CN101408410A - Tunnel volume element deformation movable monitoring system and method - Google Patents

Tunnel volume element deformation movable monitoring system and method Download PDF

Info

Publication number
CN101408410A
CN101408410A CN 200810158286 CN200810158286A CN101408410A CN 101408410 A CN101408410 A CN 101408410A CN 200810158286 CN200810158286 CN 200810158286 CN 200810158286 A CN200810158286 A CN 200810158286A CN 101408410 A CN101408410 A CN 101408410A
Authority
CN
China
Prior art keywords
tunnel
data
ccd camera
deformation
barcode
Prior art date
Application number
CN 200810158286
Other languages
Chinese (zh)
Other versions
CN101408410B (en
Inventor
刘凤英
卢秀山
锐 宋
林 柳
独知行
冬 王
波 石
许君一
郑作亚
韩晓冬
Original Assignee
山东科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东科技大学 filed Critical 山东科技大学
Priority to CN 200810158286 priority Critical patent/CN101408410B/en
Publication of CN101408410A publication Critical patent/CN101408410A/en
Application granted granted Critical
Publication of CN101408410B publication Critical patent/CN101408410B/en

Links

Abstract

The invention discloses a tunnel body form deformation mobile monitoring system and a monitoring method thereof. The hardware comprises a laser scanner, a CCD camera, a speed meter, an inertial navigator, a central control unit and bar codes. The central operation control unit leads the hardware of each sensor to be synchronous, stores the data of each sensor and carries out the corresponding position and stature calculation so as to process the obtained point cloud data of the tunnel sections; the bar codes are distributed at the positions on the tunnel surface where the CCD camera can shoot and the storage position information of the bar codes is adopted as the position reference of moving carriers and sensors. The hardware of the tunnel body form deformation mobile monitoring system provided by the invention is helpful for quickly and dynamically collecting space data and for further carrying out the body form deformation analysis through three dimensional modeling and reconstruction of models so as to monitor the deformation process continuously.

Description

隧道体元形变移动监测系统及隧道体元形变移动监测方法 Deformation voxel tunnel and the tunnel body movement monitoring system membered deformation mobile monitoring method

技术领域 FIELD

本发明涉及一种地铁等的隧道形变移动监测系统,特别涉及一种能够装载于隧道中移动载体上的隧道体元形变移动监测系统。 The present invention relates to a moving subway tunnel deformation monitoring system, in particular, relates to a load carrier mobility tunnel in tunnel voxel deformation mobile monitoring system. 背景技术 Background technique

地铁隧道建成以后,特别是经过长期运营,会受地面承压力等周围环境、自身劳损等影响而产生变形。 After the completion of the subway tunnel, especially deformed after long-term operation, it will be affected by the surrounding environment such as ground bearing pressure, strain and so their impact. 较大的变形预示着工程灾害的发生。 Indicates that the occurrence of large deformations engineering disasters. 工程灾害的发生,从形变角度看,是--个从量变到质变的过程。 Engineering disasters occur, deformation from the point of view, is - from quantitative to qualitative change. 预防的主要手段之一就是对地铁隧道形变进行监测。 One of the primary means of prevention is to subway tunnel deformation monitoring.

目前,国内外常见的地铁隧道形变监测方法有以下几种: At present, the common method of deformation monitoring subway tunnels at home and abroad are the following:

自动化全站仪监测方法,系统由全站仪和遥控终端计算机组成,主要用于地铁工程施工期间对区间地铁隧道的保护性监测。 Automated total station monitoring methods, systems and total stations from the remote computer terminal, mainly used for protective monitoring interval Metro subway tunnel during construction. 全站仪采用可控制、可自动搜索目标棱镜的全站型经纬 Using the total station may be controlled, it can automatically search the target prism total station latitude

仪,如徕卡TCA1800/2003,用于数据采集;遥控终端计算机,用于在现场控制全站仪观测, 接收观测数据并进行预处理。 Instrument, such as the Leica TCA1800 / 2003, for data acquisition; remote computer terminal, for controlling the total station site observation, and observation data received pretreatment. 该套系统已成功应用于新加坡、广州等地的地铁施工过程中。 The system has been successfully applied to sets of subway construction in Singapore, Guangzhou and other places.

全站仪配合水准仪监测方法,运营阶段的地铁隧道,对于建筑物密集、隧道交错等重要地段,设置系列监测点,用全站仪测量监测点的水平位置,用水准仪测量监测点的高程,比较多次测量结果,判定监测点是否位移。 Total Station with Level monitoring methods, the operational phase of the subway tunnel, for dense buildings, tunnels and other important locations staggered, set series of monitoring points, monitoring points with a total station to measure the horizontal position, with the elevation Leveling monitoring points, more several measurement results, it is determined whether the displacement monitoring points. 国内运营地铁隧道形变监测多用此方法。 Domestic operators subway tunnel deformation monitoring and more with this method.

电子水平尺监测方法,由美国推出的一种形变监测仪器,作为机械量具,用于测量物体倾斜两点间高差。 Electronic spirit level monitoring methods, the U.S. launched a deformation monitoring instruments, as a mechanical measuring, for measuring a height difference between two points of the object is inclined. 后经改进,将多个电子水平尺线性串连,用来监测物体的线性不均匀沉降。 After improvement, the plurality of linear series of electronic spirit level, for linear differential settlement of the monitored object. 在上海地铁l、 2、 3号线,有二十多个区段工程采用了该技术进行形变监测。 In Shanghai subway l, 2, Line 3, there are more than twenty sector projects using this technique deformation monitoring.

摄影测量监测方法,利用高精度的数字化成像设备,通过相关的图像处理技术,由2D数字化影像恢复3D坐标,通过对比不同时刻成像的3D坐标变化情况而得出监测体的变形情况, 从而达到对形变进行监测的目的。 Monitoring A method of using high-precision digital image forming apparatus, through the associated image processing technology, the 2D digital image restoring 3D coordinates, by comparing the changes in the 3D coordinate different times imaged derived deformation monitoring body, so as to achieve the purpose of deformation monitoring. 近景摄影测量可以实现快速获得形变和移动瞬间整体信息, 提供面形变测量结果。 Close range photogrammetry can achieve rapid deformation and movement of the instantaneous integral obtained information, to provide the surface deformation measurements. 但是,该方法还没有达到实用化的阶段。 However, this method has not yet reached the practical stage. 其主要原因是:①通常的近景摄影测量解析方法物方控制点的分布和数量要求较高,需要常规的大地测量技术连续支持, 组织复杂,现场条件下难以得到满足;②对于喷浆支护的地下基础设施,由于缺乏纹理,影像匹配难以实现。 Which mainly are: ① higher distribution and the number of analysis method generally requires the control points to the object side close range photogrammetry, conventional geodetic techniques require continuous support, tissue complex, difficult to be met under field conditions; ② for shotcrete underground infrastructure, the lack of texture, image matching is difficult to achieve.

应力应变监测方法,根据应力应变理论,在隧道内安装拱形应力门或光纤光学感应器, 监测隧道断面形变。 The method of monitoring stress and strain, the stress strain theory, a door mounting arch stress or fiber optical sensors in the tunnel, the tunnel deformation monitoring section. 通过拱形门上固定几个点的变化分析,确定隧道壁的形变量。 Several points fixed by the arches change analysis, determining deformation of the tunnel wall. 该技术可以实时连续监测,不需停止施工或地铁运行,不需人工干预,成本较低。 The technology can be real-time continuous monitoring, no subway stop construction or operation, without human intervention, a lower cost. 但应力应变模型分析相对比较复杂。 However, stress-strain analysis model is relatively complicated. 收敛系统监测方法,美国SLOPE INDICATOR公司推出的巴赛特收敛系统是一种隧道剖面收敛自动测量仪器,其主要功能是实现隧道剖面的自动化测量。 Convergence system monitoring methods, the United States launched the SLOPE INDICATOR Bassett Convergence System is a tunnel cross-section convergence automatic measuring instrument, its main function is to achieve cross-section of a tunnel automated measurement. 功能包括:①记录隧道或洞室开挖时的轮廓变化过程,与预测、理论或设计的空间数据进行对比;②监测由于建筑施工、 滑坡导致的位移,或其它自然干扰所致的变形;③监测建筑物或建筑工地下伏隧道的形变, 以确保其在建筑物施工期间的安全,并以它的安全标准来控制建筑物的施工速度。 Features include: ① when recording the change in profile of the tunnel or cavern excavation process, compared with the predicted theoretical design or spatial data; ② monitoring displacement due construction, leading to landslides or other natural disturbances caused deformation; ③ monitoring of buildings or construction sites under the strain underlying the tunnel, to ensure their safety during the construction of the building, and with its safety standards to control the speed of construction of the building. 在上海地铁2号线施工中,该系统得到有效应用。 Construction in Shanghai Metro Line No. 2, the system has been effectively applied.

综上所述,在地铁等的隧道形变监测中,上述多种监测方法已得到应用,并能取得实效。 To sum up, in the deformation monitoring subway tunnel in the various monitoring methods have been applied, and to achieve tangible results. 但这些地铁等的隧道监测方法大都具有点形变或间断的面形变监测的特征,成果不能实时动态、有效地反映整体(或大范围)的形变,因此这些方法较适宜在施工现场或者预测的易变形区域实施,而不适宜对地铁等的隧道大范围、自动化、高频率的整体监测。 Yi However, these monitoring methods subway tunnels, etc. Most have a point deformation characteristics of surface deformation monitoring or intermittent, the results can not be real-time dynamic, effectively reflect the overall (or wide) deformation, and therefore these methods are more appropriate at the construction site or predicted embodiment deformation region, but not suitable for large-scale monitoring of the entire subway tunnel, automated, high frequency. 发明内容 SUMMARY

本发明任务之一在于解决现有技术中存在的技术缺陷,提供一种隧道体元形变移动监测系统,该监测系统可安装于隧道中运行的移动载体上,其硬件构成可根据实际需要有助于实现快速、动态地采集空间数据。 One object of the present invention is to solve the technical drawbacks of the prior art are provided a tunnel voxel deformation mobile monitoring system, the monitoring system may be mounted on a moving carrier running in a tunnel, which can help the hardware configuration according to actual needs to achieve rapid, dynamic collection of spatial data.

本发明任务之二在于提供一种隧道体元形变移动监测方法。 The task of the present invention is to provide a two-membered deformation mobile monitoring method of the tunnel body.

为实现发明任务一,其技术解决方案是: In order to achieve a task invention, the technical solutions are:

一种隧道体元形变移动监测系统,其硬件构成包括: A tunneling voxel deformation mobile monitoring system, the hardware configuration comprising:

用于获取隧道剖面点云数据的激光扫描仪; Tunnel cross section for acquiring point cloud data of the laser scanner;

用于获取隧道剖面的纹理和摄取条形码信息的CCD相机; It used to get the texture profile of the tunnel and intake CCD camera barcode information;

用于获取移动载体速度的速度计; Carrier speed for acquiring moving speed meter;

用于获取移动载体姿态的惯导仪; For acquiring a moving carrier INS instrument attitude;

中央运算控制装置,可用于对上述各个传感器进行硬件同步,存储各个传感器的数据, 同时进行相应的位置、姿态解算,对获取的隧道剖面点云数据进行处理; A central processing control means can be used for each of the above hardware synchronization sensors, each sensor for storing data, while the corresponding position, attitude solution, cross-sectional view of the tunnel of the point cloud data acquisition processing;

条形码,条形码布设在隧道表面CCD相机可以拍到的地方,条形码存储位置信息作为移动载体、各传感器的位置基准; Barcode, the barcode tunnel laid on the surface where the CCD camera can be photographed, the position information of the barcode is stored as the moving carrier, the reference position of each sensor;

上述激光扫描仪、CCD相机、速度仪及惯导仪通过数据传输线路连接中央运算控制装置。 The central processing control device of the laser scanner, the CCD camera, and the speedometer instrument INS is connected via a data transmission line.

为实现发明任务二,其技术解决方案是- To achieve the task two invention, the technical solution is -

一种隧道体元形变移动监测方法,包括如下步骤: A tunneling voxel deformation mobile monitoring method, comprising the steps of:

a将激光扫描仪、CCD相机、速度计、惯导仪及中央运算控制装置安装于在隧道中运行的移动载体上;上述激光扫描仪、CCD相机、速度仪及惯导仪通过数据传输线路连接中央运算控制装置;b在隧道中,沿一侧隧道壁或两侧隧道壁按设定距离规则地设置条形码,条形码存储位置信息作为移动载体、各传感器的位置基准,CCD相机能够摄取上述条形码; a laser scanner, the CCD camera, speedometer, inertial navigation devices and a central processing control device is mounted on a moving carrier running in the tunnel; the laser scanner, the CCD camera, and a speedometer instrument INS is connected via a data transmission line the central processing control device; B in the tunnel, the tunnel wall along one side or both sides of the tunnel wall by a set distance are regularly provided a barcode, the barcode information of the storage location as a mobile carrier, the reference position of each sensor, the CCD camera capable of taking the above-described barcode;

c在歩骤a及b完成后,移动载体在隧道中运行,与此同时激光扫描仪、CCD相机、速度计及惯导仪同歩工作,并将获取信号数据实时传递给中央运算处理装置。 In step c ho a and b is completed, moving carrier running in the tunnel, while the laser scanner, the CCD camera, and a speedometer instrument INS ho work with, and obtain real time signal data transmitted to the central processing unit.

上述歩骤c中,还包括歩骤: Ho above step (c), ho step further comprising:

cl中央运算控制装置对上述各个传感器进行硬件同步,存储各个传感器的数据,同时进行相应的位置、姿态解算,对获取的隧道剖面点云数据进行处理。 cl central processing unit controlling each of the above hardware synchronization sensors, each sensor for storing data, while the corresponding position, attitude solution, cross-sectional view of the tunnel point cloud data acquired for processing.

本组发明具有的有益效果是: Group present invention has beneficial effects:

特别适用于地铁隧道的形变监测,地铁机车可兼作为移动载体,本发明可设置在移动载体即地铁机车上,车辆运行过程中能够快速、动态地采集空间数据,有助于开展后续相关工作。 Particularly suitable for monitoring the deformation of the subway tunnel, subway locomotive may also serves as a movable carrier, the present invention may be provided on a moving carrier underground locomotive i.e., during vehicle operation can be quickly, dynamically collect spatial data, related follow-up work help. 诸如通过三维建模和模型重建,进行体元形变分析,从而实现连续监测形变过程的目的。 Such as by three-dimensional modeling and model reconstruction, for voxels deformation analysis, in order to achieve the purpose of continuous monitoring of the deformation process. 体元形变分析技术,能客观地刻画三维形变场,使得形变监测过程具有连续性,可视性和可靠性。 Voxel deformation analysis can objectively characterize the three-dimensional deformation field, so that deformation monitoring process continuity, reliability and visibility. 该系统及方法的应用能有效地避免监测与运营的矛盾,改善监测技术人员的工作环境。 Application of the system and method can effectively monitor and prevent conflicts operations, improve environmental monitoring technicians. 同时,也将拓展形变监测的技术方法,为其他地下工程形变监测提供一种新的方法与思路。 It also will expand the technical methods of deformation monitoring, to provide a new method and thought for other underground works deformation monitoring.

附图说明 BRIEF DESCRIPTION

图1为本发明一种实施方式的主要硬件构成示意简图。 FIG main hardware configuration of one embodiment of a schematic diagram of the present invention.

图2为上述实施方式的一种运行过程及步骤流程框图。 A method of operating procedure and step 2 is a block flow diagram of the above embodiment.

下面结合附图对本发明进行说明: The present invention will be described in conjunction with the accompanying drawings:

具体实施方式 Detailed ways

结合图1及图2, 一种隧道体元形变移动监测系统l,其硬件构成包括:在隧道中行驶的 In conjunction with FIGS. 1 and 2, a tunneling voxel deformation mobile monitoring system L, the hardware configuration comprising: driving in a tunnel

移动载体2、激光扫描仪3、 CCD相机4、高精度速度计5、中低精度惯导仪6及中央运算控制装置7。 Moving carrier 2, a laser scanner 3, CCD camera 4, 5 speedometer precision, low accuracy inertial navigation apparatus 6 and a central processing control unit 7. 激光扫描仪3、 CCD相机4、高精度速度仪5及中低精度惯导仪6通过信号传输线路连接中央运算控制装置7。 Laser scanner 3, CCD camera 4, 5 and precision speedometer low precision instrument INS 6 central processing unit 7 is connected via a control signal transmission line. 上述硬件构成中,还有能为CCD相机摄取的条形码8,条形码8 按设定距离规则地设置在隧道壁上。 The above-described hardware configuration, as well as a CCD camera capable of taking bar code 8, by setting the distance of the bar code 8 are regularly arranged on the tunnel wall.

上述硬件构成中,激光扫描仪用于获取隧道剖面点云数据,速度计用于获取载体的速度, 惯导仪用于获取载体的姿态,利用这些信息将获取的点云数据归算到大地坐标系下,CCD相机用于获取隧道剖面的纹理和摄取条形码信息。 The above-described hardware configuration, a laser scanner for acquiring cross-sectional point cloud data tunnel, a speedometer for obtaining speed vector, inertial navigation instrument used to obtain the attitude of the carrier, use this information to obtain the point cloud data is scaled to the geodetic coordinate under Department, CCD camera used to obtain texture tunnel profile and uptake of barcode information. 激光扫描仪通过并口、速度计和惯导器件通过串口、 CCD通过IEEE 1394接口与中央运算控制装置通信。 Laser scanner via the parallel port, the speedometer and the inertial navigation device via the serial port, the CCD via the IEEE 1394 interface means for communicating with the central control operation. 其中中央运算控制装置用于对 Wherein the central processing control means for

各个传感器进行硬件同步,存储各个传感器的数据,同时进行相应的位置、姿态解算,对获取的隧道剖面点云数据进行处理。 Each hardware synchronization sensors, each sensor for storing data, while the corresponding position, attitude solution, cross-sectional view of the tunnel point cloud data acquired for processing. 条形码布设在隧道表面CCD相机可以拍到的地方,条形码存储位置信息从而对移动载体进行精确定位,作为隧道运动载体、各种传感器的位置基准,定姿即确定载体在运动过程的航向、滚动以及俯仰等运动状态;定位即确定载体及各传感器的空间位置,从而确定激光扫描点的三维坐标,定姿是为激光点云精确定位的一个环节,定位定姿在监测中主要是为了确定激光点云的精确位置,通过不同时刻对相同隧道剖面的位置信息采集,通过两次之间的图像匹配,确定隧道的体变形情况。 Laid in the tunnel face barcode CCD camera can take place, so that the bar code the location information to the mobile carrier precise positioning, as the motion vector tunnel, the reference position of the various sensors, i.e. to determine Attitude Heading vectors of the movement, scrolling, and pitching motion and the like; i.e., determining the spatial positioning and the sensors of the position of the carrier, thereby determining three-dimensional coordinates of the laser scanning point, a link for the attitude determination is precise positioning of the laser point cloud, positioning attitude determination mainly in order to determine the monitoring laser spot the exact location of the cloud, the position information acquired at different times by the same tunnel section, by matching between the two images, to determine the deformation of the tunnel body. 一种隧道体元形变移动监测方法,包括如下步骤: A tunneling voxel deformation mobile monitoring method, comprising the steps of:

将上述激光扫描仪、CCD相机、速度计、惯导仪及中央运算控制装置安装于在隧道中运行的移动载体上;上述激光扫描仪、CCD相机、速度仪及惯导仪通过数据传输线路连接中央运算控制装置; The above-described laser scanner, the CCD camera, speedometer, inertial navigation devices and a central processing control device is mounted on a moving carrier running in the tunnel; the laser scanner, the CCD camera, and a speedometer instrument INS is connected via a data transmission line The central processing control device;

在隧道中,沿一侧隧道壁或两侧隧道壁按设定距离规则地设置条形码,条形码存储位置信息作为移动载体、各传感器的位置基准,CCD相机能够摄取上述条形码; In the tunnel, the tunnel wall along one side or both sides of the tunnel wall by a set distance are regularly provided a barcode, the barcode information of the storage location as a mobile carrier, the reference position of each sensor, the CCD camera capable of taking the above-described barcode;

在歩骤a及b完成后,移动载体在隧道中运行,与此同时激光扫描仪、CCD相机、速度计及惯导仪同步工作,并将获取信号数据实时传递给中央运算处理装置;中央运算控制装置对上述各个传感器进行硬件同步,存储各个传感器的数据,同时进行相应的位置、姿态解算, , Ho run moving carrier and a step b is completed in the tunnel, while the laser scanner, the CCD camera, and a speedometer instrument INS synchronization, and stores the acquired data in real time a signal is transmitted to a central processing unit; central arithmetic means for controlling each of the above hardware synchronization sensors, each sensor for storing data, while the corresponding position, attitude solution,

对获取的隧道剖面点云数据进行处理。 Tunnel profile point cloud data captured for processing.

上述硬件构成及方法可实施下述运行过程及步骤: The above-described hardware configuration and operating method may be implemented by the following process steps and:

建立隧道曲线坐标系,设计和布设条形码,测定条形码的曲线坐标;进行定位、定姿算法研究,编制条形码图像识别软件和空间匹配软件;通过试验验证和优化定位、定姿模型、 算法;编制曲线坐标系统与国家地理坐标基准之间的转换软件;上述计算机中装载条形码图像识别软件和空间匹配软件,以及装载曲线坐标系统与国家地理坐标基准之间的转换软件。 Establishing a tunnel curvilinear coordinate system, design and layout bar code, measured curvilinear coordinates barcode; positioning study attitude determination algorithm, the preparation of the barcode image recognition software and spatial matching software; verified by experiment and optimize positioning, attitude model algorithm; preparation curve between the coordinate system of conversion software with national geographic coordinates of reference; and the computer is loaded barcode image recognition software and spatial matching software, and the software converts the coordinate system between the loading curve with national geographic coordinates reference.

建立地铁隧道三维模型,包括建模数据重采样、建模数据预处理、特征面的提取和三维模型的建立,并进行三维模型序列化与反序列化。 3D model tunnel, comprising modeling data resampling preprocessing modeling data, and establishing three-dimensional model feature extraction surface, and a three-dimensional model serialization and deserialization.

根据不同时刻的扫描数据,对同一目标建立三维时变模型。 According to scan data at different times, varying the establishment of three-dimensional model on the same target.

确定最小形变体元,构建三维形变场。 Determining a minimum deformation voxels, construct a three-dimensional deformation fields.

基于三维形变场,采用FFT、小波分析等对地铁隧道的形变分析,作出相关结论。 Based on three-dimensional deformation field, with a deformation analysis of the subway tunnel FFT, wavelet analysis, to make relevant conclusions. 上述相应部分较为具体的说明如下- The above-mentioned respective portions are explained below more specifically -

上述移动监测系统主要涉及多传感器时空标定技术,实时数据采集、存储与管理技术, The movable multi-sensor monitoring system relates temporal calibration technology, real time data acquisition, storage and management,

移动地理坐标框架、系统定位与定姿技术,多传感器数据融合技术,隧道三维建模与显示技 Mobile geographic coordinate frame, positioning and attitude determination system, multi-sensor data fusion techniques, the three-dimensional modeling and display tunnel TECHNOLOGY

术以及基于体元特征的形变分析理论等。 Surgery and deformation analysis theory voxel based features.

将激光扫描仪、CCD相机、高精度速度计、中低精度惯导等传感器有机集成;通过其配置 The laser scanner, the CCD camera, a speedometer precision, low-precision inertial navigation sensors such as an organic integrated; configured by

的中央运算控制装置,实现多传感器的同步及数据采集、传输与存储;可采用工业测量技术, The central processing control device, and synchronize data collection, transmission and storage of multi-sensor; industrial measurement techniques may be employed,

进行传感器之间空间关系的精确标定,构建传感器之间几何关系模型。 Accurate calibration of the spatial relationship between the sensor, between the sensor building geometry model. 定位与定姿 Positioning and Attitude

以地铁机车运动方向为纵轴构建曲线坐标系,建立曲线坐标系与国家地理坐标框架的转换模型。 To the longitudinal direction of movement of subway locomotive for the construction of curvilinear coordinates, create a conversion model curvilinear coordinates with National Geographic coordinate frame. 采用条形码技术,配以CCD相机、高精度速度计及中低精度惯导进行系统运动状态下的定位与定姿;基于移动载体(地铁机车)运动的惯性中心,融合多传感器数据,进行空间匹配,实现监测系统的定位与定姿。 Bar code technology, coupled with a CCD camera, with high accuracy and low accuracy of the speedometer INS positioning and attitude determination system in motion; inertia based movement of the center of a moving carrier (subway locomotive), multi-sensor data fusion, spatial matching to achieve positioning system monitoring and attitude. 具体为:数据融合,移动载体(地铁机车)在正常运行情况下,其惯性中心处于圆曲线变化;基于这一前提,能够得出条形码CCD影像数据、精 Specifically: data fusion, moving carrier (subway locomotive) Under normal operating conditions, in which the inertia center circle curve; Based on this premise, the bar code can be derived CCD image data, fine

密速度计数据以及中低精度惯导数据融合的方法。 Encrypted data and the method speedometer low precision Inertial Navigation Data Fusion. 条形码的图像识别 Barcode image recognition

基于条形码在曲线坐标系中的位置、系统所摄的条形码CCD影像,反演CCD相机曝光瞬间的系统位置、历元速度。 In the graph based on the position coordinates in the bar code, the bar code system CCD image pickup, the inversion position of the CCD camera exposure system instantaneous speed epoch. 在条形码空间数据约束下,校正速度计与惯导数据,实现监测系统运动状态后处理连续定位、定姿。 In the bar code data space constraints, the speedometer and the corrected INS data, motion monitoring system to achieve continuous positioning process, attitude determination.

激光扫描数据预处理 Laser Scanning Data Preprocessing

在以载体运动方向为纵轴的曲线坐标系中,基于条形码空间数据和轨道方向特征,融合CCD影像数据、高精度速度计数据和中低精度惯导数据,进行激光扫描数据预处理,并建立扫描数据的曲线坐标特征。 In the direction of movement of the carrier to the vertical axis of curvilinear coordinates, based bar code data and spatial directions wherein tracks, CCD image data fusion, high-precision low-speed data and meter accuracy inertial navigation data, data preprocessing laser scanning, and the establishment of coordinates of the characteristic curve of the scan data. 诸如多传感器集成系统数据预处理模型与算法,包括时间匹配、 空间数据融合、激光扫描数据的时空定标,冗余数据剔除等。 Model and data preprocessing algorithms such as an integrated multi-sensor system, comprising a time matching, spatial data fusion, laser scanning temporal calibration data, remove redundant data and the like.

三维建模与管理 Three-dimensional modeling and management

以激光点云主体数据与非主体数据的分离原则和方法,确定三维建模数据重采样分辨率选取原则;分析地铁隧道的空间形态,研究特征点、特征面的提取技术与方法;得出三维模型的序列化与反序列化,实现三维模型网络传输、管理与分析。 Laser point cloud method and the principle of separation body data and non-data main body, determining the three-dimensional modeling data selection principle resampling resolution; Analysis of Spatial Form subway tunnel, research feature points, feature extraction methods and surface; three stars inverse model serialization and serialization, three-dimensional model of the network transmission, management and analysis.

体元形变分析与形变场 Voxel deformation and deformation field analysis

由形变体元描述监测对象形变的理论与方法,及基于体元的形变分析技术与最小体元的确定原则,将体元形变向量、形变矩阵和空间特征,构建三维形变场,进而得出监测体的形变规律。 Theory and Method of the object by the deformation of the deformation body element described above, and based on the principle of determining voxel deformation analysis and minimum voxel, the voxel deformation vectors, matrices and spatial characteristics of the strain, construction of 3D deformation field, and then come to the monitoring deformation law body.

就上述有关部分进行的一个具体实验例1: On a specific experimental example above about 1 part:

采用SICK291型二维激光扫描仪,其主要指标为:测程8m,测距精度lmm,扫描张角180° , 线频率5Hz,每线361点。 SICK291 using two-dimensional laser scanner, the main indicators are: Range 8m, ranging accuracy lmm, the scanning field angle 180 °, the line frequency 5Hz, 361 points per line. 采用自制里程计,灵敏度O. lmm。 Using the odometer self sensitivity O. lmm. 模拟试验选取井下30米隧道作为试验场。 Downhole Simulation Test selected test site 30 meters as a tunnel.

将SICK291型二维激光扫描仪固定于矿车上,人力推动矿车,随着矿车的运行,扫描仪对巷道面进行扫描;扫描仪与计算机连接,由计算机实时接收数据。 The two-dimensional laser scanner SICK291 fixed to the tub, to promote human tub, as the tub running, the scanner scans the surface of the roadway; scanner connected to the computer, the data received in real time by a computer. 扫描仪位置由与矿车车轮同歩的里程计获得,确定初始位置后,里程计可以记录扫描仪实时所在的位置。 The scanner position obtained by a tub with ho odometer wheel, determining the initial position, the odometer can be recorded in real time the position of the scanner is located. 通过预研,得到以下初步结论: By pre-research, the following preliminary conclusions:

对试验场进行100次重复扫描。 On the test site 100 times repeated scans. 因操作等原因,其中2次数据不可用,可用于巷道三维建模的数据为98次。 Reasons operation, wherein the secondary data is not available, the data can be used for three-dimensional modeling of the tunnel was 98 times. 建立井下坐标系,以初始点为原点,以轨道方向为Y轴,侧向垂直于轨道方向为X轴,竖直方向为Z轴,构成左手系。 Establishing downhole coordinate system, the initial point of origin, the track direction is the Y-axis, perpendicular to the track direction of the lateral axis X, a vertical direction of the Z-axis, left-handed configuration. 试验数据分析中,扫描数据经过预处理和坐标转换,以50次扫描结果得到的矿井巷道面三维模型为基准,将另外48次扫描数据分别分成6组(8次一组)和3组(16次一组),对每组分别建立三维模型,与基准巷道面进行重复性分析。 Analysis of experimental data, the scan data coordinate conversion and pre-processed, three-dimensional surface model of the mine tunnel 50 scans the results obtained as a reference, an additional 48 scans data are respectively divided into six groups (a group of eight), and group 3 (16 I. group), each group were established three-dimensional model, with reference repetitive analysis roadway surface. 结果显示,8次组的偏差中误差最大值为6.2mm,平均值为4. 8ram; 16次组的偏差中误差最大值为4. 5mra,平均值为4. 3mm。 The results showed that the deviation of group 8 times a maximum error of 6.2mm, an average value of 4. 8ram; 16 group offset error is the maximum value of 4. 5mra, an average value of 4. 3mm.

就上述有关部分进行的另一个具体实验例2: Another specific embodiment of the above-described experiment on about 2 parts:

采用180° SICK扫描仪,型号为LMS200,线釆样率达到76线/秒,采样精度能达到lmra, 最小可分辨形变量为3mm,故可以达到预期指标。 180 ° SICK using scanner model LMS200, preclude the sample rate of the line 76 lines / sec, sampling accuracy can be achieved lmra, minimum resolvable deformation of 3mm, it is possible to achieve the desired targets. 利用地铁已有的地理坐标系统和轨道信息, 同时将隧道视作空间形状拓扑不变量进行一定的变换。 Use of the existing subway geographic coordinate system and track information, and will shape space tunnel deemed topological invariants of a certain transformation.

采用地铁机车作为移动载体,每天扫描数十次,采用每天的扫描数据进行曲面建模,形成体;隔天(或隔数天)将两个模型进行空间配准,监测被测对象的体变形量。 Deformation day (or every few days) the two models spatial registration, monitoring the measured object; locomotive as MTR-moving carrier, a scanning dozens per day, every day of data is performed by scanning surface modeling, the body is formed the amount. 采用数十次扫描数据进行曲面建模,既增加了点云密度,又提高了模型精度。 Scan data using dozens of surface modeling, both to increase the density of the cloud point, but also improves the accuracy of the model. 特别是体元形变分析,其精度远远高于单点监测精度。 In particular voxel deformation analysis, which is more accurate than single point monitoring accuracy.

采用曲线坐标系,监测系统运动方向与坐标纵轴一致,使得航向姿态误差对于建模的影响为一固定值,不影响形变分析。 Using curvilinear coordinate system, the monitoring system consistent with the direction of movement and longitudinal coordinates, so that the impact heading attitude error modeled as a fixed value, does not affect the deformation analysis.

地铁隧道一般为拱形构筑物,我们所关心的是与载体运动方向平行的立面墙体的向内形变。 Subway tunnel is generally arch structures, we are concerned with it is parallel to the direction of movement of the carrier facade wall inward deformation. 载体在一定速度下惯性中心处于圆曲线变化,俯仰角误差的影响所导致的扫描点仅在纵轴方向上错位。 At a certain speed vector in the center of inertia of the circular curve, the influence of the scanning spot pitch angle errors caused by misalignment only in the longitudinal direction. 当俯仰角误差小于0.5。 When the pitch angle error is less than 0.5. 时,对于一般地铁隧道,错位小于3cm,远远小于一次扫描点间距;扫描距离误差影响小于0.2mm,小于扫描距离精度。 When, for general subway tunnel, dislocation less than 3cm, much less than one scan pitch; Error of the scanning distance of less than 0.2mm, less than the scan distance accuracy. 因此,俯仰角误差对于建模的影响可以忽略。 Accordingly, the pitch angle error is negligible impact modeling. 横滚角误差的影响所导致的扫描点仅在竖轴轴方向上错位,影响量与俯仰角误差相同。 Effect of the scanning spot roll angle error caused only in the axial direction of the vertical axis displacement, the same amount of influence the pitch angle error.

设计条形码之间的间距为500m,若地铁机车行进速度为70km/h,行驶500m需要26s。 The distance between the bar code is designed to 500m, if the subway locomotive traveling speed of 70km / h, with 500m required 26s. 在条形码数据空间约束下的高精度速度计数据与中低精度惯导数据的融合后精度,可以达到上述要求。 Speedometer precision data in bar code data and space constraints fusion INS accuracy in low precision data, can meet these requirements.

本发明可用于地铁隧道、矿山巷道等地下工程及设施。 The present invention can be used in subway tunnels, mines and other underground works and tunnel facilities.

Claims (3)

1、一种隧道体元形变移动监测系统,特征是其硬件构成包括: 用于获取隧道剖面点云数据的激光扫描仪; 用于获取隧道剖面的纹理和摄取条形码信息的CCD相机; 用于获取移动载体速度的速度计; 用于获取移动载体姿态的惯导仪; 中央运算控制装置,可用于对上述各个传感器进行硬件同步,存储各个传感器的数据,同时进行相应的位置、姿态解算,对获取的隧道剖面点云数据进行处理; 条形码,条形码布设在隧道表面CCD相机可以拍到的地方,条形码存储位置信息作为移动载体、各传感器的位置基准; 所述激光扫描仪、CCD相机、速度仪及惯导仪通过数据传输线路连接中央运算控制装置。 1, a tunneling voxel deformation mobile monitoring system, wherein the hardware configuration comprising: a laser scanner for acquiring point cloud data of the sectional tunnel; tunnel section for obtaining the texture and uptake CCD camera barcode information; means for obtaining speedometer speed moving carrier; for acquiring the posture of the moving carrier INS instrument; central processing control means can be used for each of the above hardware synchronization sensors, each sensor for storing data, while the corresponding position, attitude solution of tunnel sectional acquired point cloud data processing; barcode, the barcode tunnel laid on the surface where the CCD camera can be photographed, the position information of the barcode is stored as the moving carrier, the reference position of each sensor; a laser scanner, a CCD camera, speedometer and a central processing unit INS control device via a data transmission line.
2、 一种隧道体元形变移动监测方法,特征是包括如下步骤:a将激光扫描仪、CCD相机、速度计、惯导仪及中央运算控制装置安装于在隧道中运行的移动载体上;上述激光扫描仪、CCD相机、速度仪及惯导仪通过数据传输线路连接中央运算控制装置;b在隧道中,沿一侧隧道壁或两侧隧道壁按设定距离规则地设置条形码,条形码存储位置信息作为移动载体、各传感器的位置基准,CCD相机能够摄取上述条形码;c在步骤a及b完成后,移动载体在隧道中运行,与此同时激光扫描仪、CCD相机、速度计及惯导仪同步工作,并将获取信号数据实时传递给中央运算处理装置。 2, a tunneling voxel deformation mobile monitoring method characterized by comprising the steps of: a laser scanner, the CCD camera, speedometer, inertial navigation devices and a central processing control device is mounted on a moving carrier running in the tunnel; and the the central processing unit controls laser scanner, the CCD camera, and the speedometer instrument INS is connected via a data transmission line; B in the tunnel, the tunnel wall along one side or both sides of the tunnel wall by a set distance are regularly arranged barcode, barcode storage location information as the moving carrier, the reference position of each sensor, the CCD camera capable of taking the above-described barcode; C, run in tunnels moving carrier after completion of steps a and b, while the laser scanner, the CCD camera, and a speedometer instrument INS synchronization, and stores the acquired data in real time a signal is transmitted to the central processing unit.
3、 根据权利要求2所述的隧道体元形变移动监测方法,其特征在于:所述步骤c中还包括步骤:cl中央运算控制装置对上述各个传感器进行硬件同步,存储各个传感器的数据,同时进行相应的位置、姿态解算,对获取的隧道剖面点云数据进行处理。 3. The mobile monitoring method tunnel deformation element body according to claim 2, wherein: said step (c) further comprises the step of: cl central processing unit for controlling each of the above hardware synchronization sensors, each sensor for storing data, while the corresponding position, attitude solution, cross-sectional view of the tunnel point cloud data acquired for processing.
CN 200810158286 2008-10-28 2008-10-28 Tunnel volume element deformation movable monitoring system and method CN101408410B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200810158286 CN101408410B (en) 2008-10-28 2008-10-28 Tunnel volume element deformation movable monitoring system and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200810158286 CN101408410B (en) 2008-10-28 2008-10-28 Tunnel volume element deformation movable monitoring system and method

Publications (2)

Publication Number Publication Date
CN101408410A true CN101408410A (en) 2009-04-15
CN101408410B CN101408410B (en) 2010-08-11

Family

ID=40571518

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200810158286 CN101408410B (en) 2008-10-28 2008-10-28 Tunnel volume element deformation movable monitoring system and method

Country Status (1)

Country Link
CN (1) CN101408410B (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101551238B (en) 2009-05-13 2010-09-15 西安交通大学 Method for measuring the deformation of large-sized workpiece
CN101936715A (en) * 2010-08-16 2011-01-05 上海地铁盾构设备工程有限公司;同济大学 Attitude reduction method of taking lens for detecting overall deformation of subway tunnel
CN102564393A (en) * 2011-12-28 2012-07-11 中铁二十二局集团有限公司 Method for monitoring and measuring full section of tunnel through three-dimensional laser
CN102564335A (en) * 2012-01-16 2012-07-11 苏州临点三维科技有限公司 Method for measuring deformation of large-scale tunnel
CN102607447A (en) * 2012-03-08 2012-07-25 北京北科安地科技发展有限公司 Method for rapidly monitoring deformation by aid of ground-based three-dimensional laser scanner
CN103226844A (en) * 2013-05-16 2013-07-31 北京建筑工程学院 Three-dimensional geological tunnel modeling method based on spatial data structure system
CN103837125A (en) * 2014-03-19 2014-06-04 中铁隧道集团有限公司 Convergence monitoring system for tunnel construction
CN103852025A (en) * 2014-03-19 2014-06-11 北京工业大学 Method for monitoring vertical deformation in rail way underlying substratum by applying 3D laser scanning technology
CN103884335A (en) * 2014-04-09 2014-06-25 北京数联空间科技股份有限公司 Remote sensing and photographic measurement positioning method based on two-dimension code geographic information sign
CN104089653A (en) * 2014-07-11 2014-10-08 中国路桥工程有限责任公司 Automated remote measurement and control system of tunnel construction stress and deformation
CN104390625A (en) * 2014-11-24 2015-03-04 国家电网公司 Exterior three-dimensional deformation monitoring method of street power station
CN104567708A (en) * 2015-01-06 2015-04-29 浙江工业大学 Tunnel full-section high-speed dynamic health detection device and method based on active panoramic vision
CN105203551A (en) * 2015-09-11 2015-12-30 尹栋 Car-mounted laser radar tunnel detection system, autonomous positioning method based on tunnel detection system and tunnel hazard detection method
CN105652305A (en) * 2016-01-08 2016-06-08 深圳大学 Three-dimensional positioning and attitude-determining method and system for track detection platform in dynamic environment
CN105953740A (en) * 2016-07-04 2016-09-21 河北稳控科技有限公司 Tunnel deformation monitoring device
CN106053475A (en) * 2016-05-24 2016-10-26 浙江工业大学 Tunnel disease full-section dynamic rapid detection device based on active panoramic vision
CN106124145A (en) * 2016-06-20 2016-11-16 上海理工大学 Model test device of multi-slip surface landslide sector tunnel influence under vibration loads
CN106895787A (en) * 2017-02-27 2017-06-27 武汉理工大学 Deformation monitoring system and method based on visible light positioning technology
CN107289894A (en) * 2017-06-26 2017-10-24 中国电建集团成都勘测设计研究院有限公司 Three dimensional method of quickly determining reservoir bank collapse scale
WO2017197617A1 (en) * 2016-05-19 2017-11-23 深圳市速腾聚创科技有限公司 Movable three-dimensional laser scanning system and movable three-dimensional laser scanning method
CN108387222A (en) * 2018-03-06 2018-08-10 黑龙江工业学院 Position positioning system for surveying and mapping

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101551238B (en) 2009-05-13 2010-09-15 西安交通大学 Method for measuring the deformation of large-sized workpiece
CN101936715A (en) * 2010-08-16 2011-01-05 上海地铁盾构设备工程有限公司;同济大学 Attitude reduction method of taking lens for detecting overall deformation of subway tunnel
CN102564393A (en) * 2011-12-28 2012-07-11 中铁二十二局集团有限公司 Method for monitoring and measuring full section of tunnel through three-dimensional laser
CN102564335B (en) * 2012-01-16 2014-11-26 苏州临点三维科技有限公司 Method for measuring deformation of large-scale tunnel
CN102564335A (en) * 2012-01-16 2012-07-11 苏州临点三维科技有限公司 Method for measuring deformation of large-scale tunnel
CN102607447B (en) 2012-03-08 2014-08-20 北京北科安地科技发展有限公司 Method for rapidly monitoring deformation by aid of ground-based three-dimensional laser scanner
CN102607447A (en) * 2012-03-08 2012-07-25 北京北科安地科技发展有限公司 Method for rapidly monitoring deformation by aid of ground-based three-dimensional laser scanner
CN103226844A (en) * 2013-05-16 2013-07-31 北京建筑工程学院 Three-dimensional geological tunnel modeling method based on spatial data structure system
CN103226844B (en) * 2013-05-16 2016-09-28 北京建筑工程学院 A three-dimensional geological modeling roadway system based on spatial data structure
CN103837125A (en) * 2014-03-19 2014-06-04 中铁隧道集团有限公司 Convergence monitoring system for tunnel construction
CN103852025A (en) * 2014-03-19 2014-06-11 北京工业大学 Method for monitoring vertical deformation in rail way underlying substratum by applying 3D laser scanning technology
CN103837125B (en) * 2014-03-19 2017-04-26 中铁隧道集团有限公司 Convergence monitoring systems for tunnel construction
CN103884335A (en) * 2014-04-09 2014-06-25 北京数联空间科技股份有限公司 Remote sensing and photographic measurement positioning method based on two-dimension code geographic information sign
CN104089653A (en) * 2014-07-11 2014-10-08 中国路桥工程有限责任公司 Automated remote measurement and control system of tunnel construction stress and deformation
CN104390625A (en) * 2014-11-24 2015-03-04 国家电网公司 Exterior three-dimensional deformation monitoring method of street power station
CN104567708A (en) * 2015-01-06 2015-04-29 浙江工业大学 Tunnel full-section high-speed dynamic health detection device and method based on active panoramic vision
CN104567708B (en) * 2015-01-06 2018-03-16 浙江工业大学 Based on high-speed dynamic health detection apparatus and method of active full panoramic vision tunnel section
CN105203551A (en) * 2015-09-11 2015-12-30 尹栋 Car-mounted laser radar tunnel detection system, autonomous positioning method based on tunnel detection system and tunnel hazard detection method
CN105652305B (en) * 2016-01-08 2018-02-06 深圳大学 Three-dimensional positioning track detector platform in a dynamic environment Attitude Determination Method and System
CN105652305A (en) * 2016-01-08 2016-06-08 深圳大学 Three-dimensional positioning and attitude-determining method and system for track detection platform in dynamic environment
WO2017197617A1 (en) * 2016-05-19 2017-11-23 深圳市速腾聚创科技有限公司 Movable three-dimensional laser scanning system and movable three-dimensional laser scanning method
CN106053475A (en) * 2016-05-24 2016-10-26 浙江工业大学 Tunnel disease full-section dynamic rapid detection device based on active panoramic vision
CN106124145A (en) * 2016-06-20 2016-11-16 上海理工大学 Model test device of multi-slip surface landslide sector tunnel influence under vibration loads
CN105953740A (en) * 2016-07-04 2016-09-21 河北稳控科技有限公司 Tunnel deformation monitoring device
CN105953740B (en) * 2016-07-04 2019-03-29 河北稳控科技有限公司 A kind of tunnel deformation monitoring device
CN106895787B (en) * 2017-02-27 2019-04-26 武汉理工大学 Deformation monitoring system and method based on visible light location technology
CN106895787A (en) * 2017-02-27 2017-06-27 武汉理工大学 Deformation monitoring system and method based on visible light positioning technology
CN107289894A (en) * 2017-06-26 2017-10-24 中国电建集团成都勘测设计研究院有限公司 Three dimensional method of quickly determining reservoir bank collapse scale
CN108387222A (en) * 2018-03-06 2018-08-10 黑龙江工业学院 Position positioning system for surveying and mapping

Also Published As

Publication number Publication date
CN101408410B (en) 2010-08-11

Similar Documents

Publication Publication Date Title
Jáuregui et al. Noncontact photogrammetric measurement of vertical bridge deflection
US8180590B2 (en) Railroad surveying and monitoring system
US20140336928A1 (en) System and Method of Automated Civil Infrastructure Metrology for Inspection, Analysis, and Information Modeling
Yi et al. Experimental assessment of high-rate GPS receivers for deformation monitoring of bridge
Yi et al. Recent research and applications of GPS‐based monitoring technology for high‐rise structures
CN100480627C (en) Steel rail wearing integrative parameter vehicle-mounted dynamic measuring device and method
JP2000275045A (en) Automated guiding and measuring device and method for measuring and navigating freely movable platform
Yi et al. Recent research and applications of GPS based technology for bridge health monitoring
CN104567708B (en) Based on high-speed dynamic health detection apparatus and method of active full panoramic vision tunnel section
JP2008076058A (en) Shape variation monitoring method and shape variation monitoring system
CN101913368B (en) System and method for fast precise measurement and total factor data acquisition of high speed railway
WO2010009367A1 (en) Method, apparatus, and system for determining accurate location data related to underground installations
CN101694084B (en) Ground on-vehicle mobile detecting system
Wang et al. Applications of terrestrial laser scanning for tunnels: a review
Gikas Three-dimensional laser scanning for geometry documentation and construction management of highway tunnels during excavation
CN102798412B (en) Method for evaluating construction quality of tunnel drilling and blasting based on three-dimensional laser scanning
CN102564335B (en) Method for measuring deformation of large-scale tunnel
CN102251451B (en) Track geometric state measurement system and method based on multisource information fusion technology
Mukupa et al. A review of the use of terrestrial laser scanning application for change detection and deformation monitoring of structures
Roberts et al. The use of kinematic GPS and triaxial accelerometers to monitor the deflections of large bridges
CN103343498B (en) Track irregularity detecting system and method based on INS/GNSS
Savvaidis Existing landslide monitoring systems and techniques
Zlot et al. Efficient large-scale 3D mobile mapping and surface reconstruction of an underground mine
CN102609986B (en) Ore body modeling system in digital mine and modeling and detecting method of ore body modeling system
CN104792274B (en) Measuring a round tunnel convergence Deformations

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C14 Grant of patent or utility model
CF01