CN101538750A - Polyhydroxyalkanoates fiber and preparation method thereof - Google Patents

Polyhydroxyalkanoates fiber and preparation method thereof Download PDF

Info

Publication number
CN101538750A
CN101538750A CN 200810052461 CN200810052461A CN101538750A CN 101538750 A CN101538750 A CN 101538750A CN 200810052461 CN200810052461 CN 200810052461 CN 200810052461 A CN200810052461 A CN 200810052461A CN 101538750 A CN101538750 A CN 101538750A
Authority
CN
Grant status
Application
Patent type
Prior art keywords
fiber
fibers
acid
use
method
Prior art date
Application number
CN 200810052461
Other languages
Chinese (zh)
Inventor
吕渭川
朱文甫
潘觉宇
许开天
陈国强
陈智飞
陈贤裕
Original Assignee
天津国韵生物材料有限公司;汕头大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Abstract

The invention relates to a fiber and a preparation method thereof, in particular to a degradable fiber and a preparation method thereof. The fiber contains polyhydroxyalkanoates, and the preparation method thereof comprises the steps of melting and extruding a base material, obtaining a sample band, cold-stretching or pre-stretching the sample band, quenching, performing isothermal crystallization and the like. The fiber disclosed by the invention has the advantages of good biocompatibility, biodegradability, high strength and/or good toughness.

Description

聚羟基脂肪酸酯纤维及其制备方法 Polyhydroxyalkanoates fiber and its preparation method

技术领域 FIELD

本发明涉及一种纤维及其制备方法,更具体地,本发明涉及一种可降解的纤维及其制备方法。 The present invention relates to a fiber and its preparation method, and more particularly, the present invention relates to fiber and a process for preparing a degradable.

背景技术 Background technique

纤维(Fiber)是高分子材料广泛使用的一种形式,有尼龙纤维、天然纤维、 醋酸纤维和其它合成纤维等,这些纤维虽然都具有这样或那样的优点,但是其降解行为过于缓慢。 Fibers (Fiber) is a widely used form of polymeric materials, nylon fibers, natural fibers, acetate fibers and other synthetic fibers, although the fibers have the advantage that one way or another, but their degradation behavior is too slow.

脂肪族聚酯是最重要的生物可降解和生物相容性材料,广泛应用在农业、 涂料、医药(药物可控释放,医用植入材料,缝合剂等)、粘合剂和包装工业等领域。 The aliphatic polyester is the most important biodegradable and biocompatible material, widely used in agriculture, coatings, pharmaceuticals (pharmaceutical controlled release, medical implant materials, stitching or the like), a binder, and packaging industry and other fields . 脂肪族聚酯中最有代表性的是聚羟基脂肪酸酯、聚乳酸和聚(s-己内酯)。 The aliphatic polyester is the most representative polyhydroxyalkanoate, polylactic acid and poly (caprolactone S-).

微生物聚羟基脂肪酸酯(Polyhydroxyalkanoates,以下简称PHA)是近二十多年迅速发展起来的生物高分子材料,它是多种微生物的细胞内聚酯,是一种天然的、结构多变的绿色高分子材料,PHA兼具有良好的生物相容性能,生物可降解性和塑料的热加工性能,因此可作为生物医用材料和生物可降解包装材料。 Microbial polyhydroxyalkanoates (polyhydroxyalkanoates, hereinafter referred to as PHA) is rapidly developed nearly twenty years of biopolymer materials, more microorganisms which are intracellular polyester, is a natural, changing the structure of the green polymer material, and the PHA can have good biocompatibility, biodegradable plastics and the hot workability, and therefore can be used as biomedical materials and biodegradable packaging materials. PHA还具有非线性光学性能、压电性、气体阻隔性等许多高附加值性能,正因为PHA汇集了这些优良的性能,使其可以在包装材料、粘合材料、喷涂材料和衣料、器具类材料、电子产品、耐用消费品、农业产品、自动化产品、化学介质和溶剂等领域具有潜在的广泛应用。 PHA also has a number of high value-added performance nonlinear optical properties, piezoelectric properties, gas barrier property, because those PHA brings together excellent properties, it can be packaging materials, adhesive materials, coating material and clothing, appliances class art materials, electronics, consumer durables, agricultural products, automation products, and solvent chemical mediators have potential wide range of applications. PHA结构多元化带来的性能多样化使其在应用中具有明显的优势。 PHA structure of pluralism performance diversify it has obvious advantages in the application. 根据单体组成PHA可分成三大类: 一类是短链PHA, 如聚羟基丁酸酯(PHB)和聚羟基戊酸酯(PHV)以及它们的共聚物PHBV;另一类是中长链PHA,如聚羟基己酸酯(PHHX),聚羟基辛酸酯(PHO)等;第三类是短 The PHA monomer composition may be divided into three categories: short-chain PHA, such as polyhydroxybutyrate (PHB) and polyhydroxybutyrate valerate (the PHV) and copolymers of PHBV; the other is long-chain PHA, such as poly-hydroxyhexanoate (PHHX), polyhydroxyoctanoate (PHO) and the like; third category is short

链与中长链共聚酯,如羟基丁酸-羟基己酸共聚酯(PHBHHx)。 Chain and long-chain copolyesters, such as hydroxybutyric acid - hydroxycaproic acid copolyester (PHBHHx).

聚乳酸PLA(Polylactic acid)是一种生物可降解的脂肪族聚酉旨,由于其可以从农业可再生的资源如谷物中得到而被誉为"绿色塑料"。 Polylactic acid PLA (Polylactic acid) is a biodegradable aliphatic polyester unitary purpose, since it can be obtained from a grain such as renewable agricultural resources, known as "green plastic." 聚乳酸具有良好的热塑加工性,也有良好的机械性能和降解参数。 Polylactic acid has good thermoplastic processability, also have good mechanical properties and degradation parameters. 聚乳酸可以在传统加工PET的熔融挤出机上加工,产品不仅具有和PET类似的性能,还增添了完全的降解和堆肥能力等优点。 The polylactic acid can be processed on conventional melt processing extruder PET, and PET product not only has similar performance, but also adds the advantage of completely biodegradable and compostable capacity. 用聚乳酸可以生产各种类型的薄膜、纤维或者丝状织物,应用包括农业/园艺业产品、土质表面保护、服饰和穿戴用品、个人卫生产品、包装材料以及工业等。 The polylactic acid can be produced by various types of film, fiber or filament fabric applications including agricultural / horticultural industry products, soil surface protection, and clothing worn items, personal hygiene products, and packaging industries. 另外,PLA作为医用植入材料早已获得了各国卫生部门的批准, 已经广泛应用于临床。 In addition, PLA as a medical implant materials have already been approved by national health authorities have been widely used in clinical.

聚(s-己内酯)PCL是一种结晶性的线性高聚物,在温室时是一种韧性的材料, 有好的透气性和与其它材料极好的相容性。 Poly (caprolactone S-) crystallinity of the PCL is a linear polymer, a toughness material at a greenhouse, good permeability and an excellent compatibility with other materials. 由于其生物降解性、生物相容性和热弹性,作为生物可降解材料和生物组织工程材料具有很好的潜力。 Due to its biodegradability, biocompatibility and thermoelastic, and biodegradable material as a bio-tissue engineering material having good potential.

聚乳酸PLA (Polylactic acid)和聚(s-已内酯)PCL纤维技术已见报道,也趋于 Polylactic acid PLA (Polylactic acid) and poly (s- caprolactone) PCL fiber technology have been reported, tends

成熟,但其强度不高。 Mature, but its strength is not high.

因而,需要更好的生物相容性、可生物降解性的强度高和/或韧性好的纤维。 Thus, the need for better biocompatibility, high biological degradability strength and / or toughness, good fibers.

发明内容 SUMMARY

为了达到上述目的,本发明的发明人进行了大量的实验, 一方面,提供一类以聚羟基脂肪酸酯PHA为基材的纤维,具有生物相容性、可生物降解性、强度高和/或韧性好的优点;另一方面,本发明还提供了所述纤维的制备方法。 To achieve the above object, the present inventors have conducted extensive experiments, in one aspect, there is provided a class of polyhydroxyalkanoate PHA fibers as a base material having biocompatibility, biodegradability, strength, and / good toughness advantages; another aspect, the present invention also provides a method of preparing the fibers.

更具体地,本发明公开了:1. 一种纤维,含有聚羟基脂肪酸酯。 More particularly, the present invention discloses: 1. A fiber containing a polyhydroxyalkanoate.

2. 上述l所述的纤维,其中聚羟基脂肪酸酯为聚-3-羟基丁酸均聚物PHB、 3-羟基丁酸和3-羟基戊酸共聚物PHBV、 3-羟基己酸和3-羟基辛酸共聚物PHHO、 3-羟基丁酸和3-羟基己酸共聚物PHBHHx、 3-羟基丁酸和4-羟基丁酸共聚物P(3HB-4HB)之一或其混合物。 2. The fiber of claim l above, wherein the polyhydroxyalkanoate is poly-3-hydroxybutyric acid homopolymer of the PHB, 3-hydroxy butyric acid and 3-hydroxyvaleric acid copolymer of PHBV, hexanoic acid and 3-hydroxy-3 - hydroxy octanoic acid copolymer PHHO, 3- hydroxybutyric acid and 3-hydroxy-hexanoic acid copolymer PHBHHx, 3- hydroxybutyric acid and 4-hydroxybutyric acid copolymer P (3HB-4HB) one or mixtures thereof.

3. 上述l所述的纤维,还含有聚乳酸PLA或聚己内酯之一或其混合物,其中聚羟基脂肪酸酯与聚乳酸PLA或聚己内酯或其混合物的质量比为1:99到99: 1。 L 3. The fiber according to the above, further comprising one or PLA polylactic acid polycaprolactone or mixtures thereof, wherein the mass ratio of polyhydroxyalkanoate and polylactic acid or PLA polycaprolactone or mixtures thereof 1:99 to 99: 1.

4. 上述l所述的纤维,还含有成核剂,其中聚羟基脂肪酸酯和成核剂的质 4. The fiber of claim l, further comprising a nucleating agent, wherein the polyhydroxyalkanoate substance and a nucleating agent

量比为100: 1〜2。 Ratio of 100: 1 ~.

5. 上述4所述的纤维,其中成核剂为氮化硼、柠檬酸三丁酯。 5. The fiber of claim 4, wherein the nucleating agent is boron, tributyl citrate.

6. 上述1-5所述的纤维的制备方法,为将基材熔融挤出得到样条后经过冷拉伸处理而得。 6. A method of preparing a fiber according to the above 1-5, after the substrate is cooled after melt-extrusion stretching spline obtained.

7. 上述1-5所述的纤维的制备方法,其中在基材熔融挤出得到样条后经过预拉伸、淬火、等温结晶步骤。 7. After the above-described method for preparing the fibers of claim 1-5, wherein the substrate in the melt-extrusion through spline pretensioned, quenching, isothermal crystallization step.

8. 上述6所述的纤维的制备方法,其中在基材熔融挤出得到样条后经过预拉伸、淬火、等温结晶步骤后还进行冷拉伸、退火处理或/和多步拉伸。 8. The method of preparing fiber of claim 6, wherein after the substrate through melt-extrusion to obtain spline pretensioned, quenching and isothermal crystallization step further cold drawing, annealing and / or multi-step stretching.

9. 上述6-8所述的方法,其中基材熔融的温度为100-200°C。 9. The method of claim 6-8, wherein the melting temperature of the substrate is 100-200 ° C.

10. 上述7所述的方法,其中淬火步骤在冰水中进行,等温结晶也在冰水中进行,结晶时间为24小时。 10. The method of claim 7 above, wherein the quenching step is carried out in ice-water, ice-water also under isothermal crystallization, the crystallization time of 24 hours.

11. 上述8所述的方法,其中退火处理在5(TC-8(TC进行60-90分钟。 11. The method of claim 8 above, wherein the annealing process 5 (TC-8 (TC for 60-90 minutes.

12. 上述1-5任一所述的纤维在农业、渔业、涂料、医药、粘合剂、包装工业和其它领域的用途。 12. A fiber according to any of the above 1-5 use in agriculture, fisheries, paints, pharmaceuticals, adhesives, packaging industry, and other fields.

13.上述12所述的用途,其中医药领域的用途包括作为药物可控释放材料, 13. Use according to 12 above, wherein the pharmaceutical art include use as a pharmaceutical controlled release material,

医用植入材料,缝合剂之一,包装领域的用途包括作为用做农用薄膜、纸代用品、纸张塑膜、包装薄膜、食品容器、生活垃圾袋、农药化肥缓释材料、化妆品的添加成分之一,渔业领域的用途包括用做拉网、围网、定置网、水产养殖、 绳索、工业滤网之一,其它领域的用途包括用做窗纱、绳索、刷子之一。 Medical implant material, one of a seaming agent, the use of packaging used as an additive component comprising an agricultural film, paper substitutes, plastic film paper, packaging films, food containers, garbage bags, pesticides and fertilizers release material, the cosmetic First, the use of the field of fisheries used include, fence, set nets, aquaculture, ropes, one pull net industrial filters, the use of other areas including one of the screens used, the rope, the brush.

一个方面,本发明提供了所述PHA高强度纤维的制备方法:将基材通过融 One aspect, the present invention provides a method for preparing high strength fibers of the PHA: substrate by melting the

熔挤出,得到圆形样条,或在基材中加入成核剂等高分子助剂改变其结晶性后再挤出圆形样条,得到的样条或利用冷拉伸直接得到产品,或利用淬火技术得 Melt extrusion, to obtain a circular spline, or addition of a nucleating agent which is a crystalline polymer additives and then extruded to change the circular spline in the substrate, obtained by the cold drawing spline or directly obtained products, quenching or using techniques to give

到无定形纤维,无定形纤维在其玻璃化转变温度(Tg)附近进行等温结晶,还可以 To amorphous fibers, which amorphous fibers glass transition temperature (Tg) nearby isothermal crystallization, can

在等温结晶后在适当的温度下进行冷拉伸处理,使其分子取向更为完全,得到 Performed after isothermal crystallization temperature at a suitable cold-stretching process, so that more complete molecular orientation, to give

取向PHA纤维。 PHA fiber orientation. 更进一步,对取向PHA纤维进行退火处理,使其分子排列更趋向规整,提高其结晶性,然后进行多步拉伸,再次提高PHA纤维强度。 Still further, the orientation of the fibers is annealed PHA, it has become more regular molecular alignment, increase its crystallinity, and then a multi-step drawing, PHA improve fiber strength again. 将PHA 纤维放置在室温下一定时间之后,测试其机械性能及结晶性。 After the PHA fibers stand at room temperature a certain time, to test the mechanical properties and crystallinity.

本发明所述基材为聚羟基脂肪酸酯,可以用于本发明的聚羟基脂肪酸酯由式(I)所示: The substrate of the present invention is a polyhydroxy fatty acid esters, may be used in the present invention is polyhydroxyalkanoate by the formula (I) below:

<formula>formula see original document page 7</formula> <Formula> formula see original document page 7 </ formula>

其中,ml,2,3或4,通常m=l; n表示聚合度;R为高度可变侧链(R 可以是H,以及从1至18个碳原子的结构),可以是饱和或不饱和、直链或支链、脂肪族或芳香族的基团。 Wherein, ml, 2,3, or 4, typically m = l; n represents the degree of polymerization; R & lt side chain is highly variable (R may be H, and the structure from 1 to 18 carbon atoms), may be saturated or unsaturated, linear or branched, aliphatic or aromatic group. 所述聚羟基脂肪酸酯包括各种聚羟基脂肪酸酯的均聚物、共聚物以及它们 The polyhydroxy fatty acid esters include various polyhydroxyalkanoate homopolymers, copolymers and their

任意比例的混合物,例如短链PHA如聚-3-羟基丁酸均聚物PHB、 3-羟基丁酸和3-羟基戊酸共聚物PHBV;中长链PHA如3-羟基己酸和3-羟基辛酸共聚物PHHO;短链与中长链PHA共聚物如3-羟基丁酸和3-羟基己酸共聚物PHBHHx, 以及非正常PHA如3-羟基丁酸和4-羟基丁酸共聚物P(3HB-4HB)等等。 Mixtures in any ratio, such as short-chain PHA, such as poly-3-hydroxybutyric the PHB homopolymer, 3-hydroxy butyric acid and 3-hydroxyvaleric acid copolymer of PHBV; medium chain length PHA, such as 3-hydroxy-hexanoic acid and 3 hydroxy octanoic acid copolymer PHHO; short chain and medium chain length PHA copolymer, such as 3-hydroxybutyric acid and 3-hydroxy-hexanoic acid copolymer PHBHHx, as well as non-normal PHA 3-hydroxybutyric acid and 4-hydroxybutyric acid copolymer P (3HB-4HB) and so on.

淬火技术是指使材料在一个较快的时间里快速冷却的过程。 Hardening is the process refers to the material in a faster time of rapid cooling. 熔融的材料经淬火处理得到无定形纤维,再进行结晶处理。 The molten material is quenched to obtain an amorphous fiber, then the crystallization process. 高分子结晶时存在相变过程。 When the polymer is present crystalline phase transition. 结晶动力学是研究结晶速率的快慢以及影响因素。 Crystallization kinetics is the speed and the impact factors of the rate of crystallization. 聚合物的结晶分为等温结晶和非等温结晶两类。 Crystalline polymer into a non-isothermal and isothermal crystallization crystallization types. 等温结晶是将聚合物熔体快速冷却到某结晶温度并保持在该温度下直至结晶完成。 Isothermal crystallization of the polymer melt is rapidly cooled to a crystallization temperature and held at that temperature until crystallization is complete. 对于玻璃化温度较高的聚合物,通常先通过使其熔体淬火,形成玻璃态,然后再快速冷却到某一温度进行等温结晶,又称为冷结晶。 For higher glass transition temperature of the polymer, it is usually by a melt quenching to form a glass state, and then rapidly cooled to a temperature isothermal crystallization, also called cold crystallization. 等温结晶可使纤维形成小的晶核及球晶,晶核之间相互作用提高其强度。 Isothermal crystallization fiber can be formed and small spherulite nuclei, which enhance the interaction strength between the nuclei.

冷拉伸技术是指在基材的玻璃化转变温度Tg以上,熔化温度Tm以下进行不同速度的拉伸,使得纤维中分子发生取向,排列更为规整,从而可以得到强度更高取向纤维。 Cold drawing technique refers to the glass transition temperature Tg above substrate, stretching at different speeds of the melting temperature, Tm, such that the fiber orientation of molecules, more structured arrangement, which can obtain a higher strength oriented fibers.

在一定的应力作用下的退火处理,使材料分子的排列伸直,趋于规整,从而能够提高纤维的结晶度。 Annealing treatment at a certain stress in the straight arrangement of the material molecules tend structured, thereby improving the crystallinity of the fibers. 结晶度与纤维的抗拉强度存在正相关系。 The presence of a positive correlation with the tensile strength of the fiber crystallinity.

具体实施方式 detailed description

熔融挤出机型号:ZRZL402,深圳市新三思材料检测有限公司强度测试方法按照ENIS0527—3圆丝拉伸强度测试方法进行除非特别说明,各含量均为摩尔含量,即相关组分占总组分的摩尔百分数实施例1 Melt extruder Model: ZRZL402, Shenzhen sans Materials Testing Co. strength test method unless otherwise specified, the respective contents are molar contents, i.e., the total set of relevant components according ENIS0527-3 round filament tensile strength test method mole percent min Example 1

称量2.5 g重均分子量Mw=300,000的P(3HB-4HB) (4HB 10%)高聚物(天津国韵生物科技有限公司),投入于熔融挤出机中,升温至170°C,以最大负荷挤出圆型样条。 Weigh 2.5 g weight average molecular weight Mw = P (3HB-4HB) (4HB 10%) polymer (Tianjin Green Biotechnology Limited) 300,000, put in a melt extruder heated to 170 ° C, to maximum load extruded circular spline. 样条在室温下缓慢冷却后,干燥除水,然后以40mm/min的速度, 进行冷拉伸得到不同拉伸倍数的取向P(3HB-4HB)纤维,室温下放置一段时间后,进行强度测试。 After spline slowly cooled at room temperature, and dried to remove water at a rate of 40mm / min, the cold drawing to obtain a different orientation draw ratio of P (3HB-4HB) fibers, placed at room temperature for a period of time, tested for strength . 获得直径为400u m〜800" m不等的,强度在200MPa〜300 MPa之间的P(3HB-4HB)纤维。 Diameter was obtained 400u m~800 "m ranging, 200MPa~300 MPa strength between the P (3HB-4HB) fibers.

实施例2 Example 2

称量3.5 g重均分子量Mw=300,000的P(3HB-4HB) (4HB为10%)高聚物(天津国韵生物科技有限公司),投入于熔融挤出机中,升温至16(TC,以最大负荷挤出圆型样条。对挤出样条进行预拉伸,并使之进入冰水中进行淬火处理得到无定形纤维。无定形纤维保持在冰水中等温结晶24h后,干燥除水,然后以40mm/min的速度,进行冷拉伸得到拉伸6倍的取向P(3HB-4HB)纤维,室温下放置一段时间后,进行强度测试。获得直径为200um,强度为302MPa,延伸率为117W的P(3HB-4HB)纤维。 Weigh 3.5 g weight average molecular weight of Mw = 300,000 P (3HB-4HB) (4HB 10%) polymer (Tianjin Green Biotechnology Co., Ltd.), put in a melt extruder, heated to 16 (TC, maximum load extruded circular spline. spline extruded prestretched and allowed to enter the ice-water quenching process to obtain amorphous fibers amorphous fibers held in ice water after isothermal crystallization 24h, and dried to remove water, at a rate of 40mm / min, the cold stretching an oriented stretched 6 times P (3HB-4HB) fibers, upon standing at room temperature for a period of time, the strength test was obtained having a diameter of 200um, strength of 302MPa, elongation 117W of P (3HB-4HB) fibers.

实施例3 Example 3

实施方法同实施例2,获得的拉伸了6倍的取向P(3HB-4HB)纤维,在lOOMPa 的应力下,于76'C下进行退火处理60min,然后室温下放置一段时间后,进行强度测试。 After the implementation of the same method of Example 2, the obtained stretched 6 times the orientation P (3HB-4HB) fibers under stress lOOMPa then annealed for 60min under a 76'C, then left at room temperature for a period of time, intensity test. 获得直径为150U m,强度为559MPa,延伸率为58%的P(3HB-4HB)纤维。 Diameter was obtained 150U m, strength of 559MPa, an elongation of 58% P (3HB-4HB) fibers. 实施例4 Example 4

实施方法同实施例2,获得的拉伸了6倍的取向P(3HB-4HB)纤维,在100MPa 的应力下,于76。 Embodiment of the method in Example 2, the obtained stretched 6 times alignment P (3HB-4HB) fibers under stress of 100MPa at 76. C下进行退火处理90min,然后室温下放置一段时间后,进行强度测试。 C is annealed at 90min, and then allowed to stand at room temperature for a period of time, tested for strength. 获得直径为140 ti m,强度为696MPa延伸率为40%的P(3HB-4HB)纤维。 Diameter was obtained 140 ti m, strength of 696MPa an elongation of 40% P (3HB-4HB) fibers.

实施例5 Example 5

称量一定质量的,重均分子量Mw=600,000的P(3HB-4HB) (4HB为12.7%) 高聚物(天津国韵生物科技有限公司),投入于熔融挤出机中,升温至16(TC,以最大负荷挤出圆型样条。对挤出样条进行预拉伸,并使之进入冰水中进行淬火处理得到无定形纤维。无定形纤维保持在冰水中等温结晶后,干燥除水,然后以适当的速度进行冷拉伸得到不同拉伸倍数的取向P(3HB-4HB)纤维,最后于76 。C下进行退火处理60min或90min。所得纤维在室温下放置一段时间后,进行强度测试。获得直径为100 um〜200u m不等的,强度在400MPa〜800 MPa之间的P(3HB-4HB)纤维。 A weighed mass, weight average molecular weight Mw = P (3HB-4HB) (4HB 12.7%) polymer (Tianjin Green Biotechnology Limited) 600,000, put in a melt extruder, heated to 16 ( TC, out to the maximum load circular spline. spline extruded prestretched and allowed to enter the ice-water quenching process to obtain amorphous fibers. fiber remains amorphous after isothermal crystallization of ice-water, and dried to remove water after then cold-stretched at an appropriate speed to obtain a different orientation draw ratio of P (3HB-4HB) fibers, and finally annealed for 60min or 90min at 76 .C. the resulting fiber placement period of time at room temperature, strength test were obtained ranging from 100 um~200u m diameter, 400MPa~800 MPa strength between the P (3HB-4HB) fibers.

实施例6 Example 6

称量3.0 g重均分子量Mw=600,000的P(3HB-4HB) (4HB为12.7%)高聚 Weigh 3.0 g weight average molecular weight Mw = P (3HB-4HB) (4HB 12.7%) high polymer 600,000

物(天津国韵生物科技有限公司),投入于熔融挤出机中,升温至16(TC,挤出圆型样条。对挤出样条进行预拉伸,并使之进入冰水中进行淬火处理得到无定纤维。无定形纤维保持在冰水中等温结晶后,千燥除水,然后以80mm/min的速度进行冷拉伸到拉伸8倍,接着在lOOMPa左右的应力下进行退火处理60min, 并于室温下放置一段时间,获得直径为130 tx m,强度为781MPa,延伸率为58% 的P(3HB-4HB)纤维。 Was (Tianjin Green Biotechnology Co., Ltd.), put in a melt extruder, heated to 16 (TC, extrusion circular spline. Spline extruded prestretched and allowed to enter the ice-water quenching fiber process to obtain amorphous. the amorphous fibers held isothermal crystallization after ice-water, dry in addition to water, at a rate of 80mm / min were stretched to 8 times the cold drawing followed by annealing under stress of about 60min lOOMPa and allowed to stand at room temperature for a period of time to obtain a diameter of 130 tx m, strength of 781MPa, an elongation of 58% P (3HB-4HB) fibers.

实施例7 Example 7

称量3.0 g重均分子量Mw=600,000的P(3HB-4HB) (4HB为12.7%)高聚物(天津国韵生物科技有限公司),投入于熔融挤出机中,升温至17(TC,挤出圆型样条。对挤出样条进行预拉伸,并使之进入冰水中进行淬火处理得到无定形纤维。无定形纤维保持在冰水中等温结晶24h后,干燥除水,然后以160mm/min 的速度进行冷拉伸,得到拉伸倍数为6的取向P(3HB-4HB)纤维,最后让材料在lOOMPa左右的张力下,于76。C下进行退火处理90min。所得纟平维在室温下放置一段时间后,进行强度测试。获得直径为100" m,强度为1257 MPa,延伸率为70%的P(3HB-4HB)纤维。 Weigh 3.0 g weight average molecular weight of Mw = P 600,000 (3HB-4HB) (4HB 12.7%) polymer (Tianjin Green Biotechnology Co., Ltd.), put in a melt extruder, heated to 17 ( TC, a circular spline extrusion. spline extruded prestretched and allowed to enter the ice-water quenching process to obtain amorphous fibers amorphous fibers held in ice water after isothermal crystallization 24h, and dried to remove water, and then at a speed of 160mm / min to cold stretching, the stretching ratio is obtained of orientation P 6 (3HB-4HB) fibers, and let the material under tension around lOOMPa, is annealed under a 90min 76.C. the resulting flat Si after a period of time dimension is placed at room temperature, the strength test was obtained having a diameter of 100 "m, the strength of 1257 MPa, an elongation of 70% P (3HB-4HB) fibers.

实施例8 Example 8

称量2.0 g重均分子量Mw=400,000的PHBHHx高聚物(HHx为12°/。)(山东鲁抗医药集团有限公司)投入于挤出机中,升温至150°C,以最大负荷挤出圆型样条。 Weigh 2.0 g weight average molecular weight Mw = PHBHHx polymer 400,000 (HHx was 12 ° /.) (Shandong Lukang Pharmaceutical Group Co., Ltd.) were charged in an extruder heated to 150 ° C, extruded at maximum load circular spline. 样条在不同温度(85°C、 95°C、 105°C)下进行冷拉伸得到纤维,放置一段时间G〜4天)后,进行强度测试。 After cold drawing spline at different temperatures (85 ° C, 95 ° C, 105 ° C) to give a fiber, place some time G~4 days), for strength test. 测试结果:纤维强度在50〜85MPa之间, 且具有很好的韧性。 Test Results: The fiber strength between 50~85MPa, and has good toughness. 实施例9 Example 9

纤维的制备同实施例8,但是在测试过程中对纤维进行多次拉伸,使纤维在分子排列上更趋于规整,从而提高纤维的强度,经万能拉力机测试,纤维强度 Fiber prepared as in Example 8, but the fibers are stretched multiple times during the test, the fiber tends to be more regular in the molecular arrangement, thereby increasing the strength of the fiber, Tensilon test, fiber strength by

达到108MPa,同时亦具有很好的韧性。 Reach 108MPa, but also has good toughness. 实施例10 Example 10

称量2.5 g分子量为400,000的PHBHHx高聚物(HHx为12%)(山东鲁抗医药集团有限公司)加入1〜2。 PHBHHx weighed 2.5 g of polymer molecular weight 400,000 (HHx 12%) (Shandong Lukang Pharmaceutical Group Co., Ltd.) 1 ~ was added. /。 /. 的成核剂氮化硼NB,混匀后,投入于熔融挤出机(ZRZL402,深圳市新三思材料检测有限公司)中,升温至15(TC,以最大负荷挤出圆型样条。对挤出样条进行预拉伸,并使之进入冰水中进行淬火处理得到无定形纤维。无定形纤维保持在冰水中等温结晶24h后,干燥除水,然后以240mm/min的速度进行冷拉伸,得到拉伸倍数为8〜10的取向PHBHHx纤维, 最后让材料在lOOMPa左右的张力下,于5(TC下进行退火处理60或90min。所得纤维在室温下放置一段时间后,进行强度测试。获得直径为100~300u m,强度为500〜600 MPa之间的PHBHHx纤维,其韧性很好。 NB boron nitride nucleating agent, after mixing, put in a melt extruder (ZRZL402, Shenzhen sans Materials Testing Co., Ltd.), the temperature was raised to 15 (TC, out to the maximum load circular spline. Of pre-stretching the extruded spline, and it is quenched into the ice-water to obtain amorphous fibers amorphous fibers held in ice water after isothermal crystallization 24h, and dried to remove water at a rate of 240mm / min in the cold drawing after orientation draw ratio is 8~10 PHBHHx fibers, and let the material is annealed at 60 90min or 5 (TC at about lOOMPa tension resulting fiber placement period of time at room temperature to give, for strength test. to obtain a diameter of 100 ~ 300u m, fiber strength of PHBHHx between 500~600 MPa, good toughness.

实施例11 Example 11

称量3g左右,重均分子量Mw=300,000的PHBV (HV为5.7%)高聚物(宁波天安生物材料有限公司),投入于熔融挤出机中,升温至190°C,挤出圆型样条。 Weighing about 3g, weight average molecular weight of Mw = PHBV 300,000 (HV 5.7%) polymer (Ningbo Tian Biological Materials Co., Ltd.), put in a melt extruder heated to 190 ° C, extruded round comp Article. 对挤出样条进行预拉伸,并使之进入冰水中进行淬火处理得到无定形纤维。 Extrusion spline prestretched and allowed to enter the ice-water quenching process to obtain amorphous fibers. 无定形纤维保持在冰水中等温结晶24h后,放到真空干燥箱中干燥除水,然后以40mm/min的速度进行冷拉伸,得到拉伸5倍的取向PHBV纤维,最后于材料在lOOMPa左右的应力下,于5(TC下进行退火处理60min。所得纤维在室温下放置一段时间后,进行强度测试。获得直径为300um,强度为312MPa,延伸率为56%的PHBV纤维。 实施例12 Amorphous fibers held in ice water for isothermal crystallization for 24h, put into a vacuum drying oven to remove water, then at a speed of 40mm / min were cold drawing, stretched 5 times to give PHBV fiber orientation, and finally the material around lOOMPa after the stress, it is annealed to a (lower TC 5 60min. the resulting fiber placement period of time at room temperature, the strength test was obtained having a diameter of 300um, strength of 312MPa, an elongation of 56% PHBV fiber. Example 12

称量2~3g分子量为400,000的PHBHHx (HHx为12%)高聚物(山东鲁抗医药集团有限公司),与分子量为100,000的PLA2〜3g (美国naturework公司) 的预混物,并投入于熔融挤出机中,升温至16(TC左右,挤出圆型样条。对挤出样条进行预拉伸,并使之进入冰水中进行淬火处理得到无定形纤维。无定形纤维保持在冰水中等温结晶24h后,放到真空干燥箱中干燥除水,然后以40mm/min 的速度进行冷拉伸,得到拉伸6~8倍的取向纤维,取向纤维在lOOMPa左右的应力下,于50'C下进行退火处理60min。所得纤维在室温下放置一段时间后,进行强度测试。获得直径为200~300u m,强度在400〜600 MPa之间,延伸率为50%左右的PHBHHx/PLA纤维。 Weighing 2 ~ 3g of a molecular weight of PHBHHx 400,000 (HHx 12%) polymer (Shandong Lukang Pharmaceutical Group Co., Ltd.), with a molecular weight of 100,000 PLA2~3g (US naturework company) premix, and put in a melt extruder, heated to about 16 (TC, extrusion circular spline. spline extruded prestretched and allowed to enter the ice-water quenching process to obtain amorphous fibers amorphous fibers kept in an ice 24h after crystallization temperature and the like in water, put into a vacuum drying oven to remove water, then at a speed of 40mm / min of cold drawing, a drawn 6 to 8 times the fiber orientation, the orientation of the fibers at a stress of about Loompa, 50 after annealing treatment 'C 60min. the resulting fiber placement period of time at room temperature, the strength test was obtained having a diameter of 200 ~ 300u m, the strength between 400~600 MPa, an elongation of about 50% PHBHHx / PLA fibers .

实施例13 Example 13

纤维的制备同实施例12,所用材料改为分子量为150,000的PH02〜3g与分子量为50,000的PCL2〜3g的共混物,熔融挤出的温度控制在6(TC左右,经过淬火、拉伸、退火处理之后,得到强度在200〜400MPa之间的PHO/PCL纤维。 实验例'C Fiber prepared as in Example 12, the materials to a molecular weight of 150,000 and a molecular weight of PCL2~3g PH02~3g 50,000 blend, melt extrusion temperature controlled at 6 (TC, quenched, stretched, after annealing treatment, to obtain a strength PHO / PCL 200~400MPa between the fibers. experimental Example 'C

对实施例1-13得到的产品在在自然环境下(污水或海水或污泥中)进行降解实验,时间为三到六个月,结果全部降解。 Example 1-13 product obtained in the natural environment (in sewage or sea water or sludge) degradation experiments, time is three to six months, the results of all degradation. 给出上述实施例只是为了举例说明本发明,而不是为了对本发明的保护范围进行任何限制。 The above-described embodiments are given only to illustrate embodiments of the present invention, rather than any limitation to the scope of protection of the present invention. 本领域技术人员根据本发明的精神,对发明进行的任何变动都在本发明的保护范围之内。 Any changes to those skilled in the spirit of the present invention, of the invention are within the scope of the present invention.

Claims (13)

1.一种纤维,含有聚羟基脂肪酸酯。 1. A fiber, comprising polyhydroxyalkanoate.
2. 权利要求1所述的纤维,其中聚羟基脂肪酸酯为聚-3-羟基丁酸均聚物PHB、 3-羟基丁酸和3-羟基戊酸共聚物PHBV、 3-羟基己酸和3-羟基辛酸共聚物PHHO、 3-羟基丁酸和3-羟基己酸共聚物PHBHHx、 3-羟基丁酸和4-羟基丁酸共聚物P(3HB-4HB)之一或其混合物。 The fibers 1 and 3-hydroxyhexanoate as claimed in claim 2, wherein the polyhydroxyalkanoate is poly-3-hydroxybutyric acid homopolymer of the PHB, 3-hydroxy butyric acid and 3-hydroxyvaleric acid copolymer of PHBV, 3-hydroxy octanoic acid copolymer PHHO, 3- hydroxybutyric acid and 3-hydroxy-hexanoic acid copolymer PHBHHx, 3- hydroxybutyric acid and 4-hydroxybutyric acid copolymer P (3HB-4HB) one or mixtures thereof.
3. 权利要求1所述的纤维,还含有聚乳酸PLA、聚己内酯之一或聚乳酸PLA和聚己内酯的混合物,其中聚羟基脂肪酸酯和聚乳酸PLA或聚己内酯或聚乳酸PLA和聚己内酯的混合物的质量比为1: 99到99: 1。 One fiber of claim 1 mixture of polycaprolactone or polylactic acid PLA and polycaprolactone wherein the polyhydroxyalkanoate and polylactic acid or PLA or polycaprolactone as claimed in claim 3, further comprising polylactic acid PLA,, the mixture mass ratio of polylactic acid PLA and polycaprolactone is from 1: 99 to 99: 1.
4. 权利要求l所述的纤维,还含有成核剂,其中聚羟基脂肪酸酯和成核剂的质量比为100: 1〜2。 4. A fiber according to claim l, further comprising a nucleating agent, wherein the polyhydroxyalkanoate mass and a nucleating agent ratio of 100: 1 ~.
5. 权利要求4所述的纤维,其中成核剂为氮化硼、柠檬酸三丁酯。 The fiber of claim 4, wherein the nucleating agent is boron, tributyl citrate.
6. 权利要求1-5任一所述的纤维的制备方法,为将基材熔融挤出得到样条后经过冷拉伸处理而得。 The method of any of claims 1-5 preparing a fiber according to claim 6, after the base material is melt-extruded to obtain a cold drawing process through a spline obtained.
7. 权利要求l-5任一所述的纤维的制备方法,为将基材熔融挤出得到样条后经过预拉伸、淬火、等温结晶步骤而得。 A method of preparing a fiber according to any of l-5 as claimed in claim 7, the substrate is pre-stretched after melt-extrusion through a spline, hardened, derived isothermal crystallization step.
8. 权利要求6所述的纤维的制备方法,其中在基材熔融挤出得到样条后经过预拉伸、淬火、等温结晶、冷拉伸、退火处理或/和多步拉伸而得。 The method of preparing the fiber of claim 6, wherein the substrate is pre-stretched after melt-extrusion to obtain a spline, quenching, isothermal crystallization, cold drawing, annealing and / or multi-step stretching is obtained.
9. 权利要求6-8任一所述的方法,其中基材熔融的温度为100-200°C。 9. A method according to any of claims 6-8, wherein the melting temperature of the substrate is 100-200 ° C.
10. 权利要求7-8任一所述的方法,其中淬火步骤在冰水中进行,等温结晶也在冰水中进行,等温结晶时间为24小时。 10. A method according to any of claims 7-8, wherein the quenching step is carried out in ice-water, ice-water isothermal crystallization are carried out, the isothermal crystallization time of 24 hours.
11. 权利要求8所述的方法,其中退火处理在50。 11. The method of claim 8, wherein the annealing treatment 50. C-8(TC进行60-90分钟。 C-8 (TC for 60-90 minutes.
12. 权利要求1-5任一所述的纤维在农业、渔业、涂料、医药、粘合剂、 包装工业和其它领域的用途。 12. The use of a fiber according to any of claims 1-5 in agriculture, fishery, paints, pharmaceuticals, adhesives, and other areas of the packaging industry claims.
13. 权利要求12所述的用途,其中医药领域的用途包括作为药物可控释放材料,医用植入材料,缝合剂之一,包装领域的用途包括作为用做农用薄膜、 纸代用品、纸张塑膜、包装薄膜、食品容器、生活垃圾袋、农药化肥缓释材料、 化妆品的添加成分之一,渔业领域的用途包括用做拉网、围网、定置网、水产养殖、绳索、工业滤网之一,其它领域的用途包括用做窗纱、绳索、刷子之一。 13. Use according to claim 12, wherein the pharmaceutical art include use as a pharmaceutical controlled release material, the use of medical implant materials, one of a seaming agent, comprising packaging used as agricultural films, paper substitutes, plastic sheet one additive component films, packaging films, food containers, garbage bags, release pesticides and fertilizers, cosmetics, use in the field of fishing nets do pull comprises, fence, set nets, aquaculture, ropes, industrial filters of First, the use of other areas including one of screens used, the rope, the brush.
CN 200810052461 2008-03-18 2008-03-18 Polyhydroxyalkanoates fiber and preparation method thereof CN101538750A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200810052461 CN101538750A (en) 2008-03-18 2008-03-18 Polyhydroxyalkanoates fiber and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200810052461 CN101538750A (en) 2008-03-18 2008-03-18 Polyhydroxyalkanoates fiber and preparation method thereof

Publications (1)

Publication Number Publication Date
CN101538750A true true CN101538750A (en) 2009-09-23

Family

ID=41122129

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200810052461 CN101538750A (en) 2008-03-18 2008-03-18 Polyhydroxyalkanoates fiber and preparation method thereof

Country Status (1)

Country Link
CN (1) CN101538750A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102108563A (en) * 2010-11-16 2011-06-29 清华大学 Device for preparing polyhydroxyalkanoate fibers
CN102108562A (en) * 2010-11-16 2011-06-29 清华大学 Method for preparing polyhydroxyalkanoate (PHA) fibers
CN102392318A (en) * 2011-04-22 2012-03-28 中国科学院宁波材料技术与工程研究所 Biobased biodegradable fiber and preparation method thereof
CN102586935A (en) * 2011-12-29 2012-07-18 大连工业大学 Preparation method of elastic fiber based on biomass polyester
CN102586936A (en) * 2011-12-29 2012-07-18 大连工业大学 Degradable fibers with good resilience and preparation method thereof
CN102675839A (en) * 2011-03-14 2012-09-19 美亚无纺布工业有限公司 Biological degradable film and laminated material
CN102848569A (en) * 2012-10-03 2013-01-02 广东华业包装材料有限公司 Production method of two-way stretched thin film made of 3-hydroxybutyrate-4-hydroxybutyrate copolymer
CN102862298A (en) * 2012-10-03 2013-01-09 广东华业包装材料有限公司 Method for manufacturing longitudinally stretched 3-hydroxybutyrate-4-hydroxybutyrate copolymer film
CN102936761A (en) * 2012-12-11 2013-02-20 江南大学 Resource-renewable and biodegradable conductive fiber and preparation method thereof
CN103628174A (en) * 2013-10-30 2014-03-12 清华大学 Absorbable suture containing medium-chain PHA (Polyhydroxyalkanoate)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102108563B (en) 2010-11-16 2012-11-21 清华大学 Method for preparing polyhydroxyalkanoate fibers
CN102108562A (en) * 2010-11-16 2011-06-29 清华大学 Method for preparing polyhydroxyalkanoate (PHA) fibers
CN102108563A (en) * 2010-11-16 2011-06-29 清华大学 Device for preparing polyhydroxyalkanoate fibers
CN102108562B (en) 2010-11-16 2013-02-13 清华大学 Method for preparing polyhydroxyalkanoate (PHA) fibers
CN102675839A (en) * 2011-03-14 2012-09-19 美亚无纺布工业有限公司 Biological degradable film and laminated material
CN102392318A (en) * 2011-04-22 2012-03-28 中国科学院宁波材料技术与工程研究所 Biobased biodegradable fiber and preparation method thereof
CN102586936A (en) * 2011-12-29 2012-07-18 大连工业大学 Degradable fibers with good resilience and preparation method thereof
CN102586936B (en) 2011-12-29 2014-01-08 大连工业大学 Degradable fibers with good resilience and preparation method thereof
CN102586935A (en) * 2011-12-29 2012-07-18 大连工业大学 Preparation method of elastic fiber based on biomass polyester
CN102848569A (en) * 2012-10-03 2013-01-02 广东华业包装材料有限公司 Production method of two-way stretched thin film made of 3-hydroxybutyrate-4-hydroxybutyrate copolymer
CN102862298B (en) * 2012-10-03 2015-02-25 广东华业包装材料有限公司 Method for manufacturing longitudinally stretched 3-hydroxybutyrate-4-hydroxybutyrate copolymer film
CN102862298A (en) * 2012-10-03 2013-01-09 广东华业包装材料有限公司 Method for manufacturing longitudinally stretched 3-hydroxybutyrate-4-hydroxybutyrate copolymer film
CN102936761A (en) * 2012-12-11 2013-02-20 江南大学 Resource-renewable and biodegradable conductive fiber and preparation method thereof
CN102936761B (en) * 2012-12-11 2015-09-23 江南大学 A resource renewable, conductive fiber and its preparation method of biological degradable
CN103628174A (en) * 2013-10-30 2014-03-12 清华大学 Absorbable suture containing medium-chain PHA (Polyhydroxyalkanoate)
CN105063790A (en) * 2013-10-30 2015-11-18 清华大学 PHBV/PLA absorbable suture
CN105063789A (en) * 2013-10-30 2015-11-18 清华大学 Absorbable suture containing PHBHHx/PLA (poly-3-hydroxybutyrate-co-3-hydroxyhexanoate/polylactic acid)

Similar Documents

Publication Publication Date Title
Ahmed et al. Polylactides—chemistry, properties and green packaging technology: a review
Lee et al. Surface functionalisation of bacterial cellulose as the route to produce green polylactide nanocomposites with improved properties
Vroman et al. Biodegradable polymers
Harris et al. Improving mechanical performance of injection molded PLA by controlling crystallinity
US6794023B1 (en) Polymer products comprising soft and elastic biodegradable polyhydroxyalkanoate copolymer compositions and methods of preparing such polymer products
Liu et al. Selective enzymatic degradations of poly (L-lactide) and poly (ε-caprolactone) blend films
US5502116A (en) Biodegradable copolymers and plastic articles comprising biodegradable copolymers of 3-hydroxyhexanoate
US20050107505A1 (en) Biodegradable resin composition and molded object thereof
Ha et al. Miscibility, properties, and biodegradability of microbial polyester containing blends
Wang et al. Strengthening blends of poly (lactic acid) and starch with methylenediphenyl diisocyanate
US5760118A (en) End use applications of biodegradable polymers
Holmes Biologically produced (R)-3-hydroxy-alkanoate polymers and copolymers
Bugnicourt et al. Polyhydroxyalkanoate (PHA): Review of synthesis, characteristics, processing and potential applications in packaging
US6346599B1 (en) Biodegradable lactone copolymers
US20070182041A1 (en) Toughened Polylactic Acid Polymers and Copolymers
US5693389A (en) Polyester composition
US20050001349A1 (en) Lactic acid polymer composition and molded object thereof
US5789536A (en) Process of polyesters
JP2008069299A (en) Plasticized polylactic acid composition
JP2002030208A (en) Polylactic acid resin composition and molded article
US5874040A (en) Processing of polyesters
Li et al. Polyhydroxyalkanoates: opening doors for a sustainable future
JPH115849A (en) Resin composition and its molded product
Liu et al. Miscibility, thermal characterization and crystallization of poly (l-lactide) and poly (tetramethylene adipate-co-terephthalate) blend membranes
Renard et al. Hydrolytic degradation of blends of polyhydroxyalkanoates and functionalized polyhydroxyalkanoates

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
C02 Deemed withdrawal of patent application after publication (patent law 2001)