CN101509732A - Microchannel evaporator for uniformly distributing flow quantity - Google Patents

Microchannel evaporator for uniformly distributing flow quantity Download PDF

Info

Publication number
CN101509732A
CN101509732A CN 200910037864 CN200910037864A CN101509732A CN 101509732 A CN101509732 A CN 101509732A CN 200910037864 CN200910037864 CN 200910037864 CN 200910037864 A CN200910037864 A CN 200910037864A CN 101509732 A CN101509732 A CN 101509732A
Authority
CN
China
Prior art keywords
evaporator
flat tubes
refrigerant
flow
flat
Prior art date
Application number
CN 200910037864
Other languages
Chinese (zh)
Inventor
巫江虹
程 李
王惜慧
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Priority to CN 200910037864 priority Critical patent/CN101509732A/en
Publication of CN101509732A publication Critical patent/CN101509732A/en

Links

Abstract

The invention discloses a micro-passage evaporator with the flux uniformly distributed, relating to the field of heat exchanger technology. The micro-passage evaporator comprises a fin (2), a side plate (3), a flat pipe (4), a liquid collecting pipe (5) and a spacer (8); the flat pipe (4) is arranged vertically or horizontally; the shutter fin (3) is embedded between the flat pipes (4); the liquid collecting pipe (5) is vertical to the flat pipe (4) and distributed at two sides of the evaporator; a part of the flat pipe (4) invading into the liquid collecting pipe (5) is a protrusion (9); the invasion depth of the flat pipe in the liquid collecting pipe is the height of the protrusion (9); the uniform distribution of the refrigerant is achieved by the collision movement between the refrigerant and the protrusions of different heights; and the height of the protrusion (9) is calculated by the following formula: y is equal to 1(ax+bx+c). The micro-passage evaporator can uniformly distribute the refrigerant into a plurality of micro-passage flat pipes of a parallel flow evaporator; the system has simple structure; the heat-exchanging area of the evaporator is utilized effectively and reasonably; the refrigerant flows uniformly; the evaporator is ensured to run safely and effectively, and the efficiency of the refrigeration system is improved.

Description

一种流量均匀分配的微通道蒸发器 A flow uniform distribution of microchannel evaporator

技术领域 FIELD

本发明涉及换热器技术领域,具体涉及一种流量均匀分配的M道蒸发器。 Technical Field The present invention relates to heat exchangers, more particularly to a uniform distribution of the flow channel M evaporator. 背景技术 Background technique

目前国内中央空调蒸发器主要采用管片式结构,即铜质管材经胀管技术与翅片结合,这种蒸 At present, mainly central air conditioner evaporator tube sheet structure, that is bonded through a copper pipe and fins expanding technology, which was distilled

发器历史悠久,加工简单、工艺成熟。 Hair has a long history, simple processing, process maturity. 到上世纪80年代末90年代初,管带式结构逐渐成熟并开始取代管片式结构。 By the early 1990s the late 1980s, with tubular structure mature and begin substituted tubular piece structure. 这种当时的新型换热器结构具有良好的换热性能,并且相对于管片式结构其换热量的提升幅度大于阻力的提升幅度,因此,在90年代中期,汽车空调的蒸发器广泛采用这种结构。 This was in heat exchange structure has good heat transfer properties, and relative to the tube sheet structure to enhance its heat transfer resistance of a magnitude greater than the magnitude of lift, thus, in the mid-1990s, automobile air conditioning evaporator widely used this structure. 管带式蒸发器性能比管片进一步提高,重量轻,加工工艺简单,可靠性好。 Serpentine Evaporator performance is further improved than the tube sheet, light weight, simple processing and good reliability. 但是管带式结构不易做成多通路式(有两通路形式),大都是一通到底的蛇形管,管道的阻力比较大,额外增大了冷凝压力,另外管壁较厚,传热效率不高。 However, with a tubular structure made easy formula multipass (two passages form), mostly in the end of a pass serpentine tube, duct resistance is relatively large, the condensing pressure is increased additionally, additional thick wall, heat transfer efficiency is not high. 很难在中央空调中使用。 Difficult to use in central air conditioning. 平行流式蒸发器的结构形式是在管带式冷凝器的基础上通过变制冷剂单路进出或双路并串联为多流程进出设计而成。 Structure of parallel flow evaporator is based on a tube with condenser and out through the two-way or one-way and variable refrigerant flow out of the multi-series designed. 它同样采用扁管挤压技术、百叶窗翅片成型技术和真空焊接技术。 It uses the same flat tube extrusion technology, louver fins and vacuum forming welding. 目前的平行流蒸发器(包括冷凝器) 还存在制冷剂流量不均匀分配问题,液体在M道扁平管内流量不均,严重的甚至在部分通道没有制冷剂流入,造成部分通道换热瞎况恶化,影响换热器换热效率,降低制冷系统效率。 Current parallel flow evaporator (including a condenser) there is non-uniform refrigerant flow distribution problems in the liquid flow unevenness M channel flat tube, even in the severe channel is not part of the refrigerant flows, resulting in deterioration of the portion of the heat exchanger blind conditions Effect heat exchanger efficiency, reduce cooling system efficiency. 发明内容 SUMMARY

本发明的目的是针对现有技术的缺点,提供一种流量均匀分配的微通道蒸发器。 The present invention is directed to the shortcomings of the prior art, to provide a uniform distribution of the flow microchannel evaporator. 本发明的流量均匀分配的微通道蒸发器利用扁平管4侵入集液管5的部分即突起9,将突起高度皿液管长度方向设计为一变量,通制冷剂与不同突起高度碰撞后的运动达到均匀分配制冷剂,使得蒸发器的有效容积得到合理利用,使制冷剂的流动和换热情况更趋合理,提高蒸发器的使用效率。 The flow rate of the present invention, a uniform distribution of the microchannel evaporator using the flat pipe section 4 invade the collecting channel 5, i.e. the projections 9, the protrusion height of the cuvette tube longitudinal direction was designed to be a variable, after exercise through the refrigerant and the protrusion height of the collision of different to achieve a uniform distribution of the refrigerant, so that the effective volume of the rational use of the evaporator, the refrigerant heat transfer and the flow conditions more reasonable, improve the efficiency of the evaporator.

本发明目的通过以下技术方案来实现: Object of the present invention is achieved by the following technical solution:

一种流量均匀分配的微通道蒸发器,包括翅片2、边板3、扁平管4、集液管5、隔片8;扁平管4垂直或7K平放置,百叶窗翅片3嵌于扁平管4之间,集液管5被金属隔片8分隔开形成不同的流程;集液管5垂直扁平管4并分布于蒸发器两侧,扁平管4侵入集液管5的部分为突起9,扁平管侵入鎌管内的深度为魏9的高度,通过制冷剂与不同高度的突起碰撞运动达到制冷齐啲均匀分配。 A flow uniform distribution of microchannel evaporator comprises a fin 2, side plate 3, the flat tubes 4, header pipes 5, the spacer 8; 7K or vertical flat tubes 4 placed flat, the louver fins embedded in the flat tubes 3 between 4 collecting channel 5 is spaced apart from the metal spacer 8 formed of different processes; fluid collection tube 5 and the vertical flat tubes 4 distributed on both sides of the evaporator, the flat tubes 4 intrusion liquid collecting tube portion 5 of the protrusion 9 , the flat tubes invade the tube depth is highly sickle 9 Wei achieve uniform distribution of refrigerant through the aligned projection GOD motion collision of the refrigerant with different heights.

每一流程的所述的突起9的高度通过以下公式计算得到: The height of the projection 9 of each process is calculated by the following formula:

=/(ox2 + 6jc + c) 其中: = / (Ox2 + 6jc + c) wherein:

—(48"5 +8082"4 —1360"3 -26025"2 -90183" —104832)x"(" + l)2 "—4020(8"3 + 7"2 - 17n + 2)(2"3 + 5"2 + 7387" + 6844)("2 - +1) - (48 "5 +8082" 4 -1360 "3 -26025" 2 -90183 "-104832) x" ( "+ l) 2" -4020 (8 "3 + 7" 2 - 17n + 2) (2 " 3 + 5 "7387 + 2" + 6844) ( "2 - 1)

& _ -165(" +1)(2"3 + + 7384)(3"3 -11" -2) 4咖+ 1)(8w3 + 7w2 -17w + 2)_ 3w2 +544«-1 C_ 237"(1-") -165 & _ ( '1) (2' + 3 + 7384) (3 "3-11" -2) 4 coffee + 1) (8w3 + 7w2 -17w + 2) _ 3w2 +544 «-1 C_ 237 "(1-")

所述/ = |>^;实际工况确定^#下为一已知数值;n为每一流程的扁平管数,y为突起高度 The / = |> ^; ^ under actual operating conditions is determined as a known value #; n is the number of flat tubes each process, y is the height of the protrusion

m, x为第几根扁平管,/为一个流程的所有突起的高度和。 m, x for the first few flat tube, / is a process and the height of all the projections.

所述的集液管5由若干金属隔片8分隔开来,形成若干个流程。 The liquid collecting tube 5 by a plurality of metal separated by a separator 8, are formed a plurality of processes.

所述的每一流程的扁平管4是由钎焊铝合金制成,每一流程的扁平管个数取决于制冷剂本身干度的变化,管内压差的变化与质量流量的变化,以及集液管5与扁平管4本身的设计结构尺寸。 The flow of each flat tubes 4 are made of an aluminum alloy brazing, the number of the flat tubes each process itself depends on the variation of the dryness of the refrigerant, pressure change of the variation of the inner tube and the mass flow rate, and set liquid pipe 5 and the size of the flat tubes 4 design structure itself. 所述的进口接头1与出口接头7的方向是相同或者相反不足以影响制冷剂流量的分配。 1 and the outlet fitting direction of the inlet connection 7 are the same or the opposite enough to affect the flow distribution of the refrigerant. 所述的翅片,其特征是,翅片2的放置角度,布置类型等不足以影响制冷剂流量的分配。 The fins, characterized in that the placement angle of the fins 2 are arranged not affect other types of refrigerant flow rate distribution. 在计算过程中集液管质量流量对制冷剂流量分配的影响可视为是微不足道的,每一流程的集液管的相对长度,压差的变化也不足以影响流量的分配。 In the current calculation process affect the mass flow rate of the liquid pipe of the refrigerant flow distribution can be considered negligible, the relative change in length of each header pipe flow, pressure difference is not enough to affect the distribution of traffic.

扁平管4侵入集液管5内部的侵入深度沿集液管高度方向设计为一变量,所以集液管质量流量对制冷剂流量分配的影响可视为是微不足道的,每一流程的集液管的相对长度,压差的变化也不足以影响流量的分配。 The penetration depth of the flat tubes 4 in the tube height direction of the header pipe 5 to set invasive solution designed as a variable, so the impact of mass flow rate of the fluid collection tube flow distribution of the refrigerant can be regarded as negligible, the flow of each liquid collecting tube the relative length change is not enough to affect the pressure flow distribution. 进入集液管内的两相流制冷剂是环状或者是层流运动的。 Two-phase refrigerant in the liquid pipe into the collector layer is an annular flow or movement.

根据集液管5与扁平管4布置方式的不同,以及内部制冷齐u流动方向的不同mm3t平行流蒸 Depending on the arrangement of the four header pipes and the flat tubes 5, and the interior of the refrigeration u homogeneous flow direction parallel flow differ mm3t evaporated

发器有四种类型: There are four types of hair:

(A) 型是扁平管4垂直放置,百叶窗翅片3以真空焊接技术嵌于扁平管4之间,集液管5垂直扁平管4并7jC平分布于两侧,制冷剂10沿扁平管4自上而下运动; Type (A) are flat tubes 4 disposed vertically, the louver fins 3 embedded in a vacuum-welding between the flat tubes 4, header pipes 4 and 5 vertical flat tubes 7jC level distribution on both sides, the refrigerant in the flat tubes 4 10 Top-down motion;

(B) 型是扁平管4垂直放置,百叶窗翅片3以真空焊接技术嵌于扁平管4之间,集液管5垂直扁平管4并水平分布于两侧,制冷剂10沿扁平管4自下而上运动; Type (B) is vertically disposed flat tubes 4, the louver fins 3 embedded in a vacuum-welding between the flat tubes 4, header pipes 5 and the horizontal vertical flat tubes 4 distributed on both sides, the refrigerant in the flat tubes 4 from 10 under the motion;

(C) 型是扁平管4水平放置,百叶窗翅片3以真空焊接技术嵌于扁平管4之间,集液管5垂直扁平管4并分布于两侧,制冷剂10沿扁平管4流动方向取决于进口接头1的位置; Type (C) is a horizontally disposed flat tubes 4, the louver fins 3 embedded in a vacuum-welding between the flat tubes 4, header pipes 5 and the vertical flat tubes 4 distributed on both sides, 10 the refrigerant flow direction along the flat tubes 4 1 depending on the position of the inlet fitting;

(D) 型是扁平管4水平放置,百叶窗翅片3以真空焊接技术嵌于扁平管4之间,集液管5垂直扁平管4并分布于两侧,制冷剂10沿扁平管4流动方向取决于进口接头1的位置。 (D) is a type of flat tubes 4 disposed horizontally, the louver fins 3 embedded in a vacuum-welding between the flat tubes 4, header pipes 5 and the vertical flat tubes 4 distributed on both sides, 10 the refrigerant flow direction along the flat tubes 4 depending on the position of the inlet fitting 1.

如图1所示,现有技术中布置方式是(A)型时,当扁平管4在集液管5内的侵入深度为零, 两相流制冷剂的大部分液体在集液管5的前端,当扁平管4侵入集液管5内有突起时,如图2所示,进入集液管5的两相流制冷剂10会与集液管5前端的第一根扁平管的突起发生碰撞, 一部分液体首先会被吸入到集液管前端的第一根扁平管内, 一部分液体会在顶端分散至集液管5的后端, 流过第一根扁平管的制冷剂与从顶端分散至此的制冷剂汇合后又会与第二根扁平管的突起发生碰撞, 一部分制冷剂会被吸入到第二根扁平管内, 一部分制冷剂会在顶端分散至集液管后端,如此循环往复直至没有制冷剂再在顶端碰撞分散。 As shown, the prior art arrangement is the type (A) 1, when the penetration depth of the flat tubes 4 in the collecting channel 5 is zero, the majority of the liquid two-phase flow of the refrigerant in the liquid collection tube 5 front end, when the inner protrusion invasive flat tubes 4 collecting channel 5, shown in Figure 2, into the two-phase refrigerant fluid collection tube 10 will be the first header pipe 5 protrusion occurs root tip of the flat tubes 5 collision, first part of the liquid will be sucked into the pipette tip of the first set of flat tubes, a rear end portion of the liquid will be dispersed into the collecting channel 5 at the top, the first root of the refrigerant flowing through the flat tubes and to this dispersion from the top of the refrigerant will then merging the second protrusion root collision with the flat tubes, a part of the refrigerant is sucked into the second flat tubes, a part of the refrigerant will be distributed to the rear end of the top header pipe, so the cycle until no the refrigerant then dispersed in the top of the collision.

如图3所示,布置方式(B)型,当扁平管4在鎌管5内的侵入深度为零时,两相流制冷剂的大部分液,集液管5的后端,当扁平管4侵入集液管5内有突起时,如图4所示,进入, 管5的两相流制冷剂10会与集液管5后端的第一根扁平管的突起发生碰撞, 一部分液体首先会被吸入到集液管后端的第一根扁平管内, 一部分液体会在顶端分散至集液管5的前端,流过第一根扁平管的制冷剂与从顶端分散至此的制冷齐IJ汇合后又会与第二根扁平管的突起发生碰撞, 一部分制冷齐哙被吸入到第二根扁平管内, 一部分制冷剂会在顶端分散至集液管前端,如此循环往复直至没有制冷剂再在顶端碰撞分散。 As shown, an arrangement 3 (B) type, when the penetration depth of the flat tubes 4 in the tube 5 is zero Fusarium, most liquid two-phase refrigerant, the rear end of the collecting channel 5, when the flat tubes 4 sets invasive catheter inner protrusion 5, 4, enter the two-phase flow of the refrigerant pipe 5 and the first roots 10 will occur protrusion of the flat tubes 5 of the rear end collision tubing set, part of the liquid will first is drawn into the rear end of the first header tube of the flat tubes, at the top portion of the liquid will be dispersed to the front end of the collecting channel 5, the root of the refrigerant flowing through the first flat tube and the refrigerant from the top of the dispersion thereto after merging together IJ the second projection root will collide with the flat tubes, a part of the refrigerant is sucked into the throat homogeneous second flat tubes, a part of the refrigerant will be distributed to the front end of the top header pipe, so the cycle until no further collision refrigerant dispersed in the top .

如图5所示,布置方式(C)型,当扁平管4在集液管5内的侵入深度为零时,两相流制冷剂的大部分液^E集液管5的下端,当扁平管4侵入集液管5内有突起时,如图6所^iS入集液管5的两相流制冷剂10会与集液管5下端的第一根扁平管的突起发生碰撞, 一部分液体首先会被吸入至瞎液管下端的第一根扁平管内, 一部分液体会在顶端分散至集液管5的上端,流过第一根扁平管的第岭剂与从顶端分散至此的制冷剂汇合后又会与第二根扁平管的突起发生碰撞, 一部分帝U冷剂会被吸入到第二根扁平管内, 一部分制冷剂会在顶端分散至集液管上端,如此循环往复直至没有制冷剂再在顶端碰撞分散。 , Arrangement type (C), when the penetration depth of the flat tubes 4 in the collecting channel 5 is zero, most of the liquid two-phase refrigerant ^ E 5 was set lower tube 5, when the flat a protrusion pipe 4 within invades the collecting channel 5, FIG. 6 ^ iS the projections 10 will collide with the lower end of the collecting channel 5 two-phase flow of the refrigerant liquid pipe of the first collector 5 flat tubes, a portion of the liquid be drawn into the first blind tube the lower end of the first flat tubes of the liquid portion of the liquid will be dispersed to the upper end of the collecting channel 5, the flow through the first root of the ridge and the flat tubes agent confluence point from the top of the dispersion of the refrigerant at the top the second projection root will then collide with the flat tubes, a part of the refrigerant U Di is sucked into the second flat tubes, a part of the refrigerant will be distributed to the upper end of the collecting channel at the top, so the cycle until there is no longer the refrigerant at the top of the collision dispersed.

如图7所示,布置方式(D)型,当扁平管4在集液管5内的侵入深度为零时,两相流制冷剂的大部分液^E集液管5的下端,当扁平管4侵入集液管5内有突起时,如图8所g入集液管5的两相流制冷剂10会与集液管5下端的第一根扁平管的突起发生碰撞, 一部分液体首先会被吸入到集液管下端的第一根扁平管内, 一部分液体会在顶端分散至集液管5的上端,流过第一根扁平管的制冷剂与从顶端分散至此的制冷剂汇合后又会与第二根扁平管的突起发生碰撞, 一部分制冷剂会被吸入到第二根扁平管内, 一部分制冷剂会在顶端分散至集液管上端,如此循环往复直至没有制冷剂再在顶端碰撞分散。 7, the arrangement (D) type, when the flat tubes 4 in the penetration depth of the collecting channel 5 is zero, E ^ lower most header pipes 5 liquid two-phase refrigerant, when the flat when the projection 5 4 invasive catheter assembly, Figure 8 into the collecting channel 5 g of two-phase refrigerant and the liquid pipe 10 will lower end 5 a first set of projections collision root flat tube, first portion of the liquid collection will be sucked into the pipette lower end of the first flat tubes, a part of the liquid will be dispersed to the upper end of the collecting channel 5, the first root of the refrigerant flowing through the flat tubes from the top of the dispersion and then merges with the refrigerant in the top thereto the second projection root will collide with the flat tubes, a part of the refrigerant is sucked into the second flat tubes, a part of the refrigerant will be distributed to the upper end of the collecting channel at the top, so the cycle until no further collision refrigerant dispersed in the top .

扁平管4侵入集液管5内部的突起9的高度为一变量。 Invasion into the tube inside the flat tubes 4 5 9 sets the height of the liquid projection is a variable.

本发明微通道平行流蒸发器可以将制冷剂均匀分配到平行流蒸发器众多的微通道扁平管内, 利用突起长度的变化实现流量的均匀分配,有效合理利用蒸发器换热面积,使制冷剂均匀流动, 保证蒸发器的安全有效运行,提高制冷系统效率。 Microchannels parallel flow evaporator of the present invention may be a refrigerant evenly distributed to the numerous parallel flow evaporator microchannel flat tube by changing the protrusion length of the uniform flow distribution, effective and reasonable utilization of the evaporator heat transfer area, so that a uniform refrigerant flow, to ensure safe and efficient operation of the evaporator, the refrigeration system to improve efficiency.

扁平管4在集液管5内侵入深度,即突起9的高度:以布置方式(A)为例: The flat tubes 4 in the invasion depth of the collecting channel 5, i.e., the height of the protrusion 9: The arrangement (A) as an example:

我们M5:多个T型的两相流流动分析模型,保证每根扁平管流量相同,謝门建立多个T型的两相流流动分析模型,以达到每根扁平管内制冷剂的流量分配均匀。 We M5: a plurality of two-phase flow analysis of the T-model, each of the flat tubes to ensure the same flow rate, establishing a plurality of T-shaped gate Xie of two-phase flow model, to achieve a uniform flow distribution of each of the refrigerant in the flat tubes .

如图17所示,ll为气体分界线,12为液体分界线,13为气体分界线到管壁的距离,14为液体分界线到管壁的距离,在一个T型的两相流流动分析模型中,16、 15分别为气体与液体流动的各自分界曲线的曲率判S^和^。 As shown, a T-type two-phase flow of a gas analysis ll boundary, the boundary line 12 is a liquid, a gas boundary 13 to wall distance, the distance 14 is liquid boundary wall, 17 model, 16, the curvature of each boundary curve 15 are the gas and liquid flow and judgment ^ S ^. 在该模型中我们忽略流量均匀分配的其它影响因素,只考虑 In this model, other factors we ignore the flow evenly distributed, only consider

离心力的影响。 The influence of centrifugal force. 在一个T型的两相流流动分析模型中,扁平管内的两相流气体与液体的实际流量大小由它们各自的曲率半径&和&决定。 In the two-phase flow model of a T-shaped, the actual size of the two-phase flow of gas and liquid within the flat tubes to their respective radii of curvature and & determined by &. 在该模型中我们忽略流量均匀分配的其它影响因氣只 Other effects in the model uniform distribution of gas just because we ignore traffic

考虑离心力的影响。 Consider the influence of centrifugal force. 劍门可以得到如下关系式: Jianmen following relationship can be obtained:

i=ML!zL (】) i = ML! zL (])

其中,"t=C[5 + 20exp{-53(^/Z)川(hg(gas)or /<formula>formula see original document page 6</formula> Wherein, "t = C [5 + 20exp {-53 (^ / Z) River (hg (gas) or / <formula> formula see original document page 6 </ formula>

&(松/附3)为气体密度,/^(A:g/附3)为液体的密度,t/g(m/力为气体平均流速,f/y(附/" 为液体平均流速,"g(m)为气体分界线到管壁的距离,^(w)为液体分界线到管壁的距离,D(— 为集液管直径,S(w)为相邻两扁平管间的距离,A(m)为扁平管在集液管内的侵入深度,括号中为各参数的单位。 & (Pine / attachment 3) is a gas density, / ^ (A: g / attachment 3) is the density of the liquid, t / g (m / force average gas velocity, f / y (attach / "liquid average velocity, "g (m) is the distance a gas boundary wall, ^ (w) to a liquid boundary wall distance, D (- liquid pipe diameter is set, S (w) is between two adjacent flat tubes distance, a (m) is the penetration depth of the flat tubes in the header pipe brackets are units of each parameter.

因为在相同温度和相同压力的状态下制冷剂(R134a)与空气的相对密度为2. 9,且整个两相流 Because at the same temperature and the same pressure state refrigerant (R134a) and the relative density of air is 2.9, and the entire two-phase flow

中气体的总质量相对较小,对对流换热的影响可忽略.劍门只考虑液态制冷剂的流量均匀分配.在多个T型的两相流分析模型中比较i?,,謝门可以的至咖下关系式: The total mass of gas in a relatively small impact on the convective heat transfer is negligible. Jianmen consider only the uniform distribution of the flow rate of the liquid refrigerant. Comparison of the T-i in the plurality of two-phase flow model? ,, Frank gate may be coffee next to the relationship:

必力) 附g /附g Will force) attached g / g attachment

上式中m为每根扁平管内的平均流量质量,g为引力常数. 即得: Wherein m is the average mass flow rate within each of the flat tubes, g is the gravitational constant to obtain:

<formula>formula see original document page 6</formula>1) (3) <Formula> formula see original document page 6 </ formula> 1) (3)

在多个T型的两相流流动分析模型中,劍门建立多个T型节点的方程。 A plurality of two-phase flow analysis of the T-model, equation Jianmen establishing a plurality of T-shaped nodes. 就可以得到当制冷剂 Can be obtained when the refrigerant

在扁平管中流量均匀分配时,不同的扁平管对应的突起的高度.劍门令扁平管数目为变量^ ;令 . When a flat uniform distribution of the amount of fluid in the pipe, projections having different heights corresponding to the flat tubes so that the flat tubes Jianmen ^ number of variables; Order

旨扁平管对应的突起的高度为^,每一根扁平管;求出一个对应的突起高度。 Purpose flat tubes corresponding to the height of the protrusion ^, each of the flat tubes; obtaining a corresponding height of the protrusions. 建立的直角坐标 The establishment of rectangular coordinates

系,将得到的数据Op h);02, y2)......O*, yA)......O", :v„)标于坐标系 System, the data obtained Op h); 02, y2) ...... O *, yA) ...... O ",: v") in the standard coordinate system

中。 in. 将不同的离散的点连接起来可以得到一条曲线。 Different discrete points in a curve can be connected together. 我们设A是在n个节点x,.e[:c,,;g上给定的离散函数,在指定的函数空间找到一个函数F(x)作为h的近似连续模型,要求F(x)在《处的值与X的误差的平方和最小。 We Let A be the n nodes x, .e [: c ,,; given discrete function, to find a function F (x) in the space on the specified function g h as approximately continuous model, require F (x) in the error value of the minimum sum of squares of X "at.

即<formula>formula see original document page 6</formula>:22 (h 一< - S 一= 0 I.e. <formula> formula see original document page 6 </ formula>: 22 (h a <- S a = 0

罢=(h -"V -K -C,K = 0 Stop = (h - "V -K -C, K = 0

将未知量a, b,c留在方程左边,整理得法方程组: The unknowns a, b, c stay on the left equation, finishing successfully implemented equations:

i=l 1=1 t=l i = l 1 = 1 t = l

《+ < + "艺4 = S x^ "+ <+ '4 = S x ^ Art

fc=lt=l fc=l Jt=l fc = lt = l fc = l Jt = l

<^ ^ + ^ ^ + a力xA4 =尤x〖a <^ ^ + ^ ^ + A particular force xA4 = a x 〖

(4) (4)

(5) (5)

因为: because:

2^ =1+2 + 3 +......+w = ~^-^ 2 ^ = 1 + 2 + 3 + ...... + w = ​​~ ^ - ^

2 2

!>〖=l2+2、32+……+""("+1)(2"+1) !>〗 = L2 + 2,32 + ...... + "" ( "+ 1) (2" +1)

"i 6 (6) "I 6 (6)

t《=l3 +23 +33 +.+"3 ="2(" + 1)2 t "= l3 +23 +33 +. +" 3 = "2 (" + 1) 2

fV=l4 +24 + 34 + , 7, — "(" +1)(2" +1)(3"2 + 3" -1) fV = l4 +24 + 34 +, 7, - "(" +1) (2 "+1) (3" 2 + 3 "-1)

即得到y关于x的二次函数: I.e., obtain a quadratic function of y with respect to x is:

y = /(or2十Z?x + c) y = / (or2 ten Z? x + c)

其中: among them:

:(48"5 +8082"4 —1360"3 —26025"2 —90183" —104832) x/7(n +1)2 "—4020(8w3 + 7w2 -17w + 2)(2w3 + 5"2 + 7387" + 6844)("2 - 2w +1) : (48 "5 +8082" 4 -1360 "3 -26025" 2 -90183 "-104832) x / 7 (n +1) 2" -4020 (8w3 + 7w2 -17w + 2) (2w3 + 5 "2 + 7387 "+ 6844) (" 2 - 2w +1)

5 = —165(m +1)(2"3 + 3" + 7384)(3"3 -1 In — 2) (7) _ 4w(" + l)(8w3+7"2-17w + 2) 5 = -165 (m +1) (2 "3 + 3" + 7384) (3 "3 -1 In - 2) (7) _ 4w (" + l) (8w3 + 7 "2-17w + 2)

3"2+544m-1 c一237"(1-")/ = t A实际系统工况确定^l牛下为一已知数值;n为每一流程的扁平管数,y为突起高度 3 "2 + 544m-1 c a 237" (1 - ") / t A = determined actual system under condition ^ l is a known value cattle; n is the number of flat tubes each process, y is the height of the protrusion

On) , x为第几te^平管,/为一个流程的所有^M的高度和。 On), x is the first of several flat tubes te ^, / is a process and the height of all ^ M.

从突起高度的函数曲线可得出不同扁平管对应的突起高度值.并且随着流程的进行制冷剂干 Different values ​​may be obtained projection height from the flat tubes corresponding projection height function curve. As the flow and the refrigerant dry

度变大,扁平管数目增多,即n值变大,值增大.函数y值极点的绝对值 Degree becomes large, increasing the number of flat tubes, i.e. the value of n becomes large, the value is increased. Poles value of the absolute value function y

=6.46^ a变大。 = 6.46 ^ a becomes large. 整个曲线趋于平缓。 The whole curve to flatten.

本发明与现有技术相比,具有如下优点和有益效果: Compared with the prior art the present invention has the following advantages and benefits:

1、 本发明的»31平行流蒸发器系统结构简洁,有效合理利用蒸发器换热面积,使制冷剂均匀流动,保证蒸发器的安全有效运行,提高制冷系统效率。 1, »31 of the invention parallel flow evaporator system configuration simple, effective and rational use of the evaporator heat transfer area, so that a uniform flow of the refrigerant, to ensure safe and efficient operation of the evaporator, the refrigeration system to improve efficiency.

2、 本发明的〗tffl道平fi^流蒸发器的有效容积得到合理利用,制冷剂的流动和换热情况更趋合理,提高了蒸发器的使用效率。 2, the effective volume〗 tffl Daoping fi ^ evaporator flow rational use of the present invention, the refrigerant flow and heat transfer conditions more reasonable, improves the efficiency of the evaporator.

3、 本发明的微通道平行流蒸发器性能进一步提高,加工工艺简单,可靠性好,稳定性高。 3, parallel flow microchannel evaporator performance is further improved according to the present invention, a simple process, good reliability, high stability.

4、 本发明的微通道平行流蒸发器解决了由于蒸发器内制冷剂流量分配不均匀,造成的制冷剂 4, parallel flow evaporator microchannels present invention solves the refrigerant because the refrigerant flow maldistribution within the evaporator, resulting

液,微通道扁平管内流量不均,严重的甚至在部分通道没有制冷剂流入,造成部分通道换热情 Fluid flow within the flat tubes microchannel unevenness, even in the severe channel is not part of the refrigerant flows, resulting in changing warm portion of the channel

况恶化,影响换热器换热效率,降低制冷系统效率等问题. 附图说明 Deteriorating conditions, affect heat exchange efficiency, reduce cooling system efficiency and other problems. BRIEF DESCRIPTION

图1为现有技术的!腿道平行流蒸发器(A)型布置时制冷齐啲分配状况; 图2为本发明的Wit平行流蒸发器(A)型布置时制冷齐啲分配状况; 图3为5见有技术的Mit平行流蒸发器(B)型布置时制冷齐啲分配状况; ! FIG. 1 is a prior art refrigeration GOD homogeneous distribution condition when the legs parallel flow evaporator channel type (A) are arranged; Qi GOD assignment situation when cooling Wit parallel flow evaporator 2 of the present invention (A) type arrangement; FIG. 3 to 5 see Mit art parallel-flow evaporator (B) when the flush cooling type arrangement GOD allocation status;

图4为本发明的M3t平行流蒸发器(B)型布置时制冷剂的分配状况; M3t FIG. 4 of the present invention parallel flow evaporator of the refrigerant during the assignment situation type (B) are arranged;

图5为现有技术的M道平行流蒸发器(C)型布置时制冷剂的分配状况; 图6为本发明的德通道平行流蒸发器(C)型布置时制冷剂的分配状况; 图7为现有技术的M道平行流蒸发器(D)型布置时制冷齐啲分配状况; 图8为本发明的M道平行流蒸发器(D)型布置时制冷剂的分配状况; 图9为本发明的〗tiKI平行流蒸发器(A)型布置时的结构图; 图IO为本发明的,,道平行流蒸发器(A)型布置时集液管的结构图; 图11为本发明的M道平行流蒸发器(B)型布置时的结构图; 图12为本发明的微通道平行流蒸发器(B)型布置时集液管的结构图; 图13为本发明的微通道平行流蒸发器(C)型布置时的结构图; 图14为本发明的微通道平行流蒸发器(C)型布置时集液管的结构图; 图15为本发明的^ffl道平行流蒸发器(D)型布置时的结构图;图16为本发明的M道平行流蒸发器(D)型布置时集液管 FIG 5 is a prior art M parallel flow evaporator channel allocation state when the refrigerant type (C) is disposed; channel allocation state when de parallel flow evaporator of the present invention in FIG. 6 (C) arranged in the refrigerant type; FIG. 7 is a prior art M channel parallel flow refrigerant evaporator homogeneous distribution condition when GOD (D) type arrangement; assignment situation when the refrigerant M parallel flow evaporator channel 8 of the present invention (D) type arrangement; FIG. 9 〗 present invention tiKI parallel flow configuration view of the evaporator (a) type arrangement; FIG IO of the present invention ,, parallel flow evaporator channel type (a) when the fluid collection tube arrangement; Figure 11 present FIG 13 micro present invention; M channel parallel flow evaporator invention (B) view of the structure type arrangement; FIG liquid collector pipe structure microchannel parallel flow evaporator (B) of the present invention. FIG. 12 type arrangement parallel flow evaporator channel (C) type structure view of the arrangement; FIG set structure of a liquid pipe parallel flow microchannel evaporator 14 of the present invention (C) type arrangement; FIG. 15 of the present invention ^ ffl parallel channel flow evaporator (D) when the structure of FIG arrangement; collecting channel when M channel parallel flow evaporator 16 of the present invention (D) type arrangement 结构图; 图17为扁平管的横截面图; 图18为一个T型的两相流流动分析模型。 Configuration; Figure 17 is a cross-sectional view of a flat tube; FIG. 18 is a two-phase flow of a T-analysis model. 具体实施方式 Detailed ways

下面结合附图和实施实例,Xt本发明作进一步地详细说明,{旦本发明的实施方式不限于此。 The following examples in conjunction with the accompanying drawings and embodiments, Xt present invention will be described in further detail, the embodiment of the present invention {denier embodiment is not limited thereto. 如图9、图10所示,本发明包括进口接头l、翅片2、边板3、扁平管4、集液管5、蒸发器支架6、出口接头7、隔片8、 ,9、制冷剂IO,图16为扁平管4的横截面图,根据集液管5与扁平管4布置方式的不同,以及内部制冷剂流动方向的不同,本发明的M道蒸发器有以下几禾中型式:图9、 10中MJI蒸发器的布置方式是(A)型,扁平管4垂直放置,百叶窗翅片3以真空焊接技术嵌于扁平管4之间,集液管5垂1^平管4并水平分布于两侧,制冷剂10沿扁平管4自上而下运动;图ll、 12中是(B)型,扁平管4垂直放置,百叶窗翅片3以真空焊接技术嵌于扁平管4之间,集液管5垂直扁平管4并水平分布于两侧,制冷剂10沿扁平管4自下而上运动;图13、 14中是(C)型,扁平管4水平放置,百叶窗翅片3以真空焊接技术嵌于扁平管4之间,集液管5垂直扁平管4并分布于两侧,制冷剂10沿扁平管4流动方向 9, FIG. 10, the present invention includes an inlet connector L, the fins 2, side plate 3, the flat tubes 4, header pipes 5, 6 of the evaporator holder, outlet nipple 7, the spacer 8, 9, refrigeration agent is the IO, 16 is the following Wo in type flat tube cross-section in FIG. 4, depending on the different 4 arrangement of the header pipe 5 and the flat tubes, and an internal refrigerant flow direction, M channel of the evaporator of the present invention are : 9, the arrangement of the evaporator 10 is MJI type (a), the flat tubes 4 disposed vertically, the louver fins 3 embedded in a vacuum-welding between the flat tubes 4, header pipes 1 ^ 5 vertical flat tubes 4 and horizontally distributed on both sides, 10 the refrigerant moving from top to bottom along the flat tubes 4; FIG. ll, 12 are type (B), the flat tubes 4 disposed vertically, the louver fins 3 embedded in a vacuum-welding the flat tubes 4 between the header pipes 5 and the horizontal vertical flat tubes 4 distributed on both sides, 10 the refrigerant moving from bottom to top along the flat tubes 4; 13, 14 is (C) type, the flat tubes 4 disposed horizontally, the louver fin plate 3 is embedded in a vacuum-welding between the flat tubes 4, header pipes 5 and the vertical flat tubes 4 distributed on both sides, 10 the refrigerant flow direction along the flat tubes 4 决于进口接头1的位置;图15、 图16是(D)型,扁平管4水平放置,百叶窗翅片3以真空焊接技术嵌于扁平管4之间,驗管5 垂直扁平管4并分布于两侧,制冷剂10沿扁平管4流动方向取决于进口接头1的位置。 Depending on the position of the inlet connection 1; FIG. 15, FIG. 16 (D) type, the flat tubes 4 disposed horizontally, the louver fins 3 embedded in a vacuum-welding between the flat tubes 4, 5 test tubes and distributed vertical flat tubes 4 on both sides, 10 the refrigerant flow direction along the flat tubes 4 depends on the position of the inlet connection 1. 实施例l Example l

以布置方式(A)为例其工作原理是制冷剂从膨胀阀中流出,进入集液管5。 In arrangement (A) is an example which works refrigerant flowing from the expansion valve, into the collecting channel 5. 当扁平管4在集液管5内的侵入深度为零时,两相流制冷剂的大部分液体在集液管5的前端,当扁平管4在集液管5内有突起时,进入集液管5的两相流制冷剂10会与集液管5前端的第一根扁平管的,发生碰撞, 一部分液体首先会被吸入到集液管前端的第一根扁平管内, 一部分液体会在顶端分散至集液管5的后端,流过第一根扁平管的制冷剂与从顶端分散至此的制冷剂汇合后又会与第二根扁平管的突起发生碰撞, 一部分制冷齐哙被吸入到第二根扁平管内, 一部分制冷齐哙在顶端分散至集液管后端,如此循环往复直至没有制冷剂再在顶端碰撞分散。 When the penetration depth of the flat tubes 4 in the collecting channel 5 is zero, the majority of the liquid two-phase refrigerant at a front end of the collecting channel 5, when the flat tubes 4 in the projection 5 of the collecting channel, into the collection 5 two-phase flow of the refrigerant liquid pipe 10 of the header pipe 5 will be the leading end of the first flat tubes, the collision, part of the liquid will be sucked into the first set of the first flat tubes catheter distal end portion of the liquid will be in dispersed into the top rear end of the collecting channel 5, the root of the refrigerant flowing through the first flat tube and the refrigerant from the merging point to the top of the dispersion after the second root protrusion will collide with the flat tubes, a part of the refrigerant is sucked together Kuai into the second flat tubes, a part of the cooling liquid to the collector homogeneous dispersion throat at the top rear end of the tube, so the cycle until no further collision dispersing the refrigerant at the top. 本发明微通道平行流蒸发器可以将制冷剂均匀分配到平行流蒸发器众多的微通道扁平管内,禾拥突起长度的变化实现流量的均匀分配,有效合理利用蒸发器换热面积,使制冷剂均匀流动,保证蒸发器的安全有效运行,提高制冷系统效率。 Microchannels parallel flow evaporator of the present invention may be a refrigerant evenly distributed to the numerous parallel flow evaporator microchannel flat tube, Wo hold projections of varying lengths to achieve a uniform flow distribution, effective and reasonable utilization of the evaporator heat transfer area, the refrigerant uniform flow, to ensure safe and efficient operation of the evaporator, the refrigeration system to improve efficiency.

因在实际应用中扁平管的数目随工况的不同而不同,劍门以10根扁平管为例算得它的突起高度二次曲线函数. Varies with the number of working conditions in the practical application of the different flat tubes, the flat tubes 10 Jianmen Example calculated projection height of its conic functions.

将"=10代入公式(5), (6)解得: The "= 10 into equation (5), (6) to give Solution:

<formula>formula see original document page 9</formula>其中n=10, <Formula> formula see original document page 9 </ formula> where n = 10,

所以|X、=—12302> So | X, = - 12302>

所以A=0.528|]h Therefore, A = 0.528 |] h

B=-3.615》t B = -3.615 "t

即得^ = /(0.528?-3.615;<; —0.269) I.e., obtain ^ = / (? 0.528 -3.615; <; -0.269)

也可以将11=10直接带入(7)式得到a、 b、 c的值进而求得;;=/(0.528, -3.615x-0.269)。 11 = 10 may be brought directly into (7) yields the value of a, b, c in turn determined ;; = / (0.528, -3.615x-0.269).

考虑至U突起的高度为一标量,我们取二次函数的极值点所在水平线为x轴,x轴的水平向右为x轴正方向,y轴正方向垂直x轴向上。 To consider the projection height U is a scalar, we take extreme points where the quadratic function as the horizontal x-axis, the horizontal x-axis positive direction to the right as the x-axis, y-axis direction perpendicular to the x-axis.

因为在不同工况与工作环境中对微通道平行流蒸发器的装置要求不同,在特定的工况与工作环境要求中劍门假设单位时间内每根扁平管内制冷剂流量w为10Skg,集液管直径D为0.56 m, 液体平均流速C/,为100 m/s,相邻两扁平管间的距离S为0. 02 m,扁平管直径h为0.01 m,液体的密 Because different at different operating conditions and the working environment apparatus according microchannel parallel flow evaporator, in certain operating conditions and working environment requirements Jianmen assumed that each of the flat tubes within a unit time of the refrigerant flow rate w is 10Skg, header pipe diameter D of 0.56 m, the average liquid velocity C /, is 100 m / s, the distance S between two adjacent flat tubes to 0. 02 m, the flat tube diameter h of 0.01 m, the liquid-tight

度/?,为2.9 kg/m3.引力常数g为9.8 ms—2, Of / ?, was 2.9 kg / m3. G is the gravitational constant of 9.8 ms-2,

由公式(2)可得:=0.03 By equation (2) can be obtained: = 0.03

因为对于函数少=J;c2 + fix + C, Because for small function = J; c2 + fix + C,

有曲率半径i? = _^_^ (9) Having a radius of curvature of i? = _ ^ _ ^ (9)

[i+(力Y2 [I + (Y2 force

对公式(7)求导,联立公式(2)得 Equation (7) derivative, simultaneous equations (2) to give

将/ = 0.023代入公式(6)得x从1到10对应的y值,也即从左至右第1到10根扁平管所对应的^fe高度,如下: The / = 0.023 into equation (6) to obtain x from y values ​​110 corresponding to, i.e., from left to right to 10 of the first flat tube corresponding to the height ^ fe, as follows:

x=ly=0.07 ; x=2 y=0.02 ; x=3 y=0.002 ; x=4 y二O, 004 ; x=5 y=0.03 ; x= 6 y=0.08 ; x=7 y=0. 16; x=8 y=0.25 ; x=9 y=0.37 ; x=10 y=0.5 。 x = ly = 0.07; x = 2 y = 0.02; x = 3 y = 0.002; x = 4 y two O, 004; x = 5 y = 0.03; x = 6 y = 0.08; x = 7 y = 0. 16; x = 8 y = 0.25; x = 9 y = 0.37; x = 10 y = 0.5.

综上所述,这是本发明的较佳设计和计算方法以及实施方式,依本发明构造及技术方案所作的改动,所产生的功能未超出本发明构造及技术方案的范围时,均属本发明的保护范围。 In summary, this is the preferred design of the present invention and the method of calculation and embodiment, under this aspect and configuration changes made to the invention, the function of the resulting structure and is not beyond the scope of the technical solutions of the present invention, are present the scope of the invention.

/ =艺h实际系统工况确定条件下为一己知数值,/ = J>t的确定如下步骤: / H = Yi actual system conditions determined under conditions known for their own values, / = J> t is determined the steps of:

Claims (7)

1、一种流量均匀分配的微通道蒸发器,包括翅片(2)、边板(3)、扁平管(4)、集液管(5)、隔片(8);其特征在于:扁平管(4)垂直或水平放置,百叶窗翅片(3)嵌于扁平管(4)之间,集液管(5)被金属隔片(8)分隔开形成不同的流程;集液管(5)垂直扁平管(4)并分布于蒸发器两侧,扁平管(4)侵入集液管(5)的部分为突起(9),扁平管侵入集液管内的深度为突起(9)的高度。 A uniform distribution of the flow microchannel evaporator comprising fins (2), side panels (3), the flat tubes (4), the collecting channel (5), the spacer (8); wherein: Flat tube (4) placed vertically or horizontally, the louver fins (3) is embedded between the flat tubes (4), the collecting channel (5) is a metal spacers (8) spaced apart form a different process; collection liquid pipe ( 5) a vertical flat tubes (4) and distributed on both sides of the evaporator, the flat tubes (4) intrusion fluid collection tube (5) is part of a protrusion (9), the flat tubes depth of invasion of the inner header tube is a protrusion (9) height.
2、 根据权利要求1所述的一种流量均匀分配的微通道蒸发器,其特征在于每一流程的所述突起(9)的高度通过以下公式计算得到:<formula>formula see original document page 2</formula>其中:_ (48"5 +8082"4 -1360"3 —26025"2 -90183" —104832)xm(m + 1)2 "—4020(8"3 + 7"2 -17w + 2)(2"3 + 5"2 + 73 87w + 6844)("2 - 2w +1)& _ -165(" +1)(2"3 + 3w + 7384)(3"3 -11"-2) 一4咖+ l)(8w3+7w2-17w + 2)3"2+544"-l C_ 237"(lw) ° 2. A flow of a uniform distribution of the microchannel evaporator claim, wherein said protrusion of each flow (9) of the height calculated by the following formula: <formula> formula see original document page 2 </ formula> where: _ (48 "5 +8082" 4 -1360 "3 -26025" 2 -90183 "-104832) xm (m + 1) 2" -4020 (8 "3 + 7" 2 -17w + 2) (2 "3 + 5" 2 + 73 87w + 6844) ( "2 - 2w +1) & _ -165 (" +1) (2 "3 + 3w + 7384) (3" 3 -11 "- 2) a 4 coffee + l) (8w3 + 7w2-17w + 2) 3 "2 + 544" -l C_ 237 "(lw) °
3、 据权禾腰求1所述的一种流量均匀分配的微ffi3t蒸发器,其特征在于,所述/ = |>4 ;实际工况确定条件下为一已知数值;n为每一流程的扁平管数,y为突起高度m, x为第几根扁平管, /为一个流程的所有突起的高度和。 3. A flow according to the right to seek a waist Wo uniform distribution of micro ffi3t evaporator, characterized in that the / = |> 4; determined under actual working conditions is a condition known values; n is each All the projection height and number of the flat tubes process, y is the height of the protrusion m, x for the first few flat tube, / is a process.
4、 据权利要求1所述的一种流量均匀分配的微ffiil蒸发器,其特征在于,所述的扁平管(4) 是由韦千焊铝合MiJ成。 4, according to claim 1 A flow evenly distributed micro ffiil evaporator claim, wherein said flat tubes (4) by welding aluminum MiJ Wei one thousand percent.
5、 禾腰求l戶腿的进口接头与出口接头,其特征是,进口接头(1)与出口接头(7)的方向是相同或者相反不足以影响制冷剂流量的分配。 5, l Wo user seeking waist inlet leg and the outlet fitting connection, characterized in that the direction of the inlet connection (1) and the outlet joint (7) is the same as or opposite to not affect the flow distribution of the refrigerant.
6、 利要求1所述的翅片,其特征是,翅片(2)的放置角度,M道蒸发器布置类型不足以影响制冷齐喊量的分配。 6, the fins of the claims 1, characterized in that the fin (2) a placement angle, M channel type evaporator arrangement not affect the distribution of the amount chanting cooling.
7、 利要求1所述的翅片,其特征是,每一流程的集液管的相对长度,压差的变化不足以影响流量的分配。 7, the fin of the claims 1, characterized in that the relative change in length of the header of each flow tube, the pressure differential is insufficient to affect the distribution of traffic.
CN 200910037864 2009-03-12 2009-03-12 Microchannel evaporator for uniformly distributing flow quantity CN101509732A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200910037864 CN101509732A (en) 2009-03-12 2009-03-12 Microchannel evaporator for uniformly distributing flow quantity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200910037864 CN101509732A (en) 2009-03-12 2009-03-12 Microchannel evaporator for uniformly distributing flow quantity

Publications (1)

Publication Number Publication Date
CN101509732A true CN101509732A (en) 2009-08-19

Family

ID=41002207

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200910037864 CN101509732A (en) 2009-03-12 2009-03-12 Microchannel evaporator for uniformly distributing flow quantity

Country Status (1)

Country Link
CN (1) CN101509732A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102466426A (en) * 2010-11-10 2012-05-23 北京首航艾启威节能技术股份有限公司 Air cooler tube box provided with flow deflectors
CN102648547A (en) * 2009-12-04 2012-08-22 可隆工业株式会社 Humidifier for fuel cell
CN103316491A (en) * 2013-06-05 2013-09-25 深圳市朗诚实业有限公司 Parallel evaporator
WO2014032488A1 (en) * 2012-08-30 2014-03-06 Yu Shaoming Heat exchanger for micro channel
CN104685984A (en) * 2012-09-28 2015-06-03 惠普发展公司,有限责任合伙企业 Cooling Components
CN106352719A (en) * 2016-11-17 2017-01-25 郑州网知汇知识产权代理服务有限公司 Novel type of microchannel heat-exchanger
CN107771269A (en) * 2015-05-22 2018-03-06 法雷奥热系统公司 For the collecting board for the heat exchanger for being particularly motor vehicles
CN107850396A (en) * 2015-06-29 2018-03-27 开利公司 Two-phase partitioning device evaporator
CN108253640A (en) * 2018-01-31 2018-07-06 李春花 A kind of special-shaped solar water heater
CN108286823A (en) * 2018-01-31 2018-07-17 李春花 A kind of evenly distributed solar water heater
US10123464B2 (en) 2012-02-09 2018-11-06 Hewlett Packard Enterprise Development Lp Heat dissipating system
US10330395B2 (en) 2013-01-31 2019-06-25 Hewlett Packard Enterprise Development Lp Liquid cooling

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102648547A (en) * 2009-12-04 2012-08-22 可隆工业株式会社 Humidifier for fuel cell
CN102466426A (en) * 2010-11-10 2012-05-23 北京首航艾启威节能技术股份有限公司 Air cooler tube box provided with flow deflectors
US10123464B2 (en) 2012-02-09 2018-11-06 Hewlett Packard Enterprise Development Lp Heat dissipating system
US10436483B2 (en) 2012-08-30 2019-10-08 Shaoming Yu Heat exchanger for micro channel
WO2014032488A1 (en) * 2012-08-30 2014-03-06 Yu Shaoming Heat exchanger for micro channel
CN104685984A (en) * 2012-09-28 2015-06-03 惠普发展公司,有限责任合伙企业 Cooling Components
US9927187B2 (en) 2012-09-28 2018-03-27 Hewlett Packard Enterprise Development Lp Cooling assembly
US10330395B2 (en) 2013-01-31 2019-06-25 Hewlett Packard Enterprise Development Lp Liquid cooling
US10458724B2 (en) 2013-01-31 2019-10-29 Hewlett Packard Enterprise Development Lp Liquid cooling
CN103316491B (en) * 2013-06-05 2014-12-10 深圳市朗诚实业有限公司 Parallel evaporator
CN103316491A (en) * 2013-06-05 2013-09-25 深圳市朗诚实业有限公司 Parallel evaporator
CN107771269A (en) * 2015-05-22 2018-03-06 法雷奥热系统公司 For the collecting board for the heat exchanger for being particularly motor vehicles
CN107850396A (en) * 2015-06-29 2018-03-27 开利公司 Two-phase partitioning device evaporator
CN106352719A (en) * 2016-11-17 2017-01-25 郑州网知汇知识产权代理服务有限公司 Novel type of microchannel heat-exchanger
CN108253640A (en) * 2018-01-31 2018-07-06 李春花 A kind of special-shaped solar water heater
CN108286823A (en) * 2018-01-31 2018-07-17 李春花 A kind of evenly distributed solar water heater

Similar Documents

Publication Publication Date Title
JP6011009B2 (en) Heat exchanger and air conditioner
JP2005516176A (en) Heat exchanger tube and a heat exchanger using the same having a Dharma type channel
CN100592017C (en) Micro-channel flat-tube heat exchanger
WO2011000137A1 (en) Microchannel parallel-flow all-aluminum flat-tube weld-type heat exchanger and use of same
CN201876184U (en) Current collecting pipe and heat exchanger with same
CN202182671U (en) Improved heat exchanger with inlet distributor and outlet collector
Dario et al. Review on two-phase flow distribution in parallel channels with macro and micro hydraulic diameters: Main results, analyses, trends
JP4679542B2 (en) Finned tube heat exchanger, heat exchanger unit using the same, and air conditioner
CN101858698A (en) Microchannel heat exchanger
CN101963418B (en) Micro channel heat exchanger for air-conditioner heat pump
CN102192672A (en) Flat pipe heat exchanger structure and assembling method
CN101818999B (en) Pulsating heat pipe heat-transfer device for low grade heat energy utilization
CN2932273Y (en) A cold and heat exchanger
CN100347491C (en) Indoor unit of air conditioner
CN101995172B (en) Micro-channel heat exchanger and equipment using same
CN101806550A (en) Microchannel heat exchanger
CN103604255B (en) Including an air conditioner condenser, and the condenser
CN101672553B (en) Parallel stream heat exchanger integrated with microchannel and outer fin
CN201368619Y (en) Heat-pump type parallel flow heat exchanger
CN202216603U (en) Folding evaporator tube and evaporator component
CN201476625U (en) Micro-channel condenser
CN102230693B (en) Parallel flow heat exchanger with high heat exchange efficiency
CN103542621B (en) Design of a general-purpose air conditioning composition diameter flow path of heat transfer equipment
CN201779925U (en) Parallel flow evaporator and heat pump air conditioner
CN101900460A (en) Parallel flow evaporator and heat pump air conditioner

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
C12 Rejection of an application for a patent