CN101494627A - 宽带移动通信中利用压缩感知减少导频数的信道估计方法 - Google Patents

宽带移动通信中利用压缩感知减少导频数的信道估计方法 Download PDF

Info

Publication number
CN101494627A
CN101494627A CNA2009100794414A CN200910079441A CN101494627A CN 101494627 A CN101494627 A CN 101494627A CN A2009100794414 A CNA2009100794414 A CN A2009100794414A CN 200910079441 A CN200910079441 A CN 200910079441A CN 101494627 A CN101494627 A CN 101494627A
Authority
CN
China
Prior art keywords
channel
domain
delay
antenna
frequency domain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2009100794414A
Other languages
English (en)
Other versions
CN101494627B (zh
Inventor
牛凯
贺志强
别志松
王东昊
徐文波
董超
于光炜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Posts and Telecommunications
Original Assignee
Beijing University of Posts and Telecommunications
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Posts and Telecommunications filed Critical Beijing University of Posts and Telecommunications
Priority to CN 200910079441 priority Critical patent/CN101494627B/zh
Publication of CN101494627A publication Critical patent/CN101494627A/zh
Application granted granted Critical
Publication of CN101494627B publication Critical patent/CN101494627B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Mobile Radio Communication Systems (AREA)

Abstract

一种用于宽带移动通信系统中利用压缩感知减少导频个数的信道估计方法,它是基于压缩感知技术中利用较少测量值能够恢复稀疏信号的原理,以及基于宽带移动通信系统中信道的稀疏特性,降低系统估计信道时所需的导频符号个数实现的,并能够保证系统的信道估计性能。该方法能够很好地解决现有技术中的信道估计方式都没有考虑信道的稀疏特性,因而需要较大的导频开销的缺陷,并着重对传统方法进行了下述改进:利用信道稀疏性设计一种新的信道估计方法来降低导频数,大大降低系统的能量开销,并保证有效地估计出信道。本发明具有很好的推广应用前景。

Description

宽带移动通信中利用压缩感知减少导频数的信道估计方法
技术领域
本发明涉及一种用于宽带移动通信系统的利用压缩感知的信道估计方法,确切地说,涉及一种用于宽带移动通信系统中利用信道的稀疏特性,基于压缩感知的理论降低信道估计所需的导频个数而实现的信道估计方法,属于宽带移动通信的信道估计技术领域。
背景技术
在宽带移动通信的传输过程中,如果信道的时延扩展超过符号周期,就将引起频率选择性衰落,这在高速率传输数据时更为严重;而且,收发两端之间的相对移动、振荡器漂移和相位噪声等都将引起时间选择性衰落。上述两种衰落的结合会带来所谓的时延-多普勒衰落,对应的信道被称为双选择性信道。当接收端已知信道信息时,这种双选择性信道在接收端处理时能够提供较大的多径-多普勒分集增益。因此,实际通信中,接收端往往要通过信道估计来获得这个分集增益。
目前,接收端估计信道的方法可以分为两类:基于训练的方法和盲估计方法。在基于训练的信道估计方法中,发送端发送一些收发两端都已知的训练序列,接收端则根据该训练序列和相应的接收信号来估计信道。盲估计方法是利用信号的统计特性来进行信道估计。虽然盲估计方法在占用资源方面更为有效,但是通常需要在接收端进行复杂的信号处理,并且,在快速时变信道中容易发生错误传播。因此,本发明方法采用基于训练的方法进行信道估计。
已有部分学者对双选择性信道的估计进行了研究,但是,通常假设信道具有丰富的多径(参见《Design and Analysis of MMSE Pilot-Aided Cyclic-PrefixedBlock Transmissions for Doubly Selective Channels》,刊于IEEE Trans.SignalProcessing,vol.56,Mar.2008,pp.1148-1160)。实际上,在宽带移动通信信道中只有很少的可分辨径,尤其是在带宽很宽、信号持续时间较长的情况下(参见《Cluster Characteristics in a MIMO Indoor Propagation Environment》,刊于IEEETransactions on Wireless Communications,vol.6,Apr.2007,pp.1465-1475)。在这些信道中,大部分的多径能量集中在时延-多普勒域的很小区域内,因而称其为稀疏信道。因而本发明方法是针对稀疏信道的一种新型信道估计方法。
近几年,出现了一种新的采样理论——压缩采样,或称压缩感知(CS,compressed sampling or compressed sensing),该方法是在采样过程的同时,实现信号压缩,即以低于奈奎斯特速率的采样率进行采样,并能以极高的准确率恢复出原信号(参见《Compressed sensing》,刊于IEEE Transactions on InformationTheory,vol.52,Apr.2006,pp.1289-1306)。
利用压缩感知技术对数据进行处理必须具备一个重要的假设前提,即数据的稀疏性。例如,当给定N×N的矩阵ψ=[ψ12|...|ψN]时,其中ψi表示矩阵的i列时,一个长度为N的实信号x可以表示为: x = Σ i = 1 N s i ψ i - - - ( 1 ) .
当上述公式(1)中的si系数只有K个不等于零时,信号x可被称为K-稀疏信号。在压缩感知技术中,可以对信号x进行欠采样(即以低于奈奎斯特速率进行采样),并在接收端进行恢复。在实现时,通过引入第二个M×N(K<M<N)的矩阵Φ,并计算y=Φx,得到:y=Φx=Φψs=Θs,(2)。
式中,s=[s1,s2,…,sN]T,T表示矩阵的转置。由于M<N,y即为采样并压缩后的信号。在接收端,先根据接收信号y恢复s,进而恢复x。但是由于上述公式(2)中的方程组个数小于未知变量个数,因此,si的解有无穷多组。考虑到信号的稀疏性,对信号的恢复问题等价于寻找上述公式(2)的一个最稀疏的解。
目前,已有很多文献提出了对信号进行重建的方法,如Basis Pursuit算法(参见《Compressed Sensing》,刊于IEEE Transactions on Information Theory,vol.52,Apr.2006,pp.1289-1306)、Orthogonal Matching Pursuit算法(参见《SignalRecovery from Random Measurements via Orthogonal Matching Pursuit》,刊于IEEE Transactions on Information Theory,vol.53,Dec.2007,pp.4655-4666)等等。
最小二乘(LS,least square)算法是一种传统的信道估计方法。但因其没有利用信道的稀疏特性,只适用于密集信道,因而不适用于稀疏信道。为获得较好的信道估计性能,基于LS准则的信道估计要求较大的导频能量开销。对于稀疏的选择性信道,如果充分利用其稀疏性,采用压缩感知技术对其进行估计,可以降低导频数目。该技术在单载波和多载波信号传输中,已有具体的理论分析(参见《Learning Sparse Doubly-Selective Channels》,刊于University ofWisconsin-Madison Technical Report ECE-08-02,June 2008,pp.1-10),但是至今还没有考虑具体的实际应用场合。
目前,长期演进(LTE,Long Term Evolution)以及LTE Advance宽带移动通信系统受到了广泛关注,其中的信道估计方法也是重要的研究方面。但是,现有的导频插入方式都没有考虑信道的稀疏特性,因而需要较大的导频开销。因此,如何对传统方法进行改进就成为业内科技人员的一项研究热点。
发明内容
有鉴于此,本发明的目的是提供一种在宽带移动通信系统中利用压缩感知减少导频数的信道估计方法,也就是利用信道的稀疏特性,基于压缩感知理论来减少系统中信道估计所需的导频数,并能够保证性能的信道估计方法。该方法不仅有效地估计出信道,并且大大降低了系统的能量开销。
为了达到上述目的,本发明提供了一种用于宽带移动通信系统中利用压缩感知减少导频个数的信道估计方法,其特征在于:该方法基于压缩感知技术中利用较少测量值能够恢复稀疏信号的原理,以及基于宽带移动通信系统中信道的稀疏特点,降低系统估计信道时所需的导频符号个数;所述方法包括下列操作步骤:
(1)在发送端发送导频符号pl,k,式中,下标(l,k)∈υ,υ是对正交频分复用OFDM符号时频域进行欠采样的格点子集,即插入的导频符号的位置集合;l和k分别表示在时间轴和频率轴上的格点索引;所述插入的导频符号应均匀分布在时频域中,且应保证该导频符号的个数|υ|≥c×log5F×D,式中,|υ|表示集合υ中的元素个数,c为常数,F为信号收发空间的自由度,D为信道的稀疏度;
(2)对于发送的导频符号pl,k,在接收端得到相应的接收符号为xl,k=Hl,kpl,k+zl,k,式中,Hl,k为在频域的信道实际数值,zl,k为加性高斯白噪声;这样得到导频符号位置处的信道在其频域的估计值为: H ^ l , k = x l , k p l , k = H l , k + z l , k p l , k , 其中,
Figure A20091007944100112
是插入的导频符号的位置集合(l,k)∈υ中的格点位置处的信道估计值;
(3)将得到的信道估计值
Figure A20091007944100113
排列为|υ|维的向量y;令h表示信道在时延-多普勒域、时延域或多普勒域的系数,则根据步骤(2)能够计算得到|υ|维向量y=Uh+z,式中,U为感知矩阵,z为噪声向量;
(4)根据步骤(3)的接收向量y以及U,并考虑到h的稀疏性,利用压缩感知重建算法中的1-范数方法求解得到信道在时延-多普勒域、时延域或多普勒域的系数h;该求解计算方法为:满足 y = U h ~ + z , 并且具有最小
Figure A20091007944100115
Figure A20091007944100116
作为h的解,其中的
Figure A20091007944100117
表示
Figure A20091007944100118
的1-范数;
(5)利用傅立叶变换,将信道在时延-多普勒域、时延域或多普勒域的系数h变换到频域的信道估计值,从而完成信道的估计。
本发明是一种用于宽带移动通信系统中利用压缩感知技术减少导频数的信道估计方法,该方法的特点是利用信道的稀疏特性,基于压缩感知理论来减少系统中信道估计所需的导频符号个数,并能够保证系统的传输性能。该方法可降低信道估计所需的导频数,大大降低系统的能量开销,并同时保证有效地估计出信道。本发明具有很好的推广应用前景。
附图说明
图1是本发明用于宽带移动通信系统中利用压缩感知减少导频个数的信道估计方法操作步骤流程图。
图2是在时频域的OFDM符号示意图,其中黑色方块为插入导频的位置。
图3是双选择性信道在时延-多普勒域中的稀疏表示图。图中的黑点表示在时延-多普勒域的不同信道路径。
图4是频率选择性信道在时延域中的稀疏表示图。图中的每条直线表示在时延域具有数值的对应时延点。
图5是时间选择性信道在多普勒域中的稀疏表示图。图中的每条直线表示在多普勒域具有数值的对应频点。
图6是M个发射天线和N个接收天线组成的MIMO信道示意图。
图7是CoMP系统的一个具体实例示意图。
图8是在单天线系统中、在时延域稀疏的选择性信道,利用最小二乘(LS,least square)方法和本发明的压缩感知方法(间隔12个子载波或间隔8个子载波插入导频)分别进行信道估计得到的均方误差比较图。
图9是在单天线系统中、在时延-多普勒域稀疏的双选择性信道,分别利用LS方法和本发明中的压缩感知方法进行信道估计得到的均方误差比较图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面结合附图和实施例仿真情况对本发明作进一步的详细描述。
参见图1,介绍本发明用于宽带移动通信系统中利用压缩感知减少导频个数的信道估计方法,该方法基于压缩感知技术中利用较少测量值能够恢复稀疏信号的原理,以及基于宽带移动通信系统中信道的稀疏特点,降低系统估计信道时所需的导频符号个数;该方法包括下列操作步骤:
(1)在发送端发送导频符号pl,k,式中,下标(l,k)∈υ,υ是对OFDM符号时频域进行欠采样的格点子集,即插入的导频符号的位置集合;l和k分别表示在时间轴和频率轴上的格点索引;所述插入的导频符号应均匀分布在时频域中,且应保证该导频符号的个数|υ|≥c×log5F×D,式中,|υ|表示集合υ中的元素个数,c为常数,F为信号收发空间的自由度,D为信道的稀疏度;
(2)对于发送的导频符号pl,k,在接收端得到相应的接收符号为xl,k=Hl,kpl,k+zl,k,式中,Hl,k为在频域的信道实际数值,zl,k为加性高斯白噪声;这样得到导频符号位置处的信道在其频域的估计值为: H ^ l , k = x l , k p l , k = H l , k + z l , k p l , k , 其中,
Figure A20091007944100132
是插入的导频符号的位置集合(l,k)∈υ中的格点位置处的信道估计值;
(3)将得到的信道估计值
Figure A20091007944100133
排列为|υ|维的向量y;令h表示信道在时延-多普勒域、时延域或多普勒域的系数,则根据步骤(2)能够计算得到|υ|维向量y=Uh+z,式中,U为感知矩阵,z为噪声向量;
(4)根据步骤(3)的接收向量y以及U,并考虑到h的稀疏性,利用压缩感知重建算法中的1-范数方法求解得到信道在时延-多普勒域、时延域或多普勒域的系数h;该求解计算方法为:满足 y = U h ~ + z , 并且具有最小
Figure A20091007944100135
作为h的解,其中的表示
Figure A20091007944100138
的1-范数;
(5)利用傅立叶变换,将信道在时延-多普勒域、时延域或多普勒域的系数h变换到频域的信道估计值,从而完成信道的估计。
本发明利用压缩感知理论对宽带移动通信系统中的信道进行估计的方法,主要应用于兼具下述(A)和(B)两种特性的组合信道:
(A)单天线系统、集中式多天线系统(参见图6)或分布式多天线系统(参见图7);
(B)在时延-多普勒域稀疏的双选择性信道(参见图3)、在时延域稀疏的频率选择性信道(参见图4)或在多普勒域稀疏的时间选择性信道(参见图5)。
下面分别介绍本发明在不同应用场合的实现方法的具体操作步骤:
在用于单天线系统中的、在时延-多普勒域稀疏的双选择性信道时,本发明方法的具体操作步骤如下:
(1)在发送端发送导频符号pl,k,式中,下标(l,k)∈υ,υ是对OFDM符号时频域进行欠采样的格点子集,即插入导频的位置集合。l表示在时间轴上的格点索引,k表示在频率轴上的格点索引。图2是OFDM符号的时频域示意图,其中黑色方块为插入导频的位置。导频符号应均匀分布在时频域中,这里应保证导频符号的个数|υ|≥c×log5F×D,式中,|υ|表示集合υ中的元素个数,c为常数,F为信号收发空间的自由度,D为信道的稀疏度。
在传统的LS方法中,导频符号的个数应满足Kr≥Kall,其中,Kall为时延-多普勒域可以分辨的时延和多普勒偏移总数。这里可以看出,利用压缩感知进行信道估计的本发明方法,其降低的导频数在O(Kall/D)量级上。(参见《LearningSparse Doubly-Selective Channels》,刊于University of Wisconsin-MadisonTechnical Report ECE-08-02,June 2008,pp.1-10)。
(2)对于步骤(1)中发送的导频符号pl,k,在接收端得到相应的接收符号为xl,k=Hl,kpl,k+zl,k,式中,Hl,k为信道在频域的实际数值,zl,k为加性高斯噪声;这样得到导频符号位置处的信道在其频域的估计值为: H ^ l , k = x l , k p l , k = H l , k + z l , k p l , k , 其中,
Figure A20091007944100142
是插入的导频符号的位置集合(l,k)∈υ中的格点位置处的信道估计值。
(3)将步骤(2)得到的信道估计值
Figure A20091007944100143
排列为|υ|维的向量y,再令h表示信道在时延-多普勒域的系数,则根据步骤(2)可以计算得到y=Uh+z,式中,U为感知矩阵,其元素为信道频域系数和信道中时延-多普勒域系数之间转换的参数,z为噪声向量。
(4)根据步骤(3)的接收向量y以及U,并考虑到h的稀疏性,利用压缩感知重建算法中的1-范数方法求解得到信道在时延-多普勒域的系数h;该求解计算方法为:满足 y = U h ~ + z , 并且具有最小
Figure A20091007944100146
作为h的解,其中的表示
Figure A20091007944100148
的1-范数。
(5)利用二维傅立叶变换,将时延-多普勒域的系数h变换到频域的信道估计值,即完成信道的估计。
参见图6和图7,介绍在用于MIMO(Multiple Input Multiple Output)的集中式天线或CoMP(Coordinated Multi-Point transmission/reception)的分布式天线的多天线系统中的、在时延-多普勒域稀疏的双选择性信道时,本发明方法的操作步骤如下所示:
图6是一个M输入N输出的MIMO信道示意图。图7是为了提高LTE小区信道容量尤其是小区边缘信道容量而出现的一种分布式天线机制,即LTE-Advanced在LTE的基础上引入协同多点传输CoMP。图7只是CoMP的一个示例,其中两个演进型eNB(evolved Node B)分别设有两个发送天线,共同向两个用户终端UE(user equipment)发送信息。
(1)每个发送天线都发送导频符号pl,k,式中,下标(l,k)∈υ,υ是对每个发送天线发送的OFDM符号时频域进行欠采样的格点子集,即插入的导频符号的位置集合;l和k分别表示在时间轴和频率轴上的格点索引。所述插入的导频符号应均匀分布在时频域中(如图2中的黑色方块,即插入的导频位置所示),这里应保证导频符号的个数|υ|≥c×log5F×D,式中,|υ|表示集合υ中的元素个数,c为常数,F为信号收发空间的自由度,D为信道的稀疏度;且此时在各个不同发送天线上插入的导频符号序列各自分别呈正交状态,即每个天线的导频符号在时频域的位置不重叠。
(2)对于第i个发送天线发送的导频符号pl,k,在第j个接收天线得到相应的接收符号为xl,k=Hl,kpl,k+zl,k,式中,自然数i是发送天线的序号,其取值范围为[1,M];自然数j是接收天线的序号,其取值范围为[1,N];Hl,k为在频域的信道实际数值,zl,k为加性高斯白噪声;这样得到第i个发送天线和第j个接收天线之间、导频符号位置处的信道在其频域的估计值为 H ^ l , k = x l , k p l , k = H l , k + z l , k p l , k , 其中,
Figure A20091007944100152
是插入的导频符号的位置集合(l,k)∈υ中的格点位置处的信道估计值。
(3)将步骤(2)得到的信道估计值
Figure A20091007944100153
排列为|υ|维的向量y,再令h表示信道在时延-多普勒域的系数,则根据步骤(2)能够计算得到|υ|维向量y=Uh+z,式中,U为感知矩阵,其元素为信道频域系数和信道中时延-多普勒域系数之间转换的参数,z为噪声向量。
(4)根据步骤(3)的接收向量y以及U,并考虑到h的稀疏性,利用压缩感知重建算法中的1-范数方法求解得到信道在时延-多普勒域的系数h;该求解计算方法为:满足 y = U h ~ + z , 并且具有最小
Figure A20091007944100163
作为h的解,其中的表示
Figure A20091007944100165
的1-范数;
(5)利用二维傅立叶变换,将信道在时延-多普勒域的系数h变换到频域的信道估计值,从而完成第i个发送天线和第j个接收天线之间的信道的估计。
上述介绍的本发明方法都是针对时延-多普勒域稀疏的双选择性信道实现的,其中分别包括单天线系统、集中式多天线MIMO系统和分布式多天线CoMP系统。本发明同样也适用于在时延域稀疏的频率选择性信道和在多普勒域稀疏的时间选择性信道。
下面先介绍其中用于单天线系统中的、在时延域稀疏的频率选择性信道的估计方法,其具体操作步骤如下:
(1)在发送端发送导频符号pl,k,式中,下标(l,k)∈υ,υ是对OFDM符号时频域进行欠采样的格点子集,即插入的导频符号的位置集合;l和k分别表示在时间轴和频率轴上的格点索引。所述插入的导频符号应均匀分布在时频域中(参见图2所示的OFDM符号的时频域,其中黑色块部分为插入导频的位置),且应保证该导频符号的个数|υ|≥c×log5F×D,式中,|υ|表示集合υ中的元素个数,c为常数,F为信号收发空间的自由度,D为信道的稀疏度。
(2)对于步骤(1)中发送的导频符号pl,k,在接收端得到对应的接收符号为xl,k=Hl,kpl,k+zl,k,式中,Hl,k为在频域的信道实际数值,zl,k为加性高斯白噪声;这样得到导频符号位置处的信道在其频域的估计值为: H ^ l , k = x l , k p l , k = H l , k + z l , k p l , k , 其中,
Figure A20091007944100167
是插入的导频符号的位置集合(l,k)∈υ中的格点位置处的信道估计值。
(3)将步骤(2)得到的信道估计值排列为|υ|维的向量y;令h表示信道在时延-多普勒域的系数,则根据步骤(2)能够计算得到|υ|维向量y=Uh+z,式中,U为感知矩阵,其元素为傅立叶变换的参数,z为噪声向量。
(4)根据步骤(3)的接收向量y以及U,并考虑到h的稀疏性,利用压缩感知重建算法中的1-范数方法求解得到信道在时延域的系数h;该求解计算方法为:满足 y = U h ~ + z , 并且具有最小
Figure A20091007944100173
Figure A20091007944100174
作为h的解,其中的
Figure A20091007944100175
表示
Figure A20091007944100176
的1-范数;
(5)利用傅立叶变换,将信道在时延域的系数h变换到频域的信道估计值,从而完成信道的估计。
本发明方法在用于单天线系统中的、在多普勒域稀疏的时间选择性信道时的操作步骤与该方法在用于上述单天线系统中的、在时延域稀疏的频率选择性信道时的操作步骤基本相同,不再赘述。只是其中步骤(3)中,h表示信道在多普勒域的系数,根据步骤(2)能够计算得到|υ|维向量y=Uh+z时,式中,U为感知矩阵,其元素为信道频域系数和信道多普勒域系数之间转换的参数,z为噪声向量。
再介绍本发明方法在用于包括MIMO的集中式天线或CoMP的分布式天线的多天线系统中的、在时延域稀疏的频率选择性信道时的具体操作步骤:
(1)每个发送天线都发送导频符号pl,k,式中,下标(l,k)∈υ,υ是对每个发送天线发送的OFDM符号时频域进行欠采样的格点子集,即插入的导频符号的位置集合;l和k分别表示在时间轴和频率轴上的格点索引;所述插入的导频符号应均匀分布在时频域中,且应保证该导频符号的个数|υ|≥c×log5F×D,式中,|υ|表示集合υ中的元素个数,c为常数,F为信号收发空间的自由度,D为信道的稀疏度。
(2)对于第i个发送天线发送的导频符号pl,k,在第j个接收天线得到相应的接收符号为xl,k=Hl,kpl,k+zl,k,式中,自然数i是发送天线的序号,其取值范围为[1,M];自然数j是接收天线的序号,其取值范围为[1,N];Hl,k为在频域的信道实际数值,zl,k为加性高斯白噪声;这样得到第i个发送天线和第j个接收天线之间、导频符号位置处的信道在其频域的估计值为 H ^ l , k = x l , k p l , k = H l , k + z l , k p l , k , 其中,
Figure A20091007944100182
是插入的导频符号的位置集合(l,k)∈υ中的格点位置处的信道估计值。
(3)将得到的信道估计值
Figure A20091007944100183
排列为|υ|维的向量y;再令h表示信道在时延域的系数,则根据步骤(2)能够计算得到|υ|维向量y=Uh+z,式中,U为感知矩阵,其元素为傅立叶变换的参数,z为噪声向量。
(4)根据步骤(3)的接收向量y以及U,并考虑到h的稀疏性,利用压缩感知重建算法中的1-范数方法求解得到h;该求解计算方法为:满足 y = U h ~ + z , 并且具有最小
Figure A20091007944100185
Figure A20091007944100186
作为h的解,其中
Figure A20091007944100187
表示的1-范数。
(5)利用傅立叶变换,将信道在时延域的系数h变换到频域的信道估计值,从而完成第i个发送天线和第j个接收天线之间的信道估计。
本发明方法在用于MIMO的集中式天线或CoMP的分布式天线的多天线系统中的、在多普勒域稀疏的频率选择性信道时的操作步骤与该方法在上述用于MIMO的集中式天线或CoMP的分布式天线的多天线系统中的、在时延域稀疏的频率选择性信道时的操作步骤基本相同,不再详述;只是其中步骤(3)中,h表示信道在多普勒域的系数,根据步骤(2)能够计算得到|υ|维向量y=Uh+z时,式中,U为感知矩阵,其元素为信道频域系数和信道多普勒域系数之间转换的参数,z为噪声向量。
本发明方法能够用于包括长期演进LTE(Long Term Evolution)和全球微波接入互操作性WiMax(World Interoperability for Microwave Access)的宽带移动通信系统的信道估计。
本发明已经进行了多次实施试验,下面介绍本发明方法的两个试验实施例。
第一个实施例给出了在单天线系统中、时延域稀疏的选择性信道的估计结果。利用LTE协议所使用的信道模型(参见《3GPP TR 25.996 v6.1.0》,刊于http://www.3gpp.org),采用空间信道模型SCM(Spacial Channel Model)链路参数中车载情况对应的信道;即考虑信道有6径,对应的相对路径功率分别为[0.0,-1.0,-9.0,-10.0,-15.0,-20.0]dB,对应的时延分别为[0,310,710,1090,1730,2510]ns。每个发送的OFDM符号包括2048个子载波,其中可用于数据发送的子载波为1320个。设定带宽为W=20MHz,时间长度为T=1ms,即LTE标准中的14个OFDM符号的持续长度。
在实施试验中,分别给出了传统LS估计方法和本发明两种测试情况的均方误差(MSE,mean square error)对比。在LS方法中,间隔6个子载波插一个导频符号。而在本发明的两种测试情况中,分别在频域间隔12个子载波插一个导频符号和间隔8个子载波插一个导频符号。这样在总共的2048个子载波中,LS方法的导频占用了220个子载波;而本发明第一种情况的导频占用了110个子载波,第二种情况的导频占用了160个子载波。仿真的信噪比从0dB到10dB。
图8是第一个实施例对应的仿真结果。纵坐标为估计出的信道值和实际信道值两者之间的MSE,以对应的log形式表示。虚线所示是传统的LS方法,实线所示是本发明中的CS方法。其中,带有“*”的曲线对应的是间隔12个子载波插入导频的MSE性能,带有“+”的曲线对应的是间隔8个子载波插入导频的MSE性能。可以看出,CS方法的曲线和LS方法的曲线非常接近,且插入导频越多越接近。因此,利用信道的稀疏性来设计信道估计方法可以降低所需导频数,并且保证了信道估计的性能。
第二个实施例给出了在单天线系统中、时延-多普勒域稀疏的双选择性信道的估计结果。设定带宽为W=45KHz,时间长度为T=45ms。考虑信道有22径,其在时延-多普勒域的位置随机产生,且幅度服从高斯分布。子载波在45*45的OFDM时频块里随机插入,子载波总数为2025个。在LS方法中插入225个导频,而CS方法中插入135个导频。
图9是第二个实施例对应的仿真结果。虚线表示传统的LS方法,实线表示本发明中的CS方法。可以看出,在双选择性的稀疏信道中,利用压缩感知技术来估计信道不仅降低了导频数,而且还提高了估计的性能。

Claims (9)

1、一种用于宽带移动通信系统中利用压缩感知减少导频个数的信道估计方法,其特征在于:该方法基于压缩感知技术中利用较少测量值能够恢复稀疏信号的原理,以及基于宽带移动通信系统中信道的稀疏特点,降低系统估计信道时所需的导频符号个数;所述方法包括下列操作步骤:
(1)在发送端发送导频符号pl,k,式中,下标(l,k)∈υ,υ是对正交频分复用OFDM符号时频域进行欠采样的格点子集,即插入的导频符号的位置集合;l和k分别表示在时间轴和频率轴上的格点索引;所述插入的导频符号应均匀分布在时频域中,且应保证该导频符号的个数|υ|≥c×log5F×D,式中,|υ|表示集合υ中的元素个数,c为常数,F为信号收发空间的自由度,D为信道的稀疏度;
(2)对于发送的导频符号pl,k,在接收端得到相应的接收符号为xl,k=Hl,kpl,k+zl,k,式中,Hl,k为在频域的信道实际数值,zl,k为加性高斯白噪声;这样得到导频符号位置处的信道在其频域的估计值为: H ^ l , k = x l , k p l , k = H l , k + z l , k p l , k , 其中,
Figure A2009100794410002C2
是插入的导频符号的位置集合(l,k)∈υ中的格点位置处的信道估计值;
(3)将得到的信道估计值
Figure A2009100794410002C3
排列为|υ|维的向量y;令h表示信道在时延-多普勒域、时延域或多普勒域的系数,则根据步骤(2)能够计算得到|υ|维向量y=Uh+z,式中,U为感知矩阵,z为噪声向量;
(4)根据步骤(3)的接收向量y以及U,并考虑到h的稀疏性,利用压缩感知重建算法中的1-范数方法求解得到信道在时延-多普勒域、时延域或多普勒域的系数h;该求解计算方法为:满足 y = U h ~ + z , 并且具有最小
Figure A2009100794410002C5
作为h的解,其中的
Figure A2009100794410002C7
表示
Figure A2009100794410002C8
的1-范数;
(5)利用傅立叶变换,将信道在时延-多普勒域、时延域或多普勒域的系数h变换到频域的信道估计值,从而完成信道的估计。
2、根据权利要求1所述的方法,其特征在于:所述方法适用于宽带移动通信系统中兼具下述两种特性的各种组合信道:
(A)单天线系统、或集中式多天线系统、或分布式多天线系统;
(B)在时延-多普勒域稀疏的双选择性信道、或在时延域稀疏的频率选择性信道、或在多普勒域稀疏的时间选择性信道。
3、根据权利要求1或2所述的方法,其特征在于:所述方法在用于单天线系统中的、在时延-多普勒域稀疏的双选择性信道时,包括下列操作步骤:
(1)在发送端发送导频符号pl,k,式中,下标(l,k)∈υ,υ是对正交频分复用OFDM符号时频域进行欠采样的格点子集,即插入的导频符号的位置集合;l和k分别表示在时间轴和频率轴上的格点索引;所述插入的导频符号应均匀分布在时频域中,且应保证该导频符号的个数|υ|≥c×log5F×D,式中,|υ|表示集合υ中的元素个数,c为常数,F为信号收发空间的自由度,D为信道的稀疏度;
(2)对于发送的导频符号pl,k,在接收端得到相应的接收符号为xl,k=Hl,kpl,k+zl,k,式中,Hl,k为在频域的信道实际数值,zl,k为加性高斯白噪声;这样得到导频符号位置处的信道在其频域的估计值为: H ^ l , k = x l , k p l , k = H l , k + z l , k p l , k , 其中,
Figure A2009100794410003C2
是插入的导频符号的位置集合(l,k)∈υ中的格点位置处的信道估计值;
(3)将得到的信道估计值
Figure A2009100794410003C3
排列为|υ|维的向量y;令h表示信道在时延-多普勒域的系数,则根据步骤(2)能够计算得到|υ|维向量y=Uh+z,式中,U为感知矩阵,其元素为信道频域系数和信道中时延-多普勒域系数之间转换的参数,z为噪声向量;
(4)根据步骤(3)的接收向量y以及U,并考虑到h的稀疏性,利用压缩感知重建算法中的1-范数方法求解得到信道在时延-多普勒域的系数h;该求解计算方法为:满足 y = U h ~ + z , 并且具有最小
Figure A2009100794410003C5
Figure A2009100794410003C6
作为h的解,其中的
Figure A2009100794410003C7
表示
Figure A2009100794410004C1
的1-范数;
(5)利用二维傅立叶变换,将信道在时延-多普勒域的系数h变换到频域的信道估计值,从而完成信道的估计。
4、根据权利要求1或2所述的方法,其特征在于:所述方法在用于包括多输入多输出MIMO的集中式天线或协同多点传输CoMP的分布式天线的多天线系统中的、在时延-多普勒域稀疏的双选择性信道时,包括下列操作步骤:
(1)每个发送天线都发送导频符号pl,k,式中,下标(l,k)∈υ,υ是对每个发送天线发送的OFDM符号时频域进行欠采样的格点子集,即插入的导频符号的位置集合;l和k分别表示在时间轴和频率轴上的格点索引;所述插入的导频符号应均匀分布在时频域中,且应保证该导频符号的个数|υ|≥c×log5F×D,式中,|υ|表示集合υ中的元素个数,c为常数,F为信号收发空间的自由度,D为信道的稀疏度;且此时在各个不同发送天线上插入的导频符号序列应呈正交状态,即每个天线的导频符号在时频域的位置不重叠;
(2)对于第i个发送天线发送的导频符号pl,k,在第j个接收天线得到相应的接收符号为xl,k=Hl,kpl,k+zl,k,式中,自然数i是发送天线的序号,其取值范围为[1,M];自然数j是接收天线的序号,其取值范围为[1,N];Hl,k为在频域的信道实际数值,zl,k为加性高斯白噪声;这样得到第i个发送天线和第j个接收天线之间、导频符号位置处的信道在其频域的估计值为 H ^ l , k = x l , k p l , k = H l , k + z l , k p l , k , 其中,
Figure A2009100794410004C3
是插入的导频符号的位置集合(l,k)∈υ中的格点位置处的信道估计值;
(3)将得到的信道估计值
Figure A2009100794410004C4
排列为|υ|维的向量y;令h表示信道在时延-多普勒域的系数,则根据步骤(2)能够计算得到|υ|维向量y=Uh+z,式中,U为感知矩阵,其元素为信道频域系数和信道中时延-多普勒域系数之间转换的参数,z为噪声向量;
(4)根据步骤(3)的接收向量y以及U,并考虑到h的稀疏性,利用压缩感知重建算法中的1-范数方法求解得到信道在时延-多普勒域的系数h;该求解计算方法为:满足 y = U h ~ + z , 并且具有最小
Figure A2009100794410005C2
Figure A2009100794410005C3
作为h的解,其中的
Figure A2009100794410005C4
表示的1-范数;
(5)利用二维傅立叶变换,将信道在时延-多普勒域的系数h变换到频域的信道估计值,从而完成第i个发送天线和第j个接收天线之间的信道的估计。
5、根据权利要求1或2所述的方法,其特征在于:所述方法在用于单天线系统中的、在时延域稀疏的频率选择性信道时,包括下列操作步骤:
(1)在发送端发送导频符号pl,k,式中,下标(l,k)∈υ,υ是对OFDM符号时频域进行欠采样的格点子集,即插入的导频符号的位置集合;l和k分别表示在时间轴和频率轴上的格点索引;所述插入的导频符号应均匀分布在时频域中,且应保证该导频符号的个数|υ|≥c×log5F×D,式中,|υ|表示集合υ中的元素个数,c为常数,F为信号收发空间的自由度,D为信道的稀疏度;
(2)对于发送的导频符号pl,k,在接收端得到相应的接收符号为xl,k=Hl,kpl,k+zl,k,式中,Hl,k为在频域的信道实际数值,zl,k为加性高斯白噪声;这样得到导频符号位置处的信道在其频域的估计值为: H ^ l , k = x l , k p l , k = H l , k + z l , k p l , k , 其中,
Figure A2009100794410005C7
是插入的导频符号的位置集合(l,k)∈υ中的格点位置处的信道估计值;
(3)将步骤(2)的信道估计值
Figure A2009100794410005C8
排列为|υ|维的向量y;令h表示信道在时延域的系数,则根据步骤(2)能够计算得到|υ|维向量y=Uh+z,式中,U为感知矩阵,其元素为傅立叶变换的参数,z为噪声向量;
(4)根据步骤(3)的接收向量y以及U,并考虑到h的稀疏性,利用压缩感知重建算法中的1-范数方法求解得到信道在时延域的系数h;该求解计算方法为:满足 y = U h ~ + z , 并且具有最小
Figure A2009100794410005C10
作为h的解,其中的
Figure A2009100794410005C12
表示
Figure A2009100794410005C13
的1-范数;
(5)利用傅立叶变换,将信道在时延域的系数h变换到频域的信道估计值,从而完成信道的估计。
6、根据权利要求5所述的方法,其特征在于:所述方法在用于单天线系统中的、在多普勒域稀疏的时间选择性信道时的操作步骤与该方法在用于单天线系统中的、在时延域稀疏的频率选择性信道时的操作步骤基本相同,只是其中步骤(3)中,h表示信道在多普勒域的系数,根据步骤(2)能够计算得到|υ|维向量y=Uh+z时,式中,U为感知矩阵,其元素为信道频域系数和信道多普勒域系数之间转换的参数,z为噪声向量。
7、根据权利要求1或2所述的方法,其特征在于:所述方法在用于包括MIMO的集中式天线或CoMP的分布式天线的多天线系统中的、在时延域稀疏的频率选择性信道时,包括下列操作步骤:
(1)每个发送天线都发送导频符号pl,k,式中,下标(l,k)∈υ,υ是对每个发送天线发送的OFDM符号时频域进行欠采样的格点子集,即插入的导频符号的位置集合;l和k分别表示在时间轴和频率轴上的格点索引;所述插入的导频符号应均匀分布在时频域中,且应保证该导频符号的个数|υ|≥c×log5F×D,式中,|υ|表示集合υ中的元素个数,c为常数,F为信号收发空间的自由度,D为信道的稀疏度;
(2)对于第i个发送天线发送的导频符号pl,k,在第j个接收天线得到相应的接收符号为xl,k=Hl,kpl,k+zl,k,式中,自然数i是发送天线的序号,其取值范围为[1,M];自然数j是接收天线的序号,其取值范围为[1,N];Hl,k为在频域的信道实际数值,zl,k为加性高斯白噪声;这样得到第i个发送天线和第j个接收天线之间、导频符号位置处的信道在其频域的估计值为 H ^ l , k = x l , k p l , k = H l , k + z l , k p l , k , 其中,
Figure A2009100794410006C2
是插入的导频符号的位置集合(l,k)∈υ中的格点位置处的信道估计值;
(3)将得到的信道估计值
Figure A2009100794410006C3
排列为|υ|维的向量y;令h表示信道在时延域的系数,则根据步骤(2)能够计算得到|υ|维向量y=Uh+z,式中,U为感知矩阵,其元素为傅立叶变换的参数,z为噪声向量;
(4)根据步骤(3)的接收向量y以及U,并考虑到h的稀疏性,利用压缩感知重建算法中的1-范数方法求解得到h;该求解计算方法为:满足 y = U h ~ + z , 并且具有最小
Figure A2009100794410007C2
Figure A2009100794410007C3
作为h的解,其中
Figure A2009100794410007C4
表示
Figure A2009100794410007C5
的1-范数;
(5)利用傅立叶变换,将信道在时延域的系数h变换到频域的信道估计值,从而完成第i个发送天线和第j个接收天线之间的信道估计。
8、根据权利要求7所述的方法,其特征在于:所述方法在用于包括MIMO的集中式天线或CoMP的分布式天线的多天线系统中的、在多普勒域稀疏的频率选择性信道时的操作步骤与该方法在用于包括MIMO的集中式天线或CoMP的分布式天线的多天线系统中的、在时延域稀疏的频率选择性信道时的操作步骤基本相同,只是其中步骤(3)中,h表示信道在多普勒域的系数,根据步骤(2)能够计算得到|υ|维向量y=Uh+z时,式中,U为感知矩阵,其元素为信道频域系数和信道多普勒域系数之间转换的参数,z为噪声向量。
9、根据权利要求1所述的方法,其特征在于:所述方法能够用于包括长期演进LTE和全球微波接入互操作性WiMax的宽带移动通信系统的信道估计。
CN 200910079441 2009-03-11 2009-03-11 宽带移动通信中利用压缩感知减少导频数的信道估计方法 Expired - Fee Related CN101494627B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200910079441 CN101494627B (zh) 2009-03-11 2009-03-11 宽带移动通信中利用压缩感知减少导频数的信道估计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200910079441 CN101494627B (zh) 2009-03-11 2009-03-11 宽带移动通信中利用压缩感知减少导频数的信道估计方法

Publications (2)

Publication Number Publication Date
CN101494627A true CN101494627A (zh) 2009-07-29
CN101494627B CN101494627B (zh) 2013-06-05

Family

ID=40925036

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200910079441 Expired - Fee Related CN101494627B (zh) 2009-03-11 2009-03-11 宽带移动通信中利用压缩感知减少导频数的信道估计方法

Country Status (1)

Country Link
CN (1) CN101494627B (zh)

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101951619A (zh) * 2010-09-03 2011-01-19 电子科技大学 一种认知网络中基于压缩感知的宽带信号分离方法
CN101984617A (zh) * 2010-11-26 2011-03-09 浙江大学 基于压缩感知技术的处理滤波器组峰均比的方法
CN102130731A (zh) * 2011-03-18 2011-07-20 电子科技大学 一种高分辨率多径信道时延谱的测定方法
CN101742313B (zh) * 2009-12-10 2011-09-07 北京邮电大学 基于压缩感知技术的分布式信源编码的方法
CN102324943A (zh) * 2010-03-22 2012-01-18 通用电气公司 动态可配置传感器底盘
CN102684736A (zh) * 2012-05-17 2012-09-19 北京理工大学 基于lps采集矩阵的直接序列扩频信号压缩感知方法
CN101764652B (zh) * 2010-01-18 2012-12-19 哈尔滨工业大学 基于正交匹配追踪的具有压缩感知过程的信号检测方法
CN103141067A (zh) * 2010-08-30 2013-06-05 新加坡科技研究局 频带识别方法、装置和计算机程序产品以及性能评估方法、装置和计算机程序产品
CN103139112A (zh) * 2011-11-23 2013-06-05 财团法人工业技术研究院 通道参数估测方法
CN103220240A (zh) * 2013-03-26 2013-07-24 电子科技大学 一种基于压缩感知的高分辨率信号到达时间估计方法
CN103457886A (zh) * 2013-09-08 2013-12-18 西安电子科技大学 基于压缩感知的专用短距离通信信道估计方法
CN103685124A (zh) * 2013-12-09 2014-03-26 西华大学 一种压缩域频率偏移估计方法
CN103858351A (zh) * 2009-07-31 2014-06-11 捷讯研究有限公司 使用压缩采样的基于传感器的无线通信系统
CN103905097A (zh) * 2014-03-17 2014-07-02 复旦大学 一种结合自适应天线选择的分布式天线系统资源调度方法
CN104218984A (zh) * 2014-08-27 2014-12-17 电子科技大学 利用压缩感知的双端频域波束搜索方法
CN104869086A (zh) * 2015-05-27 2015-08-26 东南大学 基于二维压缩感知的mimo-ofdm通信系统下行信道估计方法、装置
CN105227505A (zh) * 2015-10-10 2016-01-06 上海交通大学 一种高速移动环境下的多符号联合信道估计方法
CN105338357A (zh) * 2015-09-29 2016-02-17 湖北工业大学 一种分布式视频压缩感知编码技术方法
CN105812032A (zh) * 2016-03-21 2016-07-27 东南大学 基于波束块结构压缩感知的信道估计方法
CN106375250A (zh) * 2016-08-30 2017-02-01 北京邮电大学 慢时变信道下基于压缩感知的数据传输方法及装置
CN106416307A (zh) * 2015-04-29 2017-02-15 华为技术有限公司 传输信息的方法、网络设备和终端设备
CN106452534A (zh) * 2016-11-23 2017-02-22 南京邮电大学 基于结构化压缩感知的大规模mimo信道估计的导频优化方法
CN106506112A (zh) * 2015-09-08 2017-03-15 华为技术有限公司 反馈信道状态信息的方法和网络设备
CN106534002A (zh) * 2016-09-23 2017-03-22 天津科技大学 一种基于压缩感知的电力线信道估计方法
CN107070507A (zh) * 2010-01-08 2017-08-18 太阳专利信托公司 通信装置及通信方法
CN107171985A (zh) * 2017-06-07 2017-09-15 深圳先进技术研究院 一种信道估计方法及系统
US9814077B2 (en) 2008-12-12 2017-11-07 Blackberry Limited Mobility in a distributed antenna system
CN107707493A (zh) * 2016-08-04 2018-02-16 北京信威通信技术股份有限公司 一种基于压缩感知的信道估计方法
CN105610477B (zh) * 2016-01-28 2018-06-19 西南交通大学 基于压缩感知的多发多收系统增强信号复用方法
CN108242943A (zh) * 2016-12-23 2018-07-03 上海诺基亚贝尔股份有限公司 通信中用于预编码的方法和设备
CN108259397A (zh) * 2018-01-12 2018-07-06 东北大学 基于自适应正则化子空间追踪压缩感知算法的大规模mimo系统信道估计
CN108512787A (zh) * 2018-04-13 2018-09-07 电子科技大学 大规模mimo系统的超精细信道估计方法
CN112740565A (zh) * 2018-08-09 2021-04-30 At&T知识产权一部有限合伙公司 对于5g或其他下一代网络促进用于前传链路的波束成形系数的用户装备特定压缩
CN113922848A (zh) * 2020-07-10 2022-01-11 维沃移动通信有限公司 信号发送方法、信道估计方法、发送端设备及接收端设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070110172A1 (en) * 2003-12-03 2007-05-17 Australian Telecommunications Cooperative Research Channel estimation for ofdm systems
CN100539570C (zh) * 2007-01-16 2009-09-09 西安交通大学 一种ofdm系统中联合时间同步和频偏估计方法
CN101309243A (zh) * 2008-07-14 2008-11-19 北京邮电大学 一种新的ofdm参数化信道估计器

Cited By (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9814077B2 (en) 2008-12-12 2017-11-07 Blackberry Limited Mobility in a distributed antenna system
CN103858351A (zh) * 2009-07-31 2014-06-11 捷讯研究有限公司 使用压缩采样的基于传感器的无线通信系统
CN103858351B (zh) * 2009-07-31 2018-02-23 黑莓有限公司 使用压缩采样的基于传感器的无线通信系统
CN101742313B (zh) * 2009-12-10 2011-09-07 北京邮电大学 基于压缩感知技术的分布式信源编码的方法
CN107070507A (zh) * 2010-01-08 2017-08-18 太阳专利信托公司 通信装置及通信方法
CN107070507B (zh) * 2010-01-08 2021-02-26 太阳专利信托公司 通信装置及通信方法
CN101764652B (zh) * 2010-01-18 2012-12-19 哈尔滨工业大学 基于正交匹配追踪的具有压缩感知过程的信号检测方法
CN102324943A (zh) * 2010-03-22 2012-01-18 通用电气公司 动态可配置传感器底盘
CN103141067B (zh) * 2010-08-30 2016-11-09 新加坡科技研究局 频带识别方法、装置
CN103141067A (zh) * 2010-08-30 2013-06-05 新加坡科技研究局 频带识别方法、装置和计算机程序产品以及性能评估方法、装置和计算机程序产品
CN101951619B (zh) * 2010-09-03 2013-01-02 电子科技大学 一种认知网络中基于压缩感知的宽带信号分离方法
CN101951619A (zh) * 2010-09-03 2011-01-19 电子科技大学 一种认知网络中基于压缩感知的宽带信号分离方法
CN101984617B (zh) * 2010-11-26 2013-05-01 浙江大学 基于压缩感知技术的处理滤波器组峰均比的方法
CN101984617A (zh) * 2010-11-26 2011-03-09 浙江大学 基于压缩感知技术的处理滤波器组峰均比的方法
CN102130731B (zh) * 2011-03-18 2013-09-25 电子科技大学 一种高分辨率多径信道时延谱的测定方法
CN102130731A (zh) * 2011-03-18 2011-07-20 电子科技大学 一种高分辨率多径信道时延谱的测定方法
CN103139112A (zh) * 2011-11-23 2013-06-05 财团法人工业技术研究院 通道参数估测方法
CN102684736A (zh) * 2012-05-17 2012-09-19 北京理工大学 基于lps采集矩阵的直接序列扩频信号压缩感知方法
CN102684736B (zh) * 2012-05-17 2014-11-05 北京理工大学 基于lps采集矩阵的直接序列扩频信号压缩感知方法
CN103220240B (zh) * 2013-03-26 2015-08-19 电子科技大学 一种基于压缩感知的高分辨率信号到达时间估计方法
CN103220240A (zh) * 2013-03-26 2013-07-24 电子科技大学 一种基于压缩感知的高分辨率信号到达时间估计方法
CN103457886B (zh) * 2013-09-08 2016-04-13 西安电子科技大学 基于压缩感知的专用短距离通信信道估计方法
CN103457886A (zh) * 2013-09-08 2013-12-18 西安电子科技大学 基于压缩感知的专用短距离通信信道估计方法
CN103685124A (zh) * 2013-12-09 2014-03-26 西华大学 一种压缩域频率偏移估计方法
CN103685124B (zh) * 2013-12-09 2017-02-01 西华大学 一种压缩域频率偏移估计方法
CN103905097A (zh) * 2014-03-17 2014-07-02 复旦大学 一种结合自适应天线选择的分布式天线系统资源调度方法
CN104218984A (zh) * 2014-08-27 2014-12-17 电子科技大学 利用压缩感知的双端频域波束搜索方法
CN104218984B (zh) * 2014-08-27 2017-07-11 电子科技大学 利用压缩感知的双端频域波束搜索方法
CN106416307A (zh) * 2015-04-29 2017-02-15 华为技术有限公司 传输信息的方法、网络设备和终端设备
CN106416307B (zh) * 2015-04-29 2020-01-03 华为技术有限公司 传输信息的方法、网络设备和终端设备
CN104869086B (zh) * 2015-05-27 2017-11-14 东南大学 基于二维压缩感知的mimo‑ofdm通信系统下行信道估计方法、装置
CN104869086A (zh) * 2015-05-27 2015-08-26 东南大学 基于二维压缩感知的mimo-ofdm通信系统下行信道估计方法、装置
CN106506112A (zh) * 2015-09-08 2017-03-15 华为技术有限公司 反馈信道状态信息的方法和网络设备
CN106506112B (zh) * 2015-09-08 2020-02-14 华为技术有限公司 反馈信道状态信息的方法和网络设备
CN105338357B (zh) * 2015-09-29 2018-08-24 湖北工业大学 一种分布式视频压缩感知编解码方法
CN105338357A (zh) * 2015-09-29 2016-02-17 湖北工业大学 一种分布式视频压缩感知编码技术方法
CN105227505A (zh) * 2015-10-10 2016-01-06 上海交通大学 一种高速移动环境下的多符号联合信道估计方法
CN105227505B (zh) * 2015-10-10 2018-06-05 上海交通大学 一种高速移动环境下的多符号联合信道估计方法
CN105610477B (zh) * 2016-01-28 2018-06-19 西南交通大学 基于压缩感知的多发多收系统增强信号复用方法
CN105812032B (zh) * 2016-03-21 2018-09-21 东南大学 基于波束块结构压缩感知的信道估计方法
CN105812032A (zh) * 2016-03-21 2016-07-27 东南大学 基于波束块结构压缩感知的信道估计方法
CN107707493A (zh) * 2016-08-04 2018-02-16 北京信威通信技术股份有限公司 一种基于压缩感知的信道估计方法
CN106375250B (zh) * 2016-08-30 2019-05-21 北京邮电大学 慢时变信道下基于压缩感知的数据传输方法及装置
CN106375250A (zh) * 2016-08-30 2017-02-01 北京邮电大学 慢时变信道下基于压缩感知的数据传输方法及装置
CN106534002B (zh) * 2016-09-23 2019-07-12 天津科技大学 一种基于压缩感知的电力线信道估计方法
CN106534002A (zh) * 2016-09-23 2017-03-22 天津科技大学 一种基于压缩感知的电力线信道估计方法
CN106452534A (zh) * 2016-11-23 2017-02-22 南京邮电大学 基于结构化压缩感知的大规模mimo信道估计的导频优化方法
CN108242943A (zh) * 2016-12-23 2018-07-03 上海诺基亚贝尔股份有限公司 通信中用于预编码的方法和设备
CN107171985B (zh) * 2017-06-07 2020-01-10 深圳先进技术研究院 一种信道估计方法及系统
CN107171985A (zh) * 2017-06-07 2017-09-15 深圳先进技术研究院 一种信道估计方法及系统
CN108259397A (zh) * 2018-01-12 2018-07-06 东北大学 基于自适应正则化子空间追踪压缩感知算法的大规模mimo系统信道估计
CN108259397B (zh) * 2018-01-12 2020-09-22 东北大学 基于自适应正则化子空间追踪压缩感知算法的大规模mimo系统信道估计方法
CN108512787A (zh) * 2018-04-13 2018-09-07 电子科技大学 大规模mimo系统的超精细信道估计方法
CN112740565A (zh) * 2018-08-09 2021-04-30 At&T知识产权一部有限合伙公司 对于5g或其他下一代网络促进用于前传链路的波束成形系数的用户装备特定压缩
CN113922848A (zh) * 2020-07-10 2022-01-11 维沃移动通信有限公司 信号发送方法、信道估计方法、发送端设备及接收端设备
CN113922848B (zh) * 2020-07-10 2023-03-14 维沃移动通信有限公司 信号发送方法、信道估计方法、发送端设备及接收端设备

Also Published As

Publication number Publication date
CN101494627B (zh) 2013-06-05

Similar Documents

Publication Publication Date Title
CN101494627B (zh) 宽带移动通信中利用压缩感知减少导频数的信道估计方法
CN101945060B (zh) 一种3gpp lte下行系统中基于导频信号的信道估计方法
CN101692665B (zh) 正交频分复用-多输入多输出系统的解调方法及解调器
CN105978674B (zh) 基于压缩感知的fdd下大规模mimo信道估计的导频优化方法
CN107483091B (zh) 一种fdd大规模mimo-ofdm系统下的信道信息反馈算法
CN106559367A (zh) 基于低秩张量分解的mimo‑ofdm系统毫米波信道估计方法
WO2017219389A1 (zh) 大规模mimo系统中实现完美全向预编码的同步信号和信号的发送与接收方法
CN106998307B (zh) 一种用于大规模天线系统的盲信号检测及信道估计方法
Mohammadi et al. Cell-free massive MIMO meets OTFS modulation
CN112769462B (zh) 一种基于联合参数学习的毫米波mimo宽带信道估计方法
CN105471775A (zh) 一种大规模mimo系统中低复杂度的信道估计方法
WO2012093333A1 (en) Method of channel estimation, method of selecting pilot information, user equipment, and base station
CN104539562A (zh) 基于多输入多输出正交频分复用的宽带短波信道估计方法
CN113595941A (zh) 深度学习的压缩感知大规模mimo信道估计方法及系统
Dai et al. Joint channel estimation and feedback with low overhead for FDD massive MIMO systems
CN104301272B (zh) 基于循环自相关函数的统计谱域传输信号的检测方法
CN102651661B (zh) Td-lte系统中的干扰对齐方法
CN101808064A (zh) 一种无线接收系统以及信道估计处理方法、装置
CN103379048B (zh) 信道估计和检测的方法及基站
CN104796363A (zh) 多输入多输出系统中的窄带干扰估计方法及装置
CN102624659B (zh) 一种多天线超宽带系统信噪比估计方法
CN102035787A (zh) 一种MIMO-OFDM无线通信接收机的带排序Turbo增强方法
CN113347123B (zh) 一种基于模型驱动的混合mimo系统信道估计与反馈网络
CN103139108B (zh) 一种三维mmse信道估计方法
CN102545981B (zh) 在无线通信系统中基于doa进行波束赋形的方法与设备

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130605

Termination date: 20140311