CN101454242B - Method for preparing single walled carbon nanotubes from a metal layer - Google Patents

Method for preparing single walled carbon nanotubes from a metal layer Download PDF

Info

Publication number
CN101454242B
CN101454242B CN 200780019414 CN200780019414A CN101454242B CN 101454242 B CN101454242 B CN 101454242B CN 200780019414 CN200780019414 CN 200780019414 CN 200780019414 A CN200780019414 A CN 200780019414A CN 101454242 B CN101454242 B CN 101454242B
Authority
CN
China
Prior art keywords
metal layer
method
carbon nanotubes
diameter
carbon source
Prior art date
Application number
CN 200780019414
Other languages
Chinese (zh)
Other versions
CN101454242A (en
Inventor
H·坦南特
H·张
J·马
Original Assignee
海珀里昂催化国际有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US74392706P priority Critical
Priority to USPCT/US2006/012001 priority
Priority to US60/743,927 priority
Priority to PCT/US2006/012001 priority patent/WO2006110346A1/en
Application filed by 海珀里昂催化国际有限公司 filed Critical 海珀里昂催化国际有限公司
Priority to PCT/US2007/065508 priority patent/WO2008057620A2/en
Publication of CN101454242A publication Critical patent/CN101454242A/en
Application granted granted Critical
Publication of CN101454242B publication Critical patent/CN101454242B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • B82B3/0009Forming specific nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/152Fullerenes
    • C01B32/156After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/159Carbon nanotubes single-walled
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/162Preparation characterised by catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/02Single-walled nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/36Diameter

Abstract

Methods of preparing single walled carbon nanotubes are provided. An arrangement comprising one or more layers of fullerene in contact with one side of a metal layer and a solid carbon source in contact with the other side of metal layer is prepared. The fullerene/metal layer/solid carbon source arrangement is then heated to a temperature below where the fullerenes sublime. Single walled carbon nanotubes are grown on the fullerene side of the metal layer.

Description

自金属层制备单壁碳纳米管的方法 The method of preparing the metal layer from SWNTs

[0001] 本申请要求2006年3月四日提交的USSN 60/743,927的权益和优先权,其内容在此通过引用结合到本文中。 [0001] This application claims priority to USSN 60 March 4, 2006 filed benefit of and priority / 743,927, the contents of which are incorporated herein by reference. 本申请还是2006年3月四日提交的PCT/US2006/012001 的部分继续申请,PCT/US2006/012001要求2005年3月29日提交的USSN 60/665,996 的权益和优先权,两者的内容在此都通过弓I用结合到本文中。 This application is also part of the PCT in 2006, filed March 4 / US2006 / 012001 a continuation application, PCT / US2006 / 012001 claims priority to USSN interests and March 29, 2005, filed 60 / 665,996, both of the It is hereby incorporated by using bow I herein.

[0002] 发明背景 [0002] Background of the Invention

发明领域 Field of the Invention

[0003] 本发明涉及制备单壁碳纳米管的方法。 [0003] The present invention relates to a method of making single walled carbon nanotubes. 更具体地讲,本发明涉及自金属层制备单壁碳纳米管的方法,所述金属层一侧与富勒烯接触而另一侧与固态碳源接触。 More particularly, the present invention relates to a method for preparing a metal layer from single walled carbon nanotubes, said metal layer is in contact with one side and the other side with a fullerene solid carbon source into contact. 或者,代替固态碳源,金属层可用碳原子饱和或可与非固态碳源接触。 Alternatively, instead of solid carbon source, a metal layer may be a saturated or solid carbon source may be contacted with a non-carbon atoms.

[0004] 碳纳米管 [0004] Carbon Nanotubes

[0005] 本发明属于碳纳米管(又名原纤维)领域。 [0005] The present invention pertains to a carbon nanotube (also known as fibrils) field. 碳纳米管为直径小于1. 0 μ,优选小于 Carbon nanotube diameter smaller than 1. 0 μ, preferably less than

0.5 μ,甚至更优选小于0.2 μ的蠕虫状碳沉积物。 0.5 μ, and even more preferably less than 0.2 μ vermicular carbon deposits in. 碳纳米管可为多壁的(即,具有一个以上在纳米管轴上的石墨层)或单壁的(即,仅具有一个在纳米管轴上的石墨层)。 Multi-walled carbon nanotubes may be (i.e., having one or more graphitic layers on the nanotube axis) or single walled (i.e., having only a graphite layer on the nanotube axis). 已知还有其他类型的碳纳米管,如鱼骨形原纤维(例如,类似嵌套的锥形)等。 There are other types of carbon nanotubes are known, such as fishbone fibrils (e.g., similar to nested cone) and the like. 生成时,碳纳米管的形式可为离散纳米管、纳米管聚集体(即,包括纠缠或捆扎的碳纳米管的致密微观粒子结构) 或两者的混合物。 Generating, in the form of carbon nanotubes may be discrete nanotubes, aggregates of nanotubes (i.e., entangled or bundled carbon nanotubes including a dense structure microscopic particles) or a mixture of both.

[0006] 碳纳米管与市售可得的连续碳纤维不同。 [0006] The carbon nanotubes commercially available continuous carbon fibers of different. 例如,连续碳纤维的直径(始终大于 For example, the diameter of continuous carbon fibers (always greater than

1. 0 μ且通常为5-7 μ )远大于碳纳米管的直径(通常小于1. 0 μ )。 1. 0 μ and usually 5-7 μ) more than the diameter of carbon nanotubes (typically less than 1. 0 μ). 碳纳米管还具有远优于碳纤维的强度和导电率。 Carbon nanotubes also have far superior strength and electrical conductivity of the fibers.

[0007] 碳纳米管还在物理和化学性质上与其他形式的碳如标准石墨和碳黑不同。 [0007] The carbon nanotubes are still physically and chemically from other forms of carbon such as standard graphite and carbon black different. 标准石墨由于其结构而可经受氧化直至几乎完全饱和。 Standard graphite due to its structure may be subjected to oxidation until almost completely saturated. 另外,碳黑为通常呈具有石墨烯结构(如碳层围绕着无序核)的球形颗粒形式的无定形碳。 Further, carbon black having generally the form of graphene structure (e.g., disordered carbon layer around the core) of spherical particles in the form of amorphous carbon. 另一方面,碳纳米管具有一个或多个基本上绕纳米管圆柱体轴同心排列的有序石墨烯碳原子层。 On the other hand, carbon nanotubes have one or more substantially about the ordered carbon atoms of the graphene layer nanotube axis of the cylinder concentrically arranged. 这些差异尤其使得很难用石墨和碳黑来预测碳纳米管化学。 In particular, these differences make it difficult to predict with the graphite and carbon nanotube chemistry.

[0008] 多壁碳纳米管与单壁碳纳米管彼此不同。 [0008] Multi-walled carbon nanotubes SWNTs and different from each other. 例如,多壁碳纳米管具有沿纳米管轴的多个石墨层,而单壁碳纳米管在纳米管轴上仅具有一个石墨层。 For example, multiwall carbon nanotubes having a plurality of graphite layers along the nanotube axis, and only a single-walled carbon nanotubes having a graphite layer on the nanotube axis.

[0009] 产生多壁碳纳米管的方法也不同于用以产生单壁碳纳米管的方法。 [0009] The method of producing a multi-walled carbon nanotubes also differ from the method for producing single walled carbon nanotubes. 具体地说,要得到多壁还是单壁碳纳米管,需要催化剂、催化剂载体、原材料和反应条件的不同组合。 Specifically, to obtain multi-wall or single-wall carbon nanotubes, a catalyst is required, different combinations of the catalyst support, the starting materials and reaction conditions. 某些组合还会得到多壁碳纳米管与单壁碳纳米管的混合物。 Certain combinations will give a mixture of carbon nanotubes and single walled carbon nanotubes multi-walled.

[0010] 形成多壁碳纳米管的方法为大家所熟知。 Method [0010] form multi-walled carbon nanotubes are well known. 例如,Baker和Harris,Chemistry and Physics of Carbon, Walker 禾口Thrower 编,Vol. 14,197883 页;Rodriguez, N., Τ. Mater. Research. Vol. 8,3233 页(1993) ;0berlin,A.和Endo,M , Τ. of Crystal Growth. Vol. 32(1976),第335-349 页;Tennent 等的美国专利第4,663,230 号;Tennent 等的美国专利第5,171,560 号;Iijima, Nature 354,56,1991 ;Weaver, Science 265,1994 ;de Heer, Walt A. , "Nanotubes and the Pursuit of Applications (纳米管及应用探寻),”MRSBulletin, 2004年4月;等。 For example, Baker and Harris, Chemistry and Physics of Carbon, Walker Thrower ed Wo mouth, Vol 14,197883 p;..... Rodriguez, N., Τ Mater Research Vol 8,3233 pages (1993); 0berlin, A. and Endo, M, Τ of Crystal Growth Vol 32 (1976), pp. 335-349;... Tennent et U.S. Patent No. 4,663,230; Tennent et U.S. Patent No. 5,171,560; Iijima, Nature 354,56,1991; Weaver, Science 265,1994; de Heer, Walt A., "nanotubes and the Pursuit of applications (nanotubes and explore the application)," MRSBulletin, in April 2004; and so on. 所有这些参考文献在此都通过引用结合到本文中。 All of these references are incorporated herein by reference.

[0011] 制造单壁碳纳米管的方法也为大家所知。 [0011] The method for producing single-walled carbon nanotube is known to everyone. 例如,“Single-shellcarbon nanotubes of l_nm diameter (l_nm 直径的单壳碳纳米管),,,SIijima 和T Ichihashi Nature, vol.363,603 页(1993) ;"Cobalt-catalysedgrowth of carbon nanotubes with single-atomic-layer walls (具有单原子层壁的碳纳米管的钴催化生长),” DS Bethune, CH Kiang, M SDeVries, G Gorman, R Savoy 禾口R Beyers Nature, vol. 363, 605 页(1993) ;Bethune 的美国专利第5,424,054 号;Guo, T.,Nikoleev, P.,Thess, A., Colbert, D. Τ.禾口Smalley,R. Ε.,Chem. Phys. Lett. 243 :1-12(1995) ;Thess, Α.,Lee, R., Nikolaev, P. , Dai, H. , Petit, P. , Robert, J. , Xu, C, Lee, YH , Kim, SG , Rinzler, AG, Colbert, D. Τ. , Scuseria, G. Ε. , Tonarek, D. , Fischer, JE禾口Smalley, R. Ε. , Science, 273 :483-487 (1996) ;Dai. ,H. ,Rinzler, AG ,Nikolaev, P. ,Thess, Α. ,Colbert, D. Τ.禾口Smalley,R. Ε.,Chem. Phys. Lett. 260 :471-475(1996) ;Smalley 等的美国专利第6,761,870 号(还为WO 00/26138) ; For example, "Single-shellcarbon nanotubes of l_nm diameter (l_nm monocoque carbon nanotube diameter) ,,, SIijima and T Ichihashi Nature, vol.363,603 pages (1993);" Cobalt-catalysedgrowth of carbon nanotubes with single-atomic-layer walls (cobalt catalysed wall carbon nanotube having a single atomic layer growth), "DS Bethune, CH Kiang, M SDeVries, G Gorman, R Savoy Wo port R Beyers Nature, vol 363, 605 this page (1993);. Bethune of . U.S. Pat. No. 5,424,054; Guo, T., Nikoleev, P., Thess, A., Colbert, D. Τ Wo port Smalley, R Ε, Chem Phys Lett 243: 1-.... 12 (1995); Thess, Α, Lee, R., Nikolaev, P., Dai, H., Petit, P., Robert, J., Xu, C, Lee, YH, Kim, SG, Rinzler, AG. ., Colbert, D. Τ, Scuseria, G. Ε, Tonarek, D., Fischer, JE Wo mouth Smalley, R. Ε, Science, 273:.. 483-487 (1996); Dai, H, Rinzler.. , AG, Nikolaev, P., Thess, Α, Colbert, D. Τ Wo port Smalley, R Ε, Chem Phys Lett 260:....... 471-475 (1996); Smalley et U.S. Patent No. 6 No. 761,870 (also WO 00/26138); "Controlled production ofsingle-wall carbon nanotubes by catalytic decomposition of CO onbimetallic Co-Mo catalysts (通过CO 在双金属Co-Mo催化剂上的催化沉积进行单壁碳纳米管的控制生产),,,Chemical Physics Letters,317(2000)497-503 ;Maruyama 等,“Low-temperature synthesis ofhigh-purity single walled carbon nanotubes from alcohol (由醇进行高纯度单壁碳纳米管的低温合成),”Chemical Physics Letters, 360,第2四_234 页(2OO2 年7 月10 日);Resasco 等的美国专利第6,333,016 号;RE Morjan 等,Applied Physics A, 78,253-261 Q004),等。 "Controlled production ofsingle-wall carbon nanotubes by catalytic decomposition of CO onbimetallic Co-Mo catalysts (catalyzed by deposition of CO on bimetallic Co-Mo catalysts in the controlled production of single-walled carbon nanotubes) ,,, Chemical Physics Letters, 317 (2000) 497-503; Maruyama et, "low-temperature synthesis ofhigh-purity single walled carbon nanotubes from alcohol (high-purity single-wall carbon nanotubes by low temperature synthetic alcohol)," Chemical Physics Letters, 360, the second four _234 page (2OO2 on July 10); Resasco et al, US Patent No. 6,333,016; RE Morjan etc., Applied Physics a, 78,253-261 Q004), and so on. 所有这些参考文献在此都通过弓I用结合到本文中。 All of these references are herein incorporated by using bow I herein.

[0012] 另夕卜,Maruyama, S. ,“Morphology and chemical state of Co-Mocatalysts for growth of single-walled carbon nanotubes vertically alignedon quartz substrates (用于生长在石英衬底上垂直对准的单壁碳纳米管的Co-Mo催化剂的形态和化学状态),"Journal of Catalysis,225,第230-239页Q004)描述一种在真空下在平坦表面上生长单壁纳米管林的方法。 [0012] Another Bu Xi, Maruyama, S., "Morphology and chemical state of Co-Mocatalysts for growth of single-walled carbon nanotubes vertically alignedon quartz substrates single-wall carbon nano (for growing vertically aligned on a quartz substrate morphology and chemical state of the Co-Mo catalyst tube), "Journal of Catalysis, 225, pp. 230-239 Q004) describes a single-walled nanotubes grown on the flat surface'm in a vacuum process. 首先使包含Co和Mo前体的双金属催化剂沉积在石英表面上,接着锻烧并还原以形成高密度堆积的金属颗粒。 First, the bimetallic catalyst precursor containing Co and Mo is deposited on the quartz surface, followed by calcination and reduction to form metal particles of high density accumulation. 自这些金属颗粒生长的单壁碳纳米管表现出1\10171112的密度和约5微米的长度。 Since these metallic SWNTs exhibit particle growth density of a length of 5 m \ of about 10,171,112. 1(.他{3,“彻{61-388丨8{6(1 highly efficient synthesis of impurity-freesingle -walled carbon nanotubes (不含杂质的单壁碳纳米管的水辅助高效合成),"Science, 306,第1362-1364页Q004)描述另一种使用水辅助CVD 方法自涂覆有铁薄膜的Si晶片生长单壁碳纳米管林的技术。他们观测到水刺激的催化活性增强引起高度达2. 5毫米的超致密(1014-1015/m2)且垂直对准的纳米管林的大规模生长。 所有这些参考文献在此都通过弓I用结合到本文中。 1 (He {3, "Toru 61-388 Shu {8 {6 (1 highly efficient synthesis of water impurity-freesingle -walled carbon nanotubes (SWNT impurity-free auxiliary efficient synthesis)," Science, 306, on pages 1362-1364 Q004) describes another water-assisted CVD technique using a method from the Si wafer is coated with a film of iron grown SWNTs forest. they observed enhanced catalytic activity stimulating the water causes a height of 2 ultra dense mass growth (1014-1015 / m2) and vertically aligned nanotube forests. 5 millimeters. All of these references are herein incorporated by using bow I herein.

[0013]其他已知方法包括 WO 2006/130150, "Functionalized Singleffalled Carbon Nanotubes (官能化单壁碳纳米管)”和美国专利第6,221,330号,“Process For Producing Single Wall Nanotubes UsingUnsupported Metal Catalysts And Single Wall Nanotubes ProducedAccording To This Method(用非负载的催化剂生产单壁纳米管的方法及根据该方法产生的单壁纳米管)”。 [0013] Other known methods including WO 2006/130150, "Functionalized Singleffalled Carbon Nanotubes (SWNTs functionalized)" and U.S. Patent No. 6,221,330, "Process For Producing Single Wall Nanotubes UsingUnsupported Metal Catalysts And single wall nanotubes ProducedAccording to this method (method for producing single-wall nanotubes catalyst unsupported and produced according to the single-walled nanotubes). " 另外,在Maruyama等,“Synthesisof single-walled carbon nanotubes with narrow diameter-distribution fromfullerene (由富勒烯合成具有窄肓径分布的单壁碳纳米管),” Chem. Phys. Lett.,375,第553-559页Q003)中报道使用醇作为碳源在相对低的温度例如550-800°C下生长单壁碳纳米管。 Further, the Maruyama et al, "Synthesisof single-walled carbon nanotubes with narrow diameter-distribution fromfullerene (Synthesis of fullerene having a blind SWNT narrow size distribution)," Chem. Phys. Lett., 375, 553 -559 page Q003) reported using alcohol as a carbon source at a relatively low temperature, for example growth of single walled carbon nanotubes at 550-800 ° C. 发现那些如此生长的单壁纳米管的直径分布非常广(0.8-1.3nm)且均勻性很差并随温度而变。 It found that the diameter of single-walled nanotube thus grown very wide distribution (0.8-1.3nm) and the poor uniformity and temperature-dependent. 当将富勒烯直接用作碳源时,作者发现直径分布有一定改善,为0. 8-1. Inm,但根据拉曼光谱均勻性仍不明确。 When the fullerene is directly used as a carbon source, the authors found that the diameter distribution of a certain improvement for 0. 8-1. Inm, but according to Raman spectroscopy uniformity remains unclear. 所有这些参考文献在此都通过引用结合到本文中。 All of these references are incorporated herein by reference.

[0014] 然而,目前已知的单壁碳纳米管方法倾向于得到广泛分布的单壁碳纳米管尺寸。 [0014] However, currently known method of single walled carbon nanotubes SWNTs tend to give a wide size distribution. 单壁碳纳米管的直径测量通常使用拉曼光谱进行。 SWNTs diameter measurement is typically performed using Raman spectroscopy. 使用装备有波长为632. Snm的连续氦氖激光器的典型拉曼光谱仪来收集拉曼激发。 Use of equipment to collect Raman excitation wavelength typical Raman spectrometer 632. Snm continuous helium-neon laser. 在约1580cm—1下的拉曼峰存在于所有类型的石墨样品如高度定向的热解石墨(HOPG)、热解石墨和炭中。 Raman peaks at about 1580cm-1 in the presence of all types of samples, such as highly oriented graphite, pyrolytic graphite (HOPG), pyrolytic graphite and charcoal. 这个峰一般称为“G-带”。 This peak is generally referred to as "G- band." 当材料在石墨烯平面中或自石墨晶体边缘包含缺陷时,存在1355cm—1的峰。 When the material in the graphene plane or from the edge of the graphite crystal contain defects, the presence of a peak of 1355cm-1. 这个带一般称为"D-带”且已显示这个带的位置强烈依赖于激光激发波长。 This band is generally referred to as "D-band" and have been shown with the position of the laser strongly depends on the excitation wavelength. 观测到单壁纳米管的“径向呼吸模式(RBM) ”(通常低于300CHT1),其中所有碳原子均经历相等径向位移。 Observed "radial breathing mode (the RBM)" single-walled nanotubes (typically below 300CHT1), in which all the carbon atoms are subjected to equal radial displacement. 激光激发频率的细微改变产生共振拉曼效应。 Subtle changes in laser excitation frequency resonance Raman effect. 关于RBM的研究已显示其与SWCNT直径成反比。 Studies have shown that about RBM and SWCNT diameter is inversely proportional. 这个关系以下列等式表示: This relationship is expressed in the following equation:

[0015] ¢0^=(223.75/(1)011-1 [0015] ¢ 0 ^ = (223.75 / (1) 011-1

[0016] 其中ωΚΒΜ为RBM频率,d为SWCNT直径(以纳米计)。 [0016] wherein ωΚΒΜ frequency is RBM, d is the diameter of SWCNT (in nanometers). 对于测定个别纳米管来说,此关系略微不同° Bandow 等,"Effect of the growthtemperature on the diameter distribution and chirality of single-wallcarbon nanotubes ( ^ ^ ilm X^t Ii 碳纳米管直径分布和手性的影响),” Physical Review Letters, 80,第3779-3782 页(1998) ;Jishi 等,"Phononmodes in carbon nanotubes(碳纳米管的Phonon 模式),ThemicalPhysics Letters, 209,第77_82页(199¾。所有这些参考文献在此都通过引用结合到本文中。 , "Effect of the growthtemperature on of single-wallcarbon nanotubes ilm ^ t Ii diameter distribution and the effect on the measurement of individual nanotubes, the relationship between this and the like slightly different ° Bandow the diameter distribution and chirality (^ ^ X nanotube chirality ), "Physical Review Letters, 80, pp. 3779-3782 (1998); Jishi like," Phononmodes in carbon nanotubes (Phonon pattern of carbon nanotubes), ThemicalPhysics Letters, 209, pp. 77_82 (199¾ All of these references. here are incorporated herein by reference.

[0017] 在上述等式中并贯穿本说明书,纳米管的直径定义为位于管直径两端的碳原子核之间的距离。 [0017] In the above equation, and throughout this specification, nanotube diameter is defined as the distance between the tube ends of the diameter of the carbon nuclei. 应了解此直径不同于与第二纳米管最近途径的距离,后者由于通常由TEM定义的相应η云的排斥而更大。 This should be understood that the second diameter different from the distance of the route recently nanotubes, the latter due to the usually larger η clouds repel the corresponding TEM defined.

[0018] 表A 提供如先前在Jorio,A 等,"Structural (n,m)Determination oflsolated Single-Wall Carbon Nanotubes by Resonant RamanScattering(通过共振拉曼散身寸进行分离的单壁碳纳米管的结构确定(nm)), ^Physical Review Letters, The American Physical Society, Vol. 86,No. 6,第1118-21 页(2001 年2 月5 日)的表I 和II 中所报道的样品直径和ω RBM相关性,所述文献通过引用结合到本文中: [0018] As previously described in Table A provides Jorio, A, etc., "Structural (n, m) Determination oflsolated Single-Wall Carbon Nanotubes by Resonant RamanScattering (SWNT structures separated by the resonance Raman scattering body is determined inch (nm)), ^ Physical Review Letters, the American Physical Society, Vol. 86, No. 6, pp. 1118-21 (2001, February 5) tables I and II reported in the sample diameter and ω RBM correlation, the documents incorporated by reference herein:

[0019] 表A [0019] Table A

[0020] [0020]

Figure CN101454242BD00061
Figure CN101454242BD00071

[0021] 随着碳纳米管的复合技术应用的数量增加,需要产生具有更窄尺寸或直径分布的单壁碳纳米管以允许单壁碳纳米管的更精确应用的改善方法。 [0021] As the number of carbon nanotube composite technology, the need to produce single walled carbon nanotubes having a narrower distribution of size or diameter to allow a more precise method for improving the application of single-walled carbon nanotubes.

[0022] 发明概述 [0022] Summary of the Invention

[0023] 本发明提供自包括金属层、与所述金属层一侧接触的富勒烯和与所述金属层另一侧接触的固态碳源的装置制备单壁碳纳米管的新方法。 [0023] Since the present invention comprises a metal layer provided, novel method for preparing single-wall fullerenes in contact with one side of the metal layer and the solid carbon source in contact with the other side of the metal layer carbon nanotube device. 制备好富勒烯/金属层/固态碳源组件后,将其加热到低于使所述富勒烯升华的温度。 Good After preparation the fullerene / metal layer / solid carbon source component, it is heated to below the sublimation temperature of fullerenes. 使固态碳源和富勒烯在金属层界面上至少部分溶解且使单壁碳纳米管在金属层的富勒烯侧生长。 The solid carbon and fullerene was dissolved at least partially on the metal layer and the interface of the single-walled carbon nanotubes grown on the metal layer side of the fullerene. 在富勒烯具有成核的纳米管之后可将温度升高以使单壁碳纳米管更大程度地生长(例如,700-1100°C )。 Temperature may be raised after the nanotubes have a nucleating growth of fullerene to a greater extent that the single-walled carbon nanotubes (e.g., 700-1100 ° C).

[0024] 在一个示例性实施方案中,可使用任何类型的富勒烯(例如,C60、C70、C100、C36 等)。 [0024] In one exemplary embodiment, any type of fullerene (e.g., C60, C70, C100, C36, etc.). 富勒烯可以以一个或多个密堆积排列的层沉积在金属层上。 One or more fullerenes may be arranged closely packed layer is deposited on the metal layer.

[0025] 在一个示例性实施方案中,金属层可包含使单壁碳纳米管生长的金属催化剂,如i^、C0、Mn、Ni、CU和Mo。 [0025] In one exemplary embodiment, the metal catalyst layer may comprise a metal single-wall carbon nanotube growth, such as i ^, C0, Mn, Ni, CU, and Mo. 金属层的厚度优选使碳从金属层一侧的固态碳源扩散到金属层另一侧(例如,l-20nm、2-20nm、3-5nm 等)。 The thickness of the metal layer is preferably carbon diffuse from the metal layer side of the solid carbon source to the other side of the metal layer (e.g., l-20nm, 2-20nm, 3-5nm, etc.).

[0026] 在一个示例性实施方案中,固态碳源可为碳纤维或本领域已知的任何其他固态碳源。 [0026] In one exemplary embodiment, the solid carbon source may be any carbon fibers, or other solid carbon source known in the art.

[0027] 在另一示例性实施方案中,单壁碳纳米管使用如关于与固态碳源接触的金属层所述的类似方法自与富勒烯和非固态碳源接触的金属层制备。 [0027] In another exemplary embodiment, the single-walled carbon nanotubes on the metal layer as similar to a metal layer in contact with the solid carbon source from contact with the non-solid carbon source and fullerenes.

[0028] 在另一示例性实施方案中,单壁碳纳米管使用如关于与固态碳源接触的金属层所述的类似方法自与富勒烯接触并用碳原子饱和的金属层制备。 [0028] In another exemplary embodiment, the single-walled carbon nanotube prepared with the saturated carbon atoms of the metal layer using a similar method as described for a contact from the metal layer in contact with the solid carbon source and fullerenes.

[0029] 本发明的方法生长单壁碳纳米管群集(multiplicity),其中所述群集中至少80 %的所述单壁碳纳米管的直径在存在于所述群集中的单壁碳纳米管的直径D士5 %之内。 [0029] The diameter of the SWNT growth process of the present invention is a single walled carbon nanotubes (multiplicity), wherein said cluster is present in at least 80% of the SWNTs in the cluster of ± 5% of the diameter D of the inner. 直径D可在0. 6-2. 2nm范围内。 Diameter D may be in the range of 0. 6-2. 2nm.

[0030] 附图简述 [0030] BRIEF DESCRIPTION

[0031] 图1为根据本发明的一个示例性实施方案的富勒烯/金属层/固态碳源装置的图解说明。 [0031] Figure 1 is a diagrammatic fullerene exemplary embodiment of the present invention / a metal layer / solid carbon source apparatus.

[0032] 图2为根据本发明的一个示例性实施方案富勒烯溶解和单壁碳纳米管开始生长的图解说明。 [0032] FIG. 2 is a fullerene dissolved and start growing single walled carbon nanotubes according to an exemplary embodiment of the present invention is illustrated.

[0033] 图3为根据本发明的一个示例性实施方案单壁碳纳米管生长的图解说明。 [0033] FIG. 3 is a diagram illustrating the present invention in accordance with one exemplary embodiment of the single-walled carbon nanotube growth. [0034] 图4A和图4B为在C60/Fe/碳夹层结构的催化剂上生长的碳纳米管的SEM显微照片。 [0034] FIGS. 4A and 4B carbon nanotubes on the catalyst C60 / Fe / carbon sandwich structure grown SEM micrographs.

[0035] 图5A和图5B为自夹层催化剂生长的CNT的透射电子微观图像。 [0035] FIGS. 5A and 5B are transmission electron microscopic image of CNT grown from a laminated catalyst.

[0036] 优选实施方案的详细说明 [0036] Detailed description of preferred embodiments of the

[0037] 本发明提供一种自富勒烯、金属层和固态碳源的装置制备单壁碳纳米管的新方法。 [0037] The present invention provides a self fullerene, a new method of producing single-wall metal layer and the carbon nanotube device of the solid carbon source. 在此组件中,金属层形成或置放在固态碳源表面上,使金属层一侧与固态碳源接触且由固态碳源负载。 In this assembly, the metal layer is formed or disposed on a surface of a solid carbon source, the metal layer in contact with one side of a solid carbon source by a solid carbon source and the load. 富勒烯置放或沉积到金属层的另一侧。 Fullerene placed or deposited metal layer to the other side. 因而,可以说金属层一侧与富勒烯接触且另一侧与固态碳源接触。 Thus, it can be said fullerenes in contact with the metal layer side and the other side in contact with the solid carbon source. 此装置的组装可以任何顺序进行。 The device may be assembled in any order.

[0038] 组装好富勒烯/金属层/固态碳源装置或夹层,将其在惰性气氛中加热到刚好低于(例如在10°C之内或在5°C之内)使所述富勒烯升华的温度。 [0038] assembled fullerene / metal layer / solid carbon source device or a sandwich, it is heated to just below in an inert atmosphere (e.g. at 10 ° C from or within the 5 ° C of) the rich fullerene sublimation temperatures. 应理解此为动态体系:富勒烯同时汽化并溶解到金属层中。 This should be understood as a dynamic system: fullerenes simultaneously vaporized and dissolved into the metal layer. 因此,“表观”升华温度(例如,在大气压力下对于C60富勒烯来说为约650°C )最佳通过实际夹层的热重分析来测定。 Therefore, the "apparent" (e.g., at atmospheric pressure for fullerene C60 is about 650 ° C) thermal gravimetric analysis best be determined by a sandwich actual sublimation temperature.

[0039] 合适的温度范围在大气压力下可为约500°C -700°C,此取决于所使用的富勒烯。 [0039] Suitable temperatures at atmospheric pressure can range from about 500 ° C -700 ° C, depending on the fullerene used herein. 如果生长步骤在高压下进行,可遇到更高的富勒烯升华温度。 If the growth step is carried out under high pressure, the higher fullerene sublimation temperatures encountered. 认为压力变化可导致富勒烯在气相中的平衡分压改变,因此影响汽化驱动力。 Pressure changes that may result in changes fullerene equilibrium partial pressure in the gas phase, the driving force thus affect vaporization. 无论怎样,在上述温度下,富勒烯和固态碳源会溶解到金属层中,直到所溶解碳的热力学活性超过单壁碳纳米管中碳的热力学活性。 In any event, at the above temperature, and the solid carbon fullerene is dissolved into the metal layer until the thermodynamic activity of carbon dissolution than single-walled carbon nanotubes thermodynamic activity. 具体地说,认为在此阶段与金属层接触的部分溶解的富勒烯会具有成核作用或促进单壁碳纳米管生长,因为在单壁碳纳米管壁中的碳的热力学活性比加热的富勒烯或固态碳源中碳的热力学活性低(例如,更稳定)。 Specifically, at this stage that portion contacting with the metal layer having a dissolving fullerene may promote nucleation or growth of single-walled carbon nanotubes, because the thermodynamic activity of carbon in the single wall carbon nanotubes than the heated wall fullerene or solid carbon source in a low thermodynamic activity of carbon (e.g., more stable). 此外,如下文所说明,部分溶解的富勒烯将适合地充当具有相同直径的单壁碳纳米管的端盖,因此为单壁碳纳米管生长的优良“晶种”。 Further, as explained below, it will be partially dissolved fullerene acts as a cap for the single-walled carbon nanotubes having the same diameter, thus the carbon nanotube fine "seeds" for the growth of single-wall.

[0040] 然而,应注意到单壁碳纳米管可具有与原始“作为晶种”的富勒烯端盖不同的直径。 [0040] However, it should be noted that single-walled carbon nanotubes can have the original "seeded" fullerene end caps of different diameters. 在本发明中,富勒烯或者还可充当成核促进剂。 In the present invention, fullerenes or may act as nucleation accelerators. 也就是说,富勒烯用来促进单壁碳纳米管成核和生长。 That is, the fullerene single wall carbon nanotubes to facilitate nucleation and growth. 因此,一束具有1. 6nm的均勻直径的单壁碳纳米管可在一定条件下由0. 7nm 富勒烯产生。 SWNTs Thus, a bundle having a uniform diameter of 1. 6nm may fullerene 0. 7nm produced by under certain conditions. 富勒烯的促进作用可自生长的单壁碳纳米管的窄直径分布证实。 Narrow diameter from fullerenes promote the growth of single-wall carbon nanotubes distributed confirmed. 这使得所述产物的拉曼光谱通常在RBM区域呈现单峰而非表明若干不同直径群的多重信号。 This makes the Raman spectrum of the product is generally unimodal in RBM region instead of the multiple signals indicate a number of groups of different diameters.

[0041] 在优选的实施方案中,本发明的方法还包括在引发生长之后使所述温度升高到高于所述富勒烯的升华温度的温度的步骤。 [0041] In a preferred embodiment, the method of the present invention further comprises the step of causing the temperature is raised to a temperature higher than the sublimation temperature of the fullerene after initiation of growth.

[0042] 在另一个优选的实施方案中,本发明的方法的富勒烯的蒸气压小于760mm Hg,更优选地,小于730mm Hg。 [0042] In another preferred embodiment, the method of the fullerene vapor pressure of the present invention is less than 760mm Hg, and more preferably, less than 730mm Hg.

[0043] 在已引发单壁碳纳米管生长之后,可引入气态碳源。 [0043] After the single-wall carbon nanotube growth has been initiated, a gaseous carbon source may be introduced. 可用的气态碳源为⑶、烃和醇。 The gaseous carbon source is available ⑶, hydrocarbons and alcohols. 应理解原则上引入气态碳源可使得生长过程无限进行,而不受固态碳源数量限制。 Introducing a gaseous carbon source to be appreciated that the growth process can in principle be unlimited, without limiting the number of solid carbon source. 连续法因此切实可行。 Thus practicable continuous process.

[0044] 因为部分溶解的富勒烯提供单壁碳纳米管的起始成核点,所以单壁碳纳米管的生长模式可受富勒烯在金属层上的排列影响。 [0044] Because the partial dissolution of fullerene single wall carbon nanotubes to provide a starting point of nucleation, growth pattern it may be subject to single walled carbon nanotubes in a fullerene Arranged on the metal layer. 例如,如果富勒烯以密堆积层排列在金属层表面上,则单壁碳纳米管可以密堆积的准晶体绳或束生长以使金属-碳界面稳定化。 For example, if the fullerene to adhesion buildup layer arranged on the surface of the metal layer, the single-walled carbon nanotubes can be densely packed bundle of quasi-crystals grown rope or the metal - carbon interface stabilized. 单壁碳纳米管由于碳从固态碳源溶解到金属层一侧中并扩散到金属层另一侧而继续生长且成为成核管。 SWNT since the carbon is dissolved from the solid carbon source to one side of the metal layer and the metal layer diffused to the other side continue to grow and become the nucleation of the tube.

[0045] 如先前所说明,初始反应温度应低于使富勒烯升华的温度以使富勒烯部分溶解于例如半球或半球形构造中,所述半球或半球形构造将为单壁碳纳米管的适合端盖,因此充当单壁碳纳米管生长的“晶种”(或作为晶种以促进生长)。 [0045] As previously described, the reaction temperature should be below the initial fullerene sublimation temperature to partially dissolve the fullerene hemisphere or semi-spherical configuration, for example, the hemisphere or semi-spherical configuration for single-wall carbon nano suitable cap tube, and therefore act as a "seed" single-wall carbon nanotube growth (or as a seed to promote growth). 然而,只要单壁碳纳米管已开始生长(例如,已完成晶种设置),则不再需要保持此亚升华温度。 However, as long as the growth of single-wall carbon nanotubes have begun (e.g., seed setting has been completed), it is no longer necessary to maintain this alkylene sublimation temperature. 可升高反应温度以得到更高或更快的生长速率(例如,延长或伸长纳米管本身)。 The reaction temperature may be raised to give a higher or faster growth rate (e.g., extended or elongated nanotubes itself). 优选的更高温度为约7000C -1100°C。 It preferred higher temperatures of about 7000C -1100 ° C. 使单壁碳纳米管继续生长,直到得到所要或有用的长度。 So SWNT continue to grow until a desired or useful length.

[0046] 三种成分各自在下文中更加详细地描述。 [0046] each of the three ingredients described in more detail below. 还可使用其他原材料。 You can also use other raw materials.

[0047] 富勒烯 [0047] fullerene

[0048] 富勒烯为工业上使用且认可的众所周知的技术术语,是指通常仅由键合在一起的碳原子组成以产生大致球形(例如,“布基球(buckyball)”)的碳形式。 [0048] Fullerene and approved for use on well-known industry term of art, it refers to a carbon atom generally only bonded together by a bond composition to produce a substantially spherical shape (e.g., "buckyballs (buckyballs)") in the form of carbon . 因而,最常使用的富勒烯具有60个碳且被称为C60富勒烯。 Thus, the fullerene having the most commonly used and are referred to 60 carbon fullerene C60. 根据本发明,还可使用包含多于或少于60个碳原子的任何其他形式的富勒烯,如C70、C100、C36等。 According to the present invention, may be used comprise any other form of fullerene more or less than 60 carbon atoms, such as C70, C100, C36 and the like.

[0049] 富勒烯具有近似球形形状(“球状”)。 [0049] The fullerene having an approximately spherical shape ( "spherical"). 一致地,单壁碳纳米管的末端通常呈半球形式。 Consistently, the end of the SWNTs generally hemispherical form. 因而,半溶解的富勒烯(类似于半球)将成为具有相同直径的单壁碳纳米管的适合端盖。 Thus, semi-solubilized fullerene (similar to a hemisphere) will be suitable cap having the same diameter of single wall carbon nanotubes. 因此,部分溶解的富勒烯因其半球形性质而将成为优良“晶种”以促进单壁碳纳米管生长,因为其半球形状与单壁碳纳米管末端的半球形状一致。 Thus, because of the hemispherical partially dissolved fullerene properties will be excellent "seed" to promote the growth of single-wall carbon nanotubes, carbon nanotubes because uniform hemispherical tip with a hemispherical shape which single wall. 因而,单壁碳纳米管束可自多个富勒烯成核并生长。 Thus, the single-walled carbon nanotube bundles from a plurality of fullerenes can nucleate and grow.

[0050] 另外,作为单壁碳纳米管生长的晶种或起始成核源,可利用富勒烯的尺寸控制单壁碳纳米管的尺寸。 [0050] Further, as the growth of single-walled carbon nanotube nucleation or starting seed source may be controlled by the size of single walled carbon nanotubes size fullerenes. 例如,设法得到占优势的较大尺寸单壁碳纳米管的技术人员将使用ClOO富勒烯代替较小的C36富勒烯,因为ClOO富勒烯的直径较大。 For example, trying to get a larger size predominantly single walled carbon nanotubes in the art will be used instead of the smaller ClOO fullerene C36 fullerene, fullerene ClOO because the larger diameter.

[0051] 在此同样原理之下,使用富勒烯作为晶种或成核点也较大程度地控制单壁碳纳米管的尺寸/直径分布或变化。 [0051] Under this same principle, the use of a fullerene as a seed or nucleation point is also a greater degree of control over the size of single walled carbon nanotubes / or varying diameter distribution. 例如,与其他不控制起始成核点或晶种尺寸的方法相比,完全使用C60富勒烯将产生单壁碳纳米管尺寸/直径的较窄分布/变化。 For example, compared to other methods do not control start nucleation points or seed size, full use of C60 to produce single-walled carbon nanotube size / distribution narrow diameter / change.

[0052] 金属层 [0052] The metal layer

[0053] 将富勒烯置放于帮助促进单壁碳纳米管生长的金属层上。 [0053] The fullerene placed on the metal layer to help promote the growth of single-wall carbon nanotubes. 在优选的实施方案中, 将富勒烯置放到金属层上,而不与任何可能的污染源初步接触。 In a preferred embodiment, the fullerenes placed onto the metal layer without any initial contact with possible sources of contamination. 实现此任务的已知方法包括溅镀和原子沉积。 Known way to accomplish this task including sputtering and atomic deposition. 可使用其他常用方法。 Other conventional methods may be used. 金属层上的富勒烯层数优选足以使金属层基本饱和。 Preferred fullerene layers on the metal layer the metal layer is sufficient to substantially saturated.

[0054] 在优选的实施方案中,金属层包含单壁碳纳米管生长的金属催化剂。 [0054] In a preferred embodiment, the metal catalyst layer comprises a metal of single-wall carbon nanotube growth. 例如,金属层可包含选自ί^、&)、Μη、·、Οι和Mo的金属。 For example, the metal layer may comprise selected ί ^, &), Μη, ·, Οι and Mo metal. 同样可使用其他可催化单壁碳纳米管的金属。 Also other metals may be used that can catalyze SWNT. 在另一个优选的实施方案中,金属层包括Fe、Co、Mn、Ni、Cu和Mo的合金或其他混合物。 In another preferred embodiment, the metal layer comprising Fe, Co, Mn, Ni, Cu and Mo alloy or other mixture.

[0055] 金属层可呈薄膜、涂层、薄片、膜等形式。 [0055] The metal layer may be in films, coatings, sheets, film, etc. 优选金属层组成均勻且其表面平滑。 Preferably the metal layer is a smooth surface and a uniform composition. 金属层的厚度应使溶解的碳从金属层一侧的碳固态源(下文论述)扩散到金属层另一侧。 The thickness of the metal layer should be dissolved in the diffusion of carbon from the solid carbon source on one side of the metal layer (discussed below) to the other side of the metal layer. 金属层的厚度可为约Inm到20nm,优选为约2nm到10nm,或更优选为约3nm到5nm。 The thickness of the metal layer may be about 20nm to Inm, preferably from about 2nm to 10nm, or more preferably about 3nm to 5nm.

[0056] 不同金属可导致不同厚度局限性,这取决于其碳溶解性和传质性质。 [0056] Different thickness limitations may result in different metals, depending on its solubility and mass transfer properties of carbon. 例如,铁为优选的金属,因为其碳溶解性高且使碳原子从金属层一侧更加有效地传质到另一侧。 For example, iron is a preferred metal because of its high solubility of carbon and the carbon atoms to more effective mass transfer from one side of the metal layer.

[0057] 固态碳源 [0057] solid carbon source

[0058] 在富勒烯对面与金属层一侧接触的是固态碳源。 [0058] The fullerene is a solid carbon source and the metal layer opposite the side in contact. 固态碳源提供使单壁碳纳米管生长的碳原子供应。 Solid carbon source providing carbon atom supply of single-walled carbon nanotube growth. 具体地说,固态碳源溶解到金属层中且扩散到金属层另一侧,变成生长的单壁碳纳米管的一部分。 Specifically, solid carbon source is dissolved and diffused into the metal layer to the other side of the metal layer, it becomes part of the growing single walled carbon nanotubes.

[0059] 在优选的实施方案中,固态碳源没有空隙或基本没有空隙,空隙可随着碳溶解到金属中而间断或扭曲碳/金属界面。 [0059] In a preferred embodiment, the solid carbon source without voids or substantially no voids, the voids may increase dissolution of carbon into the metal or intermittently twisted carbon / metal interface. 固态碳源还优选不含非碳杂原子或基本不含非碳杂原子,非碳杂原子可与金属层反应以使其钝化或形成分隔金属层与固态碳源的气体。 Solid carbon source is also free of non-carbon heteroatom preferably substantially free of non-carbon atom or hetero atoms, non-carbon heteroatom may react with the metal layer passivated with a metal layer or a spacer formed of solid carbon source gas. 如果存在杂原子,优选其不参与碳纳米管生长。 If heteroatoms are present, preferably it does not participate in the growth of carbon nanotubes. 例如,氢将是优选的杂原子,因为其溶解到金属层中,扩散穿过金属层,随后以氢气形式离开金属/碳纳米管界面。 For example, the hydrogen would be preferred heteroatoms, as it dissolves into the metal layer, the diffusion through the metal layer, and then away from the metal / nanotube interface in the form of hydrogen gas. 优选与金属接触的固态碳源表面应具有高边缘/基面碳比率以使金属薄膜稳定化。 Solid carbon source preferably metal contact surface should have a high edge / surface carbon ratio to the base metal thin film can be stabilized.

[0060] 有许多固态碳源可用于本发明中。 [0060] There are many solid carbon source may be used in the present invention. 例如,如果玻璃碳没有石墨化到其热力学活性低于单壁碳纳米管的热力学活性的程度,则其为适宜碳源。 For example, if the glass is not graphitized carbon degree of thermodynamic activity less than the thermodynamic activity of the single-walled carbon nanotubes, it is a suitable carbon source. 纯碳浙青,如通过热解多环芳族烃制得的纯碳浙青也是适宜的固态碳源,通过环三聚合或氧化偶合二乙炔基苯制得的交联碳树脂同样如此。 Zhejiang green pure carbon, such as by pyrolysis of a polycyclic aromatic hydrocarbon obtained pure carbon are also suitable Zhejiang green solid carbon source by oxidative coupling polymerization or three ring diethynylbenzene carbon obtained crosslinked resin same. 还可使用通过阳极氧化苯制得的聚对亚苯基的针状晶体。 Use may also be made by anodic oxidation of benzene to poly-p-phenylene needles.

[0061] 市售可得的碳纤维为优选的碳源。 [0061] Commercially available carbon fibers are preferred sources of carbon. 与基于PAN的碳纤维相比,基于浙青的碳纤维为优选的。 Compared to PAN based carbon fiber, a carbon fiber-based cyan Zhejiang preferred. 最有用的碳纤维为在纤维表面上具有尽可能多的石墨烯层边缘的碳纤维。 The most useful carbon fiber having as many edges of the graphene layers of carbon fibers on the fiber surface. 这可通过SEM测定。 This can be determined by SEM. 气相生长碳纳米纤维如得自Applied Sciences Corp.的Pyrograf I和Pyrograf III或得自Showa Denka Corp.的VGCF也是有用的碳源。 The vapor-grown carbon nanofibers available from Applied Sciences Corp. of Pyrograf I and Pyrograf III or from VGCF of Showa Denka Corp. are also useful sources of carbon.

[0062] 其他实施方案 [0062] Other embodiments

[0063] 代替使用固态碳源,可使用非固态碳源如气态或液体碳源替代固态碳来提供使单壁碳纳米管生长的碳原子供应。 [0063] Instead of using a solid carbon source, a non-solid carbon source such as gaseous liquid or solid carbon source of carbon to provide an alternative supply of single-walled carbon nanotube growth. 在此实施方案中,非固态碳源不必限于在富勒烯相对侧与金属层接触。 In this embodiment, the non-solid carbon source necessarily limited fullerene opposite side contact with the metal layers. 所需满足的条件就是非固态碳源扩散到金属层中和/或穿过金属层,变成生长的单壁碳纳米管的一部分。 Satisfy the conditions required non-solid carbon source is diffused into the metal layer and / or through the metal layer, it becomes part of the growing single walled carbon nanotubes. 可能的气态碳源的实例包括烃、CO和醇。 Examples of gaseous carbon sources may include hydrocarbons, CO and alcohols.

[0064] 在另一示例性实施方案中,单壁碳纳米管可自用碳原子饱和的金属层生长。 [0064] In another exemplary embodiment, the single-walled carbon nanotubes can be grown metal layer occupied saturated carbon atoms. 可使用任何已知方法和物理态的碳源(例如,固态、液态、气态)来使金属层饱和,因为在此实施方案中重要的是供应碳原子以使单壁碳纳米管生长。 Any carbon source can be used known methods and physical state (e.g., solid, liquid, gaseous) to the metal layer saturation, since in this embodiment the important thing is that the supply of single-wall carbon nanotubes to grow.

[0065] 所得单壁碳纳米管 [0065] The resulting SWNT

[0066] 本发明的方法生长单壁碳纳米管群集,其中在所述群集中至少80%的所述单壁碳纳米管的直径在存在于群集中的单壁碳纳米管的直径D士5%之内。 [0066] The diameter of single-walled process of the invention growing single walled carbon nanotubes, wherein at least 80% of the clusters in the single-walled carbon nanotubes present in the nanotube cluster diameter D ± 5 %within. 换句话说,直径D表示存在于群集中的特定单壁碳纳米管的直径,从而在所述群集内至少80% (优选80-90%, 更优选80-95%,甚至更优选80-99 % )的剩余单壁碳纳米管的直径在D士5 %之内。 In other words, the diameter D denotes the diameter of the presence of a particular cluster of single walled carbon nanotubes, such that at least 80% (preferably 80-90% within the cluster, and more preferably 80 to 95%, and even more preferably 80-99 % diameter) remaining in the SWNTs D of ± 5%. 直径D可使用拉曼光谱测量,优选在0. 6-2. 2nm范围内,更优选为1. 0-1. 8nm,甚至更优选为1. 2-1. 6nm。 Diameter D may be measured using Raman spectroscopy, preferably within 0. 6-2. 2nm, more preferably 1. 0-1. 8nm, even more preferably 1. 2-1. 6nm.

[0067] 实施例 [0067] Example

[0068] 已经阐述了本发明的若干实施方案的详情以便提供本发明的透彻理解。 [0068] The details have been set forth several embodiments of the present invention to provide a thorough understanding of the present invention. 所属领域的技术人员将显而易见可使用其他实施方案且可在不脱离本发明范围的情况下进行改变。 Those skilled in the art may be used will be apparent other embodiments and changes may be made in the embodiment without departing from the scope of the invention. 此外,出于简明性以促进理解本发明的目的,已省略或精炼了可由所属领域的技术水平提供的众所周知的特征。 Furthermore, for simplicity purposes to facilitate understanding of the present invention, it has been omitted or refining technology, well-known features may be provided in the art belong.

[0069] 以下实施例进一步说明本发明的各种特征,且并不旨在以任何方式限制由附加权利要求限定的本发明的范围。 [0069] The following examples further illustrate various features of the invention, and are not intended in any way to limit the scope of the invention as defined by the appended claims.

[0070] 实施例1 [0070] Example 1

[0071] 通过聚合物碳化制备固态碳源 [0071] The polymer prepared by carbonizing a solid carbon source

[0072] 固态碳源首先经由聚合物碳化制备。 [0072] The solid carbon source is first prepared by carbonizing a polymer. 包含10-30%聚合物如PAM_3k、酚醛树脂、聚氯乙烯和浙青的溶液通过将相应量的聚合物溶解于合适溶剂如水、醇、酮、酯等中来制备。 Comprises 10-30% polymer, alcohols, ketones, esters and the like are prepared as PAM_3k, phenolic resins, polyvinyl chloride, and the solution was passed through a green Zhejiang corresponding amount of polymer is dissolved in a suitable solvent such as water. 随后将钼线浸入所述溶液中,在蒸发溶剂后聚合物覆盖层形成在金属线表面上。 A molybdenum wire is then immersed in the solution, after evaporation of the solvent the polymer coating layer is formed on the surface of the metal wire. 所形成的聚合物覆盖层的厚度估计为l_3mm。 The thickness of the polymer coating layer to be formed is estimated l_3mm. 在干燥完成之后,将涂覆的Pt线置放安装(mounted) 在由Balzers Union Ltd.制造的金属蒸发器MEM-OlO内部。 After completion of drying, the coated Pt wire disposed mounting (Mounted) within MEM-OlO metal evaporator by a Balzers Union Ltd. manufactured. 通过使电流通过Pt线,由于Pt线的电阻而将其加热并使聚合物碳化。 By passing a current through the Pt wire, due to the resistance of the Pt wire was heated and carbonized polymer. 此过程通过真空压力来监测,直至记录到没有压力增加。 This process is monitored by a vacuum pressure until no pressure increase recorded.

[0073] 实施例2 [0073] Example 2

[0074] 制备夹层结构的催化剂前体 [0074] The catalyst precursor prepared sandwich structure

[0075] 在金属蒸发器MEM-010内部,将钨线安装于电极上且将一些铁或钴线(纯度大于99. 99%)围绕钨线卷绕,作为热蒸发金属源。 [0075] In the interior of the metal evaporator MEM-010, a tungsten wire electrode is mounted on iron or cobalt and some lines (purity greater than 99.99%) tungsten wire wound around, as the metal source thermal evaporation. 金属覆盖层的厚度通过石英定位器监测。 The thickness of the metal coating layer was monitored by a quartz locator. 在实施例1中制得的碳涂覆Pt线表面上产生厚度为0. 5-5nm的狗或Co金属覆盖层。 Generating a dog or a thickness of 0. 5-5nm Co metal coating layer on the surface of the carbon-coated Pt wire prepared in Example 1. 最后, 将富勒烯(纯度大于99.9%,得自BuckyUSA,Inc)置放于不锈钢筛舟中,所述不锈钢筛舟进一步系在钨线上以便蒸发富勒烯。 Finally, fullerene (purity greater than 99.9%, available from BuckyUSA, Inc) stainless steel screen placed in a boat, said boat further based stainless steel screen to evaporate the tungsten line fullerene. 随后在金属/碳涂覆钼线上形成5-lOnm的C6tl覆盖层, 以在钼线上形成夹层结构的催化剂前体C6tZPe或Co]/固态碳。 5-lOnm then formed a covering layer C6tl at the metal / carbon-coated molybdenum line, to form a catalyst body C6tZPe or sandwich structure of Co] / solid carbon molybdenum line.

[0076] 实施例3 [0076] Example 3

[0077] 使用碳纤维制备夹层结构的催化剂前体 [0077] The sandwich structure prepared using the catalyst precursor of carbon fibers

[0078] 应用相同的方法和装备制造夹层结构的催化剂,其中应用由Tech Trade International, Inc制造的浙青碳纤维作为固态碳以替代得自如实施例2所述的聚合物碳化的固态碳。 [0078] The same application method and equipment for producing the catalyst of the sandwich structure, wherein the application Tech Trade International, Inc Zhejiang manufacturing carbon fiber as a solid green carbon instead of the polymer obtained in Example 2 freely embodiment carbonized solid carbon. 催化剂制备为C6tZPe或Co]/碳纤维。 The catalyst prepared as C6tZPe or Co] / carbon fibers.

[0079] 实施例4 [0079] Example 4

[0080] 由夹层结构的催化剂前体制造纳米管 [0080] The catalyst precursor made by a sandwich structure of nanotubes

[0081] 将实施例1、2和3中制得的催化剂经由电阻加热来加热且在金属蒸发器内部在真空下经由电流控制在500-1000°C。 [0081] 1, 2 and 3 of the catalyst prepared in Example embodiments will be heated by resistance heating and inside the metal evaporator under vacuum via the current control 500-1000 ° C. 经处理的样品通过SEM(图4A和4B)和TEM(图5A和5B)检验且观测到直径为6-lOnm的多壁碳纳米管。 The treated samples (FIGS. 5A and 5B) to test and observed diameter MWCNTs 6-lOnm by SEM (FIGS. 4A and 4B) and TEM.

[0082] 实施例5 [0082] Example 5

[0083] 在平坦底材上制备夹层结构的催化剂前体 [0083] The catalyst precursor prepared sandwich structure on a planar substrate

[0084] 类似于实施例1-3的描述制备夹层结构的催化剂前体。 [0084] The catalyst was prepared similar to the previous embodiment described sandwich structure body 1-3 embodiment. 首先经由浸涂使酚醛树脂乳液沉积在硅晶片上。 First, a phenol resin emulsion via dip coating deposited on a silicon wafer. 随后,在氩气中在1000-1200°C下加热涂覆的样品以碳化聚合物形成固态碳。 Subsequently, argon was heated at 1000-1200 ° C to carbonize the polymer coated sample form solid carbon. 在碳形成之后,将涂覆的Si晶片置放于金属蒸发器(例如MED-010)中且经由物理气相沉积将金属如i^、C0、Ni或Cu沉积在晶片表面上。 After the formation of carbon, the coated Si wafer is placed in a metal evaporator (e.g. MED-010) and via the physical vapor deposition of metal such as i ^, C0, Ni or Cu is deposited on the wafer surface. 金属覆盖层的厚度通过石英定位器监测且控制在l-5nm。 Monitoring the thickness of the metal coating layer and l-5nm controlled by a quartz locator. 在不将晶片自真空室取出的情况下,随后如先前实施例所述将另外的C6tl覆盖层置放于金属覆盖层之上。 In the case where the wafer is not removed from the vacuum chamber, then as previously described in Example C6tl an additional cover layer is placed over the metal coating layer. C6tl的厚度为约5-lOnm。 C6tl thickness of about 5-lOnm. 最终催化剂形式为C6(l/[Fe、 Co、Ni 或Cu] / 固态碳/Si。 The final catalyst is in the form of C6 (l / [Fe, Co, Ni or Cu] / solid carbon / Si.

[0085] 实施例6 [0085] Example 6

[0086] 自硅晶片负载的夹层结构的催化剂前体制造碳纳米管 [0086] The sandwich structure from the previous catalyst loaded bulk silicon wafer producing carbon nanotubes

[0087] 将Si晶片负载的催化剂置放于已经氩气吹扫10分钟的1-英寸石英反应器中。 [0087] Si wafer supported catalyst has been placed in an argon purged 10 minutes 1-inch quartz reactor. 随后,将反应器两端密封且使温度快速升到800°C,使样品在氩气下反应10分钟。 Subsequently, the reactor was sealed at both ends and the temperature quickly raised to 800 ° C, the sample reaction under argon for 10 min. 冷却到室温之后,使用拉曼检验样品,且样品显示出直径为1. 4士0. 2nm的单壁碳纳米管的特性。 After cooling to room temperature, the Raman test sample, and the sample showed characteristic diameter of 1.4 disabilities 0. 2nm SWNTs.

Claims (24)

1. 一种自碳源产生具有窄直径分布的单壁碳纳米管群集的方法,所述方法包括:(a)制备装置,所述装置包括金属层、与所述金属层一侧接触的至少一层富勒烯和与所述金属层另一侧接触的固态碳源;(b)将所述装置加热到低于使所述富勒烯升华但使所述富勒烯和所述碳源溶解到所述金属层中的温度;和(c)生长单壁碳纳米管群集,其中在所述群集中至少80%的单壁碳纳米管的直径在存在于所述群集中的单壁碳纳米管的直径D士5%之内,所述直径D在0. 6-2. 2nm范围内。 CLAIMS 1. A method of producing a carbon source from single walled carbon nanotubes having a narrow diameter distribution of the cluster, the method comprising: (a) preparing apparatus, the device comprising a metal layer, in contact with at least one side of the metal layer a solid carbon source and one layer of fullerenes in contact with the other side of the metal layer; (b) the means for heating the fullerene sublimation below but the fullerene and the carbon source dissolution temperature of the metal layer; and (c) growing single walled carbon nanotubes, wherein the diameter of at least 80% of the cluster of single walled carbon nanotubes in the presence of the single-wall carbon cluster Disabled nanotube diameter D within 5%, within the diameter D 0. 6-2. 2nm range.
2.权利要求1的方法,其中所述装置包括使所述金属层基本饱和的多层富勒烯。 The method of claim 1, wherein said means comprises said metal layer is substantially saturated multilayer fullerene.
3.权利要求1的方法,其中所述直径D在1.0-1. Snm范围内。 The method of claim 1, wherein the diameter D 1.0-1. Snm within range.
4.权利要求1的方法,其中所述直径D在1.2-1. 6nm范围内。 The method of claim 1, wherein the diameter D is in the range of 1.2-1. 6nm.
5.权利要求1的方法,其中在引发生长之后,所述碳源包括气态碳源。 The method of claim 1, wherein after initiation the growth, the carbon source comprises a gaseous carbon source.
6.权利要求5的方法,其中所述碳源包括CO、醇或烃。 The method of claim 5, wherein the carbon source include CO, alcohols or hydrocarbons.
7.权利要求1的方法,其中所述金属层包括选自狗、Co、Mn、Ni、Cu和Mo的金属。 The method of claim 1, wherein said metal layer is selected from the group comprising a dog, Co, Mn, Ni, Cu and Mo metal.
8.权利要求7的方法,其中所述金属层包括i^e、C0、Mn、Ni、Cu和Mo的合金或其他混合物。 The method of claim 7, wherein the metal layer comprises i ^ e, C0, Mn, Ni, Cu and Mo alloy or other mixture.
9.权利要求1的方法,其中所述金属层的厚度为lnm-20nm。 9. The method of claim 1, wherein the thickness of the metal layer is lnm-20nm.
10.权利要求1的方法,其中所述金属层的厚度为2nm-10nm。 10. The method of claim 1, wherein the thickness of the metal layer is 2nm-10nm.
11.权利要求1的方法,其中所述金属层的厚度为3nm-5nm。 11. The method of claim 1, wherein the thickness of the metal layer is 3nm-5nm.
12.权利要求1的方法,其中所述温度为500°C -700°C。 12. The method of claim 1, wherein said temperature is 500 ° C -700 ° C.
13.权利要求1的方法,其还包括在引发生长之后使所述温度升高到高于所述富勒烯的升华温度的步骤。 13. The method of claim 1, further comprising the step of causing the temperature is raised to higher than the sublimation temperature of the fullerene after initiation of growth.
14.权利要求13的方法,其还包括使所述温度升高到700°C -1100°C的步骤。 14. The method of claim 13, further comprising the step of causing the temperature was raised to 700 ° C -1100 ° C in.
15.权利要求1的方法,其中所述固态碳源包括碳纤维。 15. The method of claim 1, wherein said solid carbon source comprises carbon fiber.
16.权利要求1的方法,其中所述固态碳源包括选自玻璃碳、碳浙青、交联碳树脂和聚对亚苯基晶体的碳。 16. The method of claim 1, wherein said solid carbon source comprises carbon selected from glass, carbon Zhejiang Green, crosslinked polyethylene resin, and a carbon-carbon crystals of p-phenylene.
17.权利要求1的方法,其中所述富勒烯的蒸气压小于760mmHg。 17. The method of claim 1, wherein the fullerene vapor pressure less than 760mmHg.
18.权利要求1的方法,其中所述富勒烯的蒸气压小于730mmHg。 18. The method of claim 1, wherein the fullerene vapor pressure less than 730mmHg.
19. 一种自碳源产生具有窄直径分布的单壁碳纳米管群集的方法,所述方法包括:(a)将装置加热到低于使所述富勒烯升华的温度;所述装置包括金属层、 与所述金属层一侧接触的至少一层富勒烯和与所述金属层另一侧接触的固态碳源;(b)使所述至少一层富勒烯和所述碳源溶解到所述金属层中;和(c)生长单壁碳纳米管群集,其中在所述群集中至少80%的单壁碳纳米管的直径在存在于所述群集中的单壁碳纳米管的直径D士5%之内,所述直径D在0. 6-2. 2nm范围内。 19. A method of generating a carbon source from single walled carbon nanotubes cluster of narrow diameter distribution, the method comprising: (a) means for heating the fullerenes below the sublimation temperature; the apparatus comprising metal layers, at least one layer of fullerenes in contact with one side of the metal layer and a solid carbon source in contact with the other side of the metal layer; (b) at least one layer of the fullerenes and the carbon source dissolving into the metal layer; diameter and (c) growing single walled carbon nanotubes, wherein at least 80% of the cluster of single walled carbon nanotubes present in the single wall carbon nanotubes in the cluster the diameter D of persons within 5%, within the 0. 6-2. 2nm diameter D range.
20. 一种产生具有窄直径分布的单壁碳纳米管的反应器体系,所述体系包括: 金属层、与所述金属层一侧接触的至少一层富勒烯和与所述金属层另一侧接触的固态碳源。 20. A reactor system to produce single wall carbon nanotubes having a narrow diameter distribution, the system comprising: a metal layer, at least one layer of fullerenes and other metal layer in contact with said one side of the metal layer solid carbon source side contact.
21. —种产生单壁碳纳米管群集的方法,所述方法包括:(a)制备装置,所述装置包括金属层和与所述金属层一侧接触的至少一层富勒烯, 所述金属层还与非固态碳源接触;(b)将所述装置加热到低于使所述富勒烯升华的温度;(c)使所述至少一层富勒烯和所述碳源溶解到所述金属层中;和(d)生长单壁碳纳米管群集,其中在所述群集中至少80%的单壁碳纳米管的直径在存在于所述群集中的单壁碳纳米管的直径D士5%之内,所述直径D在0. 6-2. 2nm范围内。 21. - The method of generating species of single walled carbon nanotubes, said method comprising: (a) preparing apparatus, the device comprising a metal layer and at least one layer of fullerenes in contact with one side of the metal layer, the the metal layer is also in contact with the non-solid carbon source; (b) means for heating the fullerenes below the sublimation temperature; (c) at least one layer of the fullerenes and the carbon source was dissolved in the metal layer; diameter and (d) growing single walled carbon nanotubes, wherein at least 80% of the cluster of single walled carbon nanotubes present in the diameter of single walled carbon nanotubes of the group set within ± 5% of the D, the diameter D is in the range 0. 6-2. 2nm.
22.权利要求21的方法,其中所述非固态碳源为气态碳源。 22. The method of claim 21, wherein said non-solid carbon source is a gaseous carbon source.
23.权利要求21的方法,其中所述气态碳源选自烃、CO和醇。 23. The method of claim 21, wherein the gaseous carbon source selected from hydrocarbons, CO and alcohols.
24. 一种产生单壁碳纳米管的方法,所述方法包括:(a)制备装置,所述装置包括金属层和与所述金属层一侧接触的至少一层富勒烯, 其中所述金属层用碳原子饱和;(b)将所述装置加热到低于使所述富勒烯升华的温度;(c)使所述至少一层富勒烯和所述碳源溶解到所述金属层中;和(d)生长单壁碳纳米管群集,其中在所述群集中至少80%的单壁碳纳米管的直径在存在于所述群集中的单壁碳纳米管的直径D士5%之内,所述直径D在0. 6-2. 2nm范围内。 24. A method of producing single walled carbon nanotubes, said method comprising: (a) preparing apparatus, the device comprising a metal layer and at least one layer of fullerenes in contact with one side of the metal layer, wherein said the metal layer with a saturated carbon atoms; (b) means for heating the fullerenes below the sublimation temperature; (c) at least one layer of the fullerenes and the carbon source is dissolved to the metal layer; diameter and (d) growing single walled carbon nanotubes, wherein at least 80% of the cluster of single walled carbon nanotubes present in the concentration of the group SWNTs diameter D ± 5 % of the said diameter D in the range of 0. 6-2. 2nm.
CN 200780019414 2005-03-29 2007-03-29 Method for preparing single walled carbon nanotubes from a metal layer CN101454242B (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US74392706P true 2006-03-29 2006-03-29
USPCT/US2006/012001 2006-03-29
US60/743,927 2006-03-29
PCT/US2006/012001 WO2006110346A1 (en) 2005-03-29 2006-03-29 Method for preparing single walled carbon nanotubes from a metal layer
PCT/US2007/065508 WO2008057620A2 (en) 2006-03-29 2007-03-29 Method for preparing single walled carbon nanotubes from a metal layer

Publications (2)

Publication Number Publication Date
CN101454242A CN101454242A (en) 2009-06-10
CN101454242B true CN101454242B (en) 2012-04-11

Family

ID=39924877

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200780019414 CN101454242B (en) 2005-03-29 2007-03-29 Method for preparing single walled carbon nanotubes from a metal layer

Country Status (7)

Country Link
EP (1) EP2001794A4 (en)
JP (1) JP2009538809A (en)
KR (1) KR20090019777A (en)
CN (1) CN101454242B (en)
AU (1) AU2007317741A1 (en)
CA (1) CA2647569A1 (en)
WO (1) WO2008057620A2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5360643B2 (en) * 2008-05-23 2013-12-04 国立大学法人 名古屋工業大学 Carbon nanotube manufacturing method and manufacturing apparatus
JP5369508B2 (en) * 2008-06-12 2013-12-18 株式会社Ihi Hydrogen separation method and hydrogen separation apparatus
JP2013500922A (en) * 2009-07-31 2013-01-10 マサチューセッツ インスティテュート オブ テクノロジー Systems and methods for the formation of carbon-based nanostructures
KR101110578B1 (en) * 2009-10-27 2012-02-15 거림테크 주식회사 Producing method of highly oriented graphene containing coating-products and film
US9663368B2 (en) 2010-10-28 2017-05-30 Massachusetts Institute Of Technology Carbon-based nanostructure formation using large scale active growth structures
US9527737B2 (en) 2011-03-08 2016-12-27 National University Corporation Nagoya University Carbon nanotube manufacturing method
JP5770683B2 (en) * 2012-06-20 2015-08-26 日本電信電話株式会社 Method for forming carbon nanotube
US10195797B2 (en) 2013-02-28 2019-02-05 N12 Technologies, Inc. Cartridge-based dispensing of nanostructure films
EP2933228A1 (en) * 2014-04-15 2015-10-21 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Process for preparing single wall carbon nanotubes of pre-defined chirality
CN104532206A (en) * 2014-12-12 2015-04-22 中国科学院重庆绿色智能技术研究院 Preparation method of graphene doped film growing on insulating substrate in in-situ growth mode

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1353084A (en) 2000-11-13 2002-06-12 国际商业机器公司 Manufacturing method and application of single wall carbon nano tube

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6683783B1 (en) * 1997-03-07 2004-01-27 William Marsh Rice University Carbon fibers formed from single-wall carbon nanotubes
EP1337461A1 (en) * 2000-11-13 2003-08-27 International Business Machines Corporation Crystals comprising single-walled carbon nanotubes
US7052668B2 (en) * 2001-01-31 2006-05-30 William Marsh Rice University Process utilizing seeds for making single-wall carbon nanotubes
US6737939B2 (en) * 2001-03-30 2004-05-18 California Institute Of Technology Carbon nanotube array RF filter
JP2003292314A (en) * 2002-03-29 2003-10-15 Toray Ind Inc Production of carbon nanotube
JP3877302B2 (en) * 2002-06-24 2007-02-07 喜萬 中山 Method for forming carbon nanotube
US7459137B2 (en) * 2002-07-16 2008-12-02 William Marsh Rice University Process for functionalizing carbon nanotubes under solvent-free conditions
JP2004083293A (en) * 2002-08-22 2004-03-18 Fujitsu Ltd Method for manufacturing carbon nanotube using fullerene
WO2004106234A1 (en) * 2003-02-07 2004-12-09 Bussan Nanotech Research Institute Inc. Process for producing monolayer carbon nanotube with uniform diameter
US7335344B2 (en) * 2003-03-14 2008-02-26 Massachusetts Institute Of Technology Method and apparatus for synthesizing filamentary structures
JP4963539B2 (en) * 2004-05-10 2012-06-27 株式会社アルバック Method for producing carbon nanotube and plasma CVD apparatus for carrying out the method
EP1871934A4 (en) * 2005-03-29 2012-06-20 Hyperion Catalysis Int Method for preparing single walled carbon nanotubes from a metal layer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1353084A (en) 2000-11-13 2002-06-12 国际商业机器公司 Manufacturing method and application of single wall carbon nano tube

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
欧阳雨等.单壁碳纳米管RMB的拉曼光谱研究.《光散射学报》.2004,第15卷(第4期),246-249.

Also Published As

Publication number Publication date
JP2009538809A (en) 2009-11-12
WO2008057620A3 (en) 2008-06-26
KR20090019777A (en) 2009-02-25
EP2001794A2 (en) 2008-12-17
WO2008057620A2 (en) 2008-05-15
AU2007317741A1 (en) 2008-05-15
CA2647569A1 (en) 2008-05-15
EP2001794A4 (en) 2012-06-20
CN101454242A (en) 2009-06-10

Similar Documents

Publication Publication Date Title
Jin et al. Large-scale synthesis and characterization of carbon spheres prepared by direct pyrolysis of hydrocarbons
Li et al. Mass production of high-quality multi-walled carbon nanotube bundles on a Ni/Mo/MgO catalyst
Hou et al. Multi-step purification of carbon nanotubes
Li et al. Structure and growth of aligned carbon nanotube films by pyrolysis
Lin et al. Direct observation of single-walled carbon nanotube growth at the atomistic scale
Hiraoka et al. Selective synthesis of double-wall carbon nanotubes by CCVD of acetylene using zeolite supports
Campos-Delgado et al. Bulk production of a new form of sp2 carbon: crystalline graphene nanoribbons
Terrones et al. Graphitic cones in palladium catalysed carbon nanofibres
US6221330B1 (en) Process for producing single wall nanotubes using unsupported metal catalysts
Sinnott et al. Model of carbon nanotube growth through chemical vapor deposition
Misra et al. FTIR studies of nitrogen doped carbon nanotubes
Chakrabarti et al. Number of walls controlled synthesis of millimeter-long vertically aligned brushlike carbon nanotubes
Huczko Synthesis of aligned carbon nanotubes
Lee et al. Catalyst effect on carbon nanotubes synthesized by thermal chemical vapor deposition
Venegoni et al. Parametric study for the growth of carbon nanotubes by catalytic chemical vapor deposition in a fluidized bed reactor
Sen et al. Metal-filled and hollow carbon nanotubes obtained by the decomposition of metal-containing free precursor molecules
Ago et al. CVD growth of single-walled carbon nanotubes with narrow diameter distribution over Fe/MgO catalyst and their fluorescence spectroscopy
KR101289256B1 (en) Methods for growing and harvesting carbon nanotubes
Kumar et al. Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production
JP5102633B2 (en) Method for growing long carbon single-walled nanotubes
Maschmann et al. Parametric study of synthesis conditions in plasma-enhanced CVD of high-quality single-walled carbon nanotubes
Teo et al. Catalytic synthesis of carbon nanotubes and nanofibers
CN101913591B (en) Single-layer carbon nanotube and alinged single-layer carbon nanotube bulk structure, and their production process, production apparatus and use
Pierard et al. Ball milling effect on the structure of single-wall carbon nanotubes
Saito et al. High yield of single-wall carbon nanotubes by arc discharge using Rh–Pt mixed catalysts

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120411

Termination date: 20130329