CN101530668B - Infrared remote control coordinate positioning method - Google Patents

Infrared remote control coordinate positioning method Download PDF

Info

Publication number
CN101530668B
CN101530668B CN 200810086048 CN200810086048A CN101530668B CN 101530668 B CN101530668 B CN 101530668B CN 200810086048 CN200810086048 CN 200810086048 CN 200810086048 A CN200810086048 A CN 200810086048A CN 101530668 B CN101530668 B CN 101530668B
Authority
CN
China
Prior art keywords
coordinate
value
coordinates
lt
detector
Prior art date
Application number
CN 200810086048
Other languages
Chinese (zh)
Other versions
CN101530668A (en
Inventor
洪泽伦
黄荣寿
Original Assignee
义隆电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 义隆电子股份有限公司 filed Critical 义隆电子股份有限公司
Priority to CN 200810086048 priority Critical patent/CN101530668B/en
Publication of CN101530668A publication Critical patent/CN101530668A/en
Application granted granted Critical
Publication of CN101530668B publication Critical patent/CN101530668B/en

Links

Abstract

The invention provides an infrared remote control coordinate positioning method. The method comprises the following steps: a first infrared light emitter and a second infrared light emitter are arranged at the edge of a display; a face-type light source detector is arranged; in the first coordinate axis direction, the bright spots that are projected on the face-type light source detector by the first infrared light emitter and the second infrared light emitter are detected, thus obtaining a first coordinate value and a second coordinate value; in the second coordinate axis direction, the bright spots that are projected on the face-type light source detector by the first infrared light emitter and the second infrared light emitter are detected, thus obtaining a third coordinate value and afourth coordinate value; and according to the relative position of the first coordinate value, the second coordinate value, the third coordinate value and the fourth coordinate value with the centralcoordinate of the face-type light source detector, a directive message is obtained. The method not only reduces operand, but also uses less memories than the prior art.

Description

技术领域 FIELD

[0001] 本发明有关于一种遥控相关的技术,且特别是有关于一种红外线遥控坐标定位方法。 Invention has [0001] The present technique relates to an associated remote control, and more particularly relates to an infrared remote control coordinate positioning method.

背景技术 Background technique

[0002] 近年来,由于科技的发展快速,视听游乐器材也跟着越来越普及。 [0002] In recent years, due to the rapid development of technology, audio-visual equipment can also play along with more and more popular. 而在近来流行的视听游乐器材莫过于任天堂公司的Wii游乐器。 In the recent popularity of audio-visual equipment than play Nintendo's Wii game console. Wii游乐器成功的因素在产品的革新, 游戏玩法的变革,经由单手就可操控感应游戏杆,以及简单易上手的游戏软件,让玩家可藉由真实的打击、挥拍动作与显示屏上的影像作互动。 Wii game console success factors in change innovation, gameplay products, one-handed joystick control sensor, as well as game software via a simple and approachable, by allowing the player on a real blow, swing action and display image for interaction. 因此可产生更多的游戏乐趣。 Thus generating more fun games. 任天堂公司也申请了许多相关的控制器的专利,例如美国专利申请早期公开号US20070049374及US20070052177 等等。 Nintendo also applied for many patents related to the controller, for example, US Patent Application Laid-open No. US20070049374 and US20070052177, and so on.

[0003] 图1是现有游乐器材的坐标定位系统图。 [0003] FIG. 1 is a conventional positioning system coordinates of the amusement equipment in FIG. 请参考图1,显示器2的外框上,配置红外线参考光源8L与8R(如图1所示)。 Referring to FIG. 1, the outer frame of the display 2, the infrared reference light source disposed 8L and 8R (FIG. 1). 使用者利用遥控器70、76上的感应装置对参考点11、12建立红外线参考光源8L、8R与参考点11、12之间的坐标位置对应关系。 Using a user on the remote sensing means 70, 76 for establishing the coordinate position of the reference point between the infrared reference light source 8L, 8R and reference point 11, 11 and 12 corresponding relationship. 由于遥控器70、76的感应装置是面型检测器,其必须要同时能撷取到参考点11、12以及红外线参考光源8L、8R,才能建立坐标位置对应关系,因此使用者必须在距离显示器一固定距离才能操作。 Since the remote sensing device 70, 76 is a surface type detector, while it must be able to capture the reference point 11 and the infrared reference light source 8L, 8R, the coordinate position to establish a correspondence relationship, so that the user must display the distance a fixed distance to operate.

[0004] 图2A以及图2B分别是现有游乐器材的坐标定位方法示意图。 [0004] FIGS. 2A and 2B are schematic diagrams of a coordinate positioning method of prior amusement equipment. 请先参考图2A,在标号20表示从面型检测器上所检测到的画面。 Please refer to FIG. 2A, reference numeral 20 denotes a screen from the detected surface of the detector. 此画面20中会包括一参考区块21。 This screen 20 will include a reference block 21. 接下来, 请参考图2B,此方法是利用动态预估(motionestimation)的原理,将画面20分割成多个区块,并一一与参考区块21作比较,找出与参考区块21最接近的区块22,便可以得到移动向量(motionvector)。 Next, refer to Figure 2B, this method is estimated using a dynamic (motionestimation) principle, the picture is divided into a plurality of blocks 20, 21 and 11 compared with the reference block, the reference block 21 to identify the most block 22 close, you can obtain the motion vector (motionvector). 如此,便可以得到面型检测器所指向的坐标。 Thus, it can be pointed face detector coordinates. 此方法最大的好处是, 在遥控器中,不需要红外线滤波器配置于面型检测器之前,也可以估测到所指向的坐标。 The greatest advantage of this method is that in the remote control, the infrared filter arrangement does not require prior surface detector, estimated to be pointed coordinates. 然而,此种做法必须要在硬件上,具有较强的运算量以及较大的存储器空间才能实现。 However, such practices must be in the hardware, with a strong computational and larger memory space can be achieved.

[0005] 图3A以及图;3B分别是另一现有游乐器材的坐标定位方法示意图。 [0005] FIG 3A and FIG.; 3B are schematic diagrams of another conventional method of positioning coordinates of amusement equipment. 请先参考图3A,红外线参考光源8L在第一时间Tl内发光,且红外线参考光源8R在第一时间Tl内不发光,面型检测器上所检测到的画面30便会检测到红外线参考光源8L的亮点。 Please 3A, the infrared reference light source during a first time Tl 8L emitting and non-light emitting 8R infrared reference light source during a first time Tl, the surface detected by detector 30 will detect the infrared screen reference source 8L highlights. 接下来,在第二时间T2内红外线参考光源8L与8R都不发光,面型检测器上所检测到的画面30便会检测到背景。 Next, at the second time T2 infrared reference light source 8L and 8R do not emit light, the surface detected by detector 30 will detect a screen background. 此时,只要将第一时间Tl的画面30与第二时间T2的画面30相减,便可以得到红外线参考光源8L的亮点在画面30上的坐标。 In this case, as long as the screen 30, a first time Tl and time T2 of the second screen 30 is subtracted, it can obtain an infrared light source 8L highlights a reference coordinate on the screen 30.

[0006] 同样的,请参考图3B,在第三时间T3,红外线参考光源8L不发光,且红外线参考光源8R发光,面型检测器上所检测到的画面30便会检测到红外线参考光源8R的亮点。 [0006] Similarly, please refer to FIG. 3B, a third time T3, the infrared reference light source does not emit light 8L, 8R and reference light source emitting infrared rays, on the surface of the detector 30 detects the picture of the reference light source will be detected by infrared 8R highlights. 接下来,在第四时间T4,红外线参考光源8L与8R都不发光,面型检测器上所检测到的画面30便会检测到背景。 Next, at a fourth time T4, the infrared reference light source 8L and 8R do not emit light, the surface detected by detector 30 will detect a screen background. 此时,只要将第三时间T3的画面30与第四时间T4的画面30相减,便可以得到红外线参考光源8R的亮点在画面30上的坐标。 In this case, as long as the third time T3 is a screen 30 and a screen 30 a fourth time T4 is subtracted, they can obtain the coordinates of the infrared reference light source 8R bright spot on the screen 30. 由上述的两个坐标与面型检测器的中心坐标的相对位置,便可以估测出面型检测器所指向的坐标。 The relative position coordinates of the center of the two detector coordinates and the plane of the detector can estimate the coordinates pointed to come forward type.

4[0007] 此方法比起图2A与图2B的方法,最大的优势在于运算量较小。 4 [0007] This method is compared with the method of FIGS. 2A and 2B, the biggest advantage is that a smaller amount of computation. 但是此方法仍需要较大的存储器,用以储存两张画面的数据。 However, this method still requires a large memory to store data of two pictures. 并且,还需要配合控制红外线参考光源8L与8R不停的闪烁,并且闪烁的时间必须与检测的时间同步。 And, with the need to control the infrared reference light source 8L and 8R kept flashing, and the flashing time must be synchronized with detected time.

发明内容 SUMMARY

[0008] 有鉴于此,本发明的一目的就是在提供一种红外线遥控坐标定位方法,用以减少运算量,并且减低存储器的使用量。 [0008] In view of this, an object of the present invention is to provide an infrared remote coordinate positioning method for reducing the amount of computation, and reduces the amount of memory.

[0009] 为达上述或其它目的,本发明提出一种红外线遥控坐标定位方法。 [0009] To achieve the above and other objects, the present invention provides a coordinate positioning infrared remote control method. 此方法包括下列步骤:在显示器的边缘,提供第一红外线发光源以及第二红外线发光源;提供面型光源检测器;在第一坐标轴方向,检测第一红外线发光源以及第二红外线发光源所投射在面型光源检测器的亮点,以得到第一坐标值以及第二坐标值;在第二坐标轴方向,检测第一红外线发光源以及第二红外线发光源所投射在面型光源检测器的亮点,以得到第三坐标值以及第四坐标值,其中,第一坐标轴以及第二坐标轴互相正交;以及根据第一坐标值、第二坐标值、第三坐标值以及第四坐标值与面型光源检测器的中心坐标的相对位置,得到面型光源检测器的中心点指向显示器的坐标。 This method comprises the steps of: at the edge of the display, an infrared light emitting source to provide a first and second infrared light emitting source; detector provides a plane light source; the first coordinate axis direction, the first infrared detecting infrared emitting source and a second light emitting source the bright spot projected on the surface light source detector to obtain a first coordinate value and second coordinate value; the second coordinate axis direction, the first infrared detecting second infrared light emitting source and light emitting source in the projection-type surface light source detector highlights, in order to obtain a third and a fourth coordinate value of coordinate values, wherein the first coordinate axis and a second axis orthogonal to each other; and according to a first coordinate value, a second coordinate value, the third coordinate and a fourth coordinate value the relative position of the center coordinate value of the surface light source and detector, to obtain the surface-type light source detector pointing coordinates of the display center point.

[0010] 依照本发明的较佳实施例所述的红外线遥控坐标定位方法,上述面型光源检测器包括多个像素,且检测第一红外线发光源以及第二红外线发光源所投射在面型光源检测器的亮点包括:当上述像素中,一特定像素的像素值大于预定值,则判定此特定像素为亮点。 [0010] In accordance with the infrared remote controller coordinate positioning method described in the preferred embodiment of the present invention, the surface type detector comprises a light source a plurality of pixels, and detects the first infrared light emitting source and a second light emitting source is an infrared light source projected on the surface highlights detector comprising: when the pixel, the pixel value of a particular pixel is greater than a predetermined value, it is determined that this particular pixel is a highlight. 在一实施例中,上述面型光源检测器包括MXN个像素,且沿着第一坐标轴方向,检测第一红外线发光源以及第二红外线发光源所投射在面型光源检测器的亮点,以得到第一坐标值以及第二坐标值包括下列步骤:提供M个第一亮点缓存器;依序计算1〜M行的亮点数,包括:计算第i行的亮点数,并记录于第i个第一亮点缓存器;当第k个缓存器所储存的记录值大于一参考值,则设置k为第一起始点;当第1个缓存器所储存的记录值开始小于该参考值,则设置1-1为第一结束点;当第ο个缓存器所储存的记录值大于一参考值,则设置ο为第二起始点;当第P个缓存器所储存的记录值开始小于该参考值,则设置PI为第二结束点;设定(k+ll)/2为第一坐标值;以及设定(o+pl)/2为第二坐标值,其中,M、N、i、k、l、 ο、ρ 为自然数,并且0 <i<=M,0<k<l<o<p<=M。 In one embodiment, the surface-type detector comprises a light source MXN pixels, and along a first coordinate axis direction, the first infrared detecting second infrared light emitting source and light emitting source in the projected bright spot type surface light source detector to to obtain a first coordinate value and second coordinate value comprises the steps of: providing a first bright spot in the M buffer; sequentially calculates the number of bright spots 1~M line, comprising: calculating the number of highlight i-th row and the i-th record in Highlights of the first buffer; k-th registers when the stored value is greater than a reference value is recorded, k is the first starting point is set; and when the first buffer is stored in a recording start value is smaller than the reference value, is set 1 a first end point of -1; ο buffers when the first record is stored is greater than a reference value, as the second starting set ο; when the P-th register value is stored in the recording start is less than the reference value, PI is set to a second end point; setting (k + ll) / 2 as a first coordinate value; and setting (o + pl) / 2 as a second coordinate value, wherein, M, N, i, k, l, ο, ρ is a natural number, and 0 <i <= M, 0 <k <l <o <p <= M.

[0011] 依照本发明的较佳实施例所述的红外线遥控坐标定位方法,上述面型光源检测器包括MXN个像素,且沿着第二坐标轴方向,检测第一红外线发光源以及第二红外线发光源所投射在该面型光源检测器的亮点,以得到第三坐标值以及第四坐标值包括:提供N个第二亮点缓存器;依序计算1〜N列的亮点数,包括:计算第i列的亮点数,并记录于第i个第二亮点缓存器;当第k个缓存器所储存的记录值大于一参考值,则设置k为第一起始点; 当第1个缓存器所储存的记录值开始小于上述参考值,则设置1-1为第一结束点;当第ο个缓存器所储存的记录值大于一参考值,则设置ο为第二起始点;当第ρ个缓存器所储存的记录值开始小于上述参考值,则设置PI为第二结束点;设定(k+ll)/2为第一坐标值;以及设定(o+pD/2为第二坐标值,其中,M、N、i、k、l、o、p为自然数, [0011] In accordance with the infrared remote controller coordinate positioning method described in the preferred embodiment of the present invention, the surface type detector comprises a light source MXN pixels, and along a second coordinate axis, the first infrared detector and a second infrared light emitting source the light emitting source is projected highlight of the surface light source detector to obtain a third and a fourth coordinate values ​​of coordinate value comprises: providing N second highlight buffer; sequentially calculates the number of bright spots 1~N column, comprising: calculating Highlights of the number of i-th column and the i-th record in the second highlight buffer; k-th registers when the stored value is greater than a reference value is recorded, k is the first starting point is set; and when the first one of the buffers recording the stored start value is smaller than the reference value, is set as a first end point of 1-1; when the first ο registers in the stored value is greater than a reference value is recorded, is set to a second starting point ο; when the first ρ th the buffer reservoir is smaller than the recorded value start reference value is set to a second end point PI; and setting a second coordinate (o + pD / 2 is; set (k + ll) / 2 as a first coordinate value values, wherein, M, N, i, k, l, o, p is a natural number, 且0 < i <=N,0 <k < 1 < ο < ρ <= N。 And 0 <i <= N, 0 <k <1 <ο <ρ <= N.

[0012] 依照本发明的较佳实施例所述的红外线遥控坐标定位方法,上述红外线遥控坐标定位方法更包括:记录一特定亮点的一特定坐标。 [0012] In accordance with the infrared remote controller coordinate positioning method described in the preferred embodiment of the present invention, the infrared remote control of the coordinate positioning method further comprising: recording a particular highlights a specific coordinate. 在一实施例中,根据第一坐标值、第二CN 101530668 B 坐标值、第三坐标值以及第四坐标值与面型光源检测器的中心坐标的相对位置,得到该面型光源检测器的中心点指向该显示器的坐标包括:定义第一坐标值与第三坐标值为一第五坐标;定义第一坐标值与第四坐标值为一第六坐标;定义第二坐标值与第三坐标值为一第七坐标;定义第二坐标值与第四坐标值为一第八坐标;当上述特定坐标与第五坐标最接近时,或上述特定坐标与第八坐标最接近时,判定第五坐标与第八坐标分别为一第一亮点坐标与一第二亮点坐标;当上述特定坐标与第六坐标最接近时,或上述特定坐标与第七坐标最接近时,判定第六坐标与第七坐标分别为第一亮点坐标与第二亮点坐标;以及根据第一亮点坐标、第二亮点坐标以及面型光源检测器的中心坐标,得到面型光源检测器的中心 In one embodiment, according to a first coordinate value, the relative position of the center of the second CN 101530668 B coordinate values, coordinate values ​​of the third and the fourth coordinate value of the surface type light detector coordinates, to obtain the surface-type light detector pointing to the center point coordinates of the display comprising: defining a first coordinate value and a fifth coordinate value of the third coordinate; defines a first coordinate value and a sixth coordinate fourth coordinate value; defines the third coordinate and a second coordinate value a seventh coordinate value; defining a second coordinate value and a eighth coordinate fourth coordinate value; when the specific coordinates closest to the coordinates of the fifth, the eighth or the specific coordinates closest to the coordinates determined fifth coordinates are the coordinates of the eighth highlight a first coordinate and a second coordinate highlights; when the specific coordinates and the coordinates closest to the sixth, seventh or the specific coordinates and the coordinates closest to the coordinates of the sixth and seventh determination coordinates are the coordinates of the first and second bright highlights coordinate; according to a first and a highlight coordinate, and center coordinates of the second coordinate highlight detector surface type light source, the surface light source to obtain the detector center 指向显示器的坐标。 Pointing coordinate display.

[0013] 本发明的精神是在于分别沿着两个正交的坐标轴方向,检测该第一红外线发光源以及该第二红外线发光源所投射在该面型光源检测器的亮点,以得到第一坐标值、第二坐标值、第三坐标值以及第四坐标值,并且依照上述坐标值与与面型光源检测器的中心坐标, 得到面型光源检测器的中心点指向显示器的坐标。 [0013] spirit of the present invention is to respectively extend along two orthogonal coordinate axes, detecting the first infrared light emitting source and the second infrared light emitting source projected in the plane of the highlight detector light source to obtain first a coordinate value, a second coordinate value, the value of the third coordinate and a fourth coordinate values, and in accordance with the coordinate values ​​of the center coordinates of the light source and the detector surface, the center point of the surface light source to obtain the detector pointing coordinates of the display. 因此,不但运算量得以减少,并且存储器的使用量也比现有技术来的少。 Thus, not only the amount of computation is reduced, and the amount of memory to be less than in the prior art.

附图说明 BRIEF DESCRIPTION

[0014] 图1是现有游乐器材的坐标定位系统图。 [0014] FIG. 1 is a conventional positioning system coordinates of the amusement equipment in FIG.

[0015] 图2A以及图2B分别是现有游乐器材的坐标定位方法示意图。 [0015] FIGS. 2A and 2B are schematic diagrams of a coordinate positioning method of prior amusement equipment.

[0016] 图3A以及图;3B分别是另一现有游乐器材的坐标定位方法示意图。 [0016] FIG 3A and FIG.; 3B are schematic diagrams of another conventional method of positioning coordinates of amusement equipment.

[0017] 图4是根据本发明实施例所绘示的红外线遥控坐标定位方法的流程图。 [0017] FIG. 4 is a flowchart of a method of positioning coordinates of the infrared remote controller according to the illustrated embodiment depicted embodiment of the present invention.

[0018] 图5A以及图5B分别是根据本发明实施例所绘示的红外线投射在面型光源检测器上的示意图。 [0018] FIGS. 5A and 5B are respectively projected infrared embodiment depicted in the surface light source detector according to a schematic embodiment of the present invention.

[0019] 图6是根据本发明实施例所绘示的红外线遥控坐标定位方法的流程图。 [0019] FIG. 6 is a flowchart of a method of positioning coordinates of the infrared remote controller according to the illustrated embodiment depicted embodiment of the present invention.

[0020] 图7是根据本发明实施例所绘示的红外线投射在面型光源检测器上的示意图。 [0020] FIG. 7 is a schematic view in the plane projection type light source according to an infrared detector embodiment depicted embodiment of the present invention.

[0021] 图8是根据本发明实施例所绘示的红外线投射在面型光源检测器上的示意图。 [0021] FIG. 8 is a schematic view in the plane projection type light source according to an infrared detector embodiment depicted embodiment of the present invention.

[0022] 主要元件符号说明: [0022] Description of Symbols principal elements:

[0023] 2 :显示器 [0023] 2: Display

[0024] 8L、8R :参考光源 [0024] 8L, 8R: a reference light source

[0025] 70、76 :遥控器 [0025] 70, 76: remote control

具体实施方式 Detailed ways

[0026] 为让本发明的上述和其它目的、特征和优点能更明显易懂,下文特举较佳实施例, 并配合附图,作详细说明如下。 [0026] In order to make the above and other objects, features and advantages of the present invention can be more fully understood by reading the following preferred embodiments accompanied with figures are described in detail below.

[0027] 图4是根据本发明实施例所绘示的红外线遥控坐标定位方法的流程图。 [0027] FIG. 4 is a flowchart of a method of positioning coordinates of the infrared remote controller according to the illustrated embodiment depicted embodiment of the present invention. 图5A以及图5B分别是根据本发明实施例所绘示的红外线投射在面型光源检测器上的示意图。 FIGS. 5A and 5B are schematic views in the surface light source projecting an infrared detector in accordance with embodiments depicted embodiment of the present invention. 请同时参考图4以及图5A、图5B,此方法包括下列步骤: Please refer to FIG. 4 and FIGS. 5A, 5B, the method comprising the steps of:

[0028] 步骤S401 :在显示器的边缘,提供第一红外线发光源以及第二红外线发光源。 [0028] Step S401: the edge of the display, an infrared light emitting source to provide a first and second infrared light emitting source. 如图1所示,显示器2的上边缘配置红外线参考光源8L与8R。 1, the upper edge of the display infrared reference light source 2 is disposed 8L and 8R. 在此实施例中,红外线参考光源8L与8R分别为5个排列成一排的红外线发光二极管。 In this embodiment, the infrared reference light source 8L and 8R are arranged in a row of five IR LED. [0029] 步骤S402 :提供面型光源检测器。 [0029] Step S402: providing surface light source detector. 如图1所示,使用者的遥控器70、76上的感应装置为面型光源检测器。 As shown, the sensing device on the user's remote controller 70, 76 is a surface-type light source detector 1.

[0030] 步骤S403 :利用面型光源检测器,检测第一红外线发光源以及第二红外线发光源所投射在面型光源检测器的亮点。 [0030] Step S403: the surface light source using a detector for detecting first infrared light emitting source and a second light emitting source is an infrared light source projected on the surface of the highlight detector. 请参考图5A、图5B,使用者的遥控器70、76上的感应装置为面型光源检测器。 Please refer to FIGS. 5A, 5B, the sensing device on the user's remote controller 70, 76 is a surface-type light source detector. 当使用者使用遥控器70、76对准显示器2时,在其内部的面型光源检测器便会检测到两排红外线光点51与52。 When the user uses the remote controller 70, 76 aligned with the display 2, the inside surface type light detector would detect two rows of 52 infrared light 51 and the spot.

[0031] 步骤S403 :沿着第一坐标轴方向,检测第一红外线发光源以及第二红外线发光源所投射在面型光源检测器的亮点,以得到一第一坐标值以及一第二坐标值。 [0031] Step S403: along the first coordinate axis direction, the first infrared detecting infrared emitting source and a second light emitting source is projected on the surface light source highlight detector to obtain a first coordinate value and a second coordinate value . 请参考图5A,当两排红外线光点51与52被检测到时,遥控器70、76便会开始沿着面型光源检测器的X轴, 统计光点的数量。 Referring to FIG 5A, when the time is detected, starts along the X axis of the surface type light detector, the number of two rows of the light spot 5152 infrared remote controller 70, 76 will count spot. 假设此面型光源检测器具有175XU6个像素。 This is assumed that the surface type detector has a light source 175XU6 pixels. 在此实施例中,X轴方向只须提供175组缓存器,分别用以储存第1行〜第175行的亮点各数。 In this embodiment, X-axis direction only to provide the buffer group 175, respectively, for storing the number of bright spots in each first row to the 175th row. 标号501是沿着X 轴统计出光点数量的结果。 Reference numeral 501 is a count number of the light spot along the X-axis results. 如此,便可以找到第一组X坐标值的范围502以及第二组X坐标值的范围503。 As such, you can find the range of values ​​of the X coordinate range of the first set and a second set 502 of the X coordinate value of 503. 之后,只要取其中心点,便可以得到第一坐标值(表示为XI)以及第二坐标值(表示为X2)。 Thereafter, as long as the center point of whichever, you can obtain a first coordinate value (denoted XI) and a second coordinate value (expressed as X2).

[0032] 步骤S404 :沿着一第二坐标轴方向,检测该第一红外线发光源以及该第二红外线发光源所投射在该面型光源检测器的亮点,以得到一第三坐标值以及一第四坐标值。 [0032] Step S404: a second coordinate axis along a direction, detection of the first infrared light emitting source and the second infrared light emitting source projected in the highlight detector surface type light source, to obtain a coordinate value and a third fourth coordinate value. 请参考图5B,同样的道理,当两排红外线光点51与52被检测到时,遥控器70、76便会开始沿着面型光源检测器的Y轴,统计光点的数量。 Please 5B, the same way with reference to FIG, when combined with is detected, starts along the Y axis of the surface type light detector, the number of two rows of the light spot 5152 infrared remote controller 70, 76 will count spot. 同样假设此面型光源检测器具有175XU6个像素。 Also assume that this type of surface light source detector having 175XU6 pixels. 在此实施例中,Y轴方向只须提供1¾组缓存器,分别用以储存第1行〜第1¾行的亮点各数。 In this embodiment, Y-axis direction need only be provided 1¾ group registers, each for storing each number of highlight 1¾ first row to row. 标号504是沿着Y轴统计出光点数量的结果。 Reference numeral 504 is a count number of the light spot along the Y-axis results. 如此,便可以找到第一组Y坐标值的范围505以及第二组Y坐标值的范围506。 As such, you can find the range of Y-coordinate value range of the first set and a second set 505 of the Y coordinate value of 506. 之后,只要取其中心点,便可以得到第三坐标值(表示为Yl)以及第四坐标值(表示为Y2)。 After that, as long as the center point of whichever we can get a third coordinate value (expressed as Yl) and a fourth coordinate value (expressed as Y2).

[0033] 步骤S405 :根据第一坐标值、第二坐标值、第三坐标值以及第四坐标值与面型光源检测器的一中心坐标的相对位置,得到面型光源检测器的中心点指向显示器的坐标。 [0033] Step S405: The coordinate value of the first, second relative position of a central coordinate value, the coordinate values ​​of the third and the fourth coordinate value of the surface type light detector coordinates, the surface light source to give the center point of the detector directed coordinate display. 在一般的情况来说,只要得到上述第一坐标值、第二坐标值、第三坐标值以及第四坐标值,便可以得到四组坐标(XI,Yl)、(X2,Yl)、(XI,Y2)、(X2,Y2)。 In the general case, as long as the above to obtain a first coordinate value, a second coordinate value, the value of the third coordinate and a fourth coordinate value, we can obtain four sets of coordinates (XI, Yl), (X2, Yl), (XI , Y2), (X2, Y2). 根据此四组坐标与面型光源检测器的中心点的坐标,便可以得到得到面型光源检测器的中心点指向显示器的坐标。 The coordinates of the center point coordinates of the four sets of this type the surface of the light detector, we can obtain the coordinates of the center point of the display point to obtain surface-type light detector.

[0034] 值得一提的是,虽然上述实施例中已经对本发明实施例的红外线遥控坐标定位方法描绘出了一个可能的型态,但所属技术领域中具有通常知识者应当知道,面型光源检测器在检测光点时,可能会因为其它光线的干扰造成误判,因此,以下说明在本发明实施例中,如何避免上述情况所造成的误判。 [0034] It is worth mentioning that, although the infrared remote control of the coordinate positioning method has been embodiment of the present invention, the above-described embodiment depicts a possible patterns, the techniques in the art having ordinary knowledge should be appreciated, the surface light source detected when the light spot is detected, may cause false positives because of interference from other light, therefore, in the following description of the embodiments of the present invention, how to avoid misjudgment caused by the above situation. 另外,由于上述实施例所得到的坐标有四组,分别是(XI,Yl)、(X2,Yl)、(XI,Y2)、(X2,Y2),但是实际上的坐标只会有两组。 Further, since the coordinates of the embodiments obtained four groups, namely (XI, Yl), (X2, Yl), (XI, Y2), (X2, Y2), but in fact there are only two coordinate . 虽然上述实施例已经可以判断坐标位置,但是坐标的准确性较差,且使用者手上遥控的旋转亦无从判断,在以下实施例,另外在说明如何判断出实际上的两组坐标。 Although the above embodiments have been based on the coordinate position, but the poor accuracy of the coordinates, and the remote user's hand from the rotation determination nor, in the following embodiments, further illustrate how two sets of coordinates actually judged.

[0035] 图6是根据本发明实施例所绘示的红外线遥控坐标定位方法的流程图。 [0035] FIG. 6 is a flowchart of a method of positioning coordinates of the infrared remote controller according to the illustrated embodiment depicted embodiment of the present invention. 图7是根据本发明实施例所绘示的红外线投射在面型光源检测器上的示意图。 FIG 7 is a schematic diagram of an infrared embodiment depicted projected onto the surface type light source detector according to an embodiment of the present invention. 请同时参考图6与图7, Please refer to FIG. 6 and FIG. 7,

[0036] 步骤S601 :在显示器的边缘,提供第一红外线发光源以及第二红外线发光源。 [0036] Step S601: the edge of the display, an infrared light emitting source to provide a first and second infrared light emitting source.

[0037] 步骤S602 :提供一面型光源检测器。 [0037] Step S602: providing a detector light source side. 在此假设此面型光源检测器的大小为175X 1260 In this surface light source is assumed here that a size of the detector 175X 1260

[0038] 步骤S603 :利用面型光源检测器,检测投射在面型光源检测器的亮点,其中,当一像素的像素值大于一预定值,则判定上述像素为亮点。 [0038] Step S603: the surface light source using a detector to detect the surface light source projected highlight detector, wherein, when the pixel value of a pixel is greater than a predetermined value, it is determined that the pixel is a highlight. 由于面型光源检测器为红外光源检测器,虽然其它的光源对于此面型光源检测器仍会有干扰,但是影响不会太大。 Since the surface light source is an infrared light detector detector, although other light sources for this type of surface light source detector will interfere, but will be much affected. 因此,只需要设置一门坎值,便可以过滤掉其它光源对于此面型光源检测器的干扰。 Therefore, only a set threshold value, it can filter out other light interference type surface light source for this detector.

[0039] 步骤S604 :在X轴方向,提供175个X轴缓存器。 [0039] Step S604: the X axis direction, the X-axis 175 to provide the buffer.

[0040] 步骤S605 :在Y轴方向,提供1¾个Y轴缓存器。 [0040] Step S605: Y-axis direction, a Y-axis to provide 1¾ buffers.

[0041] 步骤S606 :将第i行的亮点数,储存在第i个X轴缓存器中,其中i的范围为1〜 175。 [0041] Step S606: the number of highlight i-th row, the i-th stored in buffer X axis, where i is the range of 1 ~ 175.

[0042] 步骤S607 :将第j列的亮点数,储存在第j个Y轴缓存器中,其中j的范围为1〜 126。 [0042] Step S607: the number of bright spots j-th column stored in the j-th buffer Y-axis, where the range of 1 ~ 126 j.

[0043] 步骤S608 :将所储存在X轴缓存器的数据以及Y轴缓存器的数据进行低通滤波处理。 [0043] Step S608: The data stored in the buffer and the data of the Y-axis X-axis of the buffer for low-pass filtering process. 请参考图7,标号701与标号702分别是未经低通滤波处理的X轴亮点数据统计图与Y 轴亮点数据统计图。 Please refer to FIG. 7, reference numerals 701 and 702 are not the highlight data of the X-axis and Y-axis of FIG. Statistics Statistics highlights the low-pass filtering process. 标号703与标号704分别是经过低通处理后的X轴亮点数据统计图与Y轴亮点数据统计图。 Reference numerals 703 and 704 are processed through low-pass highlight X-axis and Y-axis of FIG. Statistics Statistics highlight FIG. 由图7可以看出,经过低通处理后的X轴亮点数据统计图703与Y轴亮点数据统计图704比起原始的X轴亮点数据统计图701与Y轴亮点数据统计图702来的平滑。 As can be seen from Figure 7, after the X-axis data chart highlights the low pass processing 703 and the Y-axis data highlights chart 704 to smooth 702 the X-axis than the original highlight data chart 701 and the Y-axis data chart highlights . 相对的,在判断坐标值X1、X2、Y1、Y2时,也比较准确。 In contrast, in the determination coordinate values ​​X1, X2, Y1, Y2, the relatively accurate. 另外,也可以由此滤除一些误判的亮点。 Furthermore, false positives may thus filter out highlights. 另外,在此实施例中,低通滤波的运算法是:将第kr缓存器〜第k+r缓存器的值累加到第k缓存器,其中k与r皆为自然数。 Further, in this embodiment, the low-pass filtering algorithms are: the first buffer ~ kr value of the k + r accumulation buffer register to the k, wherein k and r are all natural numbers. 另外,若是第k个X轴缓存器在边界时,例如k = 1,则将第1个缓存器到第k+r个缓存器的值累加到第1个缓存器;同样的道理,若k =175时,则由将第kr个缓存器到第175个缓存器的值累加到第175个缓存器。 In addition, if the k-th buffer of the boundary of the X-axis, for example, k = 1, then the first buffer to the 1 + r k-th register values ​​of the first accumulated into a buffer; the same token, if k = 175 when, by the first buffer to the th kr value of 175 to the second accumulation buffer 175 buffers. 同样的, Y轴缓存器的边界低通滤波的道理相同,故在此不予赘述。 Similarly, the same low-pass filtering the boundary Y-axis of the buffer reason, it is not repeated herein.

[0044] 步骤S609 :利用上述低通滤波运算后的结果,运算出坐标值乂132、¥132。 [0044] Step S609: using a result of the low-pass filter operation, calculating coordinate values ​​qe 132, ¥ 132.

[0045] 步骤S610 :在所有亮点中,选择一亮点,并记录一亮点的坐标。 [0045] Step S610: In all the bright spots, a bright spot selection, and recording the coordinates of a bright spot. 在此实施例中,记录了亮点77的坐标(X0,Y0)。 In this embodiment, the recorded coordinates (X0, Y0) of the bright spot 77.

[0046] 步骤S610 :判断上述坐标(XI,Yl)、(X2,Yl)、(XI,Y2)、(X2,Y2)何者与上述亮点(X0,Y0)最接近。 [0046] Step S610: determining whether the coordinates (XI, Yl), (X2, Yl), (XI, Y2), (X2, Y2) above highlights whichever (X0, Y0) is closest.

[0047] 步骤S611 :当坐标(XLYl)与亮点(ΧΟ,ΥΟ)最接近或(Χ2,Υ2)与亮点(ΧΟ,ΥΟ)最接近时,则利用坐标(XI,Υ1)、坐标(Χ2,Υ2)以及面型光源检测器的中心坐标,来判断面型光源检测器的中心点指向显示器的坐标。 [0047] Step S611: When the coordinate (XLYl) and highlights (ΧΟ, ΥΟ) or closest to (Χ2, Υ2) and highlights (ΧΟ, ΥΟ) closest to, the use of the coordinates (XI, Υ1), coordinates (X2, v2 is) and a center plane of the coordinate type light detector to determine the center point of the surface light source detector pointing coordinates of the display.

[0048] 步骤S612 :当坐标(Χ2,Υ1)与亮点(ΧΟ,ΥΟ)最接近或(XI,Υ2)与亮点(ΧΟ,ΥΟ)最接近时,则利用坐标(Χ2,Υ1)、坐标(XI,Υ2)以及面型光源检测器的中心坐标,来判断面型光源检测器的中心点指向显示器的坐标。 [0048] Step S612: When the coordinates (Χ2, Υ1) and highlights (ΧΟ, ΥΟ) or closest to (XI, Υ2) and highlights (ΧΟ, ΥΟ) closest to, using the coordinates (Χ2, Υ1), coordinates ( Center XI, Υ2) type light source and the detector plane coordinates, to determine the center point of the surface light source detector pointing coordinates of the display.

[0049] 由上述实施例可以看出,本实施例在缓存器的使用量上,只需要175+126+1 (亮点坐标)= 302组缓存器。 [0049] As can be seen from the foregoing embodiment, the present embodiment used in an amount in the buffer, only (highlight coordinate) = 175 + 126 + 302 1 buffer set. 而现有的技术,至少需要175*126 = 22050组缓存器。 Whereas the prior art requires at least 175 * 126 = 22050 group buffer. 因此本实施例除了运算量减少之外,还减少了许多的缓存器使用量。 Thus the present embodiment, in addition to reducing the amount of calculation, but also reducing the number of buffer usage. 若将此实施例实施于集成电路中,可以减少电路布局的面积,并减低不必要的成本。 Example If this embodiment in integrated circuits, circuit layout area can be reduced, and reduce unnecessary costs.

[0050] 然而,当面型检测器所检测到的亮点如同图8时,可能会分不出Y坐标,使得Y坐标重迭。 When [0050] However, the face detector detected as bright spots in FIG. 8, it may be too close to the Y-coordinate, Y-coordinate such overlap. 在此特定实施例中,上述低通滤波的运算的参数r可以在上述情况时,适当的减小之后,便可以判断出两个Y坐标。 In this particular embodiment, after the low-pass filtering operation parameter r may be the above case, an appropriate reduced, it can be determined that two Y coordinates. 因此本发明不限定固定r值。 Thus, the present invention is not limited to a fixed value of r.

[0051] 综上所述,本发明的精神是在于分别沿着两个正交的坐标轴方向,检测该第一红外线发光源以及该第二红外线发光源所投射在该面型光源检测器的亮点,以得到第一坐标值、第二坐标值、第三坐标值以及第四坐标值,并且依照上述坐标值与与面型光源检测器的中心坐标,得到面型光源检测器的中心点指向显示器的坐标。 [0051] In conclusion, the spirit of the present invention is to respectively extend along two orthogonal coordinate axes, detecting the first infrared light emitting source and the second infrared light emitting source projected in the plane light source detector Highlights, to obtain a first coordinate value, a second coordinate value, the value of the third coordinate and a fourth coordinate values, and in accordance with the coordinate values ​​of the center coordinates of the light source and the detector surface, the surface light source detector to obtain a center point to point coordinate display. 因此,不但运算量得以减少, 并且存储器的使用量相对的比现有技术来的少。 Thus, not only the amount of computation is reduced, and the amount of memory to a relatively less than in the prior art.

[0052] 在较佳实施例的详细说明中所提出的具体实施例仅用以方便说明本发明的技术内容,而非将本发明狭义地限制于上述实施例,在不超出本发明的精神及以下申请专利范围的情况,所做的种种变化实施,皆属于本发明的范围。 [0052] In the detailed description of specific embodiments of the preferred embodiments set forth merely to illustrate the technical details of the present invention facilitate, the present invention is not to be narrowly limited to the above embodiments without departing from the spirit of the invention and the patentable scope of the following claims situation, changes made to the various embodiments, belong to the scope of the present invention. 因此本发明的保护范围当以权利要求所界定者为准。 Therefore, the scope of the invention defined by the following claims and their equivalents.

Claims (12)

1. 一种红外线遥控坐标定位方法,用以获得一红外线遥控器指向一显示器的坐标,所述红外线遥控器具有一面型光源检测器,所述坐标定位方法包括:沿着一第一坐标轴方向,检测第一红外线发光源以及第二红外线发光源所投射在所述面型光源检测器的亮点,以得到一第一坐标值以及一第二坐标值;沿着一第二坐标轴方向,检测第一红外线发光源以及第二红外线发光源所投射在所述面型光源检测器的亮点,以得到一第三坐标值以及一第四坐标值,其中,所述第一坐标轴以及所述第二坐标轴互相正交;以及根据所述第一坐标值、所述第二坐标值、所述第三坐标值以及所述第四坐标值与所述面型光源检测器的一中心坐标的相对位置,得到所述面型光源检测器的中心点指向所述显示器的坐标。 A coordinate positioning method of infrared remote control, the infrared remote controller to obtain a display of a coordinate point, the infrared remote control device having a side type light detector, the coordinate positioning method comprising: a first coordinate axis along a direction detecting the first infrared light emitting source and a second infrared light emitting source is projected on the surface of the bright spot type light detector to obtain a first coordinate value and a second coordinate value; a second coordinate axis along a direction, detection first infrared light emitting source and a second infrared light emitting source is projected on the surface of the bright spot type light detector to obtain a third and a fourth coordinate value of coordinate values, wherein said first and said second axis two axes perpendicular to each other; and based on the first coordinate values, the second coordinate values, the coordinate values ​​of the third and the fourth coordinate value of a center of the surface type light detector relative coordinates position, to obtain the surface-type light source detector pointing coordinate center point of the display.
2.如权利要求1所述的红外线遥控坐标定位方法,其特征在于,所述面型光源检测器包括多个像素,且检测所述第一红外线发光源以及所述第二红外线发光源所投射在所述面型光源检测器的亮点包括:当所述像素中,一特定像素的像素值大于一预定值,则判定所述特定像素为亮点。 2. A coordinate positioning infrared remote control method according to claim 1, characterized in that the surface type detector comprises a light source a plurality of pixels, and detects the first infrared light emitting source and said second infrared light emitting source projected Highlights of the surface light source detector comprising: when the pixel, the pixel value of a specific pixel is greater than a predetermined value, it is determined that the particular pixel is a highlight.
3.如权利要求1所述的红外线遥控坐标定位方法,其特征在于,所述面型光源检测器包括MXN个像素,且沿着所述第一坐标轴方向,检测所述第一红外线发光源以及所述第二红外线发光源所投射在所述面型光源检测器的亮点,以得到所述第一坐标值以及所述第二坐标值包括:提供M个第一亮点缓存器;依序计算1〜M行的亮点数,包括:计算第i行的亮点数,并记录于第i个第一亮点缓存器;当第k个缓存器所储存的记录值大于一参考值,则设置k为第一起始点;当第1个缓存器所储存的记录值开始小于所述参考值,则设置1-1为第一结束点;当第ο个缓存器所储存的记录值大于一参考值,则设置ο为第二起始点;当第P个缓存器所储存的记录值开始小于所述参考值,则设置PI为第二结束点;设定(k+ll)/2为第一坐标值;以及设定(o+pl)/2为第二坐标值,其中,M、N、i、k 3. A coordinate positioning infrared remote control method according to claim 1, wherein said surface-type detector comprises a light source MXN pixels, and along the first coordinate axis direction, detects the first infrared light emitting source and said second infrared light emitting source is projected on the surface of the bright spot type light detector, to obtain said first coordinate values ​​and the second coordinate value comprises: providing a first bright spot in the M buffer; sequentially calculated 1~M highlight line number, comprising: calculating the number of highlight i-th row and the i-th record in the first bright buffer; k-th registers when the stored value is greater than a reference value is recorded, is set to k first starting point; a first register when the stored value of the recording start is less than the reference value, is set as a first end point of 1-1; when the value of the record stored in registers in ο is greater than a reference value, ο a second starting set; when the P-th register value is stored in the recording start is less than the reference value, the PI set to a second end point; setting (k + ll) / 2 as a first coordinate value; and setting (o + pl) / 2 as a second coordinate value, wherein, M, N, i, k 1、ο、ρ 为自然数,并且0 <i<=M,0<k<l<o<p<=M。 1, ο, ρ is a natural number, and 0 <i <= M, 0 <k <l <o <p <= M.
4.如权利要求3所述的红外线遥控坐标定位方法,其特征在于,所述方法还包括: 对第k个缓存器〜第1-1个缓存器所储存的值作一低通运算;以及对第ο个缓存器〜第PI个缓存器所储存的值作所述低通运算。 4. A coordinate positioning infrared remote control method according to claim 3, characterized in that, said method further comprising: - a k-th register of register 1-1 as a value stored in a low-pass operation; and ο registers in the first to third buffers PI value is stored as the low-pass operation.
5.如权利要求4所述的红外线遥控坐标定位方法,其特征在于,所述低通运算包括: 将第j_r缓存器〜第j+r缓存器的值累加到第i缓存器,其中j与r为自然数,且k<=j < 1 或ο <= j < ρ。 5. The infrared remote coordinate positioning method according to claim 4, wherein said low-pass operation comprising: a first register j_r ~ r value of j + accumulation buffer register to the i, j and wherein r is a natural number, and k <= j <1 or ο <= j <ρ.
6.如权利要求5所述的红外线遥控坐标定位方法,其特征在于,当找不到所述第二坐标值时,将r值减小重新作所述低通运算。 6. The infrared remote controller of claim 5, wherein the coordinate positioning method, wherein, when said second coordinate value can not be found, the r value is reduced again as the low-pass operation.
7.如权利要求1所述的红外线遥控坐标定位方法,其特征在于,所述面型光源检测器包括MXN个像素,且沿着所述第二坐标轴方向,检测所述第一红外线发光源以及所述第二红外线发光源所投射在所述面型光源检测器的亮点,以得到所述第三坐标值以及所述第四坐标值包括:提供N个第二亮点缓存器;依序计算1〜N列的亮点数,包括:计算第i列的亮点数,并记录于第i个第二亮点缓存器;当第k个缓存器所储存的记录值大于一参考值,则设置k为第一起始点;当第1个缓存器所储存的记录值开始小于所述参考值,则设置1-1为第一结束点;当第ο个缓存器所储存的记录值大于一参考值,则设置ο为第二起始点;当第P个缓存器所储存的记录值开始小于所述参考值,则设置PI为第二结束点;设定(k+ll)/2为第一坐标值;以及设定(o+pl)/2为第二坐标值,其中,]«、^1^、1 7. A coordinate positioning infrared remote control method according to claim 1, wherein said surface-type detector comprises a light source MXN pixels, and along the second coordinate axis direction, detecting the first infrared light emitting source and said second infrared light emitting source is projected on the surface of the bright spot type light detector, to obtain coordinate values ​​of the third and the fourth coordinate value comprises: providing N second highlight buffer; sequentially calculated Highlights 1~N number of columns, comprising: calculating the number of i-th column of the bright spot, and recorded in the i-th second highlight buffer; k-th registers when the stored value is greater than a reference value is recorded, is set to k first starting point; a first register when the stored value of the recording start is less than the reference value, is set as a first end point of 1-1; when the value of the record stored in registers in ο is greater than a reference value, ο a second starting set; when the P-th register value is stored in the recording start is less than the reference value, the PI set to a second end point; setting (k + ll) / 2 as a first coordinate value; and setting (o + pl) / 2 as a second coordinate value, wherein,] «^ 1 ^, 1 0、? 0 ,? 为自然数,并且0 <i<=N,0<k<l<o<p<=N。 Is a natural number, and 0 <i <= N, 0 <k <l <o <p <= N.
8.如权利要求6所述的红外线遥控坐标定位方法,其特征在于,所述方法还包括: 对第k个缓存器〜第1-1个缓存器所储存的值作一低通运算;以及对第ο个缓存器〜第PI个缓存器所储存的值作所述低通运算。 8. A coordinate positioning infrared remote control method according to claim 6, wherein said method further comprises: k-th values ​​of ~ 1-1 buffers stored in the buffer for a low-pass operation; and ο registers in the first to third buffers PI value is stored as the low-pass operation.
9.如权利要求7所述的红外线遥控坐标定位方法,其特征在于,所述低通运算包括: 将第j_r缓存器〜第j+r缓存器的值累加到第j缓存器,其中j与r为自然数,且k<=j < 1 或ο <= j < ρ。 9. A coordinate positioning infrared remote control method according to claim 7, wherein said low-pass operation comprising: a first register j_r ~ r value of j + accumulation buffer to the second buffer j, wherein j is r is a natural number, and k <= j <1 or ο <= j <ρ.
10.如权利要求9所述的红外线遥控坐标定位方法,其特征在于,当找不到所述第四坐标值时,将r值减小重新作所述低通运算。 10. The infrared remote controller according to claim 9, wherein the coordinate positioning method, wherein, when the fourth coordinate values ​​can not be found, the r value is reduced again as the low-pass operation.
11.如权利要求1所述的红外线遥控坐标定位方法,其特征在于,所述方法还包括: 记录一特定亮点的一特定坐标。 The infrared remote controller 11. A coordinate positioning method according to claim 1, wherein said method further comprises: recording a particular highlights a specific coordinate.
12.如权利要求5所述的红外线遥控坐标定位方法,其特征在于,所述根据所述第一坐标值、所述第二坐标值、所述第三坐标值以及所述第四坐标值与所述面型光源检测器的中心坐标的相对位置,得到所述面型光源检测器的中心点指向所述显示器的坐标,包括:定义所述第一坐标值与所述第三坐标值为一第五坐标; 定义所述第一坐标值与所述第四坐标值为一第六坐标; 定义所述第二坐标值与所述第三坐标值为一第七坐标; 定义所述第二坐标值与所述第四坐标值为一第八坐标;当所述特定坐标与所述第五坐标最接近时,或所述特定坐标与所述第八坐标最接近时,判定所述第五坐标与所述第八坐标分别为一第一亮点坐标与一第二亮点坐标;当所述特定坐标与所述第六坐标最接近时,或所述特定坐标与所述第七坐标最接近时,判定所述第六坐标与所述第七 The infrared remote controller 12. A coordinate positioning method according to claim 5, wherein said coordinate according to the first value, the second coordinate values, the coordinate values ​​of the third and the fourth coordinate value and the relative position of the center coordinates of the surface type light detector, the surface light source to obtain the detector coordinates of the display center point to point, comprising: defining a first coordinate value and the coordinate values ​​of a third a fifth coordinate; coordinate values ​​defining the first and the fourth coordinate values ​​are coordinates of a sixth; coordinate values ​​defining the second and the third coordinate values ​​are coordinates of a seventh; defines the second coordinate coordinate value and the fourth value is a eighth coordinate; when the specific coordinates and the fifth coordinates closest to, or the specific coordinates and the coordinates closest to the eighth, the fifth coordinate determination and said eighth are a first coordinate and a second coordinate highlight highlight coordinate; when the specific coordinates and the sixth coordinates closest to the coordinates of a particular closest to the seventh or the coordinates, determining the coordinates of the sixth and the seventh 坐标分别为所述第一亮点坐标与所述第二亮点坐标;以及根据所述第一亮点坐标、所述第二亮点坐标以及所述面型光源检测器的中心坐标,得到所述面型光源检测器的中心点指向所述显示器的坐标。 Coordinates are the coordinates of the first bright highlights second coordinate; and based on said first bright spot coordinates, the center coordinates of the second coordinate, and the highlight detector surface type light source, to obtain a surface light source pointing coordinate of the center point of the detector of the display.
CN 200810086048 2008-03-14 2008-03-14 Infrared remote control coordinate positioning method CN101530668B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200810086048 CN101530668B (en) 2008-03-14 2008-03-14 Infrared remote control coordinate positioning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200810086048 CN101530668B (en) 2008-03-14 2008-03-14 Infrared remote control coordinate positioning method

Publications (2)

Publication Number Publication Date
CN101530668A CN101530668A (en) 2009-09-16
CN101530668B true CN101530668B (en) 2012-07-04

Family

ID=41101661

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200810086048 CN101530668B (en) 2008-03-14 2008-03-14 Infrared remote control coordinate positioning method

Country Status (1)

Country Link
CN (1) CN101530668B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2530413Y (en) 2002-03-18 2003-01-08 深圳市博悟电子技术有限公司 TV with red infrared remote control game function
CN1919396A (en) 2005-08-22 2007-02-28 任天堂株式会社 Game operating device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2530413Y (en) 2002-03-18 2003-01-08 深圳市博悟电子技术有限公司 TV with red infrared remote control game function
CN1919396A (en) 2005-08-22 2007-02-28 任天堂株式会社 Game operating device

Also Published As

Publication number Publication date
CN101530668A (en) 2009-09-16

Similar Documents

Publication Publication Date Title
US8323106B2 (en) Determination of controller three-dimensional location using image analysis and ultrasonic communication
Wilson PlayAnywhere: a compact interactive tabletop projection-vision system
US10220302B2 (en) Method and apparatus for tracking three-dimensional movements of an object using a depth sensing camera
US8223147B1 (en) Method and system for vision-based interaction in a virtual environment
CN1672120B (en) Man-machine interface using a deformable device
US7312787B2 (en) Coordinate input detection device and method for electronic blackboard
US8797260B2 (en) Inertially trackable hand-held controller
CN102289564B (en) Synthesis of information from multiple audiovisual sources
US9058063B2 (en) Tracking system calibration using object position and orientation
US9381424B2 (en) Scheme for translating movements of a hand-held controller into inputs for a system
US9393487B2 (en) Method for mapping movements of a hand-held controller to game commands
CN102411783B (en) Automatically track the user moves video chat applications
US6198485B1 (en) Method and apparatus for three-dimensional input entry
JP5865910B2 (en) Depth camera based on structured light and stereopsis
CN101715581B (en) Volume recognition method and system
US20080001951A1 (en) System and method for providing affective characteristics to computer generated avatar during gameplay
CN103875004B (en) Dynamic selection of the real world in the top surface for projection information
CN102609954B (en) Confirmation of the human target tracking analysis
JP5204224B2 (en) Object Detection with bound video input and the tilt angle information
EP2523069A2 (en) Systems and methods for providing feedback by tracking user gaze and gestures
US8542250B2 (en) Entertainment device, system, and method
US8570320B2 (en) Using a three-dimensional environment model in gameplay
US20140307047A1 (en) Active stereo with adaptive support weights from a separate image
US20060264260A1 (en) Detectable and trackable hand-held controller
Freeman et al. Computer vision for computer games.

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C14 Grant of patent or utility model
CF01