CN101526352B - Orienting method of gravity direction on moving platform - Google Patents

Orienting method of gravity direction on moving platform Download PDF

Info

Publication number
CN101526352B
CN101526352B CN 200910021804 CN200910021804A CN101526352B CN 101526352 B CN101526352 B CN 101526352B CN 200910021804 CN200910021804 CN 200910021804 CN 200910021804 A CN200910021804 A CN 200910021804A CN 101526352 B CN101526352 B CN 101526352B
Authority
CN
Grant status
Grant
Patent type
Prior art keywords
gt
lt
mi
mo
gravity
Prior art date
Application number
CN 200910021804
Other languages
Chinese (zh)
Other versions
CN101526352A (en )
Inventor
卢晓东
吕春红
周军
郭建国
Original Assignee
西北工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Abstract

The invention discloses an orienting method of gravity direction on a moving platform. A pitching plane and a rolling plane of the moving platform are respectively provided with two gravity pendulums which respectively sense the projection gxoy of the gravity in the pitching plane of the moving platform and the projection gyoz of the gravity in the rolling plane of the moving platform, and the deflection angle of the gravity pendulums relative to the moving platform is measured. A pitching shaft, a rolling shaft and a deflection shaft of the moving platform are respectively provided with a three-axis accelerometer, the three-axis accelerometers measure the component acceleration ax, the component acceleration ay and the component acceleration az of the resultant acceleration of the movingplatform on the three shafts, a pitching angle and a rolling angle of the platform are simultaneously measured or the gravity direction is determined on the moving platform with attitude change through a method of geometry and a filtering algorithm. The method can be suitable to a static moving platform and a translational moving platform, and can also be suitable to the gravity orientation or platform pitching angle and rolling angle measurement on the static moving platform and the translational moving platform with attitude change.

Description

运动平台上重力方向确定方法 The method of determining the direction of gravity on the moving platform

技术领域 FIELD

[0001] 本发明涉及一种重力方向确定方法,特别是运动平台上重力方向确定方法。 [0001] The present invention relates to a method of determining the direction of gravity, in particular a method to determine the direction of gravity on the moving platform.

[0002] 背景技术 [0002] BACKGROUND OF THE INVENTION

[0003] 重力摆可以敏感重力的方向,但在具有加速度和姿态变化的运动平台上,重力摆感受到的是重力加速度和平台加速度的合成加速度,因此当重力摆平衡时将无法正确指示出真实重力方向。 [0003] gravity pendulum may be sensitive to the direction of gravity, but the motion platform has acceleration and attitude change, feel the gravity of the pendulum is the resultant acceleration of the acceleration of gravity and acceleration platform, so when gravity pendulum balance will not indicate the true and correct the direction of gravity. 加速度计可以用来测量运动平台在空间中所受到的合成加速度矢量,但是加速度计无法区分出重力和惯性力。 Accelerometer may be used to measure the resultant acceleration vector of the moving platform in space is subjected, but the accelerometer will not distinguish a gravity and inertial force. 因此单独使用重力摆或者加速度计不能完全的实时确定出重力方向。 Thus a gravity pendulum accelerometers or not fully determine the real direction of gravity alone.

[0004] 文献“专利号是2005300196A的日本发明专利”公开了一种利用重力摆和加速度计测量倾角的装置和倾角测量方法。 [0004] Document "Japanese Patent No. 2005300196A patent is" discloses an apparatus and method for measuring the tilt by gravity pendulum accelerometer measurements and angle. 但是这种方法只适用于测量具有平动的运动平台的倾角或斜面倾斜角,而不能应用于姿态发生变化的运动平台。 However, this method is only suitable for measuring the translational motion having a platform or the inclination angle of the inclined ramp, the motion platform can not be applied posture changes. 实质上只能用于一个方向上的倾角测量,并且测量平面必须在铅垂面内。 Tilt measurement for substantially only in one direction, and a plane to be measured in a vertical plane. 一旦运动平台出现两个方向的姿态倾斜时,重力摆平衡时指示的是重力的分量而不是真实重力方向,因此该专利将无法准确测量出平台的倾斜角。 Once the motion platform there are two directions inclined posture, indicated by gravity for balancing of the component of gravity is not true gravity direction, and therefore the patent can not be measured accurately the inclination angle of the platform.

[0005] 发明内容 [0005] SUMMARY OF THE INVENTION

[0006] 为了克服现有技术只能对静止平台上倾角的进行测量的不足,本发明提供一种运动平台上重力方向确定方法,在具有两个方向姿态变化的运动平台上利用重力摆和加速度计实时确定重力方向或者测量运动平台的俯仰角和滚转角。 [0006] In order to overcome the prior art can only be less than the inclination angle and the stationary measurements, the present invention provides a gravity direction determination method A motion platform by gravity on the moving platform has two directions of pendulum attitude change and acceleration determining in real time the direction of gravity or meter measuring the motion platform pitch and roll angles.

[0007] 本发明解决其技术问题所采用的技术方案:一种运动平台上重力方向确定方法, 其特点是包括下述步骤: [0007] The present invention solves the technical problems the technical solution adopted: a method to determine the direction of gravity A moving platform, characterized by comprising the steps of:

[0008] (a)在运动平台的俯仰平面xoy和滚转平面yoz分别安装两个重力摆,两个重力摆分别敏感重力在运动平台的俯仰平面内的投影gx。 [0008] (a) xoy plane of the pitch and roll movement of the platform are mounted two flat yoz gravity pendulum, the pendulum are two gravity sensitive gravity gx projection plane motion in the tilting platform. y和滚转平面内的投影gy。 Gy in the y projected plane and roll. z,测量重力摆相对于运动平台的偏转角; z, the deflection angle measuring pendulum movement of the platform with respect to gravity;

[0009] (b)沿运动平台的俯仰轴ζ、滚转轴χ、偏航轴y各安装一个三轴加速度计,测量运动平台的合成加速度在三轴上的分量加速度ax、加速度ay和加速度az ; [0009] (b) along the pitch axis movement of the platform ζ, [chi] roll axis, a yaw axis y-axis accelerometer of the installation, the resultant acceleration measured movement of the platform on the triaxial acceleration components ax, ay and the acceleration az acceleration ;

[0010] (C)在运动平台运动时,测量三轴加速度计的输出加速度ax、加速度ay和加速度az,以及俯仰平面内重力摆的摆角θ x。 [0010] (C) when the motion platform motion, measuring the output of the acceleration ax-axis accelerometer, the acceleration ay and the acceleration az, and the pitch plane gravity pendulum swing angle θ x. y和滚转平面内重力摆的摆角θ yoz ; Y plane and the roll gravity pendulum swing angle θ yoz;

[0011] (d)根据角度关系,利用加速度ax、加速度ay和加速度az计算出俯仰平面和滚转平面内合成加速度分量ax。 [0011] (d) The angular relationship, using the acceleration ax, ay and the acceleration az acceleration calculated pitch and roll within the plane of plane synthesized acceleration component ax. y和加速度分量a譯,以及加速度ax、加速度ay和加速度az与运动平台的夹角ax。 and a translation acceleration component y, and the angle acceleration ax ax, az acceleration ay and the acceleration of the moving platform. y、Qyoz ; y, Qyoz;

[0012] (e)根据重力摆的摆长1、质量m和阻尼ε建立重力摆的衰减振动方程,以及重力摆与运动平台夹角的变化方程; [0012] (e) The length of the pendulum swing of gravity 1, and the damping mass m ε Equation for damping vibration equation established gravity pendulum, the pendulum motion and gravity platform angle;

[0013] (f)设置初值,利用非线性滤波方法获得俯仰平面和滚转平面内等效重力与平台的夹角Ly A。 [0013] (f) setting the initial value, using a nonlinear filtering method of obtaining the pitch angle between the plane of gravity and the platform, and equivalents within the roll plane Ly A. z ; z ;

[0014] (g)根据函数表达式[0015] β = θ -dcccsm [0014] (g) as a function of the expression [0015] β = θ -dcccsm

[0016] [0016]

■sin(0xoy+axoy) ■ sin (0xoy + axoy)

xoy xoy

炉=6U-aTcsin Furnace = 6U-aTcsin

■sm{eyo!+ayoz) ■ sm {eyo! + Ayoz)

[0017] 获得运动平台的俯仰角β和滚转角炉。 [0017] The obtained motion platform pitch angle β and roll angle furnace.

[0018] 本发明的有益效果是:由于在运动平台的俯仰和滚转平面内安装两个重力摆和三个轴向加速度计,通过几何方法和滤波算法,在具有姿态变化的运动平台同时测量平台的俯仰角和滚转角,或者确定重力方向。 [0018] Advantageous effects of the present invention is that: due to gravity installed two pitch and roll within the plane of the pendulum movement of the platform and three axial accelerometers, geometric methods and filtering algorithms, while measuring the motion platform with postural change pitch angle and roll angle, determining the direction of gravity or the platform. 该方法不仅适用于静止和平动的运动平台,也适用于具有姿态变化的静止和运动平台上重力方向确定或者平台俯仰角和滚转角测量。 This method is applicable not only to the stationary platform and translating movement, but also the direction of gravity on the stationary and moving platform having internet or postural changes is determined roll angle and pitch angle measurements.

[0019] 下面结合附图和实施例对本发明作详细说明。 Drawings and embodiments of the present invention will be described in detail [0019] below in conjunction.

附图说明 BRIEF DESCRIPTION

[0020] 图1是本发明方法中俯仰平面内重力摆偏转的几何示意图。 [0020] FIG. 1 is a schematic view of the geometric gravity pendulum deflection plane elevation process of the invention.

[0021] 图2是本发明方法中滚转平面内重力摆偏转的几何示意图。 [0021] FIG. 2 is a schematic view of the geometric plane of gravity pendulum deflection roll of the process of the invention.

[0022] 图3是本发明方法中运动平台上重力摆和加速度计摆放位置示意图。 [0022] FIG. 3 is a process of the invention the pendulum motion platform gravity and accelerometer schematic display position.

[0023] 图4是本发明方法中运动平台上俯仰平面内重力摆偏转的几何示意图。 [0023] FIG. 4 is a schematic view of the geometric plane of gravity of the pendulum deflection process of the invention the pitching motion platform.

[0024] 图中,1-运动平台,2-加速度计,3-重力摆。 [0024] FIG, 1 motion platform, an accelerometer 2-, 3- gravity pendulum.

具体实施方式 detailed description

[0025] 参照图1〜4。 [0025] Referring to FIG 1 ~ 4. 两个重力摆3分别安装在运动平台1的俯仰平面xoy和滚转平面yoz内。 3 two gravity pendulum are mounted in a plane xoy pitch and roll movement of the platform 1 yoz plane. 俯仰平面内的重力摆测量的为俯仰角β ;滚转平面内的重力摆测量的为滚转角φ。 Pendulum gravity measured in pitch plane pitch angle beta]; gravity pendulum in the rolling plane is measured roll angle φ. 俯仰平面为xoy,滚转平面为yoz。 Pitch plane xoy, roll plane yoz. 重力在俯仰平面的投影为-COS^ ;在滚转平面的投影为gy0Z = g · COS β。 Gravity tilting projection plane is -COS ^; projection plane roll is gy0Z = g · COS β.

[0026] 两个重力摆3的参数相同,其摆杆长1 = 0. 010m,摆锤质量m = 0. 010kg,阻尼系数ε = 0.1。 3 parameters [0026] two identical gravity pendulum, which pendulum length 1 = 0. 010m, the pendulum mass m = 0. 010kg, the damping coefficient ε = 0.1. 重力摆的电位计角传感器测角精度为0.1° (3 σ ),MEMS加速度传感器的测量精度为0.1m/s2(3cO。运动平台1移动时俯仰角以β =30° cos (4 π 2/500)变化,滚转角以炉= 45°cos(47r2/500)变化,且运动平台1具有χ轴方向的加速度a = 10。 Potentiometer angle sensor gravity pendulum angle measurement accuracy of 0.1 ° (3 σ), the measurement accuracy of the MEMS acceleration sensor to 0.1m / s2 (3cO. Pitch angle at β = 30 ° cos (4 π 2 the mobile platform 1 motion / 500) changes to the furnace roll angle = 45 ° cos (47r2 / 500) changes, and the motion platform 1 having a χ-axis direction acceleration a = 10.

[0027] 在运动平台1的X轴、Y轴和Z轴上分别安装三轴加速度计2,分别测量三轴的加速度。 [0027] In the X-axis movement of the platform 1, Y axis and Z axis are respectively mounted triaxial accelerometer 2, were measured three-axis acceleration. 测量值分别为ax、ay和az。 Values ​​were measured ax, ay, and az.

[0028] 运动平台1在俯仰平面内,沿纵轴以加速度a做加速运动,其在俯仰平面内的合成加速度为yja2x+a2y。 [0028] The tilting movement of the platform 1 in a plane along the longitudinal axis to do accelerated motion acceleration a, which is the resultant acceleration in the pitch plane is yja2x + a2y. 合成加速度与水平面的夹角α xoy = arctan (ax/ay)。 Synthesis acceleration and the horizontal angle α xoy = arctan (ax / ay).

[0029] 俯仰平面内的重力摆3受到运动平台χ轴方向上加速度a的影响,所感受的等效重力加速度g'为a和投影在俯仰平面xoy内的重力加速度gx。 [0029] Gravity pitch plane of a pendulum impact acceleration of 3 by the χ axis motion platform, the perceived equivalent gravitational acceleration g 'is a gravitational acceleration gx and projection in the pitch plane xoy. y的合成,该等效重力加速度g'表达式为: Synthesis of y, the equivalent gravitational acceleration g 'expression:

「 η , sin{axoy+β) ΓΙ-;~ϊ "Η, sin {axoy + β) ΓΙ-; ~ ϊ

[0030] g = . ' '^ ay [0030] g =. '' ^ Ay

sin(6»2 -/?) sin (6 »2 - /?)

4[0031] 俯仰平面内的重力摆3上的角度传感器测量出重力摆摆杆和与平台y轴之间的偏转角Θ。 4 [0031] Gravity pitch on the plane tilt angle sensor 3 to measure the deflection angle Θ between the rod and the platform gravity Swing y-axis. 但是θ中耦合了重力摆的振荡角θ”测量需要得到重力摆平衡位置和运动平台之间的夹角θ ”可采用非线性滤波技术去除θ10重力摆摆杆相对于其平衡位置的振荡角θ ! However, [theta] Coupling gravity pendulum oscillation angle [theta] "angle [theta] needs to be measured between the equilibrium position and the gravity pendulum motion platform" Nonlinear Filtering can be removed oscillation angle [theta] relative to its position of equilibrium of gravity Swing lever θ10 ! 满足单摆的衰减振动方程。 Fit the regression equation vibration of the pendulum. 选取状态量i, =Iel ά]τ,则状态方程的形式为: [0032] Select state quantity i, = Iel ά] τ, the state equation in the form: [0032]

Figure CN101526352BD00051
Figure CN101526352BD00052

[0033] 假设平台运动引起的θ 2是一个平缓变化过程,即或《0,则列写成状态空间的形式,如下所示: [0033] θ is assumed due to movement of the platform 2 is a gradual change process, i.e., or "0, is written in the form of a column state space as follows:

[0034] [0034]

Figure CN101526352BD00053

[0035] θ θ 2,4为状态变量。 [0035] θ θ 2,4 to the state variables. 观测量为重力摆与运动平台的测量夹角θ。 Observations pendulum angle θ is measured gravity and motion platform. 通过EKF 非线性滤波技术就可以实时估计出民。 By EKF nonlinear filtering techniques to estimate the real-time people. 从而减小了测量值中单摆衰减振荡角的影响。 Thereby reducing the influence of the measured value of the pendulum damping oscillation angle.

[0036] 根据^ja2x+a2y、α、&以及gx。 [0036] The ^ ja2x + a2y, α, & and gx. y之间的几何关系,就可解算出运动平台与水平面之间的夹角,即俯仰角β : Geometric relationship between y, can be calculated by the angle between the motion platform and the horizontal plane, i.e., the pitch angle β:

[0037] [0037]

Figure CN101526352BD00054

[0038] 在计算重力在俯仰平面内的投影时,需要用到滚转角;计算重力在滚转平面内的投影时,需要用到俯仰角。 [0038] When calculating the projection of gravity in elevation plane, it is necessary to use the roll angle; calculating gravity when rolling in the projection plane, it is necessary to use a pitch angle. 同理根据上述步骤建立滚转平面内的角度关系方程,滤波的时候采用递归的方法,可以同时递推计算出俯仰角和滚转角,从而在具有两个方向姿态变化的运动平台上确定了真实的重力方向。 The same procedure described above to establish the relationship between roll angle in the plane equation, when the recursive filtering process, recursion may be simultaneously calculated pitch angle and roll angle, thereby having a change in posture of the two platforms to determine the true direction in the direction of gravity.

[0039] 通过仿真计算可得,运动平台1运动时对重力方向的确定角精度小于0. 05°。 [0039] can be obtained by simulation, the movement platform 1 motion determining angular accuracy gravity direction is less than 0. 05 °.

Claims (1)

  1. 一种运动平台上重力方向确定方法,其特征在于包括下述步骤:(a)在运动平台的俯仰平面xoy和滚转平面yoz分别安装两个重力摆,两个重力摆分别敏感重力在运动平台的俯仰平面内的投影gxoy和滚转平面内的投影gyoz,测量重力摆相对于运动平台的偏转角;(b)沿运动平台的俯仰轴z、滚转轴x、偏航轴y各安装一个三轴加速度计,测量运动平台的合成加速度在三轴上的分量加速度ax、加速度ay和加速度az;(c)在运动平台运动时,测量三轴加速度计的输出加速度ax、加速度ay和加速度az,以及俯仰平面内重力摆的摆角θxoy和滚转平面内重力摆的摆角θyoz;(d)根据角度关系,利用加速度ax、加速度ay和加速度az计算出俯仰平面和滚转平面内合成加速度分量axoy和加速度分量ayoz,以及加速度ax、加速度ay和加速度az与运动平台的夹角αxoy、αyoz;(e)根据重力摆的摆长l、质量m The method of determining the direction of gravity A moving platform, comprising the steps of: (a) xoy plane of the pitch and roll movement of the platform are mounted two flat yoz gravity pendulum, two gravity pendulum motion platform are sensitive to gravity gxoy gyoz projection and a projection in the rolling plane within the plane of the pitch, yaw angle measured relative to gravity swing motion platform; (b) movement of the platform along the Z-axis pitch, roll axis x, y the yaw axis of the installation of a three axis accelerometer, measuring the resultant acceleration component in the movement of the platform in the three-axis acceleration ax, acceleration ay and the acceleration az; (c) platform motion during exercise, measuring the output of the acceleration ax-axis accelerometer, the acceleration ay and the acceleration az, gravity and the pendulum swing plane of the pitch angle and the roll plane θxoy gravity pendulum swing angle θyoz; combined acceleration components in the pitch and roll plane plane (d) to the angular relationship, using the acceleration ax, ay and the acceleration az acceleration calculated axoy and acceleration component ayoz, and the acceleration ax, ay and the acceleration angle αxoy acceleration az motion platform, αyoz; (e) the gravity of the pendulum swing length l, mass m 阻尼ε建立重力摆的衰减振动方程,以及重力摆与运动平台夹角的变化方程;(f)设置初值,利用非线性滤波方法获得俯仰平面和滚转平面内等效重力与平台的夹角(g)根据函数表达式<mrow> <mi>&beta;</mi> <mo>=</mo> <msub> <mover> <mi>&theta;</mi> <mo>^</mo> </mover> <mi>xoy</mi> </msub> <mo>-</mo> <mi>arcsin</mi> <mo>[</mo> <mfrac> <mrow> <mo>|</mo> <msqrt> <msup> <msub> <mi>a</mi> <mi>x</mi> </msub> <mn>2</mn> </msup> <mo>+</mo> <msup> <msub> <mi>a</mi> <mi>y</mi> </msub> <mn>2</mn> </msup> </msqrt> </mrow> <msub> <mrow> <mn>2</mn> <mi>g</mi> </mrow> <mi>xoy</mi> </msub> </mfrac> <mo>&CenterDot;</mo> <mi>sin</mi> <mrow> <mo>(</mo> <msub> <mover> <mi>&theta;</mi> <mo>^</mo> </mover> <mi>xoy</mi> </msub> <mo>+</mo> <msub> <mi>&alpha;</mi> <mi>xoy</mi> </msub> <mo>)</mo> </mrow> <mo>]</mo> </mrow>获得运动平台的俯仰角β和滚转角FSB00000249906900011.tif,FSB00000249906900013.tif,FSB00000249906900014.tif Ε establish damping vibration damping gravity pendulum equation, and the equation of gravity pendulum motion changes the angle of the platform; (f) setting the initial value, using a nonlinear filtering method of obtaining the pitch angle between the plane of gravity and the platform, and equivalents within the roll plane (g) The function expression <mrow> <mi> & beta; </ mi> <mo> = </ mo> <msub> <mover> <mi> & theta; </ mi> <mo> ^ </ mo> </ mover> <mi> xoy </ mi> </ msub> <mo> - </ mo> <mi> arcsin </ mi> <mo> [</ mo> <mfrac> <mrow> <mo> | </ mo> <msqrt> <msup> <msub> <mi> a </ mi> <mi> x </ mi> </ msub> <mn> 2 </ mn> </ msup> <mo> + < / mo> <msup> <msub> <mi> a </ mi> <mi> y </ mi> </ msub> <mn> 2 </ mn> </ msup> </ msqrt> </ mrow> < msub> <mrow> <mn> 2 </ mn> <mi> g </ mi> </ mrow> <mi> xoy </ mi> </ msub> </ mfrac> <mo> & CenterDot; </ mo> <mi> sin </ mi> <mrow> <mo> (</ mo> <msub> <mover> <mi> & theta; </ mi> <mo> ^ </ mo> </ mover> <mi> xoy </ mi> </ msub> <mo> + </ mo> <msub> <mi> & alpha; </ mi> <mi> xoy </ mi> </ msub> <mo>) </ mo> </ mrow> <mo>] </ mo> </ mrow> to obtain the pitch angle β and roll angle of the moving platform FSB00000249906900011.tif, FSB00000249906900013.tif, FSB00000249906900014.tif
CN 200910021804 2009-04-01 2009-04-01 Orienting method of gravity direction on moving platform CN101526352B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200910021804 CN101526352B (en) 2009-04-01 2009-04-01 Orienting method of gravity direction on moving platform

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200910021804 CN101526352B (en) 2009-04-01 2009-04-01 Orienting method of gravity direction on moving platform

Publications (2)

Publication Number Publication Date
CN101526352A true CN101526352A (en) 2009-09-09
CN101526352B true CN101526352B (en) 2011-01-05

Family

ID=41094348

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200910021804 CN101526352B (en) 2009-04-01 2009-04-01 Orienting method of gravity direction on moving platform

Country Status (1)

Country Link
CN (1) CN101526352B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011084553A1 (en) * 2011-10-14 2013-04-18 Robert Bosch Gmbh Method for determining position of device axle of portable apparatus e.g. smartphone, in vehicle, involves determining inclination angle of device axle based on comparison between measured acceleration of vehicle and acceleration of device
DE102016110144A1 (en) 2016-06-01 2017-11-16 Deutsches Zentrum für Luft- und Raumfahrt e.V. Apparatus and method for determining the position of a Landers

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB941112A (en) 1958-11-12 1963-11-06 Gen Precision Inc Improvements in flight simulators
US3651691A (en) 1970-01-05 1972-03-28 Donald J Pliha Pendulous type inertial reference devices
CN1786666A (en) 2005-12-15 2006-06-14 北京航空航天大学 Method for initial aiming of arbitrary double position of strapdown inertial navigation system
CN101109959A (en) 2007-08-06 2008-01-23 北京航空航天大学 Attitude determining system of mini system suitable for any motion

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB941112A (en) 1958-11-12 1963-11-06 Gen Precision Inc Improvements in flight simulators
US3651691A (en) 1970-01-05 1972-03-28 Donald J Pliha Pendulous type inertial reference devices
CN1786666A (en) 2005-12-15 2006-06-14 北京航空航天大学 Method for initial aiming of arbitrary double position of strapdown inertial navigation system
CN101109959A (en) 2007-08-06 2008-01-23 北京航空航天大学 Attitude determining system of mini system suitable for any motion

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JP特开平8-271279A 1996.10.18
刘智平,周凤岐,周军.具有参数不确定性的飞行器的变结构姿态控制.《宇航学报》.2007,第28卷(第1期),43-48.

Also Published As

Publication number Publication date Type
CN101526352A (en) 2009-09-09 application

Similar Documents

Publication Publication Date Title
Hansson et al. Validity and reliability of triaxial accelerometers for inclinometry in posture analysis
Noureldin et al. Inertial navigation system
CN101178615A (en) Gesture, movement induction system and portable electronic apparatus using same
CN1851406A (en) Gasture estimation and interfusion method based on strapdown inertial nevigation system
CN101793582A (en) Measuring system and measuring method of mass, center of mass and moment of inertia of rigid body
Sakaguchi et al. Human motion capture by integrating gyroscopes and accelerometers
CN101021879A (en) Inertial measuring system error model demonstration test method
US20090013755A1 (en) Calibration jig and algorithms for accelerometer
CN1740746A (en) Micro-dynamic carrier attitude measuring apparatus and measuring method thereof
CN101265804A (en) Well drilling high precision gradient meter sensor perpendicular installation error compensation process
US20080202199A1 (en) Positioning System For Single Or Multi-Axis Sensitive Instrument Calibration And Calibration System For Use Therewith
CN101532840A (en) Inertia measurement device for deep-sea inertia navigation
US20080158370A1 (en) Image stabilizing device of the mems type, in particular for image acquisition using a digital-image sensor
CN101701825A (en) High-precision laser gyroscope single-shaft rotating inertial navigation system
US7463953B1 (en) Method for determining a tilt angle of a vehicle
CN103616030A (en) Autonomous navigation system positioning method based on strapdown inertial navigation resolving and zero-speed correction
US20070095135A1 (en) Method for determining drag characteristics of aircraft and system for performing the method
CN101246024A (en) Method for external field fast calibrating miniature multi-sensor combined navigation system
Kang et al. Measurement of six degrees of freedom head kinematics in impact conditions employing six accelerometers and three angular rate sensors (6aω configuration)
JPH08247756A (en) Measurement error compensating device of three-dimensional measuring machine
CN102003968A (en) Single-axle table calibration method for fiber optic gyro strapdown inertial navigation system
CN101701824A (en) High-precision uniaxial rotation attitude measuring system based on laser gyro
JP2007040763A (en) Correction device of acceleration sensor
CN101158582A (en) Difference measurement method for MEMS gyroscopes
CN201408009Y (en) Inertia measuring device for deepwater inertial navigation

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C14 Grant of patent or utility model
C17 Cessation of patent right