CN101521819B - Method for optimizing rate distortion in video image compression - Google Patents

Method for optimizing rate distortion in video image compression Download PDF

Info

Publication number
CN101521819B
CN101521819B CN 200810065439 CN200810065439A CN101521819B CN 101521819 B CN101521819 B CN 101521819B CN 200810065439 CN200810065439 CN 200810065439 CN 200810065439 A CN200810065439 A CN 200810065439A CN 101521819 B CN101521819 B CN 101521819B
Authority
CN
China
Prior art keywords
distortion
rate
value
frequency domain
video image
Prior art date
Application number
CN 200810065439
Other languages
Chinese (zh)
Other versions
CN101521819A (en
Inventor
马国强
Original Assignee
深圳市融创天下科技发展有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市融创天下科技发展有限公司 filed Critical 深圳市融创天下科技发展有限公司
Priority to CN 200810065439 priority Critical patent/CN101521819B/en
Publication of CN101521819A publication Critical patent/CN101521819A/en
Application granted granted Critical
Publication of CN101521819B publication Critical patent/CN101521819B/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/48Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using compressed domain processing techniques other than decoding, e.g. modification of transform coefficients, variable length coding [VLC] data or run-length data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/124Quantisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/146Data rate or code amount at the encoder output
    • H04N19/147Data rate or code amount at the encoder output according to rate distortion criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/18Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being a set of transform coefficients
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/60Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
    • H04N19/61Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding in combination with predictive coding

Abstract

The invention relates to the field of video image processing and provides a method for optimizing rate distortion in video image compression. The method comprises the following steps of A. carrying ouThe invention relates to the field of video image processing and provides a method for optimizing rate distortion in video image compression. The method comprises the following steps of A. carrying ous, improving the evaluation precision and further enhancing the image compression performance.s, improving the evaluation precision and further enhancing the image compression performance.t transformation from spatial domain to frequency domain on the acquired image by a coder and generating frequency domain energy distribution after transformation; B. evaluating the optimizing value ot transformation from spatial domain to frequency domain on the acquired image by a coder and generating frequency domain energy distribution after transformation; B. evaluating the optimizing value of the rate distortion by the coder according to coding input parameters and the frequency domain energy distribution; and C. controlling the coding compression of the image by the coder according to tf the rate distortion by the coder according to coding input parameters and the frequency domain energy distribution; and C. controlling the coding compression of the image by the coder according to the optimizing value of the rate distortion. When estimating the rate distortion, compared with the prior art, the invention is characterized in that evaluation parameters are introduced into the codinhe optimizing value of the rate distortion. When estimating the rate distortion, compared with the prior art, the invention is characterized in that evaluation parameters are introduced into the coding input parameters and the frequency domain energy distribution after transformation at the same time, thus evaluating the optimizing value of the rate distortion according to the evaluation parameterg input parameters and the frequency domain energy distribution after transformation at the same time, thus evaluating the optimizing value of the rate distortion according to the evaluation parameter

Description

一种在视频图像压缩中对率失真进行优化的方法 The method for performing rate-distortion optimization in a video image compression

技术领域 FIELD

[0001] 本发明涉及视频图像处理领域,更具体地说,涉及一种在视频图像压缩中对率失真进行优化的方法。 [0001] The present invention relates to video image processing, and more particularly, relates to a rate-distortion optimization in a video image compression method.

背景技术 Background technique

[0002] 对于现代视频压缩技术来说,一般采用混合编码框架,这样的编码框架一般都提供了运动搜索,空间纹理预测、变换编码、熵编码等系列工具与算法。 [0002] For modern video compression technology, the general framework for the use of hybrid coding, such a coding framework generally provides motion search space texture prediction, transform coding, entropy coding and other tools and algorithms. 根据信息论,对于不同特征的图像区域,熵有很大的变化,其理论最大压缩率在波动,需要用不同的工具来实施压缩。 According to information theory, for different features of the image area, a great change of entropy, the theoretical maximum compression rate fluctuations, different tools needed to implement compression. 而在编码方式及编码压缩工具的选择方面,现代编码理论及已经被纳为国际标准的H. 264,MPEG-4, H. 264 等,均使用率失真优化(Rate-Distortion Optimization)方法。 And the choice of encoding and compression coding tools, modern coding theory and has been incorporated as an international standard of H. 264, MPEG-4, H. 264, are rate-distortion optimization (Rate-Distortion Optimization) method.

[0003] 现有技术中的率失真优化过程,包括以下步骤:(1)通过码率函数R(Qp)估算某种编码方式下的输出码率;(2)通过失真函数D (Qp)估算某种编码方式下产生的失真;(3)根据率失真函数J = D(Qp) +λ -R(Qp)进行最优化选择。 [0003] The prior art rate-distortion optimization process, comprising the steps of: (1) estimate the output rate by a certain encoding rate function R (Qp); (2) estimated by distortion function D (Qp) distortion caused by certain coding method; (3) + λ -R (Qp) for optimizing rate-distortion function selected according to J = D (Qp). 在上述过程中,编码输入参数Qp是唯一的量化参数,λ也是根据经验值从Qp计算所得。 In the above process, the encoding parameters input quantization parameter Qp is unique, [lambda] is obtained from Qp calculated based on empirical values. 现有技术通过对该单一参数的经验性估计,来近似求取各个编码模式或参数下产生的码率和失真,生成率失真曲线。 The prior art by empirical estimation single parameter, is obtained to approximate the rate and distortion generated in each coding mode or parameter, generating a rate distortion curve.

[0004] 由此可知,现有技术仅仅根据Qp求取码率和失真,将使得率失真函数精度不够, 尤其是编码器在无损压缩或过量化时,导致的偏差更大。 [0004] It can be seen, the prior art only in accordance with the distortion and bit rate Qp is obtained, so that the accuracy of the rate-distortion function is not enough, particularly when larger deviations lossless compression encoder or through quantization result.

[0005] 因此需要一种新的在视频图像压缩中对率失真进行优化的方法,提高编码器的率失真评估精度,从而进一步增强图像压缩的性能。 [0005] Thus a need for a new method for optimizing the video image compression ratio for distortion and improve the encoder rate-distortion estimation accuracy, thereby further enhancing the image compression performance.

发明内容 SUMMARY

[0006] 本发明的目的在于提供一种在视频图像压缩中对率失真进行优化的方法,旨在解决现有技术在视频图像压缩中率失真的评估精度较低,导致图像压缩性能较差的问题。 [0006] The object of the present invention is to provide an optimized rate distortion in a video image compression method, to solve the prior art low estimation accuracy in a video image compression ratio distortion, resulting in poor performance of image compression problem.

[0007] 为了实现发明目的,所述在视频图像压缩中对率失真进行优化的方法包括以下步骤: Method [0007] To achieve the object of the invention, the optimization in a video image compression rate-distortion comprising the steps of:

[0008] Α.编码器对获取到的图像进行空间域到频域的变换,并生成变换后的频域能量分布; [0008] Α encoder acquired image frequency domain energy transformation the spatial domain to the frequency domain, and generates a transition profile.;

[0009] B.编码器根据编码输入参数和频域能量分布求取率失真最优化值; [0009] B. The encoder input parameters, and encoding the frequency domain energy distribution value obtaining rate-distortion optimization;

[0010] C.编码器根据率失真最优化值,控制图像的编码压缩。 [0010] C. The value of the encoder rate-distortion optimization, the control image coding and compression.

[0011 ] 优选地,所述步骤A进一步包括,通过傅立叶变换或者离散余弦变换,对视频图像进行空间域到频域的变换。 [0011] Preferably, said step A further comprises, by Fourier transform or a discrete cosine transform, the video image spatial domain to frequency domain transform.

[0012] 优选地,所述步骤B进一步包括: [0012] Preferably, said step B further comprising:

[0013] Bi.根据编码输入参数及频域能量分布计算评估参数; . [0013] Bi evaluation parameter is calculated according to the distribution parameters and frequency-domain coding the input energy;

[0014] Β2.根据所述评估参数计算率失真值; . [0014] Β2 evaluation parameter is calculated based on the rate-distortion value;

[0015] Β3.遍历编码模式,求取使率失真值达到最优时的参数,即率失真最优化值。 [0015] Β3. Traverse coding mode, rate-distortion value is obtained so that the optimal parameters, i.e. rate-distortion optimization value.

[0016] 优选地,所述步骤Bl中评估参数的计算公式为:[0018] 其中,α、β是经验值常数,a、b是修正因子,Qp是编码输入参数,Y是变换后的频域能量分布。 [0016] Preferably, the step Bl evaluated parameters are calculated: [0018] wherein, α, β is an empirical value of the constant, a, b is a correction factor, Qp of encoding an input parameter, Y is the transformed frequency domain energy distribution.

[0019] 优选地,所述步骤B2中率失真值的计算公式为: [0019] Preferably, the distortion value calculated in Step B2 rate:

[0020] [0020]

[0021] 其中J是率失真值,P是评估参数,R(P)是码率,D(p)是失真。 [0021] where J is the rate-distortion value, P is the evaluation parameters, R (P) is the rate, D (p) is distorted.

[0022] 优选地,所述步骤B2的率失真值的计算公式中: [0022] Preferably, the step B2 of the distortion value calculated in:

[0023] 码率的计算公式为R(p) =p+(l/Sl)R(0),其中δ是经验值调节因子,R(ο)是一个编码模式下求得的码率; [0023] The rate is calculated as R (p) = p + (l / Sl) R (0), where δ is an empirical value adjustment factor, R (ο) is determined in a bit rate coding mode;

[0024] 失真的计算公式为 [0024] The distortion is calculated

,其中(X,y)表示视频图像中各 Wherein (X, y) represents each of the video image

象素的位置坐标,DiffT(x,y)是原始图象与目标图象在(x,y)位置对应象素的能量差转换到频域后的系数。 The position coordinates of the pixel, DiffT (x, y) is the original image and the target image corresponding to a frequency domain coefficient is switched to the energy difference in the pixel (x, y) location.

[0025] 优选地,所述步骤C进一步包括: [0025] Preferably, said step C further comprising:

[0026] 通过遍历各种编码模式,对率失真值采取拉格朗日逼近的方式,求取使率失真值达到最小时的参数,即率失真最优化值。 [0026] By traversing various encoding modes for rate distortion value taken Lagrange approximation method, obtaining rate-distortion value so that the parameter is minimum, i.e., the value of the rate-distortion optimization.

[0027] 为了更好的实现发明目的,前述方法基于编码器而实现,该编码器包括根据编码输入参数求取率失真最优化值的率失真优化单元、根据率失真最优化值控制图像编码的编码压缩单元,所述编码器还包括与率失真优化单元进行数据交互的图像域变换单元,用于对视频图像进行空间域到频域的变换,并将变换后的频域能量分布输入率失真优化单元; [0027] In order to achieve the object of the invention, the method is achieved based on the encoder, the encoder comprising encoding distortion optimization unit according to the input parameter obtaining rate-distortion optimized rate value, a rate-distortion optimization according to the value of the control image coding compression encoding unit, said encoder unit further includes an image domain transformation unit and the rate-distortion optimization for data exchange, video images for a spatial domain into the frequency domain, and frequency-domain energy distribution of the input rate of the converted distortion optimization means;

[0028] 所述率失真优化单元根据编码输入参数及所述频域能量分布,求取率失真最优化值,并将其送入编码压缩单元。 [0028] The rate-distortion optimization according to the coded input distribution unit and the frequency-domain energy parameters, obtaining rate-distortion optimization value, and sends it to the encoding compression unit.

[0029] 优选地,所述图像域变换单元通过傅立叶变换或者离散余弦变换,对视频图像进行空间域到频域的变换。 [0029] Preferably, the image transform unit domain or by a Fourier transform discrete cosine transform, the video image spatial domain to frequency domain transform.

[0030] 优选地,所述率失真优化单元进一步包括评估参数判定模块、率失真计算模块、轮询优化模块; [0030] Preferably, the unit further comprises a rate-distortion optimization evaluation parameter determination module, a rate distortion calculation module, polling optimization module;

[0031] 所述评估参数判定模块用于根据编码输入参数及频域能量分布计算评估参数; [0031] The evaluation parameter determining means for calculating an evaluation parameter according to the distribution of frequency-domain coding the input parameters and energy;

[0032] 所述率失真计算模块与评估参数判定模块进行数据交互,用于根据所述评估参数计算率失真值; [0032] The rate distortion calculation module and evaluation data interaction parameter determination module, a parameter for rate distortion value is calculated according to the evaluation;

[0033] 所述轮询优化模块与率失真计算模块进行数据交互,用于遍历编码模式,求取使率失真值达到最优时的参数。 The [0033] Polling module and the rate-distortion optimization calculation module exchanges data used to traverse the encoding mode parameter is obtained so that the optimal rate distortion value.

[0034] 本发明在率失真估算时,与现有技术相比的区别在于,将编码输入参数和变换后的频域能量分布同时引入了评估参数,从而根据该评估参数求取率失真最优化值,提高了评估精度,因此进一步增强了图像压缩的性能。 [0034] The present invention, when the estimated rate-distortion, compared to the prior art except that the input parameters, and encoding the transformed frequency domain energy distribution while introducing evaluation parameters, thereby optimizing the evaluation parameter is obtained based on the rate distortion values, improving the estimation accuracy, thereby further enhancing the image compression performance.

附图说明 BRIEF DESCRIPTION

[0035] 图1是本发明在视频图像压缩中对率失真进行优化的方法流程图; [0035] FIG. 1 is a process of the present invention is optimized for video image compression rate distortion flowchart;

[0036] 图2是本发明的一个实施例在视频图像压缩中对率失真进行优化的方法流程图;[0037] 图3是本发明中编码系统的结构图; [0036] FIG 2 is a flowchart of a video image compression according to one embodiment of the present invention is a method of rate-distortion optimization; [0037] FIG. 3 is a block diagram of an encoding system according to the present invention;

[0038] 图4是现有技术与本发明的一个实施例分别获得的率失真曲线图。 [0038] FIG 4 is a prior art embodiment of the present invention are obtained in a graph showing distortion embodiment. 具体实施方式 Detailed ways

[0039] 为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。 [0039] To make the objectives, technical solutions and advantages of the present invention will become more apparent hereinafter in conjunction with the accompanying drawings and embodiments of the present invention will be further described in detail. 应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。 It should be understood that the specific embodiments described herein are only intended to illustrate the present invention and are not intended to limit the present invention.

[0040] 本发明在率失真估算时,将编码输入参数和变换后的频域能量分布同时引入评估参数,从而根据该评估参数计算率失真值,然后进行拉格朗日线性逼近求取达到率失真最优化值,提高了率失真的评估精度。 [0040] The present invention, when the estimated rate-distortion, the frequency domain energy of the input parameters and the encoded transform simultaneously introduced evaluation parameter distribution, so that the distortion evaluation parameter value based on the count rate, then rate reached Lagrange linear approximation is obtained distortion optimization value and improve the estimation accuracy of distortion.

[0041] 图1示出了本发明在视频图像压缩中对率失真进行优化的方法流程,过程如下: [0041] FIG 1 illustrates a method of the present invention to optimize flow in a video image compression ratio for distortion, as follows:

[0042] 在步骤SlOl中,对获取到的图像进行空间域到频域的变换,并生成变换后的频域能量分布。 [0042] In step SlOl, the acquired images of the spatial frequency domain to a transform domain, and the energy distribution in the frequency domain to generate transformed.

[0043] 在步骤S102中,根据编码输入参数和频域能量分布求取率失真最优化值。 [0043] In step S102, the distribution ratio is obtained according to the input parameters and frequency domain coding distortion optimization of energy values.

[0044] 在步骤S103中,根据率失真最优化值,控制图像的编码压缩。 [0044] In step S103, rate-distortion optimization according to the value of control code compressed image.

[0045] 图2示出了本发明的一个实施例在视频图像压缩中对率失真进行优化的方法流程,该方法流程基于图1所示的方法流程,具体过程如下: [0045] FIG. 2 shows a flowchart of a method embodiment to optimize the rate-distortion in a video image compression of the present invention, the method flow based on the flow of the method shown in FIG. 1, the specific process is as follows:

[0046] 在步骤S201中,对获取到的图像进行空间域到频域的变换,并生成变换后的频域能量分布。 [0046] In step S201, the acquired images of the spatial frequency domain to a transform domain, and the energy distribution in the frequency domain to generate transformed.

[0047] 在一个示例方案中,通过傅立叶(Fourier)变换对视频图像进行空间域到频域的变换。 [0047] In one exemplary embodiment, by Fourier (of Fourier) transform the video image spatial domain to frequency domain transform. 在该示例方案下的一个实施例中,通过傅立叶变换后得到的频域能量分布如下所示: In an exemplary embodiment of this embodiment, the frequency domain by the Fourier transform energy distribution obtained as follows:

[0048] [0048]

[0049] 其中Y是频域能量分布,(x,y)表示视频图像中各象素的位置坐标,X(x,y)是图象区域经过变换后的频谱,h(x, y)是修正因子,其具体取值可以在实验中根据具体情况调 [0049] wherein Y is an energy distribution in the frequency domain, (x, y) represents the position coordinates of each pixel in the video image, X (x, y) is an image region of the spectrum after converted, h (x, y) is correction factor, which value can be adjusted according to specific circumstances in the experiment

整,在一个实施例中可取h(x,y) = 1,+是归一化因子,A是象素个数。 Whole, in one desirable embodiment, h (x, y) = 1 embodiment, + is a normalization factor, A is the number of pixels. 应当说明的是,上述 It should be noted that the above

计算公式只是本发明的其中一个示例,对于该公式的其他变换式,也应包含在本发明的保护范围内。 The formula is only one example of the present invention, other conversion formula of the formula, it should also be included within the scope of the present invention.

[0050] 在另一示例方案中,通过离散余弦变换(Discrete Cosine Transform, DCT)对视频图像进行空间域到频域的变换。 [0050] In another exemplary embodiment, the spatial domain to the frequency domain is transformed by a discrete cosine transform (Discrete Cosine Transform, DCT) on the video image. 在该示例方案下的一个实施例中,通过DCT变换后得到的频域能量分布如下所示: In an exemplary embodiment of this embodiment, the frequency domain energy distribution obtained by the DCT is as follows:

[0051] [0051]

[0052] 其中X(x,y)、h(x,y)的意义与前式中相同,A指象素个数。 [0052] where X (x, y), meaning h (x, y) is the same as the previous formula, A refers to the number of pixels. 应当说明的是,上述计算公式只是本发明的其中一个示例,对于该公式的其他变换式,也应包含在本发明的保护范围内。 It should be noted that the above formula is only one example of the present invention, other conversion formula of the formula, it should also be included within the scope of the present invention. [0053] 在步骤S202中,根据编码输入参数及频域能量分布计算评估参数。 [0053] In step S202, the evaluation parameter is calculated according to the distribution of frequency-domain coding the input parameters and energy. 在一个实施例中,评估参数P的计算公式为: In one embodiment, the evaluation parameter P is calculated as:

[0054] [0054]

[0055] 其中α、β是经验值常数,a、b是修正因子,Qp是编码输入参数,Y是变换后的频域能量分布。 [0055] where α, β is an empirical value of the constant, a, b is a correction factor, Qp is coded input parameter, Y is the transformed frequency domain energy distribution. 对α、β、a、b的取值,在应用中可根据具体情况进行调整,在一个实施例中, 可取值如下:α = 0. 7231,β = 0. 2769, a = b = 1。 Of α, β, a, b values ​​in the application can be adjusted according to specific circumstances, in one embodiment, the following values: α = 0. 7231, β = 0. 2769, a = b = 1 . 应当说明的是,上述计算公式只是本发明的其中一个示例,对于该公式的其他变换式,也应包含在本发明的保护范围内。 It should be noted that the above formula is only one example of the present invention, other conversion formula of the formula, it should also be included within the scope of the present invention.

[0056] 在步骤S203中,根据所述评估参数计算率失真值。 [0056] In step S203, based on the calculated rate distortion evaluation parameter value. 在一个实施例中,率失真值的计算公式为: In one embodiment, the rate distortion value is calculated as:

[0057] J = R(p)+pD(p),其中J是率失真值,P是评估参数,R(P)是码率,D(p)是失真。 [0057] J = R (p) + pD (p), where J is the rate-distortion value, P is the evaluation parameters, R (P) is the rate, D (p) is distorted. 应当说明的是,上述计算公式只是本发明的其中一个示例,对于该公式的其他变换式,也应包含在本发明的保护范围内。 It should be noted that the above formula is only one example of the present invention, other conversion formula of the formula, it should also be included within the scope of the present invention.

[0058] 而在上式中,码率R(P)在不同编码体系中对不同编码模式计算时,有不同的预测方法。 [0058] In the above formula, the code rate R (P) in different encoding systems when the different encoding modes is calculated, different prediction methods. 在一个实施例中,如在运动搜索时,需要考虑到残差量化、熵编码后的码率,还需要加上编码具体运动矢量所耗费的比特数目,求得该编码模式下的码率R(o)。 In one embodiment, as in the motion search to take into account the residual quantization, the entropy coding rate, number of bits also need to add motion vector encoding a particular consumed, the determined code rate R at coding mode (o). 例如在该实施例下码率R(P)计算公式为: In this embodiment, for example, calculates the code rate R (P) of the formula:

[0059] R (ρ) = ρ+ (1/ δ -1) R (ο)。 [0059] R (ρ) = ρ + (1 / δ -1) R (ο).

[0060] 其中δ是经验值调节因子,是一个经验值,与具体编码体系有关,在一个实施例 [0060] where δ adjustment factor is an empirical value, an empirical value, with the particular coding system related, in one embodiment

中,例如在H. 264及MPEG-4等编码器中,可以取值^ = Qp J,其中,Qp是率失真模块的输 In, for example, in H. 264 and MPEG-4 encoder and the like, we can take the values ​​^ = Qp J, wherein, Qp of the module is the rate-distortion output

入参数,编码器在进入率失真模块时已经携带进来。 Into the parametric encoder upon entering the rate-distortion module has been carried in. 应当说明的是,上述计算公式只是本发明的其中一个示例,对于该公式的其他变换式,也应包含在本发明的保护范围内。 It should be noted that the above formula is only one example of the present invention, other conversion formula of the formula, it should also be included within the scope of the present invention.

[0061] 在上式中,使用SATD(Sum of Absolute Transform Difference,变换域的绝对差和)来衡量图象区域之间的能量差,因此一个实施例中,失真D(p)的计算公式为: [0061] In the above formula, using the SATD (Sum of Absolute Transform Difference, and the absolute difference between the transform domain) to measure the energy difference between the image area, therefore an embodiment, the distortion D (p) is calculated as :

[0062] [0062]

[0063] 其中(x,y)表示视频图像中各象素的位置坐标,DiffT(x,y)是原始图象与目标图象在(χ,y)位置对应象素的能量差转换到频域后的系数。 [0063] where (x, y) represents the position coordinates of each pixel in the video image, DiffT (x, y) is the original image and the target images (χ, y) of the pixel position corresponding to the energy difference into the frequency domain coefficients. 应当说明的是,上述计算公式只是本发明的其中一个示例,对于该公式的其他变换式,也应包含在本发明的保护范围内。 It should be noted that the above formula is only one example of the present invention, other conversion formula of the formula, it should also be included within the scope of the present invention.

[0064] 在该实施例中, [0064] In this embodiment,

[0065] DiffT (x, y) = HXDiff (χ, y) XH,胃ψ, Diff (χ, y) = Original (χ, y)-Prediction(χ, y)。 [0065] DiffT (x, y) = HXDiff (χ, y) XH, stomach ψ, Diff (χ, y) = Original (χ, y) -Prediction (χ, y).

[0066] 其中,H是哈德迈变换矩阵,通过HXDiff (x,y) XH的计算,将失真度的衡量变换到频域,由于本发明已经在P中包含了频域信息,所以使用DiffT(x,y),而不直接使用Diff (x,y),这样可以带来更高的精度。 [0066] where, H is the Ha Demai transformation matrix, the calculated XH HXDiff (x, y), the measure of distortion into the frequency domain, since the present invention has a frequency domain information contained in P, so use DiffT (x, y), without directly using the Diff (x, y), which can lead to higher accuracy.

[0067] 在上述实施例中,该哈德迈变换矩阵H如下所示: [0067] In the above embodiment, the transformation matrix H Ha Demai follows:

[0069] 在步骤S204中,遍历编码模式,求取使率失真值达到最优时的参数,即率失真最优化值。 [0069] In step S204, the traversal coding mode, rate-distortion value is obtained so that the optimal parameters, i.e. rate-distortion optimization value. 在一个示例方案中,是通过遍历各种编码模式,对率失真值采取拉格朗日逼近的方式,求取使率失真值达到最小时的参数,将这组参数作为率失真最优化值。 In one exemplary embodiment, traversing through various encoding modes for rate distortion value taken Lagrange approximation method, obtaining rate-distortion parameters so that the value reaches the minimum, the set of parameter values ​​as the rate-distortion optimization. 由此可知,率失真最优化值并不是通过计算直接获得的,而是基于本文的算法进行遍历而查找出来的一组最佳值。 It can be seen, the rate distortion optimization value is not obtained directly by calculation, but rather a set of best value to find out traversal algorithm based on this article.

[0070] 一般率失真曲线都是以码率(Kbps)作为横坐标,以信噪比(Pear Signal toNoise Ratio, PSNR) (dB)作为纵坐标,曲线上的点一般是采用QP = 28,32,36,40这四个Qp下的编码码率和编码质量,曲线点越高,表明性能越好。 [0070] Usually the rate-distortion curves are based on rate (Kbps) as abscissa, signal to noise ratio (Pear Signal toNoise Ratio, PSNR) (dB) as the ordinate point on the curve is generally used QP = 28,32 , coding rate and coding quality, the higher the curve points in these four Qp of 36, 40, it indicates better performance. 在一个具体的应用场景中,例如在H. 264 参考软件JM7. 6中,应用本发明而获得的率失真曲线(采用标准测试序列作为样本),如图4所示。 In a specific application scenario, for example, in H. 264 reference software JM7. 6, the rate of application of the present invention is obtained by distortion curve (test sequence as a standard sample), as shown in FIG. 其中,位于下方的曲线是现有技术中的率失真曲线,位于上方的曲线是本发明中获得的率失真曲线,各点对应数据如下表所示: Which is located below the curve of the prior art distortion curve, is located above the curve of the present invention obtained in the distortion curve, the corresponding data points in the table below:

[0071] [0071]

[0072] 在步骤S205中,根据率失真最优化值,控制图像的编码压缩。 [0072] In step S205, rate-distortion optimization according to the value of control code compressed image. 具体的编码过程可参考现有技术,此处不再赘述。 Specific reference to the prior art encoding process may not be repeated herein.

[0073] 在一个应用场景中,本发明的上述方法是基于一个编码系统来实现的。 [0073] In one scenario, the above method of the present invention is based on a coding system implemented. 该编码系统可以应用到多种编码器中,例如任意一款H. 120,H. 261、H. 263,H. 264、MPEG-1、MPEG_4或其它任何混合框架的编码器。 The encoding system may be applied to a variety of encoders, such as any of a H. 120, H. 261, H. 263, H. 264, MPEG-1, MPEG_4 frame or any other hybrid encoder.

[0074] 图3示出了本发明中编码系统的结构,包括以下逻辑功能单元:图像域变换单元100、率失真优化单元200、编码压缩单元300。 [0074] FIG. 3 shows a configuration of the encoding system of the present invention, the logic function unit comprising: an image domain transform section 100, rate-distortion optimization unit 200, a compression encoding unit 300. 应当说明的是,上述逻辑功能单元在具体应用中可通过多种设备、元件或其组合来实现,因此并不用以将其保护范围限定为特定的物理设备;另外,本发明所有图示中各设备或逻辑功能单元之间的连接关系是为了清楚阐释其信息交互及控制过程的需要,因此应当视为逻辑上的连接关系,也不应限于物理连接。 It should be noted that the above logic function unit may be implemented by various devices, elements or a combination thereof in a particular application, thus not intended to limit its scope to a particular physical device; Further, the present invention is illustrated in each of all connection between the device or logical function unit need thereof for a clear explanation information exchange and process control, and therefore should be considered a logical connection relationship, it should not be restricted to the physical connection. 其中:[0075] (1)图像域变换单元100与率失真优化单元200进行数据交互,用于对视频图像进行空间域到频域的变换,并将变换后的频域能量分布输入率失真优化单元200。 Wherein: [0075] (1) image domain conversion unit 100 and the rate-distortion optimization unit 200 to exchange data, the video image for the spatial domain to the frequency domain and the frequency domain energy distribution of the transformed input RDO 200 unit.

[0076] 在一个示例方案中,图像域变换单元100通过傅立叶(Fourier)变换对视频图像进行空间域到频域的变换。 [0076] In one exemplary embodiment, the image-domain transform unit 100 transforms the frequency domain to the Fourier domain (of Fourier) transform the video image space. 在该示例方案下的一个实施例中,通过傅立叶变换后得到的频域能量分布如下所示: In an exemplary embodiment of this embodiment, the frequency domain by the Fourier transform energy distribution obtained as follows:

[0077] [0077]

[0078] 其中,Y是频域能量分布,(X,y)表示视频图像中各象素的位置坐标,X(x, y)是图象区域经过变换后的频谱,h(x, y)是修正因子,其具体取值可以在实验中根据具体情况 [0078] wherein, Y is a frequency domain energy distribution, (X, y) represents the position coordinates of each pixel in the video image, X (x, y) is an image region of the spectrum after converted, h (x, y) It is a correction factor, which can be specific values ​​depending on the circumstances in the experiments

调整,在一个实施例中可取h(x,y) = 1,+是归一化因子,A是象素个数。 Adjusting, in one desirable embodiment, h (x, y) = 1 embodiment, + is a normalization factor, A is the number of pixels.

A A

[0079] 在另一示例方案中,图像域变换单元100通过离散余弦变换(Discrete CosineTransform, DCT)对视频图像进行空间域到频域的变换。 [0079] In another exemplary embodiment, the image-domain transform unit 100 transforms the spatial domain to the frequency domain by a discrete cosine transform (Discrete CosineTransform, DCT) on the video image. 在该示例方案下的一个实施例中,通过DCT变换后得到的频域能量分布如下所示: In an exemplary embodiment of this embodiment, the frequency domain energy distribution obtained by the DCT is as follows:

[0081] 其中,X(x,y)、h(x,y)的意义与前述的式⑴中相同,A指象素个数。 [0081] wherein, X (x, y), h (x, y) and the meaning of the same formula ⑴, A refers to the number of pixels. (2)率失真优化单元200根据编码输入参数及所述频域能量分布,求取率失真最优化值,并将其送入编码压缩单元300。 (2) a rate-distortion optimized coding unit 200 according to the distribution of the input parameters and the frequency-domain energy, obtaining rate-distortion optimization value, and sends it to the compression unit 300 encodes. 其内部结构包括评估参数判定模块201、率失真计算模块202、轮询优化模块203,其中: Its internal structure includes evaluation parameter determination module 201, a rate distortion calculation module 202, polling optimization module 203, wherein:

[0082] 评估参数判定模块201用于根据编码输入参数及频域能量分布计算评估参数(用P表示)。 [0082] The evaluation parameter determination module 201 for calculating an evaluation according to the coding parameter distribution of input parameters and the frequency domain energy (represented by P). 在一个实施例中,评估参数P的计算公式为: In one embodiment, the evaluation parameter P is calculated as:

[0084] 其中,α、β是经验值常数,a、b是修正因子,Qp是编码输入参数,Y是变换后的频域能量分布。 [0084] wherein, α, β is an empirical value of the constant, a, b is a correction factor, Qp is coded input parameter, Y is the transformed frequency domain energy distribution. 对α、β、a、b的取值,在应用中可根据具体情况进行调整,在一个实施例中,可取值如下:α = 0. 7231,β = 0. 2769,a = b = 1。 Of α, β, a, b values ​​in the application can be adjusted according to specific circumstances, in one embodiment, the following values: α = 0. 7231, β = 0. 2769, a = b = 1 .

[0085] 率失真计算模块202与评估参数判定模块201进行数据交互,用于根据所述评估参数计算率失真值。 [0085] The rate distortion calculation and evaluation parameter determination module 202 for data exchange module 201, a parameter for rate distortion value is calculated according to the evaluation. 在一个实施例中,率失真值的计算公式为: In one embodiment, the rate distortion value is calculated as:

[0086] J = R(p)+pD(p)。 [0086] J = R (p) + pD (p).

[0087] 其中J是率失真值,P是评估参数,R(P)是码率,D(p)是失真。 [0087] where J is the rate-distortion value, P is the evaluation parameters, R (P) is the rate, D (p) is distorted.

[0088] 而在上式中,码率R(P)在不同编码体系中对不同编码模式计算时,有不同的预测方法。 [0088] In the above formula, the code rate R (P) in different encoding systems when the different encoding modes is calculated, different prediction methods. 在一个实施例中,如在运动搜索时,需要考虑到残差量化、熵编码后的码率,还需要加上编码具体运动矢量所耗费的比特数目,求得该编码模式下的码率R(o)。 In one embodiment, as in the motion search to take into account the residual quantization, the entropy coding rate, number of bits also need to add motion vector encoding a particular consumed, the determined code rate R at coding mode (o). 例如在该实施例下码率R(P)计算公式为: In this embodiment, for example, calculates the code rate R (P) of the formula:

[0089] R (ρ) = ρ+ (1/ δ -1) R (ο)。 [0089] R (ρ) = ρ + (1 / δ -1) R (ο).

[0090] 其中δ是经验值调节因子,是一个经验值,与具体编码体系有关,在一个实施例 [0090] where δ adjustment factor is an empirical value, an empirical value, with the particular coding system related, in one embodiment

8中,例如在H. 264及MPEG-4等编码器中,可以取值j = Qp J,其中,Qp是率失真模块的输入参数,编码器在进入率失真模块时已经携带进来。 8, for example, in H. 264 and MPEG-4 encoder and the like, can take the values ​​j = Qp J, wherein, Qp of the module is the rate-distortion input parameters, upon entering the encoder rate-distortion module has been carried in.

[0091] 在上式中,使用SATD(Sum of Absolute Transform Difference,变换域的绝对差和)来衡量图象区域之间的能量差,因此一个实施例中,失真D(p)的计算公式为: [0091] In the above formula, using the SATD (Sum of Absolute Transform Difference, and the absolute difference between the transform domain) to measure the energy difference between the image area, therefore an embodiment, the distortion D (p) is calculated as :

[0092] [0092]

[0093] 其中(x,y)表示视频图像中各象素的位置坐标,DiffT(x,y)是原始图象与目标图象在(x,y)位置对应象素的能量差转换到频域后的系数。 [0093] where (x, y) represents the position coordinates of each pixel in the video image, DiffT (x, y) is the original image and the target image pixel location corresponding to the energy difference in the (x, y) to the frequency converter domain coefficients. 在该实施例中, In this embodiment,

[0094] DiffT(x,y) = HXDiff (χ, y) XH0 [0094] DiffT (x, y) = HXDiff (χ, y) XH0

[0095] 其中,Diff (X, y) = Original (χ, y)-Prediction (χ, y)。 [0095] wherein, Diff (X, y) = Original (χ, y) -Prediction (χ, y).

[0096] H是哈德迈变换矩阵,通过HXDiff (χ,y) XH的计算,将失真度的衡量变换到频域,由于本发明已经在P中包含了频域信息,所以使用DiffT(X,y),而不直接使用Diff (X, y),这样可以带来更高的精度。 [0096] H is a transformation matrix Ha Demai by HXDiff (χ, y) calculated XH will measure the degree of distortion into the frequency domain, since the present invention has a frequency domain information contained in P, so use DiffT (X , y), without directly using the Diff (X, y), which can lead to higher accuracy.

[0097] 在上述实施例中,该哈德迈变换矩阵H如下所示: [0097] In the above embodiment, the transformation matrix H Ha Demai follows:

[0099] 轮询优化模块203与率失真计算模块202进行数据交互,用于遍历编码模式,求取使率失真值达到最优时的参数。 [0099] Polling module 203 with the rate distortion optimization calculation module 202 exchanges data used to traverse the encoding mode parameter is obtained so that the optimal rate distortion value. 在一个示例方案中,该轮询优化模块203是通过遍历各种编码模式,对率失真值采取拉格朗日逼近的方式,求取使率失真值达到最小时的参数,将这组参数作为率失真最优化值。 In one exemplary embodiment, the optimization module 203 is polled by traversing various encoding modes for rate distortion value taken by way of Lagrange approximation, is obtained so that the value reaches the minimum rate-distortion parameters, the set of parameters as rate distortion optimization value. 由此可知,率失真最优化值并不是通过计算直接获得的,而是基于本文的算法进行遍历而查找出来的一组最佳值。 It can be seen, the rate distortion optimization value is not obtained directly by calculation, but rather a set of best value to find out traversal algorithm based on this article.

[0100] 率失真模型本身不依赖于具体的编码框架,可以应用于H. 264、MPEG-4及其它使用率失真优化策略的编码器。 [0100] Rate-distortion model itself does not depend on the specific coding frame, may be applied to H. 264, MPEG-4 and other rate-distortion optimization strategy encoder. 在一个具体的应用场景中,例如在H. 264参考软件JM7. 6中, 应用本发明而获得的率失真曲线(采用标准测试序列作为样本),如图4所示。 In a specific application scenario, for example, in H. 264 reference software JM7. 6, the rate of application of the present invention is obtained by distortion curve (test sequence as a standard sample), as shown in FIG.

[0101] (3)编码压缩单元300根据率失真优化单元200输入的率失真最优化值控制图像编码,其具体的编码过程可参考现有技术,此处不再赘述。 [0101] (3) The 300 code compression rate-distortion optimization unit 200 of the input unit controls the image-distortion optimization value encoding, the encoding process may be specific reference to the prior art, it will not be repeated here.

[0102] 应当说明的是,本发明可以应用到多种编码器中,例如任意一款H. 120、H. 261、 H. 263、H. 264、MPEG-I、MPEG-4或其它任何混合框架的编码器。 [0102] It should be noted that the present invention can be applied to a variety of encoders, such as any of a H. 120, H. 261, H. 263, H. 264, MPEG-I, MPEG-4 or any other mixing encoder frame.

[0103] 以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。 [0103] The foregoing is only preferred embodiments of the present invention but are not intended to limit the present invention, any modifications within the spirit and principle of the present invention, equivalent substitutions and improvements should be included in the present within the scope of the invention.

Claims (6)

  1. 一种在视频图像压缩中对率失真进行优化的方法,其特征在于,所述方法包括以下步骤:A.编码器对获取到的图像进行空间域到频域的变换,并生成变换后的频域能量分布;B.编码器根据编码输入参数和频域能量分布求取率失真最优化值;C.编码器根据率失真最优化值,控制图像的编码压缩;其中,所述步骤B进一步包括:B1.根据编码输入参数及频域能量分布计算评估参数;B2.根据所述评估参数计算率失真值;B3.遍历编码模式,求取使率失真值达到最优时的参数,即率失真最优化值。 A method of rate-distortion optimization, characterized in that the video image compression, the method comprising the steps of:. A encoder acquired image spatial domain to frequency domain transform, and generates a frequency transformed domain energy distribution;. B encoder profile is obtained according to the coding rate of the input parameters and the frequency domain distortion optimization energy value;. C value in accordance with the encoder rate-distortion optimization, the control code compressed image; wherein the step B further comprises .: B1 evaluation parameter calculated according to the distribution parameters and frequency-domain coding the input energy; B2 based on the calculated rate distortion evaluation parameter value; B3 traverse the encoding mode parameter is obtained so that the rate-distortion optimal value, i.e. ratio distortion. optimize value.
  2. 2.根据权利要求1所述的在视频图像压缩中对率失真进行优化的方法,其特征在于, 所述步骤A进一步包括,通过傅立叶变换或者离散余弦变换,对视频图像进行空间域到频域的变换。 2. The method of optimizing the video image compression rate-distortion according to claim 1, wherein said step A further comprises, by Fourier transform or a discrete cosine transform, the video image spatial domain to the frequency domain transformation.
  3. 3.根据权利要求1所述的在视频图像压缩中对率失真进行优化的方法,其特征在于, 所述步骤Bl中评估参数的计算公式为: The method of optimization in a video image compression ratio for distortion according to claim 1, wherein said step Bl calculated parameters are evaluated: 其中,P是评估参数,α,β是经验值常数,a、b是修正因子,Qp是编码输入参数,γ是变换后的频域能量分布。 Wherein, P is an evaluation parameter, α, β is an empirical value of the constant, a, b is a correction factor, Qp is coded input parameter, γ is a frequency domain energy distribution converted.
  4. 4.根据权利要求1所述的在视频图像压缩中对率失真进行优化的方法,其特征在于, 所述步骤B2中率失真值的计算公式为:J = R (P)+pD(p);其中J是率失真值,P是评估参数,R(P)是码率,D(p)是失真。 4. The method of rate-distortion optimization in a video image compression according to claim 1, wherein the rate distortion value is calculated in said step B2 is: J = R (P) + pD (p) ; where J is the rate-distortion value, P is the evaluation parameters, R (P) is the rate, D (p) is distorted.
  5. 5.根据权利要求4所述的在视频图像压缩中对率失真进行优化的方法,其特征在于, 所述步骤B2的率失真值的计算公式中:码率的计算公式为R(p) =p+(l/Sl)R(0),其中δ是经验值调节因子,R(o)是一个编码模式下求得的码率;失真的计算公式为 5. The method of optimizing the video image compression ratio for distortion according to claim 4, wherein said step of calculated distortion value of B2: calculated bit rate is R (p) = p + (l / Sl) R (0), where δ is an empirical value adjustment factor, R (o) is determined in a bit rate coding mode; distortion is calculated ,其中(X,y)表示视频图像中各象素的位置坐标,DiffT(x,y)是原始图象与目标图象在(x,y)位置对应象素的能量差转换到频域后的系数。 Wherein the (X, y) represents the position coordinates of each pixel in the video image, DiffT (x, y) is the energy difference between the original image and the target image at a position corresponding to the pixel (x, y) into the frequency domain coefficients.
  6. 6.根据权利要求4所述的在视频图像压缩中对率失真进行优化的方法,其特征在于, 所述步骤C进一步包括:通过遍历各种编码模式,对率失真值采取拉格朗日逼近的方式,求取使率失真值达到最小时的参数,即率失真最优化值。 6. The method for optimizing the video image compression ratio for distortion according to claim 4, wherein said step C further comprising: traversing various encoding modes for rate distortion value taken Lagrange approximation the way to strike the rate-distortion value of the parameter is minimum, that rate distortion optimization value.
CN 200810065439 2008-02-27 2008-02-27 Method for optimizing rate distortion in video image compression CN101521819B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200810065439 CN101521819B (en) 2008-02-27 2008-02-27 Method for optimizing rate distortion in video image compression

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN 200810065439 CN101521819B (en) 2008-02-27 2008-02-27 Method for optimizing rate distortion in video image compression
PCT/CN2008/072115 WO2009105948A1 (en) 2008-02-27 2008-08-22 An optimization method and an encoder for a rate distortion in a video image compression

Publications (2)

Publication Number Publication Date
CN101521819A CN101521819A (en) 2009-09-02
CN101521819B true CN101521819B (en) 2010-12-01

Family

ID=41015510

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200810065439 CN101521819B (en) 2008-02-27 2008-02-27 Method for optimizing rate distortion in video image compression

Country Status (2)

Country Link
CN (1) CN101521819B (en)
WO (1) WO2009105948A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101895788B (en) * 2010-07-21 2013-07-03 深圳市融创天下科技股份有限公司 Method and system for objectively evaluating video coding performance
CN101938654B (en) * 2010-08-17 2013-04-10 浙江大学 Method and device for optimizing and quantifying conversion coefficients
CN103139554B (en) * 2011-11-22 2016-12-21 浙江大学 A kind of 3 D video Rate-distortion optimization method and optimization device
CN102695055B (en) * 2012-05-18 2014-09-17 西安电子科技大学 JPEG_LS (Joint Pho-tographic Experts Group-Lossless Standard) bit rate control method under high bit rate
CN103200403B (en) * 2013-03-18 2015-10-28 同济大学 Large-scale database image storage optimization method
CN105578187A (en) * 2015-12-10 2016-05-11 杭州当虹科技有限公司 Rapid distortion rate calculation method in HEVC
CN107087173B (en) * 2017-04-10 2019-10-18 电子科技大学 A kind of video encoding optimization method of content oriented analysis

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5933193A (en) 1996-03-25 1999-08-03 Trw Inc. Method and system for three-dimensional compression of digital video signals
CN1778117A (en) 2003-04-18 2006-05-24 皇家飞利浦电子股份有限公司 System and method for rate-distortion optimized data partitioning for video coding using parametric rate-distortion model
WO2007011160A1 (en) 2005-07-19 2007-01-25 Electronics And Telecommunications Research Institute Apparatus and method of embedded quantizaton for the improved snr scalbilty

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1193616C (en) * 2000-09-29 2005-03-16 中兴通讯股份有限公司 Quantization and code stream control method for image compressing transmission
CN1206864C (en) * 2002-07-22 2005-06-15 中国科学院计算技术研究所 Association rate distortion optimized code rate control method and apparatus thereof
CN100401789C (en) * 2004-06-11 2008-07-09 上海大学 Quick selection of prediction modes in H.264/AVC frame
CN100370836C (en) * 2004-08-02 2008-02-20 华为技术有限公司 Motion forecast method based on rate-distortion optimization
CN1275469C (en) * 2004-11-10 2006-09-13 华中科技大学 Method for pridicting sortable complex in frame

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5933193A (en) 1996-03-25 1999-08-03 Trw Inc. Method and system for three-dimensional compression of digital video signals
CN1778117A (en) 2003-04-18 2006-05-24 皇家飞利浦电子股份有限公司 System and method for rate-distortion optimized data partitioning for video coding using parametric rate-distortion model
WO2007011160A1 (en) 2005-07-19 2007-01-25 Electronics And Telecommunications Research Institute Apparatus and method of embedded quantizaton for the improved snr scalbilty

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
C.Zhu
Hung-Ju Lee
Lin Xiao
Pan Feng.a novel rate control scheme for video over the internet.acoustice,speech,and signal processing,2002.proceeding..2002,2全文.
Tihao Chiang
Ya-Qin Zhang.scalable rate control for mpeg-4 video.circuits and system for video technology.2000,10(6),全文.
Z.G.Li

Also Published As

Publication number Publication date
WO2009105948A1 (en) 2009-09-03
CN101521819A (en) 2009-09-02

Similar Documents

Publication Publication Date Title
JP5410549B2 (en) Video encoding using precomputed motion information
CN101361370B (en) Image encoding/image decoding method and image encoding/image decoding apparatus
CN101138250B (en) Adaptive intra-frame refresh for digital video encoding
CN102301710B (en) Multiple bit rate video encoding using variable bit rate and dynamic resolution for adaptive video streaming
CN100556148C (en) Method for encoding and decoding video information, a motion compensated video encoder and a corresponding decoder
KR101744654B1 (en) Motion based dynamic resolution multiple bit rate video encoding
CN101416524B (en) Dynamic selection of motion estimation search ranges and extended motion vector ranges
KR100927733B1 (en) An apparatus and method for encoding / decoding selectively using a transformer according to correlation of residual coefficients
JP2006180497A (en) Method and apparatus for generating quantization matrix that can be used for encoding image or picture sequence
EP2136566A1 (en) Image encoding and image decoding method and device
EP2202986A1 (en) An adaptive predicting device and method
JP2007089035A (en) Moving image encoding method, apparatus, and program
CN1206864C (en) Association rate distortion optimized code rate control method and apparatus thereof
Yang et al. Rate distortion optimization for H. 264 interframe coding: A general framework and algorithms
JP2006333444A (en) Method for controlling encoder output bit rate in block-based video encoder, and corresponding video encoder apparatus
CN101356818B (en) The image encoding / decoding method and apparatus
CN100568976C (en) Method and device for intra prediction coding and decoding of image
US8059721B2 (en) Estimating sample-domain distortion in the transform domain with rounding compensation
CN100566427C (en) Intraframe prediction coding optimum mode selecting method and apparatus for video coding
US7817723B2 (en) Apparatus and method of optimizing motion estimation parameters for encoding a video signal
CN1846446B (en) Process and arrangement for encoding video pictures
JP2006140758A (en) Method, apparatus and program for encoding moving image
US8498335B2 (en) Adaptive deadzone size adjustment in quantization
KR101805429B1 (en) Apparatus and method for coding/decoding image selectivly using descrete cosine/sine transtorm
CN101491104B (en) Image processing device and method

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
COR Change of bibliographic data

Free format text: CORRECT: ADDRESS; FROM: 518040 G, BUILDING 4, JINRUN BUILDING, NO.6019, SHENNAN AVENUE, SHENZHEN CITY, GUANGDONG PROVINCE TO: 518057 C4/F, SAIBAINUO OFFICE BUILDING, JUNCTURE OF KEJI 1ST ROAD AND GAOXIN 1ST ROAD, MIDDLE AREA, SCIENCE PARK, NANSHAN DISTRICT, SHENZHEN CITY, GUANGDONG PROVINCE

C41 Transfer of patent application or patent right or utility model
ASS Succession or assignment of patent right

Owner name: SHENZHEN RONGCHUANG TIANXIA TECHNOLOGY DEVELOPMENT

Free format text: FORMER OWNER: SHENZHEN RONGHE VIDEO SCIENCE AND TECHNOLOGY CO., LTD.

Effective date: 20100414

C14 Grant of patent or utility model
C56 Change in the name or address of the patentee

Owner name: SHENZHEN TEMOBI SCIENCE + TECHNOLOGY CO., LTD.

Free format text: FORMER NAME: SHENZHEN RONGCHUANG TIANXIA TECHNOLOGY DEVELOPMENT CO., LTD.

C56 Change in the name or address of the patentee

Owner name: SHENZHEN RONGCHANG TIANXIA TECHNOLOGY CO., LTD.

Free format text: FORMER NAME: SHENZHEN TEMOBI SCIENCE + TECHNOLOGY CO., LTD.

CF01