CN101478286A - Square wave-sine wave signal converting method and converting circuit - Google Patents

Square wave-sine wave signal converting method and converting circuit Download PDF

Info

Publication number
CN101478286A
CN101478286A CN 200810043156 CN200810043156A CN101478286A CN 101478286 A CN101478286 A CN 101478286A CN 200810043156 CN200810043156 CN 200810043156 CN 200810043156 A CN200810043156 A CN 200810043156A CN 101478286 A CN101478286 A CN 101478286A
Authority
CN
China
Prior art keywords
square wave
signal
circuit
square
wave
Prior art date
Application number
CN 200810043156
Other languages
Chinese (zh)
Inventor
杜定坤
春 赵
魏述然
Original Assignee
锐迪科微电子(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 锐迪科微电子(上海)有限公司 filed Critical 锐迪科微电子(上海)有限公司
Priority to CN 200810043156 priority Critical patent/CN101478286A/en
Publication of CN101478286A publication Critical patent/CN101478286A/en

Links

Abstract

The invention discloses a square wave-sine wave signal transformation method comprising the steps as follows: a square wave signal generates N square wave control signals with the same period; the N square wave control signals arrayed in sequence respectively generate N square wave secondary signals; the amplitude sum of the N square wave secondary signals is a; the amplitude of the square wave signal n is a right type; the N square wave secondary signals are processed through superposition to obtain a false sine wave signal; and the false sine wave signal is processed through filtration to obtain a sine wave signal. A square wave-sine wave signal transformation circuit is also disclosed, and the superposition of the N square wave secondary signals in the method is realized by controlling the superposition of current so as to obtain the sine wave signal. The square wave-sine wave signal transformation method and the square wave-sine wave signal transformation circuit avoid adopting a higher order high-frequency filter directly, greatly save the area and the power consumption of a chip, and reduce the design complexity.

Description

方波一正弦波信号转换方法及转换电路 Square wave and a sine wave signal conversion method converting circuit

技术领域 FIELD

本发明涉及一种电信号的转换方法,尤其是一种方波一正弦波信号转换方法。 The present invention relates to a method for converting electrical signals, in particular a square wave of a sine wave signal converting method. 本发明还涉及一种电信号转换电路,尤其是一种方波一正弦波信号转换电路。 The present invention further relates to an electrical switching circuit, in particular a square-wave signal is a sine wave converter circuit.

背景技术 Background technique

在某些数模混合信号系统中,常常需要将方波或者近似于方波的信号 In certain mixed-signal system, it is often necessary to approximate a square wave or a square wave signal

进行基频抽取,也就是说需要将周期为T的数字型信号中频率为1/T的正弦波取出来,而将高次谐波去除,特别是在某些通信系统的调制过程中, 对于发射功率谱都有比较严格的规定,以防干扰该通信系统以及其他的通信系统的接收或发射,而高次谐波的存在往往会使得调制频谱达不到既定要求,可见,从方波或者准方波中抽取基频分量在某些系统中是十分必要的。 For extracting the fundamental frequency, i.e. the period required for the digital type signal T in the frequency 1 / T of the sine wave is taken out, and the removal of higher harmonics, particularly in the modulation process in some communication systems, for power spectrum has a more stringent emission regulations, to prevent interference with the received or transmitted communication systems and other communication systems, the presence of harmonics often so that the modulation spectrum does not meet the established requirements can be seen, the square-wave or quasi-square wave to extract the fundamental frequency component is necessary in some systems.

对于方波而言,其频谱分量中除了包含频率为1/T的基频分量,还包括频率为3/T, 5/T,……等高次谐波,各次谐波的幅度分别为基波的1/3, 1/5,……,可见各高次谐波分量在方波信号中占据了相当的能量。 For square wave spectral components in addition to containing the fundamental frequency component of 1 / T, further comprising a frequency of 3 / T, 5 / T, ...... high harmonics, the amplitude of each harmonic respectively 1/3 of the fundamental wave, 1/5, ......, each harmonic component can be seen to occupy a considerable energy square wave signal. 最为直接的去除高次谐波的办法就是采用滤波器,但是在一些系统特别是无线通信的调制系统中,调制信号的频率都相对较高,在高频下对目前主流的集成电路工艺而言是很难实现运算放大器的,因此无法采用有源电阻-电容式滤波器,而往往需要采用开环形式的跨导-电容式滤波器。 The most straightforward way to remove harmonic filter is employed, in some systems, especially in wireless communication modulation system, frequency modulated signals are relatively high, in terms of a high frequency current mainstream integrated circuit process It is difficult to achieve the operational amplifier can not use active resistor - capacitor filters, and often need to use open-ring form transconductance - capacitor filters. 由于跨导-电容滤波器的线性度较低,即使采用一些线性化技术以提高线性度,在高频下的线性性能也会恶化,所以这种滤波器处理高速信号的效果较差,其自身的非线性会使得谐波增加。 Since the transconductance - lower capacitor filter linearity, even if some of the linearization technique to improve the linearity, the linearity performance at high frequencies deteriorates, so this filter is less effective in high-speed signal processing, itself such nonlinear harmonics will increase. 对方波信号而言,由于离基波比较近的各次谐波的幅度较大,进一步增加了滤波难度。 Square wave signal, since relatively close to the fundamental wave from the amplitude of each harmonic is large, further increasing the difficulty of filtering. 总之,采用滤波器直接滤波的方式往往需要以增加功耗和阶数为代价实现所需的滤波效果,芯片的功耗、 面积以及设计复杂度都会增加,不利于实现低成本和低功耗的产品。 In summary, using the direct filtering mode filters often need to increase the power consumption and the cost of the order to achieve the desired filtering effect, the power consumption of the chip, and the area will increase design complexity, is not conducive to low cost and low power consumption product. 发明内容 SUMMARY

本发明所要解决的技术问题是提供一种方波一正弦波信号转换方法, 及实现该方法的方波一正弦波信号转换电路,能够直接生成所需正弦波信号,避免直接采用较高阶数的高频滤波器,大大的节省芯片的面积和功耗, 降低设计复杂度。 The present invention solves the technical problem is to provide a square wave of a sine wave signal converting method, and realization of the method a square wave sine wave signal converting circuit, to directly generate the desired sine wave signal, the number of higher order to avoid direct use high-frequency filter, greatly save chip area and power consumption, design complexity.

为解决上述技术问题,本发明方波一正弦波信号转换方法的技术方案是,包括 To solve the above problems, the present invention is a square-wave sine wave signal conversion method aspect is comprising

N个周期相同、占空比为50%的方波控制信号,N为大于l的整数,所 N same cycles, 50% duty cycle square wave control signal, N being an integer greater than l, and the

述N个方波控制信号按顺序排列,后一个方波控制信号的相位比其前一个 N said square wave control signals in sequence, after a phase control signal is a square wave than its predecessor

方波控制信号的相位滞后1/2N个周期; Phase square wave control signal is delayed 1 / 2N cycle;

由N个方波控制信号分别生成N个方波次级信号,所述N个方波次级 N generated by the square wave control signals of the N secondary square-wave signal, a square wave sub N

信号的振幅总和为a,第n个方波信号的振幅为^cos^^-冊^一,其中 The sum of the amplitude of the signal is a, the amplitude of the square wave signal n is ^ cos ^^ - ^ a book, wherein

<formula>formula see original document page 5</formula> <Formula> formula see original document page 5 </ formula>

将所述N个方波次级信号叠加,得到一个伪正弦波信号,对伪正弦波 The N secondary signal superimposed square wave to obtain a pseudo sine wave signal, a pseudo sine wave

信号进行滤波得到正弦波信号。 Filtering the signal to obtain a sine wave signal. 本发明还提供了一种方波一正弦波信号转换电路,其技术方案是,包括正弦波成型电路,所述正弦波成型电路包括按顺序排列的相互并联的N 路恒流源电路,N为大于1的整数,每一路恒流源电路包括串联连接的阳性电路和阴性电路,所述阳性电路的一端接电源端,阴性电路的一端接地, 所述阳性电路包括一个恒流源和一个开关,所述阴性电路包括一个恒流源和一个开关;所述每一路恒流源电路中阳性电路和阴性电路的恒流源产生的电流大小相等,方向相同,第n路恒流源电路中的恒流源所产生的电流 The present invention also provides a square wave of a sine wave signal conversion circuit means is the sine wave forming circuit including the N sine wave forming circuit comprises a constant-current source circuit arranged in parallel with each other in sequence, N is the an integer greater than 1, each path comprising a constant current source circuit positive and negative circuits connected in series with the circuit, the positive terminal of the power supply circuit is connected at one end, one end grounded negative circuit, the circuit comprises a positive constant current source and a switch, the circuit comprises a negative constant current source and a switch; the magnitude of the current in each channel is equal to the constant current source circuit of positive and negative constant current source circuit generated in the circuit, in the same direction, the n-channel constant current source circuit current generated by the source

大小/^/fcos^l;r-cosA;r),其中I为电流基准大小,1《n《N;所述恒流 Size / ^ / fcos ^ l; r-cosA; r), where I is the current reference magnitude, 1 "n" N; said constant

源电路中的开关分别由N个周期相同的方波控制信号控制,所述N个方波控制信号按顺序排列,后一个方波控制信号的相位比其前一个方波控制信号的相位滞后1/2N个周期,当所述方波控制信号为前半个周期时,该方波控制信号所控制的阳性电路的开关闭合、阴性电路的开关断开,当所述方波控制信号为后半个周期时,该方波控制信号所控制的阳性电路的开关断开、阴性电路的开关闭合;所述N路恒流源电路中阳性电路与阴性电路连接的节点全部相互连接在一起,并作为伪正弦波信号的输出端;所述为正弦波信号的输出端连接有滤波放大电路,将所述伪正弦波信号处理成正弦波信号。 Source circuit switches are controlled by a control signal of N cycles of the same square wave, a square wave control signal N are arranged in order, after the phase of a square wave control signal lags the phase of a front side of a wave control signal / 2N cycles, when the square-wave control signal is a first half cycle, the switching circuit is a positive square wave control signal to control the closing, the negative switching circuit is turned off, when the second half of the square-wave control signal when the cycle, the switching circuit positive square wave control signal is controlled off, the switching circuit closing negative; the N-channel constant current source circuit node circuit positive and negative electrical connections are all connected to each other, and as the pseudo sine wave signal output terminal; a sine wave signal at the output amplifying circuit is connected to the filter, the sinusoidal signal into a pseudo-sine wave signal.

本发明通过采用将方波信号叠加的方式,直接生成所需正弦波信号, 避免了直接采用较高阶数的高频滤波器,大大的节省了芯片的面积和功耗, 降低了设计复杂度。 The present invention is by using square wave signals superimposed manner, to directly generate the desired sine wave signal, to avoid the direct use of high-frequency filter of a higher order, greatly saves chip area and power consumption, reduces the design complexity .

附图说明下面结合附图和实施例对本发明作进一步详细的说明: BRIEF DESCRIPTION OF DRAWINGS Examples and embodiments of the present invention will be further described in detail:

图1为本发明方波一正弦波信号转换方法实施例的示意图; 1 a schematic view of an embodiment of a square wave signal converting method of the present invention, a sine wave;

图2为图1所示实施例中方波信号的频谱图; FIG 2 is a spectrum diagram of a signal wave Chinese embodiment of Figure 1;

图3为图1所示实施例中伪正弦波信号的频谱图; FIG 3 is a view of the spectrum of the pseudo sine wave signal shown in Figure 1 embodiment;

图4为本发明方波一正弦波信号转换电路的示意图; FIG 4 is a schematic view of a square wave signal conversion circuit of a sine invention;

图5和图6为图4中正弦波成型电路实施例的示意图。 5 and FIG. 6 is a schematic of an embodiment of the sine wave forming circuit 4 in FIG.

具体实施方式 Detailed ways

本发明提供了一种方波—正弦波信号转换方法,包括 The present invention provides a square wave - sine wave signal converting method, comprising

N个周期相同、占空比为50%的方波控制信号,N为大于l的整数,所述N个方波控制信号按顺序排列,后一个方波控制信号的相位比其前一个方波控制信号的相位滞后1/2N个周期; N same cycles, 50% duty cycle square wave control signal, N being an integer greater than l, and the square wave control signals N are arranged in order, after the phase control signal is a square wave which is a square wave than the previous lag phase control signal 1 / 2N cycle;

由N个方波控制信号分别生成N个方波次级信号,所述N个方波次级 N generated by the square wave control signals of the N secondary square-wave signal, a square wave sub N

信号的振幅总和为a,第n个方波信号的振幅为^fcos^l;r-cosA一,其中 The sum of the amplitude of the signal is a, the amplitude of the square wave signal n is ^ fcos ^ l; r-cosA a, wherein

2〔 iV WJ 2 [iV WJ

将所述N个方波次级信号叠加,得到一个伪正弦波信号,对伪正弦波信号进行滤波得到正弦波信号。 The N secondary signal superimposed square wave to obtain a pseudo sine wave signal, the pseudo sine wave signal is filtered to obtain a sine wave signal.

所述N个方波控制信号由一个方波控制信号生成。 The N control signals square wave signal generator controlled by a square wave.

图1所示为本发明方波一正弦波信号转换方法实施例的示意图。 Figure 1 a sinusoidal square wave signal conversion method shown in schematic of an embodiment of the present invention. 其中以N^8为例,这8个相位的信号的相位差是1/16个周期,也就是相位8的时钟比相位7的时钟滞后1/16个周期,相位7的时钟比相位6的时钟滞后1/16个周期,以此类推,直到相位l的时钟。 In an example where N ^ 8, 8 phase retardation which is 1/16 of the signal cycles, i.e. 8 clock phase lags the phase of clock cycles than 1/16. 7, the phase of the clock phase 7 6 1/16 cycle clock skew, and so on, until the phase of the clock l. 在图1中的第一个单位时间内,8个相位的时钟均为正半周,即为l, 此时亦对应正弦信号的最大值A,在下一个单位时间内,相位l为负半周, Within the first unit time in FIG. 1, the clock 8 phases are positive half cycle, namely l, this case also corresponds to the maximum value of the sinusoidal signal A, during the next one unit time, l is the phase of the negative half cycle,

其余相位均为正半周,此时对应正弦信号的B值,其中AB的差值可以看作相位1的负半周和相位8的正半周所对应的信号"抵消"或者说"相减" 得到,进入到第三个单位时间后,相位1和2均为负半周,其余相位均为正半周,对应的正弦信号值为C,类似的,其中BC的差值可以看作相位2 的负半周和相位7的正半周所对应的信号"抵消"或者说"相减"得到, 以此类推,即可得到如图1所示的正弦式信号。 Phase remaining half are positive, then the corresponding values ​​of the sine signal B, which can be regarded as the phase difference AB negative half-cycle and the phase signal corresponding to the positive half cycle of 8 "offset" or "subtract" 1 is obtained, after entering the third unit time, phase 1 and 2 are negative half cycle, the remaining phases are positive half cycle of the sinusoidal signal corresponding to a value of C, similar, wherein the difference can be considered as BC negative half cycle of phase 2 and signal corresponding to the positive half cycle of phase 7 "offset" or "subtract" obtained, and so, to obtain a sinusoidal signal as shown in FIG. 1. 根据正弦信号的幅度,可以得至ljA:a, B=0.9239a, C = 0. 7071a, D=0. 3827a。 The amplitude of the sinusoidal signal can be obtained to ljA: a, B = 0.9239a, C = 0. 7071a, D = 0 3827a..

需要指出的是,这样产生的正弦式信号只是伪正弦信号,因为信号是分段上升式的,但是这种"跳变"在频域上看实际上引入了高次谐波。 It should be noted that the sinusoidal signal thus generated is only a pseudo sinusoidal signal, because the signal is rising segment type, but this "trip" point of view actually introduces harmonic in the frequency domain. 图2 和图3分别是方波信号和伪正弦信号的频谱图,这种伪正弦波比较大的谐波分量位于15和17次谐波处,即图3中频率1. 5G和1. 7G的位置,而且比基波小约20dB,这样的频谱分量是很容易滤除的,由一般的一阶滤波器即可滤除,而且在实际电路中总存在一些寄生效应,所以实际中滤除这种高次谐波无需特别制作滤波器,电路中的寄生电容已经足以滤除这种谐波了,而方波信号比较大的谐波分量,如三次谐波和五次谐波,如图2中小于500M的位置,其离基频较近,而且只比基频分量小10dB左右, 一般需要较高阶数的滤波器才能滤除,两相比较可以发现伪正弦信号相比正弦信号具有很好的频谱纯度,并且具有电路简单,功耗和面积都比较小的特点。 2 and 3 are spectrum signals and the pseudo-sinusoidal square wave signal, this pseudo-sine large harmonic components 15 and 17 located at the harmonics, i.e., frequency 3 1. 5G FIG 1. 7G and position, but less than about 20dB below the fundamental, such spectral components are easily filtered out, can be filtered by a first order filter in general, and in total there are some practical circuit parasitics, the actual filtered out such harmonic filter without special production, the parasitic capacitance of the circuit is sufficient to filter out this harmonic, and the harmonic component of relatively large square wave signal, such as third and fifth harmonics as 2 in a position less than 500M, which is close to the fundamental frequency away, and only the fundamental frequency component is small than about 10dB, typically require a filter to filter out the higher-order, it can be found in comparing the two pseudo-sinusoidal signals having sinusoidal signals compared good spectral purity, and has a simple circuit, power and area are relatively small features.

本发明还提供了一种实现上述方波一正弦波信号转换方法所采用的方波一正弦波信号转换电路,如图4、图5和图6所示,包括正弦波成型电路, The present invention further provides a sine wave signal a sine square wave signal converting circuit converting method employed for realizing the square wave, as shown, comprises a sine wave forming circuit 4, 5 and 6,

所述正弦波成型电路包括按顺序排列的相互并联的N路恒流源电路,N为大于1的整数,更好的情况是N为偶数,每一路恒流源电路包括串联连接的 The sine wave forming circuit comprises a constant current source circuit of an N-way parallel with each other in sequence, and N is an integer greater than one, the better is the case N is an even number, each channel circuit comprises a constant current source connected in series

阳性电路和阴性电路,所述阳性电路的一端接电源端,阴性电路的一端接地,所述阳性电路包括一个恒流源和一个开关,所述阴性电路包括一个恒 Positive and negative circuit circuit, a circuit of the positive power supply terminal end, one end grounded negative circuit, the circuit comprises a positive constant current source and a switch, said circuit comprising a constant negative

流源和一个开关;所述每一路恒流源电路中阳性电路和阴性电路的恒流源产生的电流大小相等,方向相同,第n路恒流源电路中的恒流源所产生的 And a current source switch; equal to the magnitude of the current path of each current source circuit constant current source circuit of positive and negative circuit generated in the same direction, the n-channel constant current source circuit of the constant current source generated

电流大小/"= Magnitude of the current / "=

COS-7Z" — COS——7T COS-7Z "- COS - 7T

;v ; V

,其中I为电流基准大小,1《n《N;所述 , Where I is the current reference magnitude, 1 "n" N; the

恒流源电路中的开关分别由N个周期相同的方波控制信号控制,所述N个方波控制信号按顺序排列,后一个方波控制信号的相位比其前一个方波控制信号的相位滞后1/2N个周期,当所述方波控制信号为前半个周期时,该方波控制信号所控制的阳性电路的开关闭合、阴性电路的开关断开,当所述方波控制信号为后半个周期时,该方波控制信号所控制的阳性电路的开关断开、阴性电路的开关闭合;所述N路恒流源电路中阳性电路与阴性电路连接的节点全部相互连接在一起,并作为伪正弦波信号的输出端;所述为正弦波信号的输出端连接有滤波放大电路,将所述伪正弦波信号处理成正弦波信号。 The constant current source circuit switches are controlled by a control signal of N cycles of the same square wave, a square wave control signal N are arranged in order, after a phase signal the phase of the square wave control signals which control a square wave than the previous hysteresis 1 / 2N cycle, when the control signal is a square wave front half cycle, the switching circuit is a positive square wave control signal which controls closed, negative switching circuit is turned off, when the control signal is a square wave when the half cycle, the switching circuit is a positive square-wave control signal of the controlled off, the switch circuit is closed negative; the N-channel constant current source circuit node circuit positive and negative electrical connections are all connected to each other, and as the output of the pseudo sine wave signal; the sine wave signal at the output amplifying circuit is connected to the filter, the sinusoidal signal into a pseudo-sine wave signal.

所述阳性电路的开关采用PM0S管,阴性电路的开关采用NM0S管,所述方波控制信号控制PMOS管和NM0S管的栅极。 The switching circuit using positive PM0S tube, the switching circuit uses negative NM0S tube, the square-wave control signal and the gate of PMOS transistor NM0S tube.

所述N个方波控制信号可以由环形振荡器产生。 N the square wave control signals may be generated by the ring oscillator.

所述N个方波控制信号也可以由一个方波信号通过延时锁定环产生。 The square wave control signal N may be composed of a square wave signal is generated by a delay locked loop. 所述N个方波控制信号还可以由一个方波信号通过计数器电路产生。 The N square wave control signal may also be generated by a square wave signal by the counter circuit.

图5和图6所示的电路仍以N=8为例,可以采用电流型的加权数模转 Circuit shown in FIG. 5 and FIG. 6 is still an example N = 8, may be employed current-weighted digital to analog

换器得到所需的正弦波信号,从原理上考虑,其实任何形式的数模转换器都可以实现正弦波成型,但是由于成型电路需要进行频繁的加减运算,这对于电流型数模转换器是特别适合的,因为电流实现加减运算可以直接通过节点连接实现,并且在信号速度较高的情况下,电流型数模转换器的速 Converter to give the desired sine wave signal, from the viewpoint of the principle, in fact, any form of a sine wave shaped digital to analog converter can be implemented, but since the molding circuits require frequent addition and subtraction, for which current steering DAC It is particularly suitable, since the current operation can be realized by a subtraction node connected to direct, and at higher signal speeds, speed current steering DAC

度优势也较为明显。 Of the more obvious advantages. 类似于图1的时序图,在第一个单位时间内,8个时钟相位均为正半周,那么所有的N管开关都断开,所有的P管开关都闭合,从而输出电流即为8个N管对应的电流之和(n+I2+I3+I4+I5+I6+I7+I8),在第二个单位时间内,则相位1对应的N管闭合而P管断开,其余相位对应的N管断开而P管闭合,11 = 18,则有相位1对应的P管电流和相位8对应的N管电流抵消,则输出电流为(12+13+14+15+16+17),以此类推,12 = 17, 13 = 16, 14 = 15,则第三个单位时间的输出电流为(I3 + I4+I5+I6),第四个单位时间的输出电流为(14+15),……。 A timing diagram similar to Figure 1, the first in a unit time, eight phase clocks are positive half cycle, then all N switches are off tubes, all of the switches are closed tubes P, so that the output current is the 8 N and tube current corresponding to the sum (n + I2 + I3 + I4 + I5 + I6 + I7 + I8), in the second unit of time, the phase corresponding to N 1 is closed and the pipe is disconnected pipe P, the rest corresponding to the phase N-MOSFET is off and P-closing, 11 = 18, then there is a phase P 1 corresponding to the tube current and phase 8 corresponding to the tube current cancellation N, then the output current is (12 + 13 + 14 + 15 + 16 + 17) , and so on, the output current 12 = 17, 13 = 16, 14 = 15, then the third unit time (I3 + I4 + I5 + I6), the output current of the fourth unit time (14 + 15 ), ....... 可见对应到图l中, It is seen to correspond to Figure l,

A=I1+I2+I3+I4+I5+I6+I7+I8=2 (I1+I2+I3+I4); A = I1 + I2 + I3 + I4 + I5 + I6 + I7 + I8 = 2 (I1 + I2 + I3 + I4);

B二I2+I3+I4+I5+I6+I7二2 (12+13+14); B = I2 + I3 + I4 + I5 + I6 + I7 = 2 (12 + 13 + 14);

C二I3+I4+I5+I6二2 (13+14); C = I3 + I4 + I5 + I6 = 2 (13 + 14);

D二I4+I5二2 (14+15)。 I4 + I5 two D = 2 (14 + 15).

考虑到A、 B、 C、 D的比例关系,容易求出 Considering the A, B, C, D is a proportional relationship, determined easily

11:12:13:14 = 0. 0761:0. 2168:0. 3244:0. 3827。 11: 12: 13: 14 = 0.0761: 02168: 03244: 03827.

根据这一比例选定合适的电流值实现这一电路。 According to the circuit to achieve this an appropriate selection of the ratio of the current value. 本发明所提供的方波一正弦波信号转换方法及转换电路的一个重要应用即是调频发射系统。 One important application of a square-wave sine wave signal converting method according to the present invention is provided and the converter circuit that is the FM transmission system. 由于发射信号是采用频率调制,也就是说信息仅存在于调制信号的频率变化中,因此调频发射系统往往采用基于锁相环的频率合成器进行调制,也就是说压控振荡器的输出即是调制后的调频信号, 一般而言调频系统的压控振荡器是采用环形振荡器构成,这种结构的压控振荡器具有设计简单和面积小的优势,虽然相位噪音相对于电容-电感谐振的振荡器差一些,但是也足以满足调频系统要求了。 Since the transmitted signal is modulated with a frequency, i.e. the frequency change information is present only in modulated signal, FM transmission systems are often used and therefore modulate phase-locked loop frequency synthesizer, that is, the VCO output that is FM modulated signal, FM systems in general is the use of a voltage controlled oscillator constitute a ring oscillator, a voltage controlled oscillator having simple design of the structure and the advantages of small size, although the phase noise relative to the capacitor - the resonant inductor oscillator worse, but also sufficient to meet the requirements of the FM system. 在设计环形振荡器的过程中,为了提高相位噪声,需要使得振荡信号具有尽可能快的上升时间和下降时间,也就是说信号往往为接近方波的形式。 In the ring oscillator design process in order to improve the phase noise, it is necessary that as soon as the oscillation signal having a rise time and fall time, that is often close to a square wave signal form. 假定压控振荡器的输出为周期T的理想方波,那么该方波中除了包含频率为1/T的基频分量, Assuming the output of the voltage controlled oscillator over the square wave period T, then the frequency of the square wave comprises addition of 1 / T of the fundamental frequency component,

还包括频率为3/T, 5/T,……等高次谐波,各次谐波的幅度分别为基波的1/3, 1/5,……,可见各高次谐波分量在方波信号中占据了相当的能量。 Further comprising a frequency of 3 / T, 5 / T, ...... high harmonics, the amplitude of each harmonic fundamental wave are 1/3, 1/5, ......, is visible in each of the higher harmonic components square wave signal occupies a considerable amount of energy. 假如将该信号直接送入功率放大器,那么这些高次谐波也会被放大,这些高次分量可能会进入其他无线电应用的频段,对其他信号造成干扰,因此必须将高次谐波尽可能减小。 If the signal is fed directly to the power amplifier, then the higher harmonics will be enlarged, which may enter the higher frequency components of other radio applications, signals causing interference to the other, it must be possible harmonic Save small.

由于调频信号的频段在100MHz左右,如前所述,很难采取高阶的高频 Since the frequency band FM signal is about 100MHz, as described above, it is difficult to take a high-frequency high-order

滤波器滤除离基频较近的各次谐波,而采取正弦波成型技术则可以很好的解决这一问题。 Each filter removes harmonics from the fundamental frequency close to, take a sinusoidal molding technique can be a good solution to this problem. 图4给出了一个较为典型的方波一正弦波信号转换电路的调频系统框图,利用基于锁相环的调频器产生多相调制信号,送入到正弦波成型电路中,产生的正弦信号经过缓冲放大级即可驱动片外的负载。 Figure 4 shows a more typical square wave system block diagram of a frequency modulated sine wave signal conversion circuit, based on a modulation signal using the generated multiphase PLL tuner, the circuit is fed to a sine wave shaped sinusoidal signal generated through buffer amplifier stage driving a load to the outer sheet.

正弦波成型电路的具体实现如图6所示,利用电流镜电路产生各路电流,P管都采用电流镜形式,而N管则利用电阻R和电容C产生一个直流反 DETAILED sine wave forming circuit implementation shown in FIG. 6, the brightest current generated by the current mirror circuit, P tubes are used in the form of a current mirror, and N is the tube by the resistor R and capacitor C to produce a counter-current

馈,将N管的栅压和漏级电压给定,如果不采用这样的反馈形式,而是将N Feeding, the gate voltage and the drain tube N given voltage, without using such a form of feedback, but the N

管和p管都接成高阻输出的电流镜形式,则输出节点为高阻节点,会使得 P tubes and pipes are connected to form a high impedance output current mirror, the output node is high impedance node that would

直流电平不稳定,造成电路失效,因此N管这样的处理可以起到稳定直流电平的作用。 DC level instability, resulting in circuit failure, the process tube may be an N-stabilizing effect of the DC level. 在RC值足够大的情况下,仅构成直流和低频反馈,而高频信号不会反馈,因此在高频下N管也可看作和P管同样的电流镜形式,即二者的高频输出阻抗都较大,可以保证电流信号的输出性能。 In the RC value is sufficiently large, only the DC and low frequencies constitute the feedback, the feedback signal is not high frequency, and therefore can be regarded as the same in the form of a current mirror tube P at a high frequency N tube, i.e., both high-frequency are larger output impedance, can ensure the output current signal performance. 由于该电路是基于电流型数模转换器的,因此输出阻抗较大,驱动能力相对较弱, 一般需要通过缓冲放大电路驱动片外负载,由于缓冲放大器电路存在一定的输入电容,这一电容恰好也可以用于将伪正弦波滤为较为纯净的正弦波,另外在放大器中也可根据需要设置一些简单的滤波电路,和直接采用滤波器的方法相比,这里仅需要滤除很高次的谐波,因此是很容易实现的。 Since the circuit is based on the current steering DAC, the output impedance is large, relatively weak drive capability generally requires an external circuit driven by a buffer amplifier chip load, due to the presence of a certain input capacitance buffer amplifier circuit, the capacitor exactly may also be used to filter the pseudo sine relatively pure sine wave, it may be additionally provided some simple filter circuit required in the amplifier, and a filter method using direct comparison, here is only necessary to filter out high times harmonics, therefore it is easy to achieve. 最终达到了性能良好的正弦波成型目的,并且可将信号经过缓冲放大驱动相应的负载。 Ultimately achieve good performance sine wave shaped object, and may signal through a buffer amplifier driving a corresponding load.

综上所述,本发明通过采用将方波信号叠加的方式,直接生成所需正弦波信号,避免了直接采用较高阶数的高频滤波器,大大的节省了芯片的面积和功耗,降低了设计复杂度。 In summary, the present invention is by using square wave signals superimposed manner, to directly generate the desired sine wave signal, to avoid the direct use of high-frequency filter of a higher order, greatly saves chip area and power consumption, It reduces design complexity.

12 12

Claims (8)

1. 一种方波—正弦波信号转换方法,其特征在于,包括N个周期相同、占空比为50%的方波控制信号,N为大于1的整数,所述N个方波控制信号按顺序排列,后一个方波控制信号的相位比其前一个方波控制信号的相位滞后1/2N个周期;由N个方波控制信号分别生成N个方波次级信号,所述N个方波次级信号的振幅总和为a,第n个方波信号的振幅为其中1≤n≤N;将所述N个方波次级信号叠加,得到一个伪正弦波信号,对伪正弦波信号进行滤波得到正弦波信号。 A square wave - sine wave signal converting method, comprising the same N cycles, 50% duty cycle square wave control signal, N being an integer greater than 1, and the square wave control signal N in sequence, a phase of the square wave control signal is delayed 1 / 2N cycle the phase of a front square wave control signal; generating N N square wave signal generated by the secondary square wave control signals, the N the sum of the amplitude of the square wave of the secondary signals is a, the amplitude of the square wave signal n in which 1≤n≤N; the N secondary signal superimposed square wave to obtain a pseudo sine wave signal, a pseudo sine wave filtering the signal to obtain a sine wave signal.
2. 根据权利要求1所述的方波一正弦波信号转换方法,其特征在于, 所述N个方波控制信号由一个方波控制信号生成。 The sine wave signal is a square wave converting method according to claim 1, wherein said N signal generating square wave control signal controlled by a square wave.
3. —种实现如权利要求1所述的方波一正弦波信号转换方法所采用的方波一正弦波信号转换电路,其特征在于,包括正弦波成型电路,所述正弦波成型电路包括按顺序排列的相互并联的N路恒流源电路,N为大于1的整数,每一路恒流源电路包括串联连接的阳性电路和阴性电路,所述阳性电路的一端接电源端,阴性电路的一端接地,所述阳性电路包括一个恒流源和一个开关,所述阴性电路包括一个恒流源和一个开关;所述每一路恒流源电路中阳性电路和阴性电路的恒流源产生的电流大小相等,方向相同,第n路恒流源电路中的恒流源所产生的电流大小^ = / 其中I为电流基准大小,1《n《N;所述恒流源电路中的开关分别由N个周W —1 w cos-"^r — cos——;r期相同的方波控制信号控制,所述N个方波控制信号按顺序排列,后一个方波控制信号的相位比其前一个方波控 3 - a square-wave sine wave signal converting circuit of implementations according to claim 1, a sine square wave signal converting method employed, wherein the circuit comprises a sine wave shaped, by the sine wave shaping circuit comprising N-way parallel with each other constant current source circuit arranged in order, N being an integer greater than 1, each circuit comprises a constant-current source circuit the positive and negative circuits connected in series, one end of the positive terminal of the power supply circuit is connected at one end, negative circuit ground, the circuit comprises a positive constant current source and a switch, the circuit comprises a negative constant current source and a switch; each of said constant-current source circuit the positive and negative constant current source circuit size of the current generated in the circuit equivalent, in the same direction, the current size of the n-channel constant current source circuit of the constant current source produces ^ = / where I is the current reference magnitude, 1 "n" N; the constant current source circuit by the switches are N a circumferential W -1 w cos - "^ r - cos -; r square wave of the same control signal, a square wave control signal N are arranged in order, after a phase control signal is a square wave than its predecessor square wave control 制信号的相位滞后1/2N个周期,当所述方波控制信号为前半个周期时,该方波控制信号所控制的阳性电路的开关闭合、阴性电路的开关断开,当所述方波控制信号为后半个周期时, 该方波控制信号所控制的阳性电路的开关断开、阴性电路的开关闭合;所述N路恒流源电路中阳性电路与阴性电路连接的节点全部相互连接在一起,并作为伪正弦波信号的输出端;所述为正弦波信号的输出端连接有滤波放大电路,将所述伪正弦波信号处理成正弦波信号。 Signal lags the phase of system 1 / 2N cycle, when the control signal is a square wave front half cycle, the switching circuit is a positive square wave control signal which controls the closed circuit switching off the negative, when the square wave control signal is the latter half cycle, the switching circuit is a positive square-wave control signal of the controlled off, the switch circuit is closed negative; the N-channel constant current source circuit node circuit positive and negative electrical connections are all connected to each other together, and as a pseudo sine wave signal at the output; the output of the sine wave signal amplifying circuit is connected to the filter, the sinusoidal signal into a pseudo-sine wave signal.
4. 根据权利要求3所述的方波一正弦波信号转换电路,其特征在于, 所述阳性电路的开关采用PM0S管,阴性电路的开关采用丽0S管,所述方波控制信号控制PM0S管和NM0S管的栅极。 4. The square wave signal of a sine wave converter circuit according to claim 3, wherein said switching circuit using positive PM0S tube, the switching circuit uses negative Li 0S tube, said square wave control signal PM0S tube and a gate NM0S tube.
5. 根据权利要求3所述的方波一正弦波信号转换电路,其特征在于, 所述N为偶数。 A square-wave sine wave signal converting circuit according to claim 3, wherein said N is an even number.
6. 根据权利要求3所述的方波一正弦波信号转换电路,其特征在于, 所述N个方波控制信号由环形振荡器产生。 6. a square-wave sine wave signal converting circuit according to claim 3, wherein said N square wave control signals generated by the ring oscillator.
7. 根据权利要求3所述的方波一正弦波信号转换电路,其特征在于, 所述N个方波控制信号由一个方波信号通过延时锁定环产生。 The square-wave signal of a sine wave converter circuit according to claim 3, wherein said N control signals by the square wave signal is a square wave generated by a delay locked loop.
8. 根据权利要求3所述的方波一正弦波信号转换电路,其特征在于, 所述N个方波控制信号由一个方波信号通过计数器电路产生。 A square-wave sine wave signal converting circuit according to claim 3, wherein said N square wave control signals generated by a square wave signal by the counter circuit.
CN 200810043156 2008-03-03 2008-03-03 Square wave-sine wave signal converting method and converting circuit CN101478286A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200810043156 CN101478286A (en) 2008-03-03 2008-03-03 Square wave-sine wave signal converting method and converting circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200810043156 CN101478286A (en) 2008-03-03 2008-03-03 Square wave-sine wave signal converting method and converting circuit

Publications (1)

Publication Number Publication Date
CN101478286A true CN101478286A (en) 2009-07-08

Family

ID=40838928

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200810043156 CN101478286A (en) 2008-03-03 2008-03-03 Square wave-sine wave signal converting method and converting circuit

Country Status (1)

Country Link
CN (1) CN101478286A (en)

Cited By (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2509146A (en) * 2012-12-21 2014-06-25 Lifescan Scotland Ltd Hand held test meter with low-distortion signal generation
US9203402B1 (en) 2010-05-20 2015-12-01 Kandou Labs SA Efficient processing and detection of balanced codes
US9246713B2 (en) 2010-05-20 2016-01-26 Kandou Labs, S.A. Vector signaling with reduced receiver complexity
US9251873B1 (en) 2010-05-20 2016-02-02 Kandou Labs, S.A. Methods and systems for pin-efficient memory controller interface using vector signaling codes for chip-to-chip communications
US9258154B2 (en) 2014-02-02 2016-02-09 Kandou Labs, S.A. Method and apparatus for low power chip-to-chip communications with constrained ISI ratio
US9268683B1 (en) 2012-05-14 2016-02-23 Kandou Labs, S.A. Storage method and apparatus for random access memory using codeword storage
US9275720B2 (en) 2010-12-30 2016-03-01 Kandou Labs, S.A. Differential vector storage for dynamic random access memory
US9288082B1 (en) 2010-05-20 2016-03-15 Kandou Labs, S.A. Circuits for efficient detection of vector signaling codes for chip-to-chip communication using sums of differences
US9288089B2 (en) 2010-04-30 2016-03-15 Ecole Polytechnique Federale De Lausanne (Epfl) Orthogonal differential vector signaling
US9300503B1 (en) 2010-05-20 2016-03-29 Kandou Labs, S.A. Methods and systems for skew tolerance in and advanced detectors for vector signaling codes for chip-to-chip communication
US9357036B2 (en) 2010-05-20 2016-05-31 Kandou Labs, S.A. Methods and systems for chip-to-chip communication with reduced simultaneous switching noise
US9362947B2 (en) 2010-12-30 2016-06-07 Kandou Labs, S.A. Sorting decoder
US9363114B2 (en) 2014-02-28 2016-06-07 Kandou Labs, S.A. Clock-embedded vector signaling codes
US9362962B2 (en) 2010-05-20 2016-06-07 Kandou Labs, S.A. Methods and systems for energy-efficient communications interface
US9362974B2 (en) 2010-05-20 2016-06-07 Kandou Labs, S.A. Methods and systems for high bandwidth chip-to-chip communications interface
US9369312B1 (en) 2014-02-02 2016-06-14 Kandou Labs, S.A. Low EMI signaling for parallel conductor interfaces
US9401828B2 (en) 2010-05-20 2016-07-26 Kandou Labs, S.A. Methods and systems for low-power and pin-efficient communications with superposition signaling codes
US9419828B2 (en) 2013-11-22 2016-08-16 Kandou Labs, S.A. Multiwire linear equalizer for vector signaling code receiver
US9419564B2 (en) 2014-05-16 2016-08-16 Kandou Labs, S.A. Symmetric linear equalization circuit with increased gain
US9432082B2 (en) 2014-07-17 2016-08-30 Kandou Labs, S.A. Bus reversable orthogonal differential vector signaling codes
US9444654B2 (en) 2014-07-21 2016-09-13 Kandou Labs, S.A. Multidrop data transfer
US9461862B2 (en) 2014-08-01 2016-10-04 Kandou Labs, S.A. Orthogonal differential vector signaling codes with embedded clock
US9470649B2 (en) 2014-06-10 2016-10-18 Lifescan Scotland Limited Hand-held test mester with low-distortion signal generation circuit
US9479369B1 (en) 2010-05-20 2016-10-25 Kandou Labs, S.A. Vector signaling codes with high pin-efficiency for chip-to-chip communication and storage
US9509437B2 (en) 2014-05-13 2016-11-29 Kandou Labs, S.A. Vector signaling code with improved noise margin
US9544015B2 (en) 2014-06-25 2017-01-10 Kandou Labs, S.A. Multilevel driver for high speed chip-to-chip communications
US9557760B1 (en) 2015-10-28 2017-01-31 Kandou Labs, S.A. Enhanced phase interpolation circuit
US9564994B2 (en) 2010-05-20 2017-02-07 Kandou Labs, S.A. Fault tolerant chip-to-chip communication with advanced voltage
US9577815B1 (en) 2015-10-29 2017-02-21 Kandou Labs, S.A. Clock data alignment system for vector signaling code communications link
US9596109B2 (en) 2010-05-20 2017-03-14 Kandou Labs, S.A. Methods and systems for high bandwidth communications interface
US9667379B2 (en) 2010-06-04 2017-05-30 Ecole Polytechnique Federale De Lausanne (Epfl) Error control coding for orthogonal differential vector signaling
US9674014B2 (en) 2014-10-22 2017-06-06 Kandou Labs, S.A. Method and apparatus for high speed chip-to-chip communications
US9806761B1 (en) 2014-01-31 2017-10-31 Kandou Labs, S.A. Methods and systems for reduction of nearest-neighbor crosstalk
US9825723B2 (en) 2010-05-20 2017-11-21 Kandou Labs, S.A. Methods and systems for skew tolerance in and advanced detectors for vector signaling codes for chip-to-chip communication
US9832046B2 (en) 2015-06-26 2017-11-28 Kandou Labs, S.A. High speed communications system
US9852806B2 (en) 2014-06-20 2017-12-26 Kandou Labs, S.A. System for generating a test pattern to detect and isolate stuck faults for an interface using transition coding
US9900186B2 (en) 2014-07-10 2018-02-20 Kandou Labs, S.A. Vector signaling codes with increased signal to noise characteristics
US9906358B1 (en) 2016-08-31 2018-02-27 Kandou Labs, S.A. Lock detector for phase lock loop
US9985634B2 (en) 2010-05-20 2018-05-29 Kandou Labs, S.A. Data-driven voltage regulator
US9985745B2 (en) 2013-06-25 2018-05-29 Kandou Labs, S.A. Vector signaling with reduced receiver complexity
US10003315B2 (en) 2016-01-25 2018-06-19 Kandou Labs S.A. Voltage sampler driver with enhanced high-frequency gain
US10003454B2 (en) 2016-04-22 2018-06-19 Kandou Labs, S.A. Sampler with low input kickback
US10057049B2 (en) 2016-04-22 2018-08-21 Kandou Labs, S.A. High performance phase locked loop
US10055372B2 (en) 2015-11-25 2018-08-21 Kandou Labs, S.A. Orthogonal differential vector signaling codes with embedded clock
US10056903B2 (en) 2016-04-28 2018-08-21 Kandou Labs, S.A. Low power multilevel driver
US10091035B2 (en) 2013-04-16 2018-10-02 Kandou Labs, S.A. Methods and systems for high bandwidth communications interface
US10116468B1 (en) 2017-06-28 2018-10-30 Kandou Labs, S.A. Low power chip-to-chip bidirectional communications
US10153591B2 (en) 2016-04-28 2018-12-11 Kandou Labs, S.A. Skew-resistant multi-wire channel
US10200218B2 (en) 2016-10-24 2019-02-05 Kandou Labs, S.A. Multi-stage sampler with increased gain
US10200188B2 (en) 2016-10-21 2019-02-05 Kandou Labs, S.A. Quadrature and duty cycle error correction in matrix phase lock loop
US10203226B1 (en) 2017-08-11 2019-02-12 Kandou Labs, S.A. Phase interpolation circuit
US10277431B2 (en) 2016-09-16 2019-04-30 Kandou Labs, S.A. Phase rotation circuit for eye scope measurements
US10326623B1 (en) 2017-12-08 2019-06-18 Kandou Labs, S.A. Methods and systems for providing multi-stage distributed decision feedback equalization
US10333741B2 (en) 2016-04-28 2019-06-25 Kandou Labs, S.A. Vector signaling codes for densely-routed wire groups

Cited By (86)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9825677B2 (en) 2010-04-30 2017-11-21 ECOLE POLYTECHNIQUE FéDéRALE DE LAUSANNE Orthogonal differential vector signaling
US9288089B2 (en) 2010-04-30 2016-03-15 Ecole Polytechnique Federale De Lausanne (Epfl) Orthogonal differential vector signaling
US9692555B2 (en) 2010-05-20 2017-06-27 Kandou Labs, S.A. Vector signaling with reduced receiver complexity
US9246713B2 (en) 2010-05-20 2016-01-26 Kandou Labs, S.A. Vector signaling with reduced receiver complexity
US9251873B1 (en) 2010-05-20 2016-02-02 Kandou Labs, S.A. Methods and systems for pin-efficient memory controller interface using vector signaling codes for chip-to-chip communications
US9838017B2 (en) 2010-05-20 2017-12-05 Kandou Labs, S.A. Methods and systems for high bandwidth chip-to-chip communcations interface
US9203402B1 (en) 2010-05-20 2015-12-01 Kandou Labs SA Efficient processing and detection of balanced codes
US9485057B2 (en) 2010-05-20 2016-11-01 Kandou Labs, S.A. Vector signaling with reduced receiver complexity
US9288082B1 (en) 2010-05-20 2016-03-15 Kandou Labs, S.A. Circuits for efficient detection of vector signaling codes for chip-to-chip communication using sums of differences
US9819522B2 (en) 2010-05-20 2017-11-14 Kandou Labs, S.A. Circuits for efficient detection of vector signaling codes for chip-to-chip communication
US9300503B1 (en) 2010-05-20 2016-03-29 Kandou Labs, S.A. Methods and systems for skew tolerance in and advanced detectors for vector signaling codes for chip-to-chip communication
US9357036B2 (en) 2010-05-20 2016-05-31 Kandou Labs, S.A. Methods and systems for chip-to-chip communication with reduced simultaneous switching noise
US9686107B2 (en) 2010-05-20 2017-06-20 Kandou Labs, S.A. Methods and systems for chip-to-chip communication with reduced simultaneous switching noise
US9825723B2 (en) 2010-05-20 2017-11-21 Kandou Labs, S.A. Methods and systems for skew tolerance in and advanced detectors for vector signaling codes for chip-to-chip communication
US9929818B2 (en) 2010-05-20 2018-03-27 Kandou Bus, S.A. Methods and systems for selection of unions of vector signaling codes for power and pin efficient chip-to-chip communication
US9577664B2 (en) 2010-05-20 2017-02-21 Kandou Labs, S.A. Efficient processing and detection of balanced codes
US9362974B2 (en) 2010-05-20 2016-06-07 Kandou Labs, S.A. Methods and systems for high bandwidth chip-to-chip communications interface
US9479369B1 (en) 2010-05-20 2016-10-25 Kandou Labs, S.A. Vector signaling codes with high pin-efficiency for chip-to-chip communication and storage
US9401828B2 (en) 2010-05-20 2016-07-26 Kandou Labs, S.A. Methods and systems for low-power and pin-efficient communications with superposition signaling codes
US9413384B1 (en) 2010-05-20 2016-08-09 Kandou Labs, S.A. Efficient processing and detection of balanced codes
US9607673B1 (en) 2010-05-20 2017-03-28 Kandou Labs S.A. Methods and systems for pin-efficient memory controller interface using vector signaling codes for chip-to-chip communication
US9596109B2 (en) 2010-05-20 2017-03-14 Kandou Labs, S.A. Methods and systems for high bandwidth communications interface
US9985634B2 (en) 2010-05-20 2018-05-29 Kandou Labs, S.A. Data-driven voltage regulator
US10044452B2 (en) 2010-05-20 2018-08-07 Kandou Labs, S.A. Methods and systems for skew tolerance in and advanced detectors for vector signaling codes for chip-to-chip communication
US9362962B2 (en) 2010-05-20 2016-06-07 Kandou Labs, S.A. Methods and systems for energy-efficient communications interface
US9450791B2 (en) 2010-05-20 2016-09-20 Kandoub Lab, S.A. Circuits for efficient detection of vector signaling codes for chip-to-chip communication
US9564994B2 (en) 2010-05-20 2017-02-07 Kandou Labs, S.A. Fault tolerant chip-to-chip communication with advanced voltage
US9667379B2 (en) 2010-06-04 2017-05-30 Ecole Polytechnique Federale De Lausanne (Epfl) Error control coding for orthogonal differential vector signaling
US9424908B2 (en) 2010-12-30 2016-08-23 Kandou Labs, S.A. Differential vector storage for dynamic random access memory
US9275720B2 (en) 2010-12-30 2016-03-01 Kandou Labs, S.A. Differential vector storage for dynamic random access memory
US10164809B2 (en) 2010-12-30 2018-12-25 Kandou Labs, S.A. Circuits for efficient detection of vector signaling codes for chip-to-chip communication
US9362947B2 (en) 2010-12-30 2016-06-07 Kandou Labs, S.A. Sorting decoder
US9524106B1 (en) 2012-05-14 2016-12-20 Kandou Labs, S.A. Storage method and apparatus for random access memory using codeword storage
US9268683B1 (en) 2012-05-14 2016-02-23 Kandou Labs, S.A. Storage method and apparatus for random access memory using codeword storage
US9361223B1 (en) 2012-05-14 2016-06-07 Kandou Labs, S.A. Storage method and apparatus for random access memory using codeword storage
GB2509146B (en) * 2012-12-21 2014-11-05 Lifescan Scotland Ltd Hand-held test meter with low-distortion signal generation circuit block
GB2509146A (en) * 2012-12-21 2014-06-25 Lifescan Scotland Ltd Hand held test meter with low-distortion signal generation
US10091035B2 (en) 2013-04-16 2018-10-02 Kandou Labs, S.A. Methods and systems for high bandwidth communications interface
US9985745B2 (en) 2013-06-25 2018-05-29 Kandou Labs, S.A. Vector signaling with reduced receiver complexity
US9419828B2 (en) 2013-11-22 2016-08-16 Kandou Labs, S.A. Multiwire linear equalizer for vector signaling code receiver
US9806761B1 (en) 2014-01-31 2017-10-31 Kandou Labs, S.A. Methods and systems for reduction of nearest-neighbor crosstalk
US10177812B2 (en) 2014-01-31 2019-01-08 Kandou Labs, S.A. Methods and systems for reduction of nearest-neighbor crosstalk
US9258154B2 (en) 2014-02-02 2016-02-09 Kandou Labs, S.A. Method and apparatus for low power chip-to-chip communications with constrained ISI ratio
US9369312B1 (en) 2014-02-02 2016-06-14 Kandou Labs, S.A. Low EMI signaling for parallel conductor interfaces
US10020966B2 (en) 2014-02-28 2018-07-10 Kandou Labs, S.A. Vector signaling codes with high pin-efficiency for chip-to-chip communication and storage
US9686106B2 (en) 2014-02-28 2017-06-20 Kandou Labs, S.A. Clock-embedded vector signaling codes
US9363114B2 (en) 2014-02-28 2016-06-07 Kandou Labs, S.A. Clock-embedded vector signaling codes
US9509437B2 (en) 2014-05-13 2016-11-29 Kandou Labs, S.A. Vector signaling code with improved noise margin
US10333749B2 (en) 2014-05-13 2019-06-25 Kandou Labs, S.A. Vector signaling code with improved noise margin
US9692381B2 (en) 2014-05-16 2017-06-27 Kandou Labs, S.A. Symmetric linear equalization circuit with increased gain
US9419564B2 (en) 2014-05-16 2016-08-16 Kandou Labs, S.A. Symmetric linear equalization circuit with increased gain
US9470649B2 (en) 2014-06-10 2016-10-18 Lifescan Scotland Limited Hand-held test mester with low-distortion signal generation circuit
US9852806B2 (en) 2014-06-20 2017-12-26 Kandou Labs, S.A. System for generating a test pattern to detect and isolate stuck faults for an interface using transition coding
US9917711B2 (en) 2014-06-25 2018-03-13 Kandou Labs, S.A. Multilevel driver for high speed chip-to-chip communications
US9544015B2 (en) 2014-06-25 2017-01-10 Kandou Labs, S.A. Multilevel driver for high speed chip-to-chip communications
US10091033B2 (en) 2014-06-25 2018-10-02 Kandou Labs, S.A. Multilevel driver for high speed chip-to-chip communications
US9900186B2 (en) 2014-07-10 2018-02-20 Kandou Labs, S.A. Vector signaling codes with increased signal to noise characteristics
US10320588B2 (en) 2014-07-10 2019-06-11 Kandou Labs, S.A. Vector signaling codes with increased signal to noise characteristics
US10003424B2 (en) 2014-07-17 2018-06-19 Kandou Labs, S.A. Bus reversible orthogonal differential vector signaling codes
US9432082B2 (en) 2014-07-17 2016-08-30 Kandou Labs, S.A. Bus reversable orthogonal differential vector signaling codes
US9893911B2 (en) 2014-07-21 2018-02-13 Kandou Labs, S.A. Multidrop data transfer
US10230549B2 (en) 2014-07-21 2019-03-12 Kandou Labs, S.A. Multidrop data transfer
US9444654B2 (en) 2014-07-21 2016-09-13 Kandou Labs, S.A. Multidrop data transfer
US9838234B2 (en) 2014-08-01 2017-12-05 Kandou Labs, S.A. Orthogonal differential vector signaling codes with embedded clock
US9461862B2 (en) 2014-08-01 2016-10-04 Kandou Labs, S.A. Orthogonal differential vector signaling codes with embedded clock
US10122561B2 (en) 2014-08-01 2018-11-06 Kandou Labs, S.A. Orthogonal differential vector signaling codes with embedded clock
US9674014B2 (en) 2014-10-22 2017-06-06 Kandou Labs, S.A. Method and apparatus for high speed chip-to-chip communications
US10243765B2 (en) 2014-10-22 2019-03-26 Kandou Labs, S.A. Method and apparatus for high speed chip-to-chip communications
US10116472B2 (en) 2015-06-26 2018-10-30 Kandou Labs, S.A. High speed communications system
US9832046B2 (en) 2015-06-26 2017-11-28 Kandou Labs, S.A. High speed communications system
US9557760B1 (en) 2015-10-28 2017-01-31 Kandou Labs, S.A. Enhanced phase interpolation circuit
US9577815B1 (en) 2015-10-29 2017-02-21 Kandou Labs, S.A. Clock data alignment system for vector signaling code communications link
US10055372B2 (en) 2015-11-25 2018-08-21 Kandou Labs, S.A. Orthogonal differential vector signaling codes with embedded clock
US10003315B2 (en) 2016-01-25 2018-06-19 Kandou Labs S.A. Voltage sampler driver with enhanced high-frequency gain
US10057049B2 (en) 2016-04-22 2018-08-21 Kandou Labs, S.A. High performance phase locked loop
US10003454B2 (en) 2016-04-22 2018-06-19 Kandou Labs, S.A. Sampler with low input kickback
US10153591B2 (en) 2016-04-28 2018-12-11 Kandou Labs, S.A. Skew-resistant multi-wire channel
US10333741B2 (en) 2016-04-28 2019-06-25 Kandou Labs, S.A. Vector signaling codes for densely-routed wire groups
US10056903B2 (en) 2016-04-28 2018-08-21 Kandou Labs, S.A. Low power multilevel driver
US9906358B1 (en) 2016-08-31 2018-02-27 Kandou Labs, S.A. Lock detector for phase lock loop
US10277431B2 (en) 2016-09-16 2019-04-30 Kandou Labs, S.A. Phase rotation circuit for eye scope measurements
US10200188B2 (en) 2016-10-21 2019-02-05 Kandou Labs, S.A. Quadrature and duty cycle error correction in matrix phase lock loop
US10200218B2 (en) 2016-10-24 2019-02-05 Kandou Labs, S.A. Multi-stage sampler with increased gain
US10116468B1 (en) 2017-06-28 2018-10-30 Kandou Labs, S.A. Low power chip-to-chip bidirectional communications
US10203226B1 (en) 2017-08-11 2019-02-12 Kandou Labs, S.A. Phase interpolation circuit
US10326623B1 (en) 2017-12-08 2019-06-18 Kandou Labs, S.A. Methods and systems for providing multi-stage distributed decision feedback equalization

Similar Documents

Publication Publication Date Title
US7227423B2 (en) Monolithic clock generator and timing/frequency reference
Abuelmaatti et al. A new current-controlled multiphase sinusoidal oscillator using translinear current conveyors
KR101066054B1 (en) Systems, methods, and apparatus for frequency conversion
US20040008092A1 (en) Self-dividing oscillators
US20020039039A1 (en) Injection locked frequency multiplier
JP4909412B2 (en) Amplifier that uses interleaved signals for Pwm Ripple Suppression
JP5227435B2 (en) Integrated circuits for improved amplitude resolution of Rf-dacs, communication unit and method
TW556072B (en) Clock control circuit and clock control method
US7046088B2 (en) Power amplifier
CN100472954C (en) Amplifier circuit
US7388407B2 (en) Variable delay clock synthesizer
CN1768479A (en) Method and system of jitter compensation
KR100796475B1 (en) Vacuum plasma generator
CN1992527B (en) Switch-capacitor loop filter for signal generating circuit
US6208216B1 (en) Phase-locked-loop pulse-width modulation system
CN101562442B (en) Frequency jittering circuit and low-frequency triangle wave generator
JP2001352218A (en) Voltage-controlled oscillator
Huang et al. A frequency synthesizer with optimally coupled QVCO and harmonic-rejection SSBmixer for multi-standard wireless receiver
CN100568153C (en) Double channel synchronous DDS device capable of modulating phase and amplitude
US6798248B2 (en) Non-overlapping clock generation
KR100362841B1 (en) High-frequency phase locked loop circuit
Jalil et al. CMOS differential ring oscillators: Review of the performance of CMOS ROs in communication systems
US8884704B2 (en) Feedback-based linearization of voltage controlled oscillator
Staszewski et al. Spur-free multirate all-digital PLL for mobile phones in 65 nm CMOS
US20050146366A1 (en) High-resolution digital pulse width modulator and method for generating a high-resolution pulse width modulated signal

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
ASS Succession or assignment of patent right

Owner name: RDA TECHNOLOGY CO., LTD.

Free format text: FORMER OWNER: RDA MICROELECTRONICS (SHANGHAI) CO., LTD.

Effective date: 20100427

C41 Transfer of the right of patent application or the patent right
COR Bibliographic change or correction in the description

Free format text: CORRECT: ADDRESS; FROM: 201203 ROOM 302, BUILDING 2, NO.690, BIBO ROAD, PUDONG NEW DISTRICT, SHANGHAI CITY TO: HOUSE 22, ZHONGYIN BUILDING, MIDDLE 1ST ROAD, HONG KONG GARDEN

C02 Deemed withdrawal of patent application after publication (patent law 2001)