括瓦片形永磁体5,并且相单元电枢铁心3为一体式圆环铁心,瓦片形永磁体5的充磁方向为径向充磁,相单元电枢铁心3的每一个齿的内表面上沿轴向依次粘有2i块瓦片形永磁体5,其中i为自然数,则每一个相电枢单元1中有2n×2i块瓦片形永磁体5,沿轴向方向每相邻两块瓦片形永磁体5的充磁方向相反;沿圆周方向每相邻的两块瓦片形永磁体5充磁方向相反;沿轴向每相邻两块瓦片形永磁体5的中心距τm与沿轴向次级齿6的齿距τp之间满足关系2τm=τp。其它组成和连接方式与具体实施方式一相同。Specific embodiment 2: This embodiment is described in conjunction with Fig. 1, Fig. 2 and Fig. 3. The difference between this embodiment and specific embodiment 1 is that the phase
具体实施方式三:结合图4和图5说明本实施方式,本实施方式与具体实施方式一不同点在于,它还包括平板形永磁体51,每个相单元电枢铁心3沿轴向分成j段,其中j为自然数,j≥2;平板形永磁体51的充磁方向为轴向充磁,每个相单元电枢铁心3中相邻两段电枢铁心之间固定一块平板形永磁体51,则每一个相电枢单元1中有2n×(j-1)块平板形永磁体51,沿轴向方向每相邻两块平板形永磁体51的充磁方向相反;沿圆周方向每相邻的两块平板形永磁体51充磁方向相反;平板形永磁体51的圆周方向宽度小于或等于电枢齿的宽度,平板形永磁体51的径向高度小于或等于电枢齿与铁心轭径向高度之和;沿轴向每相邻两块平板形永磁体51的中心距τm与沿轴向次级齿6的齿距τp之间满足关系2τm=τp。Specific embodiment 3: This embodiment is described in conjunction with Fig. 4 and Fig. 5 , the difference between this embodiment and specific embodiment 1 is that it also includes a flat
其它组成和连接方式与具体实施方式一相同。Other compositions and connection methods are the same as those in Embodiment 1.
具体实施方式四:结合图6和图7说明本实施方式,本实施方式是具体实施方式二和具体实施方式三的结构的组合,具体结构为在具体实施方式二的基础之上,增加具体实施方式三的技术特点,即:它还包括瓦片形永磁体5,瓦片形永磁体5的充磁方向为径向充磁,相单元电枢铁心3的每一段齿的内表面上粘有一块瓦片形永磁体5,,沿轴向方向每相邻两块瓦片形永磁体5的充磁方向相反;沿圆周方向每相邻的两块瓦片形永磁体5充磁方向相反;每个相单元电枢铁心3每段齿的内表面上的瓦片形永磁体5与该齿侧面的平板形永磁体51形成串联磁路。Embodiment 4: This embodiment is described in conjunction with Fig. 6 and Fig. 7. This embodiment is a combination of the structures of
其它组成和连接方式与具体实施方式二相同。Other compositions and connection methods are the same as those in the second embodiment.
具体实施方式五:结合图8和图9说明本实施方式,本实施方式与具体实施方式一、二、三或四不同点在于位于,次级齿6上沿轴向开有2n个扇形或半圆形的槽,所述槽的位置与每两个相邻的相单元电枢铁心3的槽口相对应。Embodiment 5: This embodiment is described in conjunction with Fig. 8 and Fig. 9. The difference between this embodiment and
本实施方式在次级齿6开有多个槽,能够减小次级的重量。其它组成和连接方式与具体实施方式一、二、三或四相同。In this embodiment, a plurality of slots are formed on the
具体实施方式六:本实施方式与具体实施方式五不同点在于次级齿6为高导磁材料。其它组成和连接方式与具体实施方式五相同。Embodiment 6: This embodiment differs from
具体实施方式七:本实施方式与具体实施方式一或六不同点在于间隔环7为非磁性材料,间隔环7的外径小于或等于次级齿6的外径。其它组成和连接方式与具体实施方式一或六相同。Embodiment 7: This embodiment differs from Embodiment 1 or
具体实施方式八:本实施方式与具体实施方式一或六不同点在于间隔环7为磁性材料,间隔环7的外径小于次级齿6的外径。其它组成和连接方式与具体实施方式一或六相同。Embodiment 8: This embodiment differs from Embodiment 1 or
本发明内容不仅限于上述各实施方式的内容,其中一个或几个具体实施方式的组合同样也可以实现发明的目的。电机的初级和次级为外初级内次级结构或为外次级内初级结构。电机的初级和次级为动初级结构或为动次级结构。The content of the present invention is not limited to the content of the above-mentioned embodiments, and a combination of one or several specific embodiments can also achieve the purpose of the invention. The primary and secondary of the motor are outer primary inner secondary structure or outer secondary inner primary structure. The primary and secondary of the motor is a moving primary structure or a moving secondary structure.
Claims (8)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN2009100720622A CN101552535B (en) | 2009-05-19 | 2009-05-19 | Cylindrical Flux Inversion Linear Motor |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN2009100720622A CN101552535B (en) | 2009-05-19 | 2009-05-19 | Cylindrical Flux Inversion Linear Motor |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN101552535A true CN101552535A (en) | 2009-10-07 |
| CN101552535B CN101552535B (en) | 2011-06-01 |
Family
ID=41156568
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN2009100720622A Expired - Fee Related CN101552535B (en) | 2009-05-19 | 2009-05-19 | Cylindrical Flux Inversion Linear Motor |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN101552535B (en) |
Cited By (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102290960A (en) * | 2011-08-25 | 2011-12-21 | 哈尔滨工业大学 | Cylindrical linear reluctance motor with permanent magnet offset structure |
| CN102497081A (en) * | 2011-11-30 | 2012-06-13 | 哈尔滨工业大学 | Magnetic-field modulation-type cylinder-type transverse-flux linear motor |
| CN104081637A (en) * | 2012-02-20 | 2014-10-01 | 株式会社日立制作所 | Linear motor |
| CN105099123A (en) * | 2015-03-10 | 2015-11-25 | 深圳航天科技创新研究院 | Linear motor based on annular winding and expulsive force magnetic field |
| CN105305671A (en) * | 2015-10-22 | 2016-02-03 | 南京航空航天大学 | Cylindrical moving iron-type permanent magnet linear generator |
| CN104242596B (en) * | 2014-09-11 | 2016-08-17 | 浙江大学 | A kind of asymmetric double-flanged end permanent magnet linear synchronous motor |
| CN108471220A (en) * | 2018-03-15 | 2018-08-31 | 鲁东大学 | A kind of cylindrical linear motor |
| CN108494219A (en) * | 2018-03-15 | 2018-09-04 | 鲁东大学 | A kind of cylindrical linear motor |
| CN108631542A (en) * | 2018-05-31 | 2018-10-09 | 中国石油大学(华东) | A kind of cylinder type blocking transverse flux linear switched reluctance machines |
| US11881752B2 (en) | 2021-09-13 | 2024-01-23 | Zhejiang University | Direct-drive type annular flexible transportation system and collaborative control method thereof |
-
2009
- 2009-05-19 CN CN2009100720622A patent/CN101552535B/en not_active Expired - Fee Related
Cited By (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102290960A (en) * | 2011-08-25 | 2011-12-21 | 哈尔滨工业大学 | Cylindrical linear reluctance motor with permanent magnet offset structure |
| CN102497081A (en) * | 2011-11-30 | 2012-06-13 | 哈尔滨工业大学 | Magnetic-field modulation-type cylinder-type transverse-flux linear motor |
| CN104081637A (en) * | 2012-02-20 | 2014-10-01 | 株式会社日立制作所 | Linear motor |
| US10128732B2 (en) | 2012-02-20 | 2018-11-13 | Hitachi, Ltd. | Linear motor |
| CN104242596B (en) * | 2014-09-11 | 2016-08-17 | 浙江大学 | A kind of asymmetric double-flanged end permanent magnet linear synchronous motor |
| CN105099123A (en) * | 2015-03-10 | 2015-11-25 | 深圳航天科技创新研究院 | Linear motor based on annular winding and expulsive force magnetic field |
| CN105305671A (en) * | 2015-10-22 | 2016-02-03 | 南京航空航天大学 | Cylindrical moving iron-type permanent magnet linear generator |
| CN105305671B (en) * | 2015-10-22 | 2018-06-26 | 南京航空航天大学 | A kind of cylinder type moving-iron type permanent magnet linear generator |
| CN108471220A (en) * | 2018-03-15 | 2018-08-31 | 鲁东大学 | A kind of cylindrical linear motor |
| CN108494219A (en) * | 2018-03-15 | 2018-09-04 | 鲁东大学 | A kind of cylindrical linear motor |
| CN108631542A (en) * | 2018-05-31 | 2018-10-09 | 中国石油大学(华东) | A kind of cylinder type blocking transverse flux linear switched reluctance machines |
| US11881752B2 (en) | 2021-09-13 | 2024-01-23 | Zhejiang University | Direct-drive type annular flexible transportation system and collaborative control method thereof |
Also Published As
| Publication number | Publication date |
|---|---|
| CN101552535B (en) | 2011-06-01 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN101552535B (en) | Cylindrical Flux Inversion Linear Motor | |
| CN101552534B (en) | Transverse flux cylinder type permanent magnet linear synchronous motor | |
| CN104811011B (en) | Cylindrical Transverse Magnetic Field Switch Flux Linkage Permanent Magnet Linear Motor | |
| CN100566097C (en) | Cylindrical three-phase permanent magnet synchronous linear motor | |
| CN103715945B (en) | A kind of 12/14 bearing-free permanent magnet biased witch reluctance motor | |
| CN102420515B (en) | Magnetic field-modulated transverse flux multi-phase permanent magnet motor | |
| CN106655688B (en) | A kind of reluctance motor that edge effect offsets each other | |
| CN101922511A (en) | A Radial AC Hybrid Magnetic Bearing with Permanent Magnet Bias Magnetic Outer Rotor | |
| CN102290945A (en) | Transverse magnetic flux multi-phase reluctance motor | |
| CN101582626B (en) | Cylindrical permanent magnet linear synchronous motor (PMLSM) with parallel magnetic circuits | |
| CN108880184A (en) | A kind of Linear-rotation permanent-magnet actuator of novel short mover salient-pole structure | |
| CN102158042B (en) | High-dynamic cylindrical linear reluctance motor | |
| CN102497081B (en) | Magnetic-field modulation-type cylinder-type transverse-flux linear motor | |
| CN102403872B (en) | Positioning force compensating type linear permanent magnet synchronous motor | |
| CN114123708A (en) | A fault-tolerant permanent magnet cylinder motor with double stator linear rotation and two degrees of freedom | |
| CN1976186B (en) | Transverse flux cylinder linear reluctance motor | |
| CN102290960A (en) | Cylindrical linear reluctance motor with permanent magnet offset structure | |
| CN101741213B (en) | Cylindrical permanent magnet linear motor | |
| CN101582625B (en) | Cylindrical single-phase permanent magnet linear synchronous motor with parallel magnetic circuits and propulsion control system thereof | |
| CN107919754A (en) | A kind of transverse flux permanent magnetic motor | |
| CN110277889B (en) | A stator permanent magnet rotary transformer | |
| CN106972729A (en) | Circular Winding magnetic field modulation linear electric motors | |
| CN110690807A (en) | Cylindrical primary permanent magnet type transverse flux linear motor | |
| CN105915018B (en) | A kind of compound phase band winding construction of double armature cylindrical permanent linear synchronous motor | |
| CN102005896B (en) | Cylindrical transverse flux linear motor of zigzag ring winding structure |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| CF01 | Termination of patent right due to non-payment of annual fee | ||
| CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20110601 |
