CN101436654B - Ferric phosphate lithium type safety high power lithium ion battery - Google Patents

Ferric phosphate lithium type safety high power lithium ion battery Download PDF

Info

Publication number
CN101436654B
CN101436654B CN 200710124463 CN200710124463A CN101436654B CN 101436654 B CN101436654 B CN 101436654B CN 200710124463 CN200710124463 CN 200710124463 CN 200710124463 A CN200710124463 A CN 200710124463A CN 101436654 B CN101436654 B CN 101436654B
Authority
CN
China
Prior art keywords
conductive
super
binder
graphite
carbon black
Prior art date
Application number
CN 200710124463
Other languages
Chinese (zh)
Other versions
CN101436654A (en
Inventor
朱继涛
雷远兵
黄正耀
Original Assignee
深圳市慧通天下科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市慧通天下科技股份有限公司 filed Critical 深圳市慧通天下科技股份有限公司
Priority to CN 200710124463 priority Critical patent/CN101436654B/en
Publication of CN101436654A publication Critical patent/CN101436654A/en
Application granted granted Critical
Publication of CN101436654B publication Critical patent/CN101436654B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage
    • Y02E60/12Battery technologies with an indirect contribution to GHG emissions mitigation
    • Y02E60/122Lithium-ion batteries

Abstract

The invention discloses a lithium iron phosphate type safe high-power lithium ion battery, which comprises a positive pole, a negative pole, a diaphragm and a nonaqueous electrolytic solution. The positive pole is prepared by coating a mixture consisting of an active material, a conductive agent and a binder on two sides of a metal aluminum foil, while the negative pole is prepared by coating themixture consisting of the active material, the conductive agent and the binder on two sides of a metal copper foil, wherein the components of the coating mixture of the positive pole in percentage bymass respectively are: 80 to 95 percent of the active material lithium iron phosphate, 1 to 15 percent of the conductive agent, and 2 to 10 percent of the binder; and the components of the coating mixture of the negative pole in percentage by mass percentage respectively are: 90 to 97 percent of the active material, 0 to 3 percent of the conductive agent, and 2 to 7 percent of the binder. With the invention, the lithium ion battery is safer and has high multiplying power discharging performance, and the security hidden trouble problems caused when the lithium ion battery is applied to a high multiplying power discharging field are greatly reduced.

Description

磷酸铁锂型安全高功率锂离子电池 Lithium iron phosphate type high power lithium ion battery safety

技术领域 FIELD

[0001] 本发明属于锂离子电池的技术领域,特别是涉及一种磷酸铁锂型安全高功率锂离子电池。 [0001] The present invention belongs to the technical field of lithium ion battery, more particularly to a lithium iron phosphate type high-power lithium ion battery safety.

背景技术 Background technique

[0002] 锂离子电池以其具有工作电压高、能量密度大、循环寿命长、自放电小、无记忆效应的优点,已被广泛应用于手机、笔记本电脑、PDA、数码相机、MP3等领域,成为各种现代通讯设备和电子设备不可缺少的部件。 [0002] The lithium-ion battery having a high work its voltage, energy density, long cycle life, self-discharge, no memory effect of the advantages, have been widely used in mobile phones, notebook computers, PDA, digital cameras, MP3 and other fields, into a variety of modern communications equipment and electronic devices indispensable components.

[0003] 随着技术的更新和发展,各种用电设备的发展对电池的性能提出了更高的要求, 要求电池具有更薄、更轻、更高的能量密度和功率密度以及更高的安全性。 [0003] With the development and updating technology, the development of a variety of electrical devices to a higher battery performance requirements, required cells having thinner, lighter, and higher energy density and higher power density safety. 特别是近年来能源的紧张及各种电动车、混合动力车的发展,其厂商一直寻找一种重量轻、体积小、对环境友好、能大电流放电且具有较高的安全性能的产品。 Especially in recent years of intense energy and a variety of electric vehicles, hybrid development, its manufacturers have been looking for a light weight, small size, environmentally friendly, energy high-current discharge and has a high safety performance products.

[0004] 目前的锂离子电池虽然能够提供较高的放电电流,但由于所用电极材料的安全性较低,造成用电器具使用时存在重大的安全隐患。 [0004] While the current lithium-ion battery can provide a higher discharge current, but the safety of the electrode material used is low, there are significant safety hazard caused when electrical appliance use. 由于电动工具在不同领域应用的快速发展,其不仅要求电池要具有大电流放电的性能,而且要具有较高的安全性能,为此采用高安全性材料磷酸铁锂为正极材料对高功率锂离子电池的安全性能做了进一步改善。 Due to the rapid development of the electric power tool in various areas of application, which requires not only cell to have large-current discharge performance, but also has high safety performance, for a material with high safety for the lithium iron phosphate cathode material for high-power lithium-ion battery safety has been further improved.

发明内容 SUMMARY

[0005] 为了克服上述难题,本发明的目的是提出一种安全的且具有大倍率放电性能的磷酸铁锂型锂离子电池,大大减少锂离子电池被应用于高倍率放电领域所带来的安全性问题。 [0005] In order to overcome the above problems, an object of the present invention is to provide a safe and having a high rate discharge performance of lithium iron phosphate type lithium ion battery, a lithium ion battery safety significantly reduced is applied to the field of high-rate discharge caused by issues.

[0006] 本发明通过以下技术方案实现: [0006] The present invention is achieved by the following technical solution:

[0007] —种磷酸铁锂型安全高功率锂离子电池,包括正极、负极、隔膜和非水电解液,正极是将活性材料、导电剂和粘结剂组成的混合物均勻涂布在金属铝箔两面而制成,负极是将活性材料,导电剂和粘结剂组成的混合物均勻涂布在金属铜箔两面而制成,其中:所述正极涂布混合物中活性材料磷酸铁锂、导电剂、粘结剂的质量百分比分别为80〜95%、1〜 15%、2〜10% ;所述负极涂布混合物中活性材料、导电剂、粘结剂的质量百分比分别为90 〜97%、0 〜3%、2 〜7%。 [0007] - type lithium iron phosphate species safe, high-power lithium-ion battery comprising a positive electrode, a negative electrode, a separator and a nonaqueous electrolyte, the positive electrode is a mixture of the active material, a conductive agent and a binder is uniformly applied on both surfaces of a metal foil made, a negative electrode mixture is evenly coated with the active material, conductive agent and a binder composed of copper foil on both surfaces made of metal, wherein: the positive electrode active material mixture coated lithium iron phosphate, a conducting agent, sticky mass percentage caking agent were 80~95%, 1 ~ 15%, 2~10%; mixture of the negative electrode active material coating, the conductive agent, the binder mass percentage of 90 ~97%, respectively, 0 ~ 3%, 2% ~ 7.

[0008] 本发明还可以进一步采取如下技术措施来实现: [0008] The present invention may further be taken to achieve the following technical measures:

[0009] 所述正极活性材料为颗粒粒径D50分布在0. 1〜20 μ m之间的磷酸铁锂(Lii^ePO4),导电剂为具有高电导率的导电碳黑、导电石墨、碳纤维、碳纳米管的一种或两种以上物质,如乙炔黑、超级导电碳黑(Super-P)、导电石墨(KS-6)、气相生长碳纤维(VGCF) 中的一种物质或两种以上组合物;粘结剂为分子量在20〜120万之间的聚偏氟乙烯的均聚物(PVDF)。 [0009] D50 particle size distribution of the lithium between 0. 1~20 μ m as the cathode active material iron phosphate (Lii ^ ePO4), the conductive agent is a conductive carbon black having high conductivity, conductive graphite, carbon fibers a carbon nanotube or two or more substances, such as acetylene black, super conductive carbon black (super-P), conductive graphite (KS-6), vapor grown carbon fibers (of VGCF) of one or two or more species composition; molecular weight of the binder is between 20~120 million for polyvinylidene fluoride homopolymer (PVDF).

[0010] 所述负极活性材料为颗粒粒径分布在1〜30 μ m之间的人造石墨的一种或两种以上的组合物;导电剂为具有高电导率的导电碳黑、导电石墨、碳纤维、碳纳米管中的一种或两种以上物质,如超级导电碳黑(Super-P)、导电石墨(STO-6、STO-15)、气相生长碳纤维(VGCF)中的一种物质或两种以上组合物;粘结剂为水性粘结剂丁苯橡胶乳(SBR)和羧甲基纤维素钠(CMC)的组合物或油性粘结剂PVDF。 [0010] The particle size distribution of a particulate negative electrode between the active material is 1~30 μ m artificial graphite or a composition of two or more; conductive carbon black conductive agent having a high conductivity, conductive graphite, a substance carbon fiber, of one or more substances, such as super-conductive carbon black (super-P), conductive graphite (STO-6, STO-15), vapor grown carbon fibers (of VGCF) or the composition of two or more; aqueous binder is styrene-butadiene rubber binder milk (SBR) and sodium carboxymethyl cellulose (CMC) binder composition or oily PVDF.

[0011] 所述正极极耳为超声焊焊接在正极集流体上的铝带,宽度为2〜20mm之间;所述负极极耳为超声焊焊接在负极集流体上的镍带、铜镍复合带或铜带,宽度为2〜20mm之间。 [0011] The positive electrode tab ultrasonic welding on the positive electrode aluminum current collector, a width of between 2~20mm; the negative electrode tab of ultrasonic welding with nickel on the negative electrode current collector, copper-nickel composite or copper with a width of between 2~20mm.

[0012] 所述隔膜为聚丙烯-聚乙烯-聚丙烯(PP-PE-PP)三层复合隔膜或单层聚乙烯PE 隔膜,厚度为12〜25 μ m之间。 [0012] The separator is a polypropylene - polyethylene - polypropylene (PP-PE-PP) single layer or three-layer composite membrane as polyethylene PE separator having a thickness of between 12~25 μ m.

[0013] 所述正极集流体为厚度在12〜30 μ m之间的铝箔;负极集流体为厚度在8〜 20 μ m之间的铜箔。 [0013] The cathode current collector is an aluminum foil in a thickness of between 12~30 μ m; the thickness of the negative electrode collector of copper foil between the 8~ 20 μ m.

[0014] 所述正极片极耳个数为1〜6个,所述负极耳个数为1〜6个。 The number of tab [0014] The positive electrode sheet is 1~6, and the number of the negative tab is 1~6 months.

[0015] 所述正负极组为叠片式或卷绕式,电极压实厚度为60〜170 μ m之间。 [0015] between the positive and negative groups is a laminated or wound, the electrode was compacted thickness of 60~170 μ m.

[0016] 所述电解液由六氟磷酸锂(LiPig或四氟硼酸锂(LiBF4)与碳酸乙烯酯(EC)、碳酸丙烯酯(PC)、碳酸二甲酯(DMC)、碳酸甲乙酯(EMC)和碳酸二乙酯(DEC)有机溶剂中的两种或两种以上物质混合组成。 [0016] The electrolyte solution of lithium hexafluorophosphate (LiPig or lithium tetrafluoroborate (of LiBF4) and ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), ethylmethyl carbonate (EMC) and two or more organic solvents, diethyl carbonate (DEC) mixed material composition.

[0017] 本发明具有以下优点和积极效果: [0017] The present invention has the following advantages and positive effects:

[0018] 1、其放电电流可以达到1〜20C放电,且15C放电电池表面温度低于60°C。 [0018] 1, the discharge current can reach 1~20C discharge, and the discharge of the battery surface temperature is below 15C 60 ° C.

[0019] 2、采用该方案制作的锂离子电池IOC放电循环300次容量保持率可达80%以上。 [0019] 2, prepared using the program IOC lithium ion battery discharge cycle capacity retention rate of up to 300 times more than 80%.

[0020] 3、采用该方案制作的锂离子电池的15C与IC放电容量的比值分别可达95%以上。 [0020] 3, produced using this scheme a lithium ion battery discharge capacity ratio of the IC 15C are up to 95%.

[0021] 4、制作工艺简单,且电池具有较高的安全性能,电池均通过3C/10V过充电, 1300C /30min热冲击,短路,针刺等破坏性实验。 [0021] 4, the production process is simple, and the battery has a high safety performance, batteries are through 3C / 10V overcharge, 1300C / 30min thermal shock, short circuit, acupuncture and other destructive experiment.

附图说明 BRIEF DESCRIPTION

[0022] 图1为本发明安全高功率锂离子电池的外形示意图; [0022] FIG safe high-power lithium ion battery is a schematic outline of the present invention;

[0023] 图2为本发明安全高功率锂离子电池的卷绕式极片形状; [0023] FIG. 2 is a sheet-wound shape safe high-power lithium ion battery of the present invention;

[0024] 图3为本发明安全高功率锂离子电池的叠片式极片形状; [0024] FIG pole pieces 3 form a laminated safety of the high-power lithium ion battery of the present invention;

[0025] 图4为本发明安全高功率锂离子电池的IC放电曲线图; IC discharge curve of [0025] FIG. 4 of the present invention secure a high power lithium ion battery;

[0026] 图5为本发明安全高功率锂离子电池的5C放电曲线图; [0026] FIG. 5 5C safe high power discharge curve of the lithium ion battery of the present invention;

[0027] 图6为本发明安全高功率锂离子电池的IOC放电曲线图; IOC discharge curve of [0027] FIG. 6 of the present invention, the security of high-power lithium-ion battery;

[0028] 图7为本发明安全高功率锂离子电池的15C放电曲线图。 15C shows the discharge curve [0028] FIG. 7 of the present invention, the security of high-power lithium-ion batteries.

具体实施方式 Detailed ways

[0029] 为能进一步了解本发明的发明内容、特点及功效,兹列举以下实施例,并配合附图详细说明如下: [0029] The invention further understanding of the content, features and effects of the present invention, the following examples are hereby accompanied with figures is described in detail as follows:

[0030] 以100〜1600mAh安全高功率锂离子电池的制作过程为例加以说明,电池结构如图1所示,电池的制作按如下方法进行实施: [0030] In the production process 100~1600mAh safe high-power lithium ion battery will be described as an example, the battery shown in Figure 1, the battery was fabricated carried out as follows:

[0031] 实施例1 [0031] Example 1

[0032] 正极的制备:以N- 二甲基吡咯烷酮(NMP)为溶剂,颗粒粒径D50分布在0. 1〜 20μπι之间的磷酸铁锂为正极活性物质,超级导电碳黑(Super-P)为导电剂,分子量在20〜 120万之间的聚偏氟乙烯均聚物(PVDF)为粘结剂,NMP的使用量根据磷酸铁锂的粒径大小、粒度分布不同进行添加,其浆料粘度控制范围为3000〜20000cP。 [0032] Preparation of positive electrode: A N- dimethyl-pyrrolidone (NMP) as a solvent, particle size distribution D50 in the lithium iron phosphate 0. 1~ 20μπι between the positive electrode active material, super-conductive carbon black (Super-P ) as a conductive agent, a molecular weight of between 1,200,000 20~ polyvinylidene fluoride homopolymer (PVDF) as the binder, NMP is used to add a different amount distribution according to the particle size of lithium iron phosphate, the particle size, which slurry range of viscosity control material 3000~20000cP. 本实施例所用质量百分比为:LiFePO4 : Super-P : PVDF : NMP = 88 : 4 : 8 : 110。 In this embodiment the mass percentage: LiFePO4: Super-P: PVDF: NMP = 88: 4: 8: 110. 首先将PVDF 充分溶解于NMP中,然后将其加入到已预先混合好的超级导电碳黑和磷酸铁锂混合粉中,快速均勻搅拌4〜证后真空除泡,最后将配制好的浆料均勻涂布于厚度在12〜30 μ m之间的集流体铝箔上,经干燥、辊压、分切后进行极耳点辉,极耳为宽度在2〜20mm之间的铝带,极耳个数为1〜6个,完成正极片的制作(如图2所示)。 First PVDF sufficiently dissolved in NMP, and then vacuum defoaming was added to the pre-super-conductive carbon black-mixed and the mixed powder of lithium iron phosphate, April to permit rapid and uniform stirring, and finally the prepared homogeneous slurry coated on the current collector foil thickness between 12~30 μ m, dried, roll-pressed, the luminance point for tab cutting, tab width between 2~20mm aluminum strip, a tab number of 1~6, the completion of the positive electrode sheet was produced (FIG. 2).

[0033] 负极的制备:以H2O为溶剂,颗粒粒径分布在1〜30 μ m之间的人造石墨(中间相碳微球MCMB)为负极活性物质,超级导电碳黑(Super-P)为导电剂,水性粘结剂丁苯橡胶乳(SBR)与羧甲基纤维素钠(CMC)的混合物为粘结剂,水的用量根据使用的石墨的粒径大小、粒度分布不同进行添加,其添加比例在110〜170之间,本实施例所用质量百分比为: MCMB : Super-P : CMC : SBR : H2O = 90 : 5 : 2 : 3 : 130。 [0033] Preparation of negative electrode: of H2O as solvent, the particle size distribution between 1~30 μ m artificial graphite (mesophase carbon micro beads MCMB) as an anode active material, super-conductive carbon black (Super-P) as a conductive agent, an aqueous styrene-butadiene rubber binder milk (SBR) with a mixture of sodium carboxymethyl cellulose (CMC) as a binder, the amount of water added in accordance with the distribution of the different particle size of the graphite is used, the particle size, which 110~170 between the addition ratio, in this embodiment the mass percentage: MCMB: Super-P: CMC: SBR: H2O = 90: 5: 2: 3: 130. 首先将CMC 均勻的分散于H2O中,然后分多次加入到预先混合好的超级导电碳黑和石墨混合粉中,搅拌均勻后加入SBR再次搅拌,均勻后抽真空除泡,最后将配制好的浆料均勻涂布于厚度在8〜20 μ m之间的集流体铜箔上,经干燥、辊压、分切后进行极耳点焊,极耳为宽度在2〜20mm之间的镍带、 铜镍复合带或铜带,极耳个数为1〜6个,完成负极片的制作(如图2所示)。 First, the CMC homogeneously dispersed in H2O then added a plurality of times to pre-mixed super-conductive carbon black and graphite to the mixed powder, stirring was added SBR Stir again, even after vacuum defoaming, and finally the prepared slurry was uniformly coated on a current collector foil thickness between 8~20 μ m, dried, roll-pressed, the spot for cutting the tab, the tab width between the nickel belt 2~20mm , copper-nickel or copper composite tape, the number of electrode tab is 1~6, the completion of the negative electrode sheet was produced (FIG. 2).

[0034] 电解液使用溶有lmol/L的LiPF6和体积比为1 : 1 : 1的EC+DEC+DMC混合溶剂的溶液。 [0034] A solution of electrolyte used lmol / 1 L of LiPF6 and volume ratio: 1: EC + DEC + DMC 1 mixed solvent solution.

[0035] 隔膜采用厚度为20 μ m的微孔聚乙烯膜。 [0035] The thickness of the separator using a microporous polyethylene film of 20 μ m.

[0036] 将分切好的正、负极极片和处理后的隔膜卷绕成极组,电极压实厚度为80〜 170μπι之间,注入上述电解液并进行封口,完成电池制作(如图1所示)。 [0036] The partial cut positive and negative electrode plate and a separator after treatment wound electrode group, the electrode compacted to a thickness between 80~ 170μπι, injecting the electrolytic solution and sealed to complete the cell fabrication (FIG. 1 shown).

[0037] 实施例2 [0037] Example 2

[0038] 本实施例使用隔膜和电解液与实施例1相同。 [0038] The present embodiment uses a separator and an electrolytic solution in Example 1.

[0039] 正极的制备:以N- 二甲基吡咯烷酮(NMP)为溶剂,颗粒粒径D50分布在0. 1〜 20 μ m之间的磷酸铁锂为正极活性物质,超级导电碳黑(Super-P)和导电石墨(KS-6)的混合物为导电剂,分子量在20〜120万之间的聚偏氟乙烯均聚物(PVDF)为粘结剂,NMP的使用量根据磷酸铁锂的粒径大小、粒度分布的不同进行添加,其浆料粘度控制范围为3000〜 20000cPo 本实施例所用质量百分比为=LiFePO4 : Super-P : KS-6 : PVDF : NMP = 90 : 3 : 1 : 6 : 130。 [0039] Preparation of positive electrode: A N- dimethyl-pyrrolidone (NMP) as a solvent, the particle size distribution of the lithium iron phosphate D50 between 0. 1~ 20 μ m as a positive electrode active material, super-conductive carbon black (Super -P) and a mixture of a conductive graphite (KS-6) as a conductive agent, a molecular weight of between 20~120 million for polyvinylidene fluoride homopolymer (PVDF) as the binder, NMP is used in an amount of the lithium iron phosphate particle size, particle size distribution of the different added, the slurry viscosity which controls the range of the present embodiment 3000~ 20000cPo the mass percentage = LiFePO4: Super-P: KS-6: PVDF: NMP = 90: 3: 1: 6 : 130. 首先将PVDF充分溶解于NMP中,然后将其加入到已预先混合好的导电剂(Super-P+KS-6)和磷酸铁锂混合粉中,快速均勻搅拌4〜证后真空除泡,最后将配制好的浆料均勻涂布于厚度在12〜30 μ m之间的集流体铝箔上,经干燥、辊压、分切后进行极耳点焊,极耳为宽度在2〜20mm之间的铝带,极耳个数为1〜4个,完成正极片的制作(如图2所示)。 First PVDF sufficiently dissolved in NMP was then added to the pre-mixed conductive agent (Super-P + KS-6), and lithium iron phosphate powder mixture, after stirring for 4 ~ permit rapid and uniform vacuum defoaming, and finally the prepared slurry was uniformly applied to an aluminum foil current collector thickness between 12~30 μ m, dried, roll-pressed, the spot for cutting the tab, the tab width between 2~20mm aluminum strip, electrode tab number is 1 ~ 4, the completion of the positive electrode sheet was produced (FIG. 2).

[0040] 负极的制备:以H2O为溶剂,颗粒粒径分布在1〜30 μ m之间的人造石墨(中间相碳微球MCMB)为负极活性物质,超级导电碳黑(Super-P)和导电石墨(STO-15)为导电剂,水性粘结剂丁苯橡胶乳(SBR)与羧甲基纤维素钠(CMC)的混合物为为粘结剂, 水的用量根据使用的石墨的粒径大小、粒度分布不同进行添加,其添加比例在110〜170 之间,本实施例所用质量百分比为:MCMB : Super-P : SFG-15 : CMC : SBR : H2O = 92 : 2 : 1 : 2 : 3 : 130。 [0040] Preparation of negative electrode: of H2O as solvent, the particle size distribution between 1~30 μ m artificial graphite (mesophase carbon micro beads MCMB) as an anode active material, super-conductive carbon black (Super-P), and conductive graphite (STO-15) as a conductive agent, a mixture of an aqueous styrene-butadiene rubber binder milk (SBR) and sodium carboxymethyl cellulose (CMC) as a binder, the amount of water used in accordance with the particle size of graphite size, add different particle size distributions, in which the addition ratio between 110~170, in this embodiment the mass percentage: MCMB: Super-P: SFG-15: CMC: SBR: H2O = 92: 2: 1: 2: 3: 130. 首先将CMC均勻的分散于H2O中,然后分多次加入到预先混合好的超级导电碳黑导电剂和石墨混合粉中,搅拌均勻后加入SBR再次搅拌,均勻后抽真空除泡,最后将配制好的浆料均勻涂布于厚度在8〜20 μ m之间的集流体铜箔上,经干燥、 辊压、分切后进行极耳点焊,极耳为宽度在2〜20mm之间的镍带、铜镍复合带或铜带,极耳个数为1〜6个,完成负极片的制作(如图2所示)。 First, the CMC homogeneously dispersed in H2O then added a plurality of times to pre-mixed super conductive carbon black conductive agent and graphite mixed powder added SBR Stir again stirred, after vacuum defoaming uniform, and finally formulated slurry was uniformly coated on a current collector foil thickness between 8~20 μ m, dried, roll-pressed, the spot for cutting the tab, the tab width between the 2~20mm with nickel, copper-nickel or copper composite tape, the number of tabs of 1~6 months, to complete the production of the negative electrode sheet (see Figure 2).

[0041] 将分切好的正、负极极片和处理后的隔膜卷绕成极组,电极压实厚度为60〜 170μπι之间,注入上述电解液并进行封口,完成电池制作(如图1所示)。 [0041] The partial cut positive and negative electrode plate and a separator after treatment wound electrode group, the electrode compacted to a thickness between 60~ 170μπι, injecting the electrolytic solution and sealed to complete the cell fabrication (FIG. 1 shown).

[0042] 如图4〜7为实施例2制作电池的不同电流放电曲线。 [0042] FIG 4~7 different current discharge curve of the battery prepared in Example 2 embodiment. 电池充放电电压范围为2. 0〜3. 8V,15C放电容量与IC的比值为97. 9%。 Battery charge and discharge voltage range of 2. 0~3. 8V, 15C and the discharge capacity of the IC ratio 97.9%.

[0043] 实施例3 [0043] Example 3

[0044] 其正、负极片的制作方法及使用的隔膜和电解液均与实施例1中一致,但正、负极片的形状与组装方式与实施例1不一致,实施例1采用卷绕方式进行,实施例4采用叠片方式进行。 [0044] n thereof, and a method for manufacturing a negative electrode sheet and a separator were used in the electrolytic solution in accordance with Example 1, but the positive and negative plate shape and assembly inconsistent manner as in Example 1, Example 1 using the winding method , carried out in Example 4 using the laminated manner. 将按照实施例1的方式制作好的正、负极片用冲片机冲切成图3所示形状,再按正极、隔膜、负极、隔膜、正极的顺序层叠组合成极组,电极压实厚度为60〜170 μ m之间,注入电解液并进行封口,完成电池制作。 The manner of Example 1 produced a good positive, negative electrode sheet was punched into a punching machine with a shape shown in FIG. 3, then the positive electrode, separator, negative electrode, separator, positive electrode are sequentially stacked into the electrode assembly in combination, the thickness of compacted electrodes between 60~170 μ m, and injecting the electrolyte solution was sealed to complete the cell fabrication.

Claims (1)

1. 一种磷酸铁锂型安全高功率锂离子电池,其特征在于,所述电池通过以下工艺制备而得:正极的制备:以N- 二甲基吡咯烷酮为溶剂,颗粒粒径D50分布在0. 1〜20 μ m之间的磷酸铁锂为正极活性物质,超级导电碳黑和导电石墨的混合物为导电剂,分子量在20〜 120万之间的聚偏氟乙烯均聚物为粘结剂,N- 二甲基吡咯烷酮的使用量根据磷酸铁锂的粒径大小、粒度分布的不同进行添加,其浆料粘度控制范围为3000〜20000cP,所用质量百分比为=LiFePO4 :超级导电碳黑:导电石墨:聚偏氟乙烯均聚物:N-二甲基吡咯烷酮= 90 : 3 : 1 : 6 : 130,首先将聚偏氟乙烯均聚物充分溶解于N-二甲基吡咯烷酮中,然后将其加入到已预先混合好的导电剂和磷酸铁锂混合粉中,快速均勻搅拌4〜证后真空除泡, 最后将配制好的浆料均勻涂布于厚度在12〜30 μ m之间的集流体铝箔上,经 A lithium iron phosphate Safety high power lithium ion battery, wherein the battery is obtained by the following preparation process: Preparation of positive electrode: A two N- methylpyrrolidone as a solvent, the particle size distribution D50 0 lithium iron phosphate is between 1~20 μ m, the positive electrode active material a mixture of super-conductive carbon black and graphite as a conductive agent, a conductive, a molecular weight of between 1,200,000 20~ polyvinylidene fluoride homopolymer binder , the amount of N- dimethyl pyrrolidone sizes depending on the particle diameter of lithium iron phosphate, the particle size distribution is added, which is controlled in the range of slurry viscosity 3000~20000cP, the percentage of the mass = LiFePO4: super conductive carbon black: conductive graphite: polyvinylidene fluoride homopolymer: N- dimethyl pyrrolidone = 90: 3: 1: 6: 130, first polyvinylidene fluoride homopolymer two sufficiently dissolved in N- methylpyrrolidone, and then has been added to the pre-mixed conductive agent and mixing lithium iron phosphate powder, uniformly stirred April to permit rapid vacuum defoaming, and finally the prepared slurry was uniformly applied to a thickness between sets of 12~30 μ m fluid foil, dried 干燥、辊压、分切后进行极耳点焊,极耳为宽度在2〜20mm之间的铝带,极耳个数为1〜4个,完成正极片的制作,所述超级导电碳黑为Super-P,所述导电石墨为KS-6 ;负极的制备:以水为溶剂,颗粒粒径分布在1〜30 μ m之间的中间相碳微球为负极活性物质,超级导电碳黑和导电石墨为导电剂,水性粘结剂丁苯橡胶乳与羧甲基纤维素钠的混合物为粘结剂,水的用量根据使用的石墨的粒径大小、粒度分布不同进行添加,其添加比例在110〜170之间,所用质量百分比为:中间相碳微球:超级导电碳黑:导电石墨:羧甲基纤维素钠:水性粘结剂丁苯橡胶乳:水=92 :2:1:2:3: 130,首先将羧甲基纤维素钠均勻的分散于水中,然后分多次加入到预先混合好的超级导电碳黑导电剂和石墨混合粉中,搅拌均勻后加入水性粘结剂丁苯橡胶乳再次搅拌,均勻后抽真空除泡,最后将配 Dried, roll-pressed, the spot for cutting the tab, the tab width between 2~20mm aluminum strip, the number of electrode tab is ~ 4 months, to complete the production of the positive electrode sheet, the super-conductive carbon black of super-P, the electrically conductive graphite KS-6; preparation of negative electrode: water as solvent, the particle size distribution in the middle between 1~30 μ m mesocarbon microbeads as a negative electrode active material, super-conductive carbon black and a conductive graphite as a conductive agent, a mixture of milk and aqueous styrene-butadiene rubber binder sodium carboxymethyl cellulose as a binder, the amount of water added in accordance with the distribution of the different particle size of the graphite is used, the particle size, the proportion of added between 110~170, the percentage by mass: mesophase carbon microbeads: super conductive carbon black: conductive graphite: sodium carboxymethyl cellulose: aqueous binder SBR milk: water = 92: 2: 1: 2: 3: 130, sodium carboxymethyl cellulose is first uniformly dispersed in water and then added a plurality of times to pre-mixed super conductive carbon black conductive agent and graphite mixed powder, the addition of the aqueous binder stir SBR milk stirring again, even after vacuum defoaming, and finally with 好的浆料均勻涂布于厚度在8〜20 μ m之间的集流体铜箔上,经干燥、辊压、分切后进行极耳点焊,极耳为宽度在2〜20mm之间的镍带、铜镍复合带或铜带,极耳个数为1〜6个,完成负极片的制作,所述超级导电碳黑为Super-P,所述导电石墨为STO-15 ;电解液使用溶有lmol/L的LiPF6和体积比为1 : 1 : 1的碳酸乙烯酯+碳酸二乙酯+ 碳酸二甲酯混合溶剂的溶液,隔膜采用厚度为20 μ m的微孔聚乙烯膜,将分切好的正、负极极片和处理后的隔膜卷绕成极组,电极压实厚度为60〜170 μ m之间,注入上述电解液并进行封口,完成电池制作。 Slurry was uniformly coated on a current collector foil thickness between 8~20 μ m, dried, roll-pressed, the spot for cutting the tab, the tab width between the 2~20mm with nickel, copper-nickel or copper composite tape, the number of electrode tab is 1~6 months, to complete the production of the negative electrode sheet, the super-conductive carbon black to super-P, graphite as the conductive STO-15; electrolyte used solution of lmol / L of LiPF6 and a volume ratio of 1: 1: 1 of ethylene carbonate + diethyl carbonate + dimethyl carbonate mixed solvent solution, the separator a microporous polyethylene film with a thickness of 20 μ m, and the good cut positive and negative electrode plate and a separator after treatment wound electrode group, the electrode compacted to a thickness between 60~170 μ m, the electrolytic solution is injected and sealed to complete the cell fabrication.
CN 200710124463 2007-11-13 2007-11-13 Ferric phosphate lithium type safety high power lithium ion battery CN101436654B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200710124463 CN101436654B (en) 2007-11-13 2007-11-13 Ferric phosphate lithium type safety high power lithium ion battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200710124463 CN101436654B (en) 2007-11-13 2007-11-13 Ferric phosphate lithium type safety high power lithium ion battery

Publications (2)

Publication Number Publication Date
CN101436654A CN101436654A (en) 2009-05-20
CN101436654B true CN101436654B (en) 2011-06-15

Family

ID=40710971

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200710124463 CN101436654B (en) 2007-11-13 2007-11-13 Ferric phosphate lithium type safety high power lithium ion battery

Country Status (1)

Country Link
CN (1) CN101436654B (en)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2562852A3 (en) * 2009-09-22 2013-04-10 G4 Synergetics, Inc. High performance electrodes
CN101692064B (en) 2009-09-30 2012-09-05 彩虹集团电子股份有限公司 LiFePO4 positive plate for testing and preparation method thereof
CN101923962B (en) * 2010-03-23 2015-09-23 集盛星泰(北京)科技有限公司 A kind of active carbon electrode and the ultracapacitor comprising this electrode
CN101887992A (en) * 2010-05-06 2010-11-17 浙江天能能源科技有限公司 Manufacture method of ion-lithium phosphate battery for hybrid electric vehicle
CN101826634B (en) * 2010-05-17 2015-07-01 江西省福斯特新能源有限公司 Lithium ion battery and manufacturing method thereof
CN102290566B (en) * 2011-08-01 2014-01-15 邹平铭波电源有限公司 Lithium battery anode preparing method and lithium battery
CN102324553B (en) * 2011-09-02 2014-03-12 江西省福斯特新能源有限公司 Safe lithium ion battery
CN102324496A (en) * 2011-09-19 2012-01-18 江苏乐能电池股份有限公司 Tabletting method for lithium ion battery positive plate
CN102347513A (en) * 2011-09-30 2012-02-08 湖南大学 High-performance aqueous lithium iron phosphate power battery and manufacture method thereof
CN102403531B (en) * 2011-11-15 2014-03-05 山东精工电子科技有限公司 High rate lithium iron phosphate cell and preparation method thereof
CN102569720A (en) * 2011-12-02 2012-07-11 冠硕新能源(香港)有限公司 Battery
US10298043B2 (en) 2011-12-23 2019-05-21 Semiconductor Energy Laboratory Co., Ltd. Method for charging lithium ion secondary battery and battery charger
CN103066321B (en) * 2013-01-08 2016-05-04 河南环宇赛尔新能源科技有限公司 Large capacity high magnification type Soft Roll ferric phosphate lithium cell
CN103151513B (en) * 2013-03-13 2015-06-10 山东神工海特电子科技有限公司 High-performance ternary power battery and preparation method of high-performance ternary power battery
CN103259046B (en) * 2013-05-03 2016-05-25 深圳市力赛科技有限公司 The preparation method of the high rate lithium iron phosphate cell of quickly-chargeable
CN103468211A (en) * 2013-09-25 2013-12-25 深圳市旭冉电子有限公司 Abrasive and coating slurry of lithium-ion power battery diaphragm and preparation methods thereof
CN103468207A (en) * 2013-09-25 2013-12-25 深圳市旭冉电子有限公司 Abrasive and coating slurry of lithium-ion power battery diaphragm and preparation methods thereof
CN103715452B (en) * 2013-12-19 2016-04-13 山东威能环保电源科技股份有限公司 A kind of low-temperature lithium iron phosphate lithium-ion power battery
CN105336955A (en) * 2014-06-06 2016-02-17 苏州宝时得电动工具有限公司 Battery
CN104064713A (en) * 2014-07-10 2014-09-24 厦门大学 Composite diaphragm as well as preparation method and application thereof
CN104900904A (en) * 2015-05-25 2015-09-09 深圳市斯盛能源股份有限公司 Lithium ion secondary battery
CN106328985A (en) * 2015-06-17 2017-01-11 深圳市沃特玛电池有限公司 High-performance lithium iron phosphate cylindrical battery and preparation method thereof
CN104916868A (en) * 2015-07-03 2015-09-16 深圳市慧通天下科技股份有限公司 Cylindrical lithium ion power battery and manufacturing process thereof
CN105244973A (en) * 2015-11-11 2016-01-13 深圳鸿恩高科新能源有限公司 12V automobile emergency starting power supply capable of starting high displacement
CN105977468A (en) * 2016-07-04 2016-09-28 郑州人造金刚石及制品工程技术研究中心有限公司 High-capacity lithium ion battery negative electrode material and preparation method thereof
US20190229338A1 (en) * 2016-10-11 2019-07-25 Grst International Limited Anode slurry for lithium ion battery
CN106450328A (en) * 2016-10-14 2017-02-22 深圳市沃特玛电池有限公司 LiFePO4 power battery and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1819321A (en) 2006-03-06 2006-08-16 深圳市力多威电池有限公司 Lithium ion battery with high multiplying factor
CN1856890A (en) 2003-09-26 2006-11-01 三菱化学株式会社 Lithium composite oxide particle for positive electrode material of lithium secondary battery, and lithium secondary battery positive electrode and lithium secondary battery using the same
CN2870182Y (en) 2005-12-15 2007-02-14 中国电子科技集团公司第十八研究所 Device for connecting polar ear and polar column clip of lithium ion power cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1856890A (en) 2003-09-26 2006-11-01 三菱化学株式会社 Lithium composite oxide particle for positive electrode material of lithium secondary battery, and lithium secondary battery positive electrode and lithium secondary battery using the same
CN2870182Y (en) 2005-12-15 2007-02-14 中国电子科技集团公司第十八研究所 Device for connecting polar ear and polar column clip of lithium ion power cell
CN1819321A (en) 2006-03-06 2006-08-16 深圳市力多威电池有限公司 Lithium ion battery with high multiplying factor

Also Published As

Publication number Publication date
CN101436654A (en) 2009-05-20

Similar Documents

Publication Publication Date Title
CN101038960B (en) The non-aqueous electrolyte battery
CN1208866C (en) Lithium secondary battery by use of composite material covered with nano surface as active material of positive polar
CN101320821B (en) Energy storage device with both capacitor and lithium ion battery characteristics and manufacturing method thereof
JP2009272041A (en) Lithium-ion secondary battery
CN101577323B (en) Sulfenyl anode of lithium-sulfur rechargeable battery and preparation method thereof
CN102208598A (en) Electrode plate of graphene coating modified lithium secondary battery and manufacturing method thereof
CN1274052C (en) Method for producing lithium ion secondary cell
CN101409369A (en) Large-capacity high power polymer ferric lithium phosphate power cell and preparation method thereof
CN101079510A (en) A super capacitance cell
CN101710619A (en) Electrode plate for lithium ion battery and manufacturing method thereof
CN102362386A (en) Sodium ion secondary battery
CN101981732A (en) Method for manufacturing lithium secondary battery, lithium secondary battery, and lithium secondary battery system
CN102934266A (en) Electrode material for lithium secondary battery and lithium secondary battery
CN101499530B (en) Multi-multiplying power charging-discharging lithium ion battery and method for producing the same
CN100369314C (en) Preparation method for high rate phosphate lithium ion battery and battery prepared thereby
CN101891930B (en) Carbon nano tube-containing sulfur-based composite cathode material and preparation method thereof
CN100353606C (en) Lithium ion secondary cell
CN101510625B (en) Ultra-high magnification lithium ion battery
CN102185158A (en) Lithium sulfur battery provided with adsorption layer
CN101262078A (en) Quickly chargeable lithium ion battery and its making method
CN102208608B (en) Preparation method of carbon-sulfur composite material for lithium ion battery carbon cathode material
CN100546077C (en) Composite positive pole material, battery-super electric capacity energy storage means and preparation method
CN101373851B (en) Non-aqueous electrolytic solution secondary battery
CN102449811A (en) Lithium secondary battery with high energy density
CN101562261A (en) Lithium-sulfur battery and preparation method thereof

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C14 Grant of patent or utility model
PP01 Preservation of patent right