CN101532107B - Heat resisting rare earth magnesium alloy and preparation method thereof - Google Patents

Heat resisting rare earth magnesium alloy and preparation method thereof Download PDF

Info

Publication number
CN101532107B
CN101532107B CN 200910064626 CN200910064626A CN101532107B CN 101532107 B CN101532107 B CN 101532107B CN 200910064626 CN200910064626 CN 200910064626 CN 200910064626 A CN200910064626 A CN 200910064626A CN 101532107 B CN101532107 B CN 101532107B
Authority
CN
China
Prior art keywords
mg
magnesium alloy
alloy
rare earth
temperature
Prior art date
Application number
CN 200910064626
Other languages
Chinese (zh)
Other versions
CN101532107A (en
Inventor
任文亮
张兴渊
张清
李克杰
李全安
李跃华
陈君
Original Assignee
河南科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 河南科技大学 filed Critical 河南科技大学
Priority to CN 200910064626 priority Critical patent/CN101532107B/en
Publication of CN101532107A publication Critical patent/CN101532107A/en
Application granted granted Critical
Publication of CN101532107B publication Critical patent/CN101532107B/en

Links

Abstract

The invention discloses a heat resisting rare earth magnesium alloy, in particular to a magnesium alloy with compositions of Mg, Gd, Y, Sm, Zr and Sb. The alloy consists of the following compositions in percentage by weight: 8 to 15 percent of Gd, 2 to 5 percent of Y, 0.4 to 4.5 percent of Sm, 0.3 to 0.7 percent of Zr, 0.3 to 2 percent of Sb, less than 0.02 percent of gross amount of impurity elements, namely Si, Fe, Cu and Ni, and the balance being Mg. The invention also discloses a method for preparing the heat resisting rare earth magnesium alloy. The heat resisting casting rare earth magnesium alloy has high tensile strength, in a range between room temperature and 250 DEG C, the tensile strength of the alloy has anomalous temperature effect, which means that the tensile strength rises along with rise of tensile temperature. The heat resisting casting rare earth magnesium alloy has the highest tensile strength reaching 346MPa at 250 DEG C, still has 309MPa at 300 DEG C. Compared with commercial heat resisting magnesium alloy WE54, the rare earth magnesium alloy has higher high-temperature-strength, and has good application prospect in aero-space, automobile industry, weaponry and other fields.

Description

一种耐热稀土镁合金 A heat-resistant magnesium alloy

技术领域 FIELD

[0001] 本发明涉及一种耐热稀土镁合金。 [0001] The present invention relates to a heat resistant magnesium alloy.

[0002] 背景技术 [0002] BACKGROUND OF THE INVENTION

[0003] 镁是最轻的金属结构材料,在汽车上应用日益增多。 [0003] Magnesium is the lightest metal structural material, increasing application in the car. 汽车每减重lOOKg,则IOOKm 节油0. 5L,同时减少了尾气排放,因此进行镁合金的研究开发对于节约能源、抑制环境污染有着重要意义。 Each car weight reduction lOOKg, the IOOKm saving 0. 5L, while reducing emissions, and therefore research and development of magnesium alloys for energy conservation, environmental pollution suppression of great significance. 但是,镁合金的强度和耐热性不佳严重阻碍其在航空航天、军工、汽车及其它行业中的应用,因此提高镁合金的强度和耐热是发展镁合金材料的重要课题。 However, the strength and heat-resistant magnesium alloy poor a serious impediment to its use in the aerospace, defense, automotive and other industries, thereby increasing the strength and heat-resistant magnesium alloy is an important issue in the development of magnesium alloy material.

[0004] 现有的耐热镁合金主要从限制位错运动和强化晶界入手,通过适当的合金化,通过引入热稳定性高的第二相、降低元素在镁基体中的扩散速率或者改善晶界结构状态和组织形态等手段来实现提高镁合金热强性和高温蠕变抗力的目的。 [0004] The conventional heat resistant magnesium alloy main starting from the restriction dislocation motion and grain boundary strengthening by alloying appropriate, by introducing a second phase of high thermal stability, reducing the rate of diffusion of elements in the magnesium matrix or improving state of grain boundary structure and morphology and other means to achieve the purpose of improving strength of magnesium alloy heat resistance and resistance to high temperature creep. 目前,在所有合金元素中, 稀土(RE)是提高镁合金耐热性能最有效的合金元素,稀土元素在镁合金中除了具有除气、 除杂、提高铸造流动性、耐蚀性能以外,同时大部分稀土元素在镁中具有较大的固溶度极限;而且随温度下降,固溶度急剧减少,可以得到较大的过饱和度,从而在随后的时效过程中析出弥散的、高熔点的稀土化合物相;稀土元素还可以细化晶粒、提高室温强度,而且分布在晶内和晶界(主要是晶界)的弥散的、高熔点稀土化合物,在高温时仍能钉扎晶内位错和晶界滑移,从而提高了镁合金的高温强度,同时RE元素在镁基体中的扩散速率较慢,这使得Mg-RE合金适于在较高温度环境下长期工作。 Currently, all the alloying elements, the rare earth (RE) is a magnesium alloy to improve the heat resistance of the most effective alloying elements, the rare earth element in the magnesium alloy addition to outgassing, impurity, increase casting fluidity, corrosion resistance outside, while most of the rare earth element in the magnesium having larger solubility limit; and decreases with temperature, the solid solubility drastically reduced, can obtain a large degree of supersaturation, so that during the subsequent aging precipitation dispersed, a high melting point rare earth compound phase; rare earth element can grain refinement to improve the room temperature strength and the grain distribution and grain boundaries (grain boundary mainly) dispersion of rare earth compounds of high melting point, the crystal position still pinned at high temperatures dislocations and grain boundary sliding, thereby increasing the high temperature strength of magnesium alloy, while the rate of diffusion of RE elements in the magnesium matrix is ​​slow, which makes it suitable for long-Mg-RE alloys operating at higher temperatures. Mg-RE (如Mg-Gd系)合金是重要的耐热合金系,具有较高的高温强度和优良的蠕变性能。 Mg-RE (as Mg-Gd-based) alloy based heat resistant alloy is important, it has a high strength and excellent high-temperature creep properties. 当前于200〜300°C下长期工作的镁合金零部件均为Mg-RE系合金,由于其特殊的价电子结构及在镁合金中的显著的强化效果,使Mg-RE系成为发展高强度耐热镁合金的一个重要合金系。 Magnesium alloy components at the current long-term 200~300 ° C are Mg-RE based alloys, because of their special structure and valence electron significant strengthening effect in the magnesium alloy of the Mg-RE-based high strength development become one important alloy-based heat resistant magnesium alloy.

[0005] 作为稀土资源第一大国,中国关于Mg-RE系合金的研究近年来不断增多和深入, 镁稀土合金的成功研发将有助于我们利用这一优势。 [0005] As the rare earth resources superpower, China Research on Mg-RE alloys in recent years and the growing depth, successfully developed the rare earth magnesium alloys will help us take advantage of this. 目前的商业耐热镁合金如WE54,其存在的主要不足是,高温时强度下降仍较多,还不能完全满足其在航空航天、军工、汽车及其它行业中高温下使用时对强度的更高的要求。 The current commercial heat-resistant magnesium alloys such as WE54, the existence of the main problems is that when high-temperature strength is still more, can not fully meet the higher strength of its use in the aerospace, defense, automotive and other industries in the high temperature requirements.

发明内容 SUMMARY

[0006] 本发明的目的是提供一种高强度的耐热稀土镁合金。 [0006] The object of the present invention is to provide a high-strength heat-resistant magnesium alloy.

[0007] 本发明的另一目的是提供一种该耐热稀土镁合金的制备方法。 [0007] Another object of the present invention is to provide a method for preparing the heat-resistant magnesium alloy.

[0008] 为了实现以上目的,本发明所采用的技术方案是:一种耐热稀土镁合金,由以下的质量百分比的组分组成:8〜15% Gd, 2〜5% Y,0. 4〜4. 5% Sm,0. 3〜0. 7% Zr,0. 3〜 2% Sb,杂质元素Si、Fe、Cu和Ni总量小于0. 02%,余量为Mg。 [0008] To achieve the above object, the technical solution employed in the present invention is: A heat resistant magnesium alloy, the following percentages of components by the mass composition: 8~15% Gd, 2~5% Y, 0 4. ~4. 5% Sm, 0. 3~0. 7% Zr, 0. 3~ 2% Sb, impurity elements Si, Fe, Cu and Ni is less than 0.02% of the total, the balance being Mg.

[0009] 所述的Gd,Y,Sm的质量百分比之和为13〜18%。 [0009] the sum of the percentages by mass of Gd, Y, Sm, and is 13~18%.

[0010] 所述耐热稀土镁合金是由镁,锑和中间合金Mg-Gd,Mg-Y, Mg-Sm, Mg-Zr为原料熔炼而成。 [0010] The heat resistant magnesium alloy is a magnesium, antimony and intermediate alloy Mg-Gd, Mg-Y, Mg-Sm, Mg-Zr obtained by melting raw materials.

[0011] 本发明耐热稀土镁合金的制备方法,包括如下步骤: [0011] A method of the present invention, the heat-resistant magnesium alloy, comprising the steps of:

[0012] ①将镁、锑、中间合金Mg-Gd、Mg-γ, Mg-Sm和Mg-&预热; [0012] ① magnesium, antimony, intermediate alloy Mg-Gd, Mg-γ, Mg-Sm and Mg- & preheating;

3[0013] ②将镁和锑在C02+SF6混合气体保护下熔化,于720〜740°C加入中间合金Mg-Gd、 Mg-Y、Mg-Sm,将温度升至740〜760°C加入Mg-Zr中间合金; 3 [0013] ② magnesium and antimony in the C02 + SF6 protective gas mixture melted at 720~740 ° C was added intermediate alloy Mg-Gd, Mg-Y, Mg-Sm, the temperature was raised to 740~760 ° C was added mg-Zr master alloy;

[0014] ③当熔化后,去除表面浮渣,将温度升至770〜780°C后停止升温; [0014] After ③ When melted, the surface scum is removed and the temperature was raised to 770~780 ° C after heating is stopped;

[0015] ④将温度降至690〜730°C后进行浇铸,得到铸态合金; After the cast [0015] ④ The temperature was lowered to 690~730 ° C, to obtain cast alloy;

[0016] ⑤将铸态合金进行热处理后得到耐热稀土镁合金。 After [0016] ⑤ The obtained cast alloy is heat-treated heat resistant magnesium alloy.

[0017] 步骤①所述的预热温度为150〜220°C。 [0017] Step ① the preheating temperature of 150~220 ° C.

[0018] 所述的热处理是对铸态合金依次进行固溶处理和时效处理。 [0018] The heat treatment of cast alloys is sequentially subjected to solution treatment and aging treatment.

[0019] 所述固溶处理的处理温度为500〜550°C,处理时间为8〜20小时。 [0019] The treatment temperature in the solution treatment is 500~550 ° C, a treatment time of 8~20 hours.

[0020] 所述时效处理的处理温度为200〜250°C,处理时间为10〜40小时。 [0020] The aging treatment temperature is 200~250 ° C, the treatment time is 10 ~ 40 hours.

[0021] 所述浇铸时将浇铸模具预热至180〜250°C。 [0021] The casting mold when the casting is preheated to 180~250 ° C.

[0022] 本发明合金组分为Mg-Gd-Y-Smlr-Sb。 [0022] The alloy composition of the present invention is divided into Mg-Gd-Y-Smlr-Sb. 本发明采用Gd为第一组分,Gd在Mg固溶体中的最大固溶度为20. 3wt%,200°C在Mg固溶体中的固溶度为3. 8wt%,为保证合金得到良好的时效析出强化和固溶强化效果,Gd的加入量不低于8wt%,而又为了避免合金密度增加太多,以及合金过分脆化,因此本发明的Gd加入量不高于15wt% ;采用Y为第二组分, 采用Sm为第三组分,Y、Sm可以降低Gd在Mg中的固溶度,从而增加Gd的时效析出强化效应;Sm在Mg中的最大固溶度为5. 7wt%,因此本发明的Sm加入量不高于4. 5wt% ;采用rLx 作为晶粒细化剂,以提高合金的韧性和改善合金的工艺性能;Sb作为固溶强化、弥散强化、 以及与稀土协同强化镁合金的组元,进一步提高合金的高温强度。 The present invention uses Gd as a first component, Gd in the Mg solid solution the maximum solid solubility of 20. 3wt%, 200 ° C the solid solubility of Mg in solid solution was 3. 8wt%, in order to ensure good aging the alloy obtained solid solution strengthening and precipitation strengthening, Gd added in an amount of not less than 8wt%, but the density is increased too much in order to avoid alloys, and alloys too brittle, and thus the present invention is the amount of Gd added is not more than 15wt%; Y is employed the second component, using Sm as a third component, the Y, Gd Sm can reduce the degree of solid solution in Mg, thus increasing the aging precipitation strengthening effect of Gd; Sm maximum solid solubility of Mg in the range 5. 7wt% Therefore the present invention is added in an amount Sm of not more than 4. 5wt%; rLx employed as a grain refining agent, to improve the toughness of the alloy and improve process performance; Sb as a solid solution strengthening, dispersion strengthening, and rare earth synergistic reinforced magnesium alloy component, to further improve the high temperature strength of the alloy.

[0023] Sb是一种镁合金强化元素和表面活性元素,能细化镁合金晶粒,而且弥散的高熔点的Sb-RE化合物对基体和晶界具有强烈的强化作用。 [0023] Sb is a magnesium alloy strengthening elements and surface active elements, can refine the grains of magnesium alloy, Sb-RE and high-melting compound dispersion strengthening effect of a strong base and the grain boundary. Sb与Mg形成稳定性好的六方结构Mg3Sb2化合物,Mg3Sb2与Mg的面错配度较小,部分Mg3Sb2可成为α -Mg的形核衬底,使合金在较小的过冷度下成核,细化晶粒,提高镁合金的强度;弥散的Mg3Sb2不仅可以强化Mg基体,还分布于晶界使其强化,同时还使晶界上半连续的网状化合物转变成颗粒状,进一步提高合金的高温强度。 Sb and Mg is formed Mg3Sb2 good stability hexagonal compound, and Mg Mg3Sb2 surface with a smaller degree of error, may be part Mg3Sb2 α -Mg nucleation substrate, the alloy nucleation at a smaller degree of subcooling grain refinement to improve the strength of the magnesium alloy; Mg3Sb2 only diffuse Mg matrix can be reinforced, so that it is also distributed in the grain boundary strengthening, while still allowing particulate grain boundary into a semi-continuous compound web to further enhance the alloy high-temperature strength.

[0024] 本发明在含镁合金中加入的辅助合金元素Sb能与稀土(RE)形成以RE2Sb为主的高熔点弥散颗粒质点,分布于Mg基体中,该颗粒质点相主要为RE2Sb相,但当含Sb量较高时,该颗粒质主要为RE2Sb相和RESb相的复合物,弥散RE2Sb颗粒质点数量和尺寸增大,晶界处零星散布离异共晶β相的数量也提高。 [0024] In the present invention, addition of magnesium-containing alloy capable of forming an auxiliary alloying element Sb and rare earth (RE) to RE2Sb based refractory particles dispersed particles distributed in the Mg matrix, the particle phase is chiefly RE2Sb particle phase, but when the content of Sb content higher, the particles of the main mass RE2Sb RESb phase and phase composite particle dispersion RE2Sb particles increase in size and number, the grain boundary scattered with divorced eutectic β phase number is also improved. 适量的Sb还改善了合金液的流动性。 Amount of Sb also improves the flow of the liquid alloy. 由于RE-Sb质点的弥散强化作用、Sb和RE的固溶强化作用,使合金的常温和高温力学性能提高, 并有效改善合金高温抗蠕变能力。 Since the dispersion strengthening particles of RE-Sb, Sb and RE solid solution strengthening effect of the temperature and improve the high temperature mechanical properties of the alloy, and effectively improve the high temperature creep resistance of the alloy.

[0025] 本发明的耐热稀土镁合金在力学性能上具有一个突出特点,在室温到250°C 范围内,合金的抗拉强度具有反常温度效应,即随着拉伸温度的提高,抗拉强度也随之提高,在250 °C时,抗拉强度最高可达到346MPa。 [0025] The heat resistant magnesium alloy according to the present invention has a prominent feature on the mechanical properties, into the range of room temperature 250 ° C, and the tensile strength anomalous temperature effect, i.e. with increasing stretching temperature, tensile also will increase the strength, at 250 ° C, the tensile strength can reach 346MPa. 本发明的耐热稀土镁合金以Mg-10Gd-3. 5Y-2. 5Sm-0. 3Zr-lSb为例,经固溶处理和时效处理后其室温抗拉强度为270MPa,延伸率为3. 4%,200°C抗拉强度为300MPa,250°C抗拉强度为346Mpa,300°C时抗拉强度仍高达到309MPa。 Heat resistant magnesium alloy according to the present invention in Mg-10Gd-3. 5Y-2. 5Sm-0. 3Zr-lSb example, after solution treatment and aging treatment room-temperature tensile strength of 270MPa, elongation 3. 4%, 200 ° C a tensile strength of 300MPa, 250 ° C a tensile strength of 346Mpa, when 300 ° C is still high tensile strength reached 309MPa. 而在相同条件下,TO54镁合金的室温抗拉强度为280MPa,延伸率为4. 0%,200°C抗拉强度为241MPa,250°C抗拉强度为230MPa。 While under the same conditions, TO54 room temperature tensile strength of magnesium alloy is 280MPa, elongation 4. 0%, 200 ° C a tensile strength of 241MPa, 250 ° C a tensile strength of 230MPa. 本发明的耐热稀土镁合金与商用耐热镁合金WE54合金相比,具有更高的高温强度,在航空航天、汽车工业、武器装备等方面将有着广阔的应用前景。 Compared with commercial heat-resistant magnesium alloy heat-resistant magnesium alloy WE54 alloy of the invention, it has a higher temperature strength in the aerospace, automotive, weapons and equipment will have broad application prospects. [0026] 具体实施方式 [0026] DETAILED DESCRIPTION

[0027] 本发明实施例中涉及到的原料镁(Mg),锑(Sb) ,Mg-Gd,Mg-Y,Mg-Sm,Mg-Zr均为市售产品。 Examples of raw materials involved in magnesium (Mg), antimony (Sb), Mg-Gd, Mg-Y, Mg-Sm, Mg-Zr embodiment are commercially available products [0027] present invention. 所述原料的纯度为99. 9%的Mg,99. 9%的Sb,99. 5%的Mg_25. 26% Gd,99. 5%的Mg-24. 54% Y、99. 5%的Mg-25. 11% Sm、99. 5%的Mg_30. 00% Zr0 The purity of the starting material was 99.9% of Mg, 99. 9% of Sb, 99. 5% of Mg_25. 26% Gd, 99. 5% of Mg-24. 54% Y, 99. 5% of Mg -25. 11% Sm, 99. 5% of Mg_30. 00% Zr0

[0028] 实施例1 [0028] Example 1

[0029] 本实施例的耐热稀土镁合金由以下的质量百分比的组分组成:8% Gd, 2% Y,4% Sm,0. 5% Zr,0. 5% Sb,杂质元素Si、Fe、Cu和Ni总量小于0. 02%,余量为Mg。 [0029] The heat resistant magnesium alloy according to the present embodiment by the following composition in mass percentages of components:.. 8% Gd, 2% Y, 4% Sm, 0 5% Zr, 0 5% Sb, impurity elements Si, Fe, the total amount of Cu and Ni is less than 0.02%, the balance being Mg. 其中稀土总含量为14%。 Wherein the total rare earth content of 14%.

[0030] 按上述成分配制合金,其熔铸工艺为:采用刚玉坩埚、中频感应炉熔炼。 [0030] The above ingredients formulated alloy casting is a process: using corundum crucible, medium frequency induction furnace. 先将镁、 锑、中间合金Mg-Gd、Mg-Y, Mg-Sm和Mg-&预热到190°C,然后将镁、锑放入预热到500°C 的坩埚中,在C02+SF6混合气体保护下,大功率快速加热熔化,待镁和锑熔化后,在730°C加入Mg-Gd、Mg-Y中间合金,小功率缓慢加热,待其熔化后且镁液温度回升至730°C时再加入Mg-Sm中间合金;升温到760°C加入Mg-&中间合金,待其熔化后去除表面浮渣,再将温度升至780°C,关闭主控电路、静置;待镁液降温至710°C进行浇铸,浇铸用钢制模具预先加热至180°C。 First magnesium, antimony, intermediate alloy Mg-Gd, Mg-Y, Mg-Sm and Mg- & preheated to 190 ° C, and magnesium, antimony placed into a preheated crucible of 500 ° C, the C02 + SF6 mixed gas under protection, high power rapid heating and melting, magnesium and antimony until melted at 730 ° C was added Mg-Gd, Mg-Y alloy intermediate, low power slowly heated, melted and wait until the liquid temperature rose to 730 Mg was added when the alloy Mg-Sm intermediate ° C; heated to 760 ° C Mg- & master alloy was added, until the removal of surface scum after melting, the temperature was raised to 780 ° C, close the master circuit, standing; be magnesium was cooled to 710 ° C for casting, casting with a steel mold previously heated to 180 ° C. 最后得到Mg-8Gd-2Y-4Sm-0. 5Zr_0. 5Sb铸态镁合金。 Finally, to obtain Mg-8Gd-2Y-4Sm-0. 5Zr_0. 5Sb cast magnesium alloys. 铸态镁合金的热处理:500°C 固溶处理20小时,225°C等温时效处理25小时。 Heat treatment of the as-cast magnesium alloy: 500 ° C solution 20 hours, 225 ° C isothermal aging treatment for 25 hours.

[0031] 本实施例耐热稀土镁合金的拉伸强度试验的方法:经固溶时效处理后的试样,按照国家标准GB6397-86《金属拉伸实验试样》加工成5倍标准拉伸试样。 Tensile strength test method [0031] embodiment of the present heat resistant magnesium alloy of the embodiments: The sample after solution and aging treatment, according to the national standard GB6397-86 "metal tensile test specimen" 5-fold processed into standard tensile sample. 在高温下的拉伸试样需要在试样两端加工螺纹以满足高温拉伸试样的夹持装置的要求。 Tensile specimens at a high temperature processing required at both ends of the sample holding means is threaded to meet the requirements of high-temperature tensile specimens. 电子拉伸在日本岛津AG-I 250kN精密万能实验机上进行,拉伸速度为lmm/min。 Electronic stretched in the Shimadzu Autograph AG-I 250kN test machine tensile speed of lmm / min. 高温拉伸时,在相应温度下对拉伸试样保温15分钟,温度波动士1°C,然后进行拉伸。 When the stretching temperature, at a corresponding temperature on the tensile specimens for 15 minutes, the temperature fluctuation disabilities 1 ° C, and then stretched.

[0032] 本实施例所得的耐热稀土镁合金,其室温抗拉强度为264MPa,延伸率为3. 2%, 200 V的抗拉强度为300MPa,250 V的抗拉强度为338Mpa,300 °C时抗拉强度仍高达到293MPa。 [0032] Examples of the resulting heat resistant magnesium alloy according to the present embodiment, room-temperature tensile strength of 264MPa, an elongation of 3.2%, a tensile strength of 200 V was 300MPa, a tensile strength of 250 V is 338Mpa, 300 ° when C is still high tensile strength reached 293MPa. 本实例耐热稀土镁合金的抗拉强度在室温至250°C内随着拉伸温度的升高而提高, 在300°C的高温下仍具有非常高的抗拉强度,满足了其在航空航天、军工、汽车及其它行业中的要求。 Examples of the tensile strength of the present heat resistant magnesium alloy with the increase in temperature to increase the stretching temperature 250 ° C, still has a very high tensile strength at elevated temperature to 300 ° C, which meet in the aviation aerospace, defense, automotive and other industry requirements.

[0033] 实施例2 [0033] Example 2

[0034] 本发明的耐热稀土镁合金的成分(重量百分比)为:10% Gd,3. 5% Y,2. 5% Sm, 0. 3% Zr,l% Sb,杂质元素Si、Fe、Cu和Ni总量小于0. 02%,余量为Mg。 [0034] The heat resistant magnesium alloy composition of the present invention (by weight) of: 10% Gd, 3 5% Y, 2 5% Sm, 0. 3% Zr, l% Sb, impurity elements Si, Fe.. , the total amount of Cu and Ni is less than 0.02%, the balance being Mg. 其中稀土总含量为16%。 Wherein the total rare earth content of 16%.

[0035] 按上述成分配制合金,其熔铸工艺为:采用刚玉坩埚、中频感应炉熔炼。 [0035] The above ingredients formulated alloy casting is a process: using corundum crucible, medium frequency induction furnace. 先将镁、 锑、中间合金Mg-Gd、Mg-Y, Mg-Sm和Mg-Zr预热到220°C,然后将镁、锑放入预热到500°C左右坩埚中,在C02+SF6混合气体保护下,大功率快速加热熔化,待镁锭和锑熔化后,在740°C 加入Mg-Gd、Mg-Y中间合金,小功率缓慢加热,待其熔化后且镁液温度回升至740°C时再加入Mg-Sm中间合金,升温到750°C加入Mg-&中间合金,待其熔化后去除表面浮渣,再将镁液温度升至775°C,关闭主控电路、静置。 First magnesium, antimony, intermediate alloy Mg-Gd, Mg-Y, Mg-Sm and Mg-Zr preheated to 220 ° C, and magnesium, antimony placed in a preheated to about 500 ° C in the crucible, the C02 + SF6 mixed gas under protection, high power rapid heating and melting, ingot and antimony until melted at 740 ° C was added Mg-Gd, Mg-Y alloy intermediate, low power slowly heated, melted and wait until the temperature rose to magnesium was then added at 740 ° C Mg-Sm alloy intermediate and heated to 750 ° C Mg- & master alloy was added, until the removal of surface scum melted, then the liquid temperature was raised magnesium 775 ° C, the main control circuit closed, static home. 待镁液降温至730°C进行浇铸。 Magnesium be lowered to 730 ° C was cast. 浇铸用钢制模具预先加热至210°C。 Casting a steel mold previously heated to 210 ° C. 最后得到Mg-10Gd-3. 5Y-2. 5Sm_0. 3Zr-lSb铸态合金。 Finally, to obtain Mg-10Gd-3. 5Y-2. 5Sm_0. 3Zr-lSb cast alloy. 铸态合金进行热处理:530°C固溶处理12小时,200°C等温时效处理40小时。 Cast alloy heat treatment: 530 ° C the solution for 12 hours, 200 ° C isothermal aging treatment for 40 hours.

[0036] 本实施例耐热稀土镁合金的拉伸强度试验的方法同实施例1。 Tensile strength test method of heat resistant magnesium alloy according to embodiments of the [0036] present in Example 1.

5[0037] 本实施例所得的合金,其室温抗拉强度为270MPa,延伸率为3. 4%,200°C抗拉强度为300MPa,250°C抗拉强度为346MPa,300°C时抗拉强度309MPa。 Anti-5 [0037] The resultant alloy of the present embodiment, room-temperature tensile strength of 270MPa, an elongation of 3. 4%, 200 ° C a tensile strength of 300MPa, 250 ° C a tensile strength of 346MPa, 300 ° C tensile strength 309MPa. 本实例耐热稀土镁合金的抗拉强度在室温至250°C内随着拉伸温度的升高而提高,在300°C的高温下仍具有非常高的抗拉强度,满足了其在航空航天、军工、汽车及其它行业中的要求。 Examples of the tensile strength of the present heat resistant magnesium alloy with the increase in temperature to increase the stretching temperature 250 ° C, still has a very high tensile strength at elevated temperature to 300 ° C, which meet in the aviation aerospace, defense, automotive and other industry requirements.

[0038] 实施例3 [0038] Example 3

[0039] 本发明的耐热稀土镁合金的成分(重量百分比)为:13% Gd,3% Y,1.5% Sm, 0. 5% Zr, 2% Sb,杂质元素Si、Fe、Cu和Ni总量小于0. 02%,余量为Mg。 [0039] The heat resistant magnesium alloy composition of the present invention (by weight) of: 13% Gd, 3% Y, 1.5% Sm, 0. 5% Zr, 2% Sb, impurity elements Si, Fe, Cu and Ni the total amount is less than 0.02%, the balance being Mg. 其中稀土总含量为17. 5%。 Wherein the total rare earth content is 17.5%.

[0040] 按上述成分配制合金,其熔铸工艺为:采用刚玉坩埚、中频感应炉熔炼。 [0040] The above ingredients formulated alloy casting is a process: using corundum crucible, medium frequency induction furnace. 先将镁、 锑、中间合金Mg-Gd、Mg-Y, Mg-Sm和Mg-&预热到150°C,然后将镁、锑放入预热到500°C左右坩埚中,在C02+SF6混合气体保护下,大功率快速加热熔化,待镁锭和锑熔化后,在720°C 加入Mg-Gd、Mg-Y中间合金,小功率缓慢加热,待其熔化后且镁液温度回升至720°C时再加入Mg-Sm中间合金,升温到740°C加入Mg-&中间合金,待其熔化后去除表面浮渣,再将镁液温度升至770°C,关闭主控电路、静置。 First magnesium, antimony, intermediate alloy Mg-Gd, Mg-Y, Mg-Sm and Mg- & preheated to 150 ° C, and magnesium, antimony placed in a preheated to about 500 ° C in the crucible, the C02 + SF6 mixed gas under protection, high power rapid heating and melting, ingot and antimony until melted at 720 ° C was added Mg-Gd, Mg-Y alloy intermediate, low power slowly heated, melted and wait until the temperature rose to magnesium was then added at 720 ° C Mg-Sm alloy intermediate and heated to 740 ° C Mg- & master alloy was added, until the removal of surface scum melted, then the liquid temperature was raised magnesium 770 ° C, the main control circuit closed, static home. 待镁液降温至690°C进行浇铸。 Magnesium be lowered to 690 ° C was cast. 浇铸用钢制模具预先加热至250°C。 Casting a steel mold previously heated to 250 ° C. 最后得到Mg-13Gd-3Y-l. 5Sm_0. 5Zr-2Sb铸态合金。 Finally, to obtain Mg-13Gd-3Y-l. 5Sm_0. 5Zr-2Sb cast alloy. 铸态合金进行热处理:550°C固溶处理8小时,250°C等温时效处理10小时。 Cast alloy heat treatment: 550 ° C the solution for 8 hours, 250 ° C isothermal aging treatment for 10 hours.

[0041] 本实施例耐热稀土镁合金的拉伸强度试验的方法同实施例1。 Tensile strength test method of heat resistant magnesium alloy according to embodiments of the [0041] present in Example 1.

[0042] 本实施例所得的合金,其室温抗拉强度为281MPa,延伸率为3. 3%,200°C抗拉强度为312MPa,250°C抗拉强度为343MPa,300°C时抗拉强度304MPa。 [0042] The present embodiment is obtained when the alloy 343MPa, 300 ° C tensile embodiment, room-temperature tensile strength of 281MPa, an elongation of 3. 3%, 200 ° C a tensile strength of 312MPa, 250 ° C tensile strength strength 304MPa. 本实例耐热稀土镁合金的抗拉强度在室温至250°C内随着拉伸温度的升高而提高,在300°C的高温下仍具有非常高的抗拉强度,满足了其在航空航天、军工、汽车及其它行业中的要求。 Examples of the tensile strength of the present heat resistant magnesium alloy with the increase in temperature to increase the stretching temperature 250 ° C, still has a very high tensile strength at elevated temperature to 300 ° C, which meet in the aviation aerospace, defense, automotive and other industry requirements.

[0043] 最后所应说明的是,以上实例仅用于说明而非限制本发明的技术方案,尽管参照上述实施例对本发明进行了详细说明,本领域的普通技术人员应当理解:依然可以对本发明进行修改或者等同替换,而不脱离本发明的精神和范围的任何修改或局部替换,其均应涵盖在本发明的权利要求范围当中。 [0043] Finally, it should be noted that the above examples are illustrative only and not to limit the technical solution of the present invention, although the present invention has been described in detail with reference to the embodiments described above, those of ordinary skill in the art should be understood: still present invention modifications or equivalent replacements without departing from the partial replacement or any modification from the spirit and scope of the present invention, which should fall in the scope of claims of the present invention as claimed.

Claims (2)

  1. 一种耐热稀土镁合金,其特征在于:由以下的质量百分比的组分组成:8~15%Gd,2~5%Y,0.4~4.5%Sm,0.3~0.7%Zr,0.3~2%Sb,杂质元素Si、Fe、Cu和Ni总量小于0.02%,余量为Mg;所述的Gd,Y,Sm的质量百分比之和为13~18%。 A heat-resistant magnesium alloy, comprising: by the mass percentage constituents: 8 ~ 15% Gd, 2 ~ 5% Y, 0.4 ~ 4.5% Sm, 0.3 ~ 0.7% Zr, 0.3 ~ 2% Sb, impurity elements Si, Fe, Cu and Ni amount is less than 0.02%, the balance of Mg; the sum of the percentages by mass of Gd, Y, Sm, and 13 to 18%.
  2. 2.根据权利要求1所述的耐热稀土镁合金,其特征在于:该耐热稀土镁合金是由镁,锑和中间合金Mg-Gd,Mg-Y, Mg-Sm, Mg-Zr为原料熔炼而成。 The heat resistant magnesium alloy according to claim 1, wherein: the heat resistant magnesium alloy is a magnesium, antimony and intermediate alloy Mg-Gd, Mg-Y, Mg-Sm, Mg-Zr as a raw material from melting.
CN 200910064626 2009-04-13 2009-04-13 Heat resisting rare earth magnesium alloy and preparation method thereof CN101532107B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200910064626 CN101532107B (en) 2009-04-13 2009-04-13 Heat resisting rare earth magnesium alloy and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200910064626 CN101532107B (en) 2009-04-13 2009-04-13 Heat resisting rare earth magnesium alloy and preparation method thereof

Publications (2)

Publication Number Publication Date
CN101532107A CN101532107A (en) 2009-09-16
CN101532107B true CN101532107B (en) 2010-12-08

Family

ID=41102966

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200910064626 CN101532107B (en) 2009-04-13 2009-04-13 Heat resisting rare earth magnesium alloy and preparation method thereof

Country Status (1)

Country Link
CN (1) CN101532107B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103146973B (en) * 2013-03-14 2015-04-29 河南科技大学 High-temperature-resistant rare earth magnesium alloy
CN103146972B (en) * 2013-03-14 2015-12-23 河南科技大学 One polyol magnesium alloy and preparation method
CN103757510B (en) * 2014-01-02 2016-08-17 河南科技大学 One polyhydric heat resistant magnesium alloy
CN104233027B (en) * 2014-06-06 2017-03-22 河南科技大学 A high strength and flame-retardant magnesium alloy and preparation method
CN104060140B (en) * 2014-07-10 2016-08-24 重庆大学 High temperature resistant alloys of magnesium oxide
CN104651691B (en) * 2015-02-06 2016-08-24 宁波高新区融创新材料科技有限公司 Rapid degradation of the magnesium alloy material and its manufacturing method and application
CN104818415A (en) * 2015-06-01 2015-08-05 河南科技大学 High-strength heat-resistant magnesium alloy

Also Published As

Publication number Publication date
CN101532107A (en) 2009-09-16

Similar Documents

Publication Publication Date Title
CN102978448B (en) Al-Fe-Ba-RE alloy and its preparing method and a power cable
CN102978468B (en) Al-Fe-W-RE alloy and its preparing method and a power cable
CN100545286C (en) High-strength creep resistant magnesium alloy and method of producing the same
WO2011035652A1 (en) High-strength heat-proof aluminum alloy material containing lithium and rare earth and producing method thereof
CN102978451B (en) Al-Fe-Ta-RE alloy and its preparing method and a power cable
CN101363094A (en) High-strength cast aluminium alloy material
CN101805844B (en) Be-Cr-RE high-strength heat-resisting aluminum alloy material and production method thereof
CN102978460A (en) Al-Fe-Ni-RE aluminum alloy, and preparation method and power cable thereof
CN102978476B (en) Al-Fe-Re-RE aluminum alloy, and preparation method and power cable thereof
CN101701308B (en) High-damage tolerance type ultrahigh strength aluminum alloy and preparation method thereof
CN101717876A (en) Chrome zirconium copper alloy and preparing and processing method thereof
Liu et al. Influence of Zn content on the microstructure and mechanical properties of extruded Mg–5Y–4Gd–0.4 Zr alloy
CN102230118B (en) Magnesium alloy of high intensity and high yield ratio and preparation method thereof
CN101979692B (en) Preparation process of Al-Zn-Mg-Cu aluminum alloy with ultra-high strength
CN102978450A (en) Al-Fe-Mo-RE aluminum alloy, and preparation method and power cable thereof
CN103103384B (en) Al-Fe-Os-RE aluminium alloy, preparation method thereof and power cable
CN101624670B (en) High-strength high-elongation ratio aluminum alloy and preparation method thereof
CN101381833A (en) Heat resisting casting magnesium alloy and preparation method thereof
CN101698914A (en) Novel ultra-high-strength aluminum alloy and preparation method thereof
CN101787472B (en) Heat-resistant forged magnesium-rare earth alloy and preparation method thereof
CN102796976B (en) Staged homogenization heat treatment method for improving microstructure and performances of Zr-containing 7xxx aluminum alloy
CN102978490A (en) High-strength, high-conductivity and heat-resisting aluminum alloy bus and production method thereof
CN104004949A (en) Method for preparing high strength magnesium-lithium alloy
CN104694805B (en) One polyhydric heat resistant magnesium alloy and low-cost method of preparing
CN103103396B (en) Al-Fe-Hf-RE alloy and its preparing method and a power cable

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
C14 Granted
C17 Cessation of patent right