CN101551491B - Sealing optical fiber device at low temperature - Google Patents

Sealing optical fiber device at low temperature Download PDF

Info

Publication number
CN101551491B
CN101551491B CN 200910082585 CN200910082585A CN101551491B CN 101551491 B CN101551491 B CN 101551491B CN 200910082585 CN200910082585 CN 200910082585 CN 200910082585 A CN200910082585 A CN 200910082585A CN 101551491 B CN101551491 B CN 101551491B
Authority
CN
Grant status
Grant
Patent type
Prior art keywords
sealing
optical fiber
metal layer
low temperature
flange
Prior art date
Application number
CN 200910082585
Other languages
Chinese (zh)
Other versions
CN101551491A (en )
Inventor
王秋良
胡新宁
Original Assignee
中国科学院电工研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Abstract

This is a device for sealing optical fiber at low temperature. The invention of optical fiber sealing device consists of the sealing flange, optical fiber, and metal layer. Sealing flange center has many optical fiber sealing holes, with a metal layer coated on the surface of optical fiber. The invention of optical fiber sealing method is to insert optical fibers plated with metal layer into the sealing holes, and use solder to fill the gap between the sealing flange and optical fiber metal layer so that the sealing flange and the optical fiber bond and form seal. This invention features simple sealing structure, simple method and low cost, which can be effective in sealing the optical fiber at low temperature in the container. The good sealing performance may easily ensure the high vacuumin the container at low temperature.

Description

低温下密封光纤的装置 Means sealing the optical fiber at a low temperature

技术领域 FIELD

[0001] 本发明涉及密封光纤的装置,特别涉及低温下密封光纤的装置。 [0001] The present invention relates to a sealing device of an optical fiber, the sealing device at a low temperature in particular, to an optical fiber.

背景技术 Background technique

[0002] 以石英玻璃为主要材料的光纤具有耐高温、耐腐蚀、热稳定性好等特点。 [0002] In the quartz glass fiber as the main material having a high temperature, corrosion, thermal stability and other characteristics. 可在110(TC下长时间使用,短时间最高使用温度可达1450°C 。除氢氟酸外,石英玻璃几乎不与其它酸类物质发生化学反应,其耐酸能力是陶瓷的30倍,不锈钢的150倍,尤其在高温下的化学稳定性,是其它任何工程材料都无法比拟的。石英玻璃的热膨胀系数极小,能承受剧烈的温度变化,将石英玻璃加热至1 IO(TC左右,放入常温中依然不会炸裂。利用光纤作为传输介质或者敏感元件制成的光纤传感器是一种具有抗电磁干扰、体积小和灵敏度高等特点的传感器。目前已研制出测量多种物理量的光纤传感器,由于它具有结构简单、分辨率高、设计制造方便和适用于各种环境等特点而被广泛应用。 110 may be used for a long time (at TC, short-term maximum temperature up to 1450 ° C. In addition to hydrofluoric acid, the quartz glass is almost does not chemically react with the other acids, which acid is 30 times the capacity of a ceramic, stainless steel 150 times, in particular chemical stability at high temperatures, any other engineering materials can match the thermal expansion coefficient of quartz glass is extremely small, can withstand severe temperature changes, the quartz glass is heated to about 1 IO (TC, put the room temperature is still not burst. using an optical fiber as the optical fiber sensor made of a transmission medium or a sensitive element having a resistance to electromagnetic interference, small size and high sensitivity of the sensor has been developed a variety of fiber optic sensor measuring a physical quantity, because of its simple structure, high resolution, and convenient design and manufacturing for a variety of environments, etc. is widely used.

[0003] 目前随着超导材料、低温技术的不断发展,光纤传感器在低温下的应用也越来越广泛。 [0003] With the current development of superconducting materials, low-temperature technology, the application of fiber optic sensors at low temperatures has become increasingly widespread. 国内外对低温下应用光纤传感器测量压力、应变、位移、温度、液位等的研究较多。 Measurement of fiber optic sensor applications at home and abroad at low pressure, strain, displacement studies, temperature, level and the like more. 光纤传感器或光纤探头安装在低温容器内部低温环境下工作,由于低温容器要保持一定的真空度,因此有时需要将光纤在低温装置内部引出时进行真空密封。 Fiber-optic probe or the fiber optic sensor is mounted inside the container at low temperature environment work, since the cryocontainer to maintain a certain degree of vacuum, it is sometimes necessary to seal the optical fiber in the internal vacuum low temperature extraction apparatus. 中国专利200510016673. 7对于光纤的密封方法采用密封胶垫进行密封,但这种方法只能在常温范围内使用。 Chinese Patent No. 200510016673.7 sealing method for sealing an optical fiber pad sealed, but this method can only be used within a normal temperature range. 低温下由于胶垫不具有弹性而使密封性能将大大降低。 Since the pads at a low temperature sealing property can not have the elasticity is greatly reduced. 而若要使用陶瓷封接或玻璃封接的密封方法,需要陶瓷或者玻璃进行封接,加工手续复杂,成本较高,而且单位面积上密封光纤的数量较少。 To use the method of sealing or ceramic sealing glass sealing, the need for sealing glass or ceramic, and processing procedures are complex, high cost, and a smaller number of fibers per unit area of ​​the seal.

发明内容 SUMMARY

[0004] 为克服上述现有封接技术存在的问题,本发明提出一种新的密封光纤的装置。 [0004] In order to overcome the above-described present sealing prior art, the present invention provides a novel means for sealing the optical fiber. 该光纤密封方法在低温下的密封性能良好,结构简单、制作成本低,而且单位面积上密封光纤的数量大大增加。 The method of sealing the optical fiber good sealing performance at low temperatures, of simple structure, low manufacturing cost, and the number of fibers per unit area seal greatly increased.

[0005] 本发明光纤密封装置包括密封法兰、光纤、金属层。 Invention is an optical fiber sealing device [0005] This comprises a sealing flange, an optical fiber, the metal layer. 密封法兰中心开有多个光纤密封孔,光纤外表面镀一层金属层,金属层的长度大于密封法兰的光纤密封孔的高度10mm_15mm。 Center sealing flange with a plurality of optical fibers sealing hole, the outer surface of the optical fiber coated with a layer of the metal layer, the height of the sealing hole 10mm_15mm fiber length of the metal layer is larger than the sealing flange.

[0006] 带有金属层的光纤插入光纤密封孔内,光纤密封孔和光纤金属层之间留有一定间隙。 [0006] The optical fiber is inserted with a metal layer seal bore, leaving a gap between the optical fiber and the optical fiber hole metal seal layers. 在密封法兰上用焊锡将光纤密封孔和光纤的金属层之间的间隙填满,使密封法兰和光纤粘接并形成密封。 The gap between the optical fibers and the metal sealing hole is filled with a solder layer of the optical fiber in the sealing flange, the sealing flange and the fiber adhesive and form a seal.

[0007] 本发明光纤密封孔和带有金属层的光纤之间的间隙为0. 5mm-lmm。 The gap between the optical fibers sealing hole [0007] of the present invention and an optical fiber with a metal layer as 0. 5mm-lmm.

[0008] 本发明在光纤上镀的金属层的材料为金属镍,采用磁控溅射镀膜方法在光纤上镀 [0008] The material of the metal layer of the optical fiber of the present invention is a nickel plating, magnetron sputtering method on the fiber coating

膜形成金属层,金属层厚0. 5mm-lmm。 Forming a metal film layer, a metal layer thickness of 0. 5mm-lmm.

[0009] 本发明密封光纤所使用的焊锡是采用含锡63%、含铅37%的合金材料。 [0009] The present invention is a solder seal is used in an optical fiber using 63% tin, 37% lead alloy material.

[0010] 本发明密封结构简单,方法简便、成本低,可有效进行光纤在低温下容器内的密 [0010] The seal structure of the invention is simple and convenient method, low cost, fiber density can be effective in a low temperature vessel

3封,容易在低温下保证容器内部的高真空。 3, the interior of the container is easy to ensure a high vacuum at a low temperature. 附图说明 BRIEF DESCRIPTION

[0011] 图l光纤及金属层示意图,图中:1光纤、2金属层; [0011] Figure l a schematic view of an optical fiber and a metal layer, FIG: optical fiber, the second metal layer;

[0012] 图2密封法兰示意图,图中:3密封法兰、4光纤密封孔、5密封槽; [0012] FIG sealing flange schematic drawings in which: sealing flange 3, sealed fiber holes 4, 5 of the seal groove;

[0013] 图3光纤密封结构示意图,图中:6焊锡。 [0013] 3 a schematic configuration diagram of an optical fiber seal, FIG: 6 solder.

具体实施方式 detailed description

[0014] 以下结合附图和具体实施方式进一步说明本发明。 [0014] The present invention is described further below in conjunction with the accompanying drawings and specific embodiments.

[0015] 如图1所示,在光纤1的外表面利用磁控溅射的方法镀一层金属层2,金属层2的厚度为0. 5mm-lmm,金属层2的长度大于密封法兰的光纤密封孔的高度10mm-15mm。 [0015] As shown, the outer surface of the fiber by using a magnetron sputtering method is a plating a metal layer 2, the thickness of the metal layer 2 is 0. 5mm-lmm, greater than the length of the metal layer 2 is sealed flange height 10mm-15mm fiber sealing hole. [0016] 如图2所示,密封法兰3的中心上开有光纤密封孔4,下端面有密封槽5。 [0016] As shown, the fiber sealing hole 4 is opened, the lower end surface of the sealing groove 5 of the flange 3 on the center of the seal 2. 密封法兰3由不锈钢材料制成,密封槽5的宽度为0. 5-0. 7mm,深度0. 4_0. 6mm。 Sealing flange 3 is made of stainless steel, the width of the sealing groove 5 of 0. 5-0. 7mm, depth 0. 4_0. 6mm. 当光纤密封孔4密封后,在光纤法兰的密封槽5内填充金属铟丝,通过螺钉将密封法兰3在低温容器密封口上压紧,利用密封槽内金属铟的延展性密封低温容器内的真空,即可通过密封法兰3将光纤1 从保有一定真空的低温容器内部引出。 When the low-temperature sealing hole 4 sealing the optical fiber, the optical fiber within the sealing groove 5 of the flange indium wire filler metal, the sealing flange 3 by a screw pressed against the cryocontainer sealing port, utilizing the ductility of metallic indium seal groove sealed container vacuum, to the optical fiber 3 drawn out from the inside of a vacuum to maintain a certain cryogenic vessel through a sealing flange.

[0017] 如图3所示,光纤密封装置包括光纤l,金属层2,密封法兰3。 [0017] As shown, the sealing means 3 comprises an optical fiber the optical fiber L, the metal layer 2, the sealing flange 3. [0018] 本发明低温下密封光纤的方法是将带有金属层2的光纤插入光纤密封孔4内,光纤密封孔4和光纤的金属层2之间留有0. 5mm-lmm的间隙。 [0018] The method of the present invention at a low temperature sealing of the optical fiber is inserted into the optical fiber with the metal fiber layer 2 of the bore seal 4, 5mm lmm-gap remains between the second metal layer 0. optical fiber 4 and the sealing hole. 在密封法兰3上利用材料为锡铅合金的焊锡6将光纤密封孔4和光纤的金属层2之间的间隙填满,使密封法兰3和光纤1粘接并形成密封。 Using a flange on the sealing material 3 is a tin-lead alloy solder gap 6 between the metal layer 4 and the optical fiber sealing hole 2 to fill the sealing flange 3 and fiber 1 are bonded and form a seal.

[0019] 本发明密封结构简单,方法简便、成本低,可有效进行光纤在低温下容器内的密封,并且单位面积上密封光纤的数量较高。 [0019] The seal structure of the invention is simple and convenient method, low cost, effectively sealing the optical fiber in a low temperature vessel, and the higher the number of fiber per unit area of ​​the seal.

Claims (5)

  1. 一种低温下密封光纤的装置,其特征在于所述密封装置包括光纤(1)、金属层(2)、密封法兰(3);密封法兰(3)中心开有多个光纤密封孔(4),光纤(1)外表面镀一层所述金属层(2);光纤(1)插入光纤密封孔(4)中,光纤密封孔(4)和光纤(1)的金属层(2)之间的间隙填充有焊锡(6),使密封法兰(3)和光纤(1)粘接并形成密封。 An apparatus for sealing an optical fiber at a low temperature, characterized in that said sealing means comprises an optical fiber (1), a metal layer (2), a sealing flange (3); a plurality of optical fibers sealing hole sealing flange (3) has a central opening ( 4), an optical fiber (1) an outer layer of the plated metal layer (2); an optical fiber (1) is inserted into an optical fiber sealing hole (4), the fiber sealing hole (4) and the optical fiber (1) a metal layer (2) filling the gap between the solder (6), the sealing flange (3) and an optical fiber (1) an adhesive and forms a seal.
  2. 2. 按照权利要求l所述的低温下密封光纤的装置,其特征在于,所述金属层(2)的材料为金属镍,金属层(2)为由磁控溅射镀膜方法在光纤(1)上镀膜形成,金属层(2)厚0. 5mm—lmm。 2. The apparatus of claim l at a low temperature sealing the optical fiber according to claim, characterized in that the material of the metal layer (2) is nickel, the metal layer (2) by the magnetron sputtering method in an optical fiber (1 is formed on the plated film), a metal layer (2) a thickness of 0. 5mm-lmm.
  3. 3. 按照权利要求l所述的低温下密封光纤的装置,其特征在于,金属层(2)的长度大于密封法兰(3)的光纤密封孔(4)的高度10mm-15mm。 3. The apparatus of claim l at a low temperature sealing the optical fiber according to claim, characterized in that the length of the metal layer (2) is greater than a sealing flange (3) 10mm-15mm height of the sealing hole of the optical fiber (4).
  4. 4. 按照权利要求l所述的低温下密封光纤的装置,其特征在于,光纤的金属层(2)和光纤密封孔(4)之间的间隙为0. 5mm-lmm。 4. The apparatus of claim l at a low temperature sealing the optical fiber according to claim, characterized in that the gaps between the metal fiber layer (2) sealing the hole and an optical fiber (4) is 0. 5mm-lmm.
  5. 5. 按照权利要求l所述的低温下密封光纤的装置,其特征在于,所述密封法兰(3)下端面有密封槽(5),当光纤密封孔(4)密封后,在密封法兰(3)的密封槽(5)内填充金属铟丝,通过螺钉压紧密封法兰(3)在低温容器的密封口。 The means for sealing the optical fiber at a low temperature according to claim l, characterized in that the sealing flange face sealing groove (5) (3), when (4) fiber optic seal sealing hole, the sealing method blue (3) a sealing groove (5) of filler metal is indium wire, pressing the sealing flange by screws (3) of the sealing port cryocontainer.
CN 200910082585 2009-04-24 2009-04-24 Sealing optical fiber device at low temperature CN101551491B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200910082585 CN101551491B (en) 2009-04-24 2009-04-24 Sealing optical fiber device at low temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200910082585 CN101551491B (en) 2009-04-24 2009-04-24 Sealing optical fiber device at low temperature

Publications (2)

Publication Number Publication Date
CN101551491A true CN101551491A (en) 2009-10-07
CN101551491B true CN101551491B (en) 2010-05-12

Family

ID=41155827

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200910082585 CN101551491B (en) 2009-04-24 2009-04-24 Sealing optical fiber device at low temperature

Country Status (1)

Country Link
CN (1) CN101551491B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102393478A (en) * 2011-12-05 2012-03-28 安拓锐高新测试技术(苏州)有限公司 Chip test base
CN102608713A (en) * 2012-04-01 2012-07-25 常熟市虞华真空设备科技有限公司 Optical fiber sealing-in lead and manufacturing method thereof
CN104386268B (en) * 2014-12-12 2016-08-24 北京卫星环境工程研究所 Laser drive means for the flyer fiber conduction test

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4759601A (en) 1985-06-24 1988-07-26 Schlumberger Technology Corporation Fiber optic connector assembly
GB2290420A (en) 1994-06-16 1995-12-20 Whipp & Bourne Ltd Sealed lead-though
CN1308733A (en) 1998-07-06 2001-08-15 博克汉姆技术股份有限公司 A hermetically sealed package and method of assembly
US6974266B2 (en) 2002-09-18 2005-12-13 Itf Optical Technologies Inc. Optical component packaging device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4759601A (en) 1985-06-24 1988-07-26 Schlumberger Technology Corporation Fiber optic connector assembly
GB2290420A (en) 1994-06-16 1995-12-20 Whipp & Bourne Ltd Sealed lead-though
CN1308733A (en) 1998-07-06 2001-08-15 博克汉姆技术股份有限公司 A hermetically sealed package and method of assembly
US6974266B2 (en) 2002-09-18 2005-12-13 Itf Optical Technologies Inc. Optical component packaging device

Also Published As

Publication number Publication date Type
CN101551491A (en) 2009-10-07 application

Similar Documents

Publication Publication Date Title
US5999081A (en) Shielding unique for filtering RFI and EFI interference signals from the measuring elements
US4712082A (en) Pressure sensor
US6911894B2 (en) Sensor package for harsh environments
US20090158853A1 (en) Diaphragm pressure measuring cell arrangement
CN1482474A (en) Packaging structure of fibre-optical grating
CN1858601A (en) Capacitance microwave power sensor
US6848316B2 (en) Pressure sensor assembly
US4238957A (en) Pyrometric sheath and process
Zhao et al. A fully packaged CMOS interdigital capacitive humidity sensor with polysilicon heaters
JP2004361159A (en) Remote seal type pressure/differential pressure transmitter
JP2000155055A (en) Temperature detector and temperature detecting system
US4217194A (en) Instrument for polarographic potentiometric, thermal and like measurements and a method of making the same
CN101050953A (en) Detecting device and method for pipeline wall thickness
CN2763785Y (en) Package structure for optic fibre and grating temperature sensor
CN102621104A (en) Graphene film sensitized D-shaped optical fiber surface plasmon resonance (SPR) sensor and preparation method thereof
CN201373786Y (en) Liquid-pressure sensor based on fiber gratings
CN1554917A (en) Adjustable distance liquid nitrogen metal dewar for high temperature super conductive quantum interferometer
CN202720070U (en) High-stability and rapid NTC temperature sensor
CN104049022A (en) Molybdenum disulfide/silicon heterogeneous film component with hydrogen sensitivity effect as well as preparation method and application thereof
CN202066613U (en) Oil-filled temperature pressure combined sensor
CN1484007A (en) High-temp resisting petroleum downhole dynamic pressure sensor
CN102980712A (en) Chip-type single-resistor piezoresistive pressure sensor with self-package structure
CN2587001Y (en) Digital radio-frequency admittance level controller
CN2621288Y (en) Distribution fiber-optical grating sensitive package temp. probe
CN102095451A (en) Fiber grating liquid flow sensor with temperature compensation

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
C14 Granted
C41 Transfer of the right of patent application or the patent right
COR Bibliographic change or correction in the description

Free format text: CORRECT: ADDRESS; FROM: 100080 HAIDIAN, BEIJING TO: 116023 DALIAN, LIAONING PROVINCE

ASS Succession or assignment of patent right

Owner name: JS RESEARCH (DALIAN) NMR CO., LTD.

Free format text: FORMER OWNER: ELECTROTECHNICS INST., OF THE CHINESE ACADEMY OF SCIENCES

Effective date: 20111009

C17 Cessation of patent right