CN101394263B - Uplink channel measurement reference signal and mapping method for bandwidth range frequency domain position - Google Patents

Uplink channel measurement reference signal and mapping method for bandwidth range frequency domain position Download PDF

Info

Publication number
CN101394263B
CN101394263B CN 200810173506 CN200810173506A CN101394263B CN 101394263 B CN101394263 B CN 101394263B CN 200810173506 CN200810173506 CN 200810173506 CN 200810173506 A CN200810173506 A CN 200810173506A CN 101394263 B CN101394263 B CN 101394263B
Authority
CN
China
Prior art keywords
srs
bandwidth
maximum
srs bandwidth
frequency domain
Prior art date
Application number
CN 200810173506
Other languages
Chinese (zh)
Other versions
CN101394263A (en
Inventor
喻斌
郝鹏
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to CN 200810173506 priority Critical patent/CN101394263B/en
Publication of CN101394263A publication Critical patent/CN101394263A/en
Application granted granted Critical
Publication of CN101394263B publication Critical patent/CN101394263B/en

Links

Abstract

The invention discloses a mapping method for uplink channel Sounding Reference Signal and the bandwidth range frequency-domain position. When the frequency-domain position of the largest SRS bandwidth is determined, the frequency-domain position of the largest SRS bandwidth and the physical random accessing channel (PRACH) of the uplink pilot time slot (UpPTS), that is, the frequency-domain position of the PRACH channel are staggered; the distance between the frequency-domain ending position of the largest SRS bandwidth and the upper boundary of the uplink system bandwidth is larger than or equal to an allocated first deviation value, and/or the distance between the frequency-domain initial position of the largest SRS bandwidth and the lower boundary of the uplink system bandwidth is larger than or equal to an allocated second deviation value. The invention has the advantages that interference to the determined frequency-domain position of an SRS signal in UpPTS does not interfere with the PRACH channel, and can avoid out-band leakage between systems.

Description

上行信道测量参考信号及其带宽范围频域位置的映射方法 Domain location mapping method uplink channel sounding reference signal and the frequency bandwidth

技术领域 FIELD

[0001] 本发明涉及时分双工(TDD)系统,具体而言,涉及一种TDD系统上行信道测量参考信号的发送方法。 [0001] The present invention relates to a time division duplex (TDD) system, specifically, the reference signal transmission method relates to a TDD uplink channel measurement system.

背景技术 Background technique

[0002] LTE系统TDD (Time Division Duplex,时分双工)模式的帧结构(又称为第二类帧结构,即frame structure type2)如图1所示。 Frame Structure [0002] LTE system, TDD (Time Division Duplex, time division duplex) mode (also called a second type frame structure, i.e. frame structure type2) as shown in FIG. 在这种帧结构中,一个IOms (307200Ts, Ims = 30720Ts)的无线帧被分成两个半帧,每个半帧长5ms (153600Ts)。 In this frame structure, one IOms (307200Ts, Ims = 30720Ts) radio frame is divided into two half-frames, each half-frame length 5ms (153600Ts). 每个半帧包含5 个长度为Ims的子帧。 Each half-frame includes 5 sub-frames length of Ims. 每个子帧的作用如表1所示,其中D代表用于传输下行信号的下行子帧。 The role of each sub-frame as shown in Table 1, wherein D represents a downlink sub-frame for transmitting a downlink signal. U代表用于传输上行信号的上行子帧。 U represents an uplink sub-frame for transmitting the uplink signal. 另外,一个上行或下行子帧又分成2个0.5ms 的时隙。 Further, a downlink or uplink sub-frame is divided into two 0.5ms slots. S代表特殊子帧,包含三个特殊时隙,S卩DwPTS(Downlink Pilot Time Slot,下行导频时隙)、GP (Guard Period,保护间隔)及UpPTS (Uplink Pilot TimeSlot,上行导频时隙)。 S represents a special sub-frame includes three special time slots, S Jie DwPTS (Downlink Pilot Time Slot, a downlink pilot time slot), GP (Guard Period, a guard interval) and UpPTS (Uplink Pilot TimeSlot, uplink pilot time slot) . 在实际系统中,上、下行配置索引会通过广播消息通知给手机。 In a real system, downlink configuration index will be notified to the phone via a broadcast message.

[0003] 表1上、下行配置 On [0003] Table 1, downlink configuration

[0004] [0004]

Configuration Switch-point periodicity Subframe number 0 1 2 3 4 5 6 7 8 90 5 ms D S U U U D S U U U1 5 ms D S U U D D S U U D2 5 ms D S U D D D S U D D3 10 ms D S U U U D D D D D4 10 ms D S U U D D D D D D5 10 ms D S U D D D D D D D6 5 ms D S U U U D S U U D Configuration Switch-point periodicity Subframe number 0 1 2 3 4 5 6 7 8 90 5 ms D S U U U D S U U U1 5 ms D S U U D D S U U D2 5 ms D S U D D D S U D D3 10 ms D S U U U D D D D D4 10 ms D S U U D D D D D D5 10 ms D S U D D D D D D D6 5 ms D S U U U D S U U D

[0005] LTE系统中的资源分配以RB(Resource Block,资源块,或称为物理资源块,即Physical Resource Block,简称为PRB)为单位,一个RB在频域上占12个子载波,在时域上占一个时隙,即7(普通CP,Normal cyclic prefix)或6 个(扩展CP,Extended cyclic prefix) SC-FDMA符号。 [0005] resource allocation in the LTE system to RB (Resource Block, resource block, or called a physical resource block, i.e., Physical Resource Block, abbreviated as PRB) as a unit, one RB representing 12 subcarriers in the frequency domain, when It occupies one timeslot domain, i.e., 7 (normal CP, normal cyclic prefix) or 6 (extended CP, extended cyclic prefix) SC-FDMA symbols. 如果定义上行系统带宽在频域上对应的RB总数为《(即系统带宽与A^个RB所对应的带宽相等),则RB的索引为0,1,...,#gl,子载波的索引为0,1,..., Kl· 为频域上RB的大小,表示为子载波数。 If the total uplink system bandwidth RB is defined in the frequency domain corresponding to "(i.e., system bandwidth, and A ^ is equal to a bandwidth corresponding RB), the RB index is 0,1, ..., # gl, subcarriers index 0,1, ..., Kl · RB for the size of the frequency domain, expressed as the number of subcarriers. RB的结构如图2所示,资源的最小单位为资源单元(RE,即Resource Element)。 RB is the minimum unit of the structure shown in FIG, 2 resources for resource elements (REs, i.e. Resource Element).

[0006] 在频域,一个物理随机接入信道即PRACH信道占6个RB所对应的带宽,即72个RE (Resource Element,或称为sub-carrier,子载波),每个RE的带宽为15kHz。 [0006] In the frequency domain, a physical random access channel PRACH channels i.e. representing 6 RB corresponding bandwidth, i.e. 72 RE (Resource Element, or called sub-carrier, sub-carrier), the bandwidth of each RE 15kHz. 时域位置 Temporal location

5相同的PRACH信道通过频域进行区分。 5 the same PRACH channels are distinguished by frequency domain.

[0007] TDD系统的上行导频时隙可以用来发送上行信道测量参考信号(Sounding Referece Signal, SRS)和前导格式为4的PRACH信道。 [0007] TDD system, uplink pilot time slot may be used to transmit the uplink pilot channel sounding reference signal (Sounding Referece Signal, SRS), and the preamble format 4 PRACH channels.

[0008] SRS信号的带宽采用树型结构进行配置,如图3所示。 Bandwidth [0008] SRS signal configuration using a tree structure, shown in Figure 3. 每一种SRS带宽配置(即SRS bandwidth configuration)对应一个树型结构,最高层的SRS 带宽(SRS-Bandwidth) 对应了这种SRS带宽配置的最大带宽(或称为SRS带宽范围)。 Each SRS bandwidth configuration (i.e. SRS bandwidth configuration) corresponds to a tree structure, the highest level SRS bandwidth (SRS-Bandwidth) this corresponds to the maximum bandwidth of the SRS bandwidth configuration (or SRS bandwidth). 表3〜表6给出了不同上行带宽范围内的SRS带宽配置。 Table 3 ~ Table 6 shows the SRS bandwidth configuration different upstream bandwidth ranges. mSKS,b表示的是树型结构中索引为b的层的SRS带宽在频域对应的RB数,或者说SRS带宽是RB带宽的多少倍;Nb表示树型结构中索引为b_l的层的节点在索引为b的层中所包含的分支节点的数目,b = 0对应着树型结构的第一层也即最高层,mSES,0也就是该配置下的最大SRS带宽。 MSKS, b represents the index tree structure of SRS bandwidth b layer in the frequency domain corresponding to the number of RB, or how many times the SRS bandwidth RB bandwidth; of Nb indicates the tree structure index layer node b_l at an index of the number of branch nodes of layer (b) contains, b = 0 corresponds to the first layer, i.e., the highest level of the tree structure, mSES, 0 is the maximum SRS bandwidth under the configuration.

[0009] 以表3中SRS带宽配置1为例,b = 0为第一层,这一层所对应的SRS带宽为32个RB所对应的带宽,是这种SRS带宽配置的最大SRS带宽;b = 1为第二层,这一层SRS带宽为16个RB对应的带宽,第一层的一个SRS带宽拆分成2个第二层的SRS带宽;b = 2为第三层,这一层SRS带宽为8个RB对应的带宽,第二层的一个SRS带宽拆分成2个第三层的SRS带宽;b = 3为第四层,这一层的SRS带宽为4个RB对应的带宽,第三层的一个SRS带宽拆分成2个第四层的SRS带宽。 [0009] In Table 3 SRS bandwidth configuration 1 as an example, b = 0 for the first layer, which corresponds to 32 SRS bandwidth corresponding to the bandwidth of the RB, which is the maximum SRS bandwidth SRS bandwidth configuration; b = 1 is the second layer, which is the SRS bandwidth corresponding to the bandwidth of 16 RB, a first layer SRS bandwidth SRS bandwidth is split into two second layers; b = 2 is the third layer, the layer 8 SRS bandwidth corresponding to the RB bandwidth, a bandwidth of the second layer SRS SRS bandwidth is split into two third layers; b = 3 is the fourth layer, this layer SRS bandwidth corresponding to 4 RB the bandwidth, a third layer SRS bandwidth SRS bandwidth is split into two fourth layer.

[0010] 另外,在同一个SRS频带内,发送给某一终端的SRS信号占用的子载波是间隔放置的,如图4所示,这种梳状结构允许更多的终端在同一SRS带宽内发送SRS信号。 [0010] Further, in the same SRS frequency band occupied by the SRS signal transmitted to a terminal spaced subcarriers are positioned, as shown in FIG. 4, the comb-like structure allows more terminals within the same SRS bandwidth sending SRS signal.

[0011] 表2( 6≤NULRB<40 ) [0011] Table 2 (6≤NULRB <40)

[0012] [0012]

Figure CN101394263BD00061

[0013]表 3(40<AC 偏) [0013] Table 3 (40 <AC bias)

[0014] [0014]

Figure CN101394263BD00062

[0015]表 4(60<船<80) [0015] Table 4 (60 <boat <80)

[0016] [0016]

Figure CN101394263BD00071

[0017]表 5(80<《S110) [0017] Table 5 (80 < "S110)

[0018] [0018]

Figure CN101394263BD00072

[0019] 在发送SRS信号时,树型结构各层内的SRS带宽都在最大SRS带宽所在的频带范围之内,且各层内SRS带宽在最大SRS带宽内的相对位置是可以变化的。 [0019] When transmitting the SRS signal, SRS bandwidth within each layer in the tree structure are the maximum SRS bandwidth of the frequency band is located, and the relative position of the maximum SRS bandwidth SRS bandwidth within each layer may vary. 因此,需要避免UpPTS内的SRS信号与PRACH信道产生干扰,另外尽可能地使更多的带宽得到信道测量的机会,就需要合理地配置UpPTS内SRS信号最大带宽的频域位置。 Therefore, to avoid the PRACH signal and the SRS in the UpPTS interference, so as to additionally obtain more bandwidth channel measurement opportunities, it is necessary to reasonably configure the frequency domain position within the maximum bandwidth SRS UpPTS signal. 另外,为了解决系统间的带外泄漏问题,最大SRS带宽的初始位置还应该保证有足够的灵活性,使得当存在带外泄漏的时候,SRS带宽可以避免位于系统带宽的边缘。 Further, in order to solve inter-band system leaks, the initial position of the maximum SRS bandwidth should also ensure that there is sufficient flexibility, such that when the band leakage is present, the SRS bandwidth can be avoided at the edge of the system bandwidth. 目前还没有相应的解决方案。 There is no corresponding solutions.

发明内容 SUMMARY

[0020] 本发明要解决的技术问题是提供一种上行信道测量参考信号频域位置的映射方法,通过这个方法确定的UpPTS内SRS信号的频域位置不会与PRACH信道产生干扰,并可避免系统间的带外泄漏。 [0020] The present invention is to solve the technical problem of providing a method for mapping uplink channel frequency-domain reference signal measurement position, the position of the frequency domain determined by this method UpPTS SRS signal does not interfere with the PRACH channels, and to avoid band leakage between the systems.

[0021] 为了解决上述技术问题,本发明提供了一种上行信道测量参考信号频域位置的映射方法,应用于采用时分双工模式的长期演进系统中,在上行导频时隙UpPTS内传输测量参考信号即SRS信号时,根据为该SRS信号选定的SRS带宽配置的最大SRS带宽的频域位置和该SRS信号带宽相对于该最大SRS带宽的位置偏移来确定该SRS信号的频域位置,其特征在于: [0021] To solve the above problems, the present invention provides a method of uplink channel mapping frequency domain position reference signal measurement, is applied to the LTE system uses time division duplex mode, in the uplink pilot time slot UpPTS transmission frequency measurement i.e. the reference signal SRS signal according to the SRS frequency domain position for the largest SRS bandwidth selected SRS bandwidth configuration SRS signal bandwidth and the relative positional deviation of the maximum SRS bandwidth to determine the SRS frequency domain position signal characterized in that:

[0022] 在确定该最大SRS带宽的频域位置时,将该最大SRS带宽的频域位置与该UpPTS 内的物理随机接入信道即PRACH信道的频域位置错开; [0022] In determining the frequency domain position of the maximum SRS bandwidth, the maximum SRS frequency domain position within the bandwidth of the UpPTS random access channel that is a physical channel PRACH frequency domain location offset;

[0023] 并且,该最大SRS带宽的频域结束位置与上行系统带宽的上边界的距离大于或等于配置的一第一偏差值,和/或,该最大SRS带宽的频域起始位置与上行系统带宽的下边界的距离大于或等于配置的一第二偏差值。 The frequency domain starting position of a first deviation value [0023] Then, the frequency domain location of the end of the maximum SRS bandwidth and distance upstream boundary of the system bandwidth is greater than or equal to the configured, and / or the maximum SRS bandwidth uplink a second deviation distance lower boundary of the system bandwidth is greater than or equal to the configured value.

[0024] 进一步地,所述最大SRS带宽的频域起始位置,即最大SRS带宽映射到频域上的第[0025] [0024] Furthermore, the SRS frequency domain starting position of the maximum bandwidth, i.e. the maximum SRS bandwidth is mapped to [0025] in the frequency domain

Figure CN101394263BD00081

[0026]其中: [0026] wherein:

[0027] kTC为所述SRS信号配置的梳状结构的子载波偏移量,kTC e {0,1} ;Λ②为频域上 [0027] kTC sub-carriers of the SRS signal offsets arranged comb structure, kTC e {0,1}; the frequency domain Λ②

RB的大小,表示为子载波数;《为上行系统带宽在频域所对应的RB数;Nsp为所述SRS 号所在无线帧内,下行到上行转换点的数量;nf为所述SRS信号所在无线帧的系统帧号; 4 = 0表示无线帧的第一个半帧,i = 1表示无线帧的第二个半帧•力=.。 RB size, expressed as the number of subcarriers; "for the number of RB in the frequency domain of uplink system bandwidth corresponds; of Nsp is the number of the SRS is located a radio frame, the number of downlink-uplink switch-point; the NF is located SRS signal system frame number of a radio frame; 4 = 0 indicates the first half frame of a radio frame, i = 1 indicates the second half frame in a radio frame .. • = force 为最大SRS带宽对应的RB数;IitjffseU为所述第一偏差值,在 RB the maximum number corresponding to the SRS bandwidth; IitjffseU said first deviation value, in

Figure CN101394263BD00082
Figure CN101394263BD00083

时,IltjffseU即为最大SRS带宽频域结束位置所在的资源块索引与资源块索引Λ②-1的偏差;;n。 When, IltjffseU is the maximum SRS bandwidth frequency domain location of the end of the resource block index with the resource block index deviation Λ②-1 ;; n. ffset,2为所述第二偏差值,在((《/modQxp-时,n。ffset,2即为最大SRS带宽频域起始位置所在的资源块索引与资源块索引0的偏差。 ffset, 2 to the second deviation value, the (( "/ time modQxp-, n.ffset, resource block index 2 is the broadband domain starting position of the maximum SRS where the resource block index with 0 deviation.

[0028] 进一步地,所述最大SRS带宽按以下方式来确定:基站选择一个SRS带宽配置并以信令方式通知终端,基站和终端将该SRS带宽配置对应的树型结构中第一层的SRS带宽确定为所述最大SRS带宽/«=,。 [0028] Further, the maximum SRS bandwidth determined in the following manner: the base station to select a SRS bandwidth configuration, and notify the terminal to the signaling, the base station and the tree structure of the terminal in the SRS bandwidth configuration SRS corresponding to the first layer, determining the maximum bandwidth of the SRS bandwidth is / «= ,. .

[0029] 进一步地,所述最大SRS带宽等于为所述SRS信号选定的SRS带宽配置对应的树型结构中第一层的SRS带宽,基站和终端根据下述方式来选择SRS带宽配置:在对应的 [0029] Furthermore, the SRS bandwidth is equal to the maximum SRS bandwidth configuration to the selected signal selected SRS tree structure of SRS bandwidth configuration SRS bandwidth corresponding to the base station and the terminal of the first layer according to the following ways: corresponding

SRS带宽配置表或所有SRS带宽配置表中,从最大SRS带宽 SRS bandwidth configuration SRS bandwidth configuration table or a table of all, from the maximum SRS bandwidth

Figure CN101394263BD00084

的所有SRS带宽配置中,选择最大SRS带宽最大的一个SRS带宽配置,作为选定的SRS带宽配置,其中,Nka为SRS信号所在UpPTS内PRACH信道的数量。 All SRS bandwidth configuration, select a maximum of the largest SRS bandwidth configuration SRS bandwidth, as the selected SRS bandwidth configuration, wherein, the number of the UpPTS NKA is located SRS signal PRACH channel.

[0030] 进一步地,所述第一偏差值根据所述上行系统带宽与其他系统带宽之间在上边界处的保护带宽的要求配置,所述第二偏差值根据所述上行系统带宽与其他系统带宽之间在下边界处的保护带宽的要求配置。 [0030] Further, according to the deviation value between said first uplink system bandwidth and other system bandwidth protection bandwidth requirements on the configuration at the boundary, the second deviation value of the uplink system bandwidth in accordance with other systems lower bandwidth configuration claimed boundary between bandwidth.

[0031] 进一步地,终端在所述上行导频时隙UpPTS内,按照确定的所述SRS信号的频域位置发送该SRS信号,基站则在所述上行导频时隙UpPTS内确定的所述SRS信号的频域位置接收该SRS信号。 [0031] Further, the terminal in the uplink pilot time slot UpPTS, the SRS transmission signal according to the SRS frequency domain position signal determined at the base station of the determined uplink pilot timeslot UpPTS SRS frequency domain position of the SRS signal received signals.

[0032] 本发明得到的UpPTS内SRS信号的频域位置可以使UpPTS信号不与PRACH信道产生干扰。 UpPTS within the SRS frequency domain position signal [0032] of the present invention can be obtained that the UpPTS signal does not interfere with the PRACH. 另外,这种方法有足够的灵活性,可以解决系统间的带外泄漏问题。 In addition, this method has enough flexibility to resolve inter-band system leak. 进一步地,可使更多的带宽得到信道测量的机会。 Further, more bandwidth can get a chance to channel measurement.

[0033] 本发明要解决的技术问题是提供一种上行信道测量参考信号带宽范围频域位置的映射方法,通过这个方法确定的UpPTS内最大SRS带宽的频域位置不会与PRACH信道产生干扰,并可避免系统间的带外泄漏。 [0033] The present invention is to solve the technical problem of providing a uplink channel mapping method of the reference signal bandwidth of the frequency domain position of measurement, determined by the method of frequency domain position within the UpPTS maximum SRS bandwidth does not interfere with the PRACH, and avoid leakage between the outer belt system.

[0034] 为了解决上述技术问题,本发明提供了一种上行信道测量参考信号带宽范围的频域位置的映射方法,应用于采用时分双工模式的长期演进系统中,用于在上行导频时隙UpPTS内传输测量参考信号即SRS信号时,根据下式确定该SRS信号带宽范围映射到频域上的第一个子载波的索引4,该SRS信号带宽范围即为该SRS信号选定的SRS带宽配置的最大SRS带宽:[0035] [0034] To solve the above problems, the present invention provides an uplink channel mapped frequency domain reference signal bandwidth position measurement, is applied to a Long Term Evolution Time Division Duplex system mode for uplink pilot when transmitting the sounding reference signal SRS signal i.e. gap within the UpPTS, the SRS signal bandwidth is determined that the range of the map to the index of the first sub-carrier on the frequency domain 4, the SRS bandwidth is the signal of the selected signal SRS SRS maximum bandwidth SRS bandwidth configuration: [0035]

Figure CN101394263BD00091

[0036]其中: [0036] wherein:

[0037] kTC为所述SRS信号配置的梳状结构的子载波偏移量,kT。 [0037] kTC sub-carriers of the SRS signal offsets arranged comb structure, kT. e {0,1} ; e {0,1};

Figure CN101394263BD00092

为频域上RB 的大小,表示为子载波数; RB is the size of the frequency domain, expressed as a number of sub-carriers;

Figure CN101394263BD00093

为上行系统带宽在频域所对应的RB数;Nsp为所述SRS信号所在无线帧内,下行到上行转换点的数量;nf为所述SRS信号所在无线帧的系统帧号 RB is the number of uplink system bandwidth corresponds in the frequency domain; of Nsp located SRS signals to the radio frame, the number of downlink-uplink switch-point; NF to the SRS system radio frame number where the frame signal

Figure CN101394263BD00094

表示无线帧的第一个半帧,4 =1表示无线帧的第二个半帧为最大SRS带宽对应的RB Represents a wireless frame of the first half frame, 4 = 1 indicates the second half frame of one radio frame the SRS bandwidth corresponding to the maximum RB

数•'noffseU1为配置的第一偏差值;n。 Number • 'noffseU1 configuration of a first deviation value; n. ffset,2为配置的第二偏差值。 ffset, 2 second deviation value for the configuration.

[0038] 进一步地,所述最大SRS带宽按以下方式来确定:基站选择一个SRS带宽配置并以信令方式通知终端,基站和终端将该SRS带宽配置对应的树型结构中第一层的SRS带宽确定为所述最大SRS带宽Α"=,ο。 [0038] Further, the maximum SRS bandwidth determined in the following manner: the base station to select a SRS bandwidth configuration, and notify the terminal to the signaling, the base station and the tree structure of the terminal in the SRS bandwidth configuration SRS corresponding to the first layer, maximum bandwidth of the SRS bandwidth determined Α "=, ο.

[0039] 进一步地,所述基站选择的SRS带宽配置的最大SRS带宽 [0039] Further, the base station selects the maximum SRS bandwidth configuration SRS bandwidth

Figure CN101394263BD00095

须满足+6^ +(nofrset2 +noffseU)< N^ ,其中Nka 为SRS 信号所在UpPTS 内PRACH 信道的数量。 Shall meet + 6 ^ + (nofrset2 + noffseU) <N ^, where is the number of the UpPTS SRS Nka where the PRACH signal.

[0040] 进一步地,所述最大SRS带宽等于为所述SRS信号选定的SRS带宽配置对应的树型结构中第一层的SRS带宽,基站和终端根据下述方式来选择SRS带宽配置:在iC对应的 [0040] Furthermore, the SRS bandwidth is equal to the maximum SRS bandwidth configuration to the selected signal selected SRS tree structure of SRS bandwidth configuration SRS bandwidth corresponding to the base station and the terminal of the first layer according to the following ways: corresponding iC

SRS带宽配置表或所有SRS带宽配置表中,从最大SRS带宽^JC +n^J SRS bandwidth configuration SRS bandwidth configuration table or a table of all, from the maximum SRS bandwidth ^ JC + n ^ J

的所有SRS带宽配置中,选择最大SRS带宽最大的一个SRS带宽配置,作为选定的SRS带宽配置,其中,Nka为SRS信号所在UpPTS内PRACH信道的数量。 All SRS bandwidth configuration, select a maximum of the largest SRS bandwidth configuration SRS bandwidth, as the selected SRS bandwidth configuration, wherein, the number of the UpPTS NKA is located SRS signal PRACH channel.

[0041] 进一步地,在(0,1110012))((2-1) + 4^010(12 = 0时,所述第一偏差值即为最大SRS 带宽频域结束位置所在的资源块索引与资源块索引-1的偏差; [0041] Further, in (0,1110012)) ((2-1) ^ 4 + 010 (12 = 0, the offset value is the first resource block index maximum SRS bandwidth frequency domain location of the end -1 deviation resource block index;

[0042] 在((《, 1^(12))((2-1)+^)1110(12^0时,所述第二偏差值为最大SRS带宽频域起 [0042] In (( "1 ^ (12)) ((2-1) + ^) 1110 (12 ^ 0, the second value is the maximum deviation from a wide frequency band SRS

始位置所在的资源块索引与资源块索引O的偏差。 Resource block index with the start location of the resource block index O deviation.

[0043] 进一步地,所述第一偏差值根据所述上行系统带宽与其他系统带宽之间在上边界处的保护带宽的要求配置,所述第二偏差值根据所述上行系统带宽与其他系统带宽之间在下边界处的保护带宽的要求配置。 [0043] Further, according to the deviation value between said first uplink system bandwidth and other system bandwidth protection bandwidth requirements on the configuration at the boundary, the second deviation value of the uplink system bandwidth in accordance with other systems lower bandwidth configuration claimed boundary between bandwidth.

[0044] 本发明得到的UpPTS内最大SRS带宽的频域位置可以使UpPTS信号不与PRACH信道产生干扰。 The UpPTS [0044] of the present invention obtained in the frequency domain position of the maximum SRS bandwidth UpPTS signal may cause no interference with the PRACH. 另外,这种方法有足够的灵活性,可以解决系统间的带外泄漏问题。 In addition, this method has enough flexibility to resolve inter-band system leak. 进一步地, 可使更多的带宽得到信道测量的机会。 Further, more bandwidth can get a chance to channel measurement.

附图说明 BRIEF DESCRIPTION

[0045] 此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。 [0045] The drawings described herein are provided for further understanding of the present invention, constitute a part of this application, exemplary embodiments of the present invention are used to explain the present invention without unduly limiting the present invention. 在附图中: In the drawings:

[0046] 图1是LTE系统TDD模式的帧结构的示意图; [0046] FIG. 1 is a schematic view of frame structure in the TDD mode in the LTE system;

[0047] 图2是资源块的结构示意图; [0047] FIG. 2 is a schematic diagram of a resource block;

[0048] 图3是SRS带宽的树型结构的示意图; [0048] FIG. 3 is a schematic diagram of the tree structure of SRS bandwidth;

[0049] 图4是SRS信号的梳状结构的示意图; [0049] FIG. 4 is a schematic view of the comb-like structure of the SRS;

[0050] 图5A和图5B是本发明实施例一最大SRS带宽的位置示意图;[0051] 图6A和图6B是本发明实施例二最大SRS带宽的位置示意图; [0050] FIGS. 5A and 5B are a schematic diagram of a position of the maximum SRS bandwidth according to embodiments of the present invention; [0051] FIGS. 6A and FIG. 6B is a schematic view two of the largest SRS bandwidth according to embodiments of the present invention, the position;

[0052] 图7A和图7B是本发明实施例三最大SRS带宽的位置示意图; [0052] FIGS. 7A and 7B are a schematic view of the position of the maximum SRS bandwidth according to a third embodiment of the present invention;

[0053] 图8A和图8B是本发明实施例四最大SRS带宽的位置示意图; [0053] FIGS. 8A and 8B are a schematic view of embodiment four positions of the maximum SRS-bandwidth embodiment of the present invention;

[0054] 图9A和图9B是本发明实施例五最大SRS带宽的位置示意图; [0054] FIGS. 9A and 9B are a schematic view of the position of the maximum SRS bandwidth five embodiments of the present invention;

[0055] 上述图4及其后的附图中,“匪”表示kTC = 1时,终端在SRS带宽内使用的子载波的区域,《■表示kTC = 0时,终端在SRS带宽内使用的子载波的区域。 [0055] FIG. 4 and after the above figures, "bandit" indicates kTC = 1, the region of subcarriers used by the terminal in the SRS bandwidth "■ indicates when kTC = 0, the terminal uses the SRS bandwidth subcarrier region.

具体实施方式 Detailed ways

[0056] 下面将结合附图和本发明的具体实施方式来详细说明本发明。 [0056] The present invention will be in conjunction with specific embodiments and the present invention will be described in detail with reference.

[0057] 本实施例提供了一种LET FDD系统中上行信道SRS信号频域位置的映射方法,在上行导频时隙UpPTS内传输SRS信号时,根据为该SRS信号带宽选定的SRS带宽配置的最大SRS带宽(即该SRS信号带宽所在的SRS带宽范围)的频域位置和该SRS信号带宽相对于该最大SRS带宽的位置偏移来确定该SRS信号的频域位置。 [0057] The present embodiment provides a method of mapping LET FDD system frequency domain position of an uplink channel SRS signal, when the uplink pilot time slot transmitting the UpPTS signal SRS, according to the selected signal bandwidth for SRS bandwidth configuration SRS maximum SRS bandwidth (i.e. the bandwidth of the SRS signal bandwidth is located SRS) is the SRS frequency domain position and a position offset with respect to the signal bandwidth of the largest SRS bandwidth to determine the SRS frequency domain position signal. 本发明关注的是最大SRS带宽的频域位置的确定。 The present invention is concerned to determine the frequency domain position of the maximum SRS bandwidth. 至于SRS信号带宽相对于该最大SRS带宽的位置偏移,可以根据配置的该资源在树型结构中的层数和索引号等信息来确定,具体可参照相应标准中的算法, 在本发明中不展开论述。 As SRS signal bandwidth relative positional deviation of the maximum SRS bandwidth may be determined according to the resource allocation information in a tree structure index layers and the like, may refer to the specific algorithm corresponding standard, in the present invention, do not start on.

[0058] 在确定该最大SRS带宽的频域位置时,需要将该UpPTS内的PRACH信道的频域位置错开;并且,该最大SRS带宽的频域结束位置与上行系统带宽的上边界即频率高的一侧边界的距离大于或等于配置的一第一偏差值,和/或,该最大SRS带宽的频域起始位置与上行系统带宽的下边界即频率低的一侧边界的距离大于或等于配置的一第二偏差值。 [0058] In determining the frequency domain position of the maximum SRS bandwidth needs the frequency domain location of the PRACH in the UpPTS offset; and, the maximum SRS bandwidth frequency domain ends at the boundary position and the uplink system bandwidth, i.e. the high frequency deviation value from a first side of the border distance is greater than or equal configuration, and / or frequency domain starting position of the maximum SRS bandwidth of the uplink system bandwidth and lower boundary, i.e. the low frequency side of the border is greater than or equal to a second deviation value configuration.

[0059] 具体地,本实施例根据下式计算最大SRS带宽的频域起始位置,用最大SRS带宽映 [0059] In particular, according to the present embodiment, the frequency domain starting position of the maximum SRS bandwidth is calculated, using the maximum SRS bandwidth enantiomer

射到频域上的第一个子载波的索引表示: Incident on the first subcarrier frequency domain index representation:

[0060] [0060]

(=-^,o — n_风f + km if ((«,mod2)χ(2-Λ^ρ) + ^)mod2=0 ° I^tc +noffseta-N^ otherwise (= - ^, o - n_ wind f + km if (( «, mod2) χ (2-Λ ^ ρ) + ^) mod2 = 0 ° I ^ tc + noffseta-N ^ otherwise

[0061]式中的 otherwise 即指((《,mod2)x(2-D + 4)mod2关0时的情况。 otherwise refers to [0061] of the formula (( ", mod2) x mod2 case where the OFF 0 (2-D + 4).

[0062] 其中的参数含义如下: [0062] where the parameters are as follows:

[0063] kTC为SRS信号配置的梳状结构的子载波偏移量,kTC e {0,1}; [0063] subcarrier offset kTC configured for the SRS signal comb structure, kTC e {0,1};

[0064] 《为频域上RB的大小,表示为子载波数,本实施例中;C =12 ; [0064] "RB of the frequency domain size, expressed as the number of subcarriers, the present embodiment; C = 12;

[0065] 《为上行系统带宽在频域所对应的RB数,如上行系统带宽iV= = 50时,表示上行系统带宽为50个RB在频域上的带宽; When the [0065] "is the number of RB uplink system bandwidth corresponds in the frequency domain, such as the uplink system bandwidth iV = = 50, showing the uplink system bandwidth is the bandwidth of 50 RB in the frequency domain;

[0066] Nsp为SRS信号所在无线帧内,下行到上行转换点的数量; [0066] Nsp is located SRS signal is a radio frame, the number of downlink-uplink switch-point;

[0067] nf为无线帧的系统帧号(SFN,System frame number),即SRS信号所在无线帧的系统帧号; [0067] nf is the system radio frame number (SFN, System frame number), i.e., where the SRS system frame number of a radio frame;

[0068] 1=0,1分别表示无线帧的第一个和第二个半帧,即SRS信号处于无线帧的第一个半帧时,4 二0,SRS信号处于无线帧的第二个半帧时,& =1 ; [0068] 1 = 0, represent the first and second half-frame of the radio frame, i.e., the first half frame in a radio frame the SRS, 0 4 II, the SRS signal at a second radio frame half-frame, & = 1;

[0069] 为最大SRS带宽对应的RB数; [0069] RB number corresponding to the maximum SRS bandwidth;

[0070] IitjffseU 为第一偏差值,在((11110(12))((2-D+ 4)1110(12 = 0时即为最大SRS 带宽结束位置所在的资源块索引与资源块索引的偏差,也即最大SRS带宽频域结束位置所在的资源块的索引为- 1 - ; [0070] IitjffseU a first deviation value, the ((11110 (12)) ((2-D + 4) 1110 (12 = resource block index and the block index is the maximum SRS bandwidth resources located end position deviation 0:00, resource block index that is the maximum SRS bandwidth frequency domain location of the end - 1 -;

[0071] n。 [0071] n. ffset,2 为第二偏差值,在(OvmodQxP-iVy+iDmodZM时即为最大SRS 带宽 ffset, 2 is a second deviation value, in (OvmodQxP-iVy + iDmodZM when the SRS bandwidth is the maximum

频域起始位置所在的资源块索引与资源块索引0的偏差,也即最大SRS带宽频域起始位置所在的资源块的索引。 Resource block index in the frequency domain starting position of the resource block index where the deviation is 0, i.e., resource block index maximum SRS bandwidth frequency domain starting position is located.

[0072] 在最大SRS带宽起始位置所在的资源块内偏移kTC个子载波,即可得到最大SRS带宽起始位置所对应的子载波索引。 [0072] kTC offset subcarriers maximum SRS bandwidth resource block starting location is located, to obtain the maximum SRS bandwidth subcarrier index corresponding to the start position.

[0073] 本实施例中,上述参数中的最大SRS带宽m=,。 [0073] In this embodiment, the above-described maximum SRS bandwidth parameter m = ,. 等于一种SRS带宽配置对应的树型结构中第一层的SRS带宽,该SRS带宽配置可按以下两种方式来确定,但本发明并不局限于这两种方式: Equal to one kind of SRS bandwidth configuration corresponds to a first layer of the tree structure of SRS bandwidth, the SRS bandwidth configuration may be determined in two ways, but the present invention is not limited to these two ways:

[0074] 第一种,基站选择一个SRS带宽配置并以信令方式通知终端如将该SRS带宽配置的索引号通知终端,基站和终端将该SRS带宽配置对应的树型结构中第一层的SRS带宽确定为上述最大SRS带宽。 [0074] First, the base station and select a SRS bandwidth configuration in a manner of signaling to notify the terminal notifies the terminal, such as the index number of the SRS bandwidth configuration, the base station and terminal SRS bandwidth configuration corresponds to a first layer of the tree structure SRS bandwidth is determined as the maximum SRS bandwidth.

[0075] 基站选择的SRS带宽配置的最大SRS带宽须满足 [0075] The base station selects the maximum SRS bandwidth configuration SRS bandwidth must be met

+naffset,)< iC,其中Nka 为SRS 信号所在UpPTS 内PRACH 信道的数量。 + Naffset,) <iC, wherein the number of the UpPTS SRS Nka where the PRACH signal.

[0076] 第二种,基站和终端根据下述方式确定SRS带宽配置:在<对应的配置表中,从最大SRS带宽(即对应的树型结构第一层的SRS带宽)鄉-(«。„2 +«_」的所有SRS带宽配置中,选择最大SRS带宽最大的一个SRS带宽配置。按照该方式确定的最大SRS 带宽能够使尽可能多的带宽得到信道测量的机会。 [0076] Second, the base station and the terminal according to the SRS bandwidth configuration is determined in the following manner: In <corresponding configuration table, the maximum SRS bandwidth (i.e., the first layer of the tree structure corresponding to the SRS bandwidth) Township - ( «. "2 +« _ all SRS bandwidth configuration ", select the maximum one of the largest SRS bandwidth configuration SRS bandwidth. in this way the maximum determined in the SRS bandwidth as much bandwidth as possible to obtain a channel measurement opportunities.

[0077] 考虑到可能存在的系统间的带外泄漏问题,为了适应各种不同的应用环境,本实施例为此特别配置了两个偏差值即I^ffs6U *n。 [0077] Considering the system band may exist between the leakage problem, to adapt to different environments, for this particular embodiment of the present embodiment is configured with two offset values ​​i.e. I ^ ffs6U * n. ffset,2,当上行系统带宽的下边界可能存在带外泄漏时,可将偏差值n。 ffset, 2, when the upstream boundary of the system bandwidth band leak may exist, may be offset value n. ffsrt,2设为不等于0的整数以避免该问题,如在下边界不存在带外泄漏,可将偏差值n。 ffsrt, 2 is not an integer of 0 set to avoid this problem, such as leakage of the lower band boundaries do not exist, the offset value n. ffsrt,2设为0 ;同样,当上行系统带宽的上边界可能存在带外泄漏时,可将偏差值IWfsrtil设为不等于0的整数以避免该问题,如在上边界不存在带外泄漏,可将偏差值rw&u设为0。 ffsrt, 2 is set to 0; Similarly, when the upper boundary of the system bandwidth of the uplink band leak may exist, the offset value can not be set to an integer equal to 0 IWfsrtil to avoid this problem, such as band leakage exists on the boundary, deviation value may be set to 0 rw & u. 这两个偏差值配置好之后,基站可通过信令通知终端。 After these two offset values ​​configured, the terminal may notify the base station through signaling.

[0078] 也即,第一偏差值IWfsetil根据所述上行系统带宽与其他系统带宽之间在上边界处的保护带宽的要求配置,第二偏差值n。 [0078] That is, a first deviation value IWfsetil disposed on the guard bandwidth at the boundary between the requirements according to the system bandwidth and the other uplink system bandwidth, a second deviation value n. ffsrt,2根据所述上行系统带宽与其他系统带宽之间在下边界处的保护带宽的要求配置。 ffsrt, 2 configured in accordance with the lower guard bandwidth at the boundary between the uplink system bandwidth and other system bandwidth requirements. 通过设置上述两个偏差值IWfsrtil和n。 By providing the two offset values ​​and IWfsrtil n. ffset,2,可以在该上行系统带宽的上边界和/或下边界与其他系统带宽之间在频域的间隔不能达到系统间保护带宽的宽度要求时,将边界处的数目等于该偏差值的部分资源块闲置,使得系统间的保护带宽达到要求,从而避免带外泄漏。 When ffset, 2, may be on a boundary between the uplink system bandwidth and / or lower boundary of the system bandwidth can not be achieved with other protection bandwidth requirements between the width of the interval in the frequency domain of the system, the number of the boundary is equal to the offset value idle resource block portion, such that the bandwidth between the protection system to meet the requirements, so as to avoid out-band leakage. 这种方式可以解决系统间的带外泄漏问题,并且比较灵活。 This way you can solve the problem of leakage band between systems, and more flexible. 另外,在确定PRACH信道的频域位置时,同样也要考虑以上两个偏差值。 Further, when determining frequency domain location of the PRACH, also you have to consider more than two offset values.

[0079] 另从上述公式可以看出,在((/?/1«0£12>(2,#使)+ 44)1110£12等于0时,最大31«带宽的频域结束位置位于上行系统带宽的上边界即频率高的一侧边界或再向下偏移n。ffset, :个!®,按标准规定,此时PRACH信道是从上行系统带宽的下边界开始向上分配的;在((«,moc^xp-A^ + i^moc^不等于0时,最大SRS带宽的频域起始位置位于上行系统带宽的下边界或再向上偏移n。ffset,2个RB,按标准规定,此时PRACH信道是从上行系统带宽的上边界向下开始分配的,因此能够避免两者产生冲突。[0080] 终端在上行导频时隙UpPTS内,按照上述方法确定的SRS信号的频域位置发送该SRS信号,基站则在上行导频时隙UpPTS内按照上述方法确定的SRS信号的频域位置接收该SRS信号。 [0079] Another can be seen from the above formula, the ((/? / 1 «0 £ 12> (2, # so) + 44) 1110 £ 12 is equal to 0, the frequency domain maximum end position 31« located upstream bandwidth i.e., the boundary of the system bandwidth or a high frequency side of the border and then shifted downwards n.ffset,: a ®, according to standard, then the PRACH channels from the upstream boundary of the system bandwidth allocation start up; in (! ( «, moc ^ xp-a ^ + i ^ moc ^ is not equal to 0, the frequency domain starting position of the maximum SRS bandwidth of the uplink system bandwidth is located at the boundary and then shifted upwards or n.ffset, 2 th the RB, standard predetermined, then the PRACH channels from the upstream boundary of the system bandwidth are allocated beginning downward, both the conflict can be avoided. [0080] terminal uplink pilot time slot within the UpPTS, SRS frequency signal determined as described above in the position of the SRS transmission field, the base station at the uplink pilot signal SRS frequency domain position of the UpPTS time slot determined by the above method of receiving the SRS signals.

[0081] 为便于理解,下面用几个应用中的示例对本发明进行进一步的说明。 [0081] For ease of understanding, the present invention will be further described with reference to several exemplary applications.

[0082] 示例一 [0082] Example a

[0083] 本示例按上述第一种方式确定最大SRS带宽,其中:上行系统带宽在频域所对应的RB数TC =25 ;基站选择索引号为4的SRS带宽配置并以信令的方式通知终端,又由于6SiC S 40,最大SRS带宽为上述表3中索引号为4的SRS带宽配置所对应的树型结构第一层的SRS带宽,该最大SRS带宽在频域上对应的RB数为16,即/«=,。 [0083] The present example determines the maximum SRS bandwidth according to the above-described first embodiment, wherein: the uplink system bandwidth in the frequency domain corresponding to the number of RB TC = 25; the base station selects an index number of the SRS bandwidth configuration 4 and is signaling to notify terminal, and because 6SiC S 40, the maximum bandwidth SRS in table 3 for the index number of the SRS bandwidth configuration 4 corresponding to the tree structure of SRS bandwidth of the first layer, the maximum number of RB in SRS bandwidth corresponding to the frequency domain 16, i.e., / «= ,. = 16。 = 16. 并有:kTC = 0 ; And has: kTC = 0;

^offset, 1 — 0 ;noffset,2 — 4 ; ^ Offset, 1 - 0; noffset, 2 - 4;

[0084] 终端和基站根据下式确定最大SRS带宽的起始位置所对应的子载波索引: [0084] The terminal and the base station is determined according to the starting position of the maximum SRS bandwidth corresponding to the subcarrier index:

Figure CN101394263BD00121

[0086] 即: [0086] That is:

[0087] 当UpPTS所处的位置使 [0087] When the position of the UpPTS is located so that

Figure CN101394263BD00122

时,最大SRS带宽的起始 , The maximum SRS bandwidth start

位置的子载波索引 Subcarrier index position

Figure CN101394263BD00123

. 此时的最大SRS带宽的位置如 At this time, the position of the maximum SRS bandwidth as

图5A所示。 As shown in FIG. 5A.

[0088] 当UpPTS所处的位置使 [0088] When the position of the UpPTS is located so that

Figure CN101394263BD00124

时,最大SRS带宽的起 Since, the maximum SRS bandwidth

始位置的子载波索引 Subcarrier index start position

Figure CN101394263BD00125

此时的最大SRS带宽的位置如图5B所示。 At this time, the position of the maximum SRS bandwidth shown in Figure 5B.

[0089] 示例二 [0089] Example Two

[0090] 本示例按上述第二种方式确定最大SRS带宽,其中,上行系统带宽所对应的RB数Nvrlb = 25,且Nka = 1,noffseta = 0,n。 [0090] The present exemplary embodiment is determined according to the above second largest SRS bandwidth, wherein the number of RB uplink system bandwidth corresponds Nvrlb = 25, and Nka = 1, noffseta = 0, n. ffset,2 = 4 ;则有 ffset, 2 = 4; there

Figure CN101394263BD00126

. 在所有SRS带宽配制表中,第一层的SRS带宽在频域所对应的RB数< 15的所有SRS带宽配置中,表3中的索引号为5的SRS带宽配置对应的树型结构第一层的SRS带宽最大,其在频域所对应的RB数为12,即C = 12。 In all formulations the SRS bandwidth table, the RB number of the SRS bandwidth in the frequency domain of the first layer corresponding to <all SRS bandwidth configuration 15, Table 3 Index No. 5 of the SRS bandwidth configuration corresponds to a first tree structure largest SRS bandwidth level, which in the frequency domain corresponding to the number of RB is 12, i.e., C = 12. 另,kTC = O。 Another, kTC = O.

[0091] 终端和基站根据下式确定最大SRS带宽的起始位置所对应的子载波索引: [0091] The terminal and the base station is determined according to the starting position of the maximum SRS bandwidth corresponding to the subcarrier index:

[0092] [0092]

Figure CN101394263BD00127

[0093]即: [0093] That is:

[0094] 当 [0094] When

Figure CN101394263BD00128

时,最大SRS带宽的起始位置的子载波索引 Subcarrier index of the starting position, the maximum bandwidth SRS

Figure CN101394263BD00129

;此时的最大SRS带宽的位置如图6A所示。 ; At this time the position of the maximum SRS bandwidth shown in Figure 6A.

[0095] 当 [0095] When

Figure CN101394263BD001210

时,最大SRS带宽的起始位置的子载波索引 Subcarrier index of the starting position, the maximum bandwidth SRS

Figure CN101394263BD001211

此时的最大SRS带宽的位置如图6B所示。 At this time, the position of the maximum SRS bandwidth shown in Figure 6B.

[0096] 示例三 [0096] Example Three

[0097] 本示例按上述第一种方式确定最大SRS带宽,其中:上行系统带宽所对应的RB数Nu^ =25 ;基站选择索引号为4的SRS带宽配置并以信令的方式通知终端,由于<40 ,最大SRS带宽为表3中索引号为4的SRS带宽配置所对应的树型结构第一层的SRS带宽, 该最大SRS带宽在频域上对应的RB数为16,即w;。 [0097] The present example determines the above-described first embodiment the maximum SRS bandwidth, wherein: RB number of uplink system bandwidth corresponds Nu ^ = 25; the base station selects an index number of the SRS bandwidth configuration 4, and notifies the terminal in a signaling manner, because of <40, the maximum bandwidth of the SRS bandwidth SRS index number in table 3 SRS bandwidth configuration 4 corresponding to the tree structure of the first layer, the number of RB corresponding to the maximum SRS bandwidth 16 in the frequency domain, i.e., W; . = 16;另有:kTC = 0 ;noffseU1 = 4 ;noffset, 2 = 0。 = 16; otherwise: kTC = 0; noffseU1 = 4; noffset, 2 = 0.

[0098] 终端和基站根据下式确定最大SRS带宽的起始位置所对应的子载波索引: [0098] terminal and the base station is determined according to the starting position of the maximum SRS bandwidth corresponding to the subcarrier index:

[0099] K = “m^'0 “ + k^ if (("/ mod2)χ(2 - JVsp) + 4)mod2 = 0 [0099] K = "m ^ '0" + k ^ if (( "/ mod2) χ (2 - JVsp) + 4) mod2 = 0

° I^rc +noffset,ι -nT otherwise ° I ^ rc + noffset, ι -nT otherwise

[0100]即: [0100] That is:

[0101] 当UpPTS所处的位置使((《, mod2) X (2-Nsp) + I1ra)mod 2 = 0时,最大SRS带宽的起始 [0101] When the position of the UpPTS is located so that (( ", mod2) X (2-Nsp) + I1ra) mod 2 = 0, the maximum bandwidth SRS start

位置的子载波索引g =Ov= -noffsetl)-N^ =60 ,此时的最大SRS带宽的位置如图 Position subcarrier index g = Ov = -noffsetl) -N ^ = 60, in this case the position of the maximum SRS bandwidth FIG.

7A所示。 FIG. 7A.

[0102] 当UpPTS所处的位置使((A^modZhp-A^J + ^Jmod2式0时,最大SRS带宽的起 [0102] When the position of the UpPTS is located so that ((A ^ modZhp-A ^ J + 0 when Jmod2 formula, since the maximum SRS bandwidth ^

始位置的子载波索引< 二kTC =0,此时的最大SRS带宽的位置如图7B所示。 Subcarrier index start position <two kTC = 0, at this time the position of the maximum SRS bandwidth shown in Figure 7B.

[0103] 示例四 [0103] Example Four

[0104] 本示例按上述第二种方式确定最大SRS带宽,其中,上行系统带宽所对应的RB 数< =25 ;noffseta = 4 ;noffsetj2 = 0 ;Nea = 1 ;则有-61 —(“。加,.2 +/^^)=15,由于 [0104] The present exemplary embodiment is determined according to the above second largest SRS bandwidth, wherein the uplink system bandwidth the number of RB corresponding to <= 25; noffseta = 4; noffsetj2 = 0; Nea = 1; there -61-- (. " plus, .2 + / ^ ^) = 15, since the

<40,而表3中树型结构第一层的SRS带宽在频域所对应的RB数< 15的所有SRS 带宽配置中,索引号为5的SRS带宽配置对应的树型结构第一层的SRS带宽最大,其在频域所对应的RB数为12,即= 12;另有:kTC = 0。 <40, the number of RB <Table 3 all SRS bandwidth configuration SRS bandwidth in a tree structure in the frequency domain of the first layer 15 corresponding to the index number corresponding to the configuration of the first layer of the tree structure of SRS bandwidth 5 maximum SRS bandwidth, the number of RB in the frequency domain which is corresponding to 12, i.e., 12 =; otherwise: kTC = 0.

[0105] 终端和基站根据下式确定最大SRS带宽的起始位置所对应的子载波索引:: [0105] terminal and the base station is determined according to the starting position of the maximum SRS bandwidth corresponding to the subcarrier index ::

[0106] [0106]

Figure CN101394263BD00131

[0107] 当¢(^010(12))((2-^^) + 4^1^(12 = 0时,最大SRS带宽的起始位置的子载波索引K = Oc -mZ,o-noffietA)-N^ +kTC = 108,此时的最大SRS带宽的位置如图8A所示。 [0107] When ¢ (^ 010 (12)) ((2 - ^^) + 4 ^ 1 ^ (12 = 0, the subcarrier index of the starting position of the maximum SRS bandwidth K = Oc -mZ, o-noffietA ) -N ^ + kTC = 108, in this case the position of the maximum SRS bandwidth shown in Figure 8A.

[0108] 当((/vmOd2)X(2-D + 4)mod2;^0时,最大SRS带宽的起始位置的子载波索引 [0108] When ((/ vmOd2) X (2-D + 4) mod2; ^ 0, the subcarrier index of the starting position of the maximum SRS bandwidth

K =Kc +"。κ2·《=0,此时的最大SRS带宽的位置如图8B所示。 K = Kc + ". Κ2 ·" = 0, in this case the position of the maximum SRS bandwidth shown in Figure 8B.

[0109] 示例五 [0109] Example five

[0110] 本示例中对确定最大SRS带宽的方式不做限制。 [0110] This example does not limit the determination of the maximum SRS bandwidth manner. 上行系统带宽所对应的RB数=25 ;最大SRS带宽在频域上对应的RB数为16,即讲温。 RB number corresponding to the uplink system bandwidth = 25; the maximum number of RB in SRS bandwidth corresponding to the frequency domain 16, i.e., temperature stresses. =160kTC = Lnoffseta = 0 ;noffset, = 160kTC = Lnoffseta = 0; noffset,

2 — 4o 2 - 4o

[0111] 终端根据下式确定最大SRS带宽的起始位置: [0111] terminal is determined according to the starting position of the maximum SRS bandwidth:

[0112] [0112]

Figure CN101394263BD00132

[0113]即: [0113] That is:

[0114] 当UpPTS所处的位置使((〜mod 2) χ (2 -Nsp) + 4)mod 2 = 0时,最大SRS带宽的起始 [0114] When the position of the UpPTS is located so that ((~mod 2) χ (2 -Nsp) + 4) mod 2 = 0, the maximum bandwidth SRS start

位置的子载波索引< =0C-m=,。 Subcarrier index position <= 0C-m = ,. -«.⑴).iV=+、=109,此时的最大SRS带宽的位置如 -. «⑴) .iV = +, = 109, in this case the position of the maximum SRS bandwidth as

图9A所示。 FIG. 9A.

[0115]当UpPTS所处的位置使((I1ikk^m2-Ysp) +屯)m()d2;t0时,最大SRS带宽的起 [0115] When the UpPTS is located so that a position ((I1ikk ^ m2-Ysp) + Tun) m () d2; t0, the maximum bandwidth SRS from

始位置的子载波索引< =49,此时的最大SRS带宽的位置如图9B所示。 Subcarrier index start position <= 49, then the position of the maximum SRS bandwidth is shown in Figure 9B.

Claims (12)

1. 一种上行信道测量参考信号频域位置的映射方法,应用于采用时分双工模式的长期演进系统中,在上行导频时隙UpPTS内传输测量参考信号SRS时,根据为该SRS选定的SRS 带宽配置的最大SRS带宽的频域位置和该SRS带宽相对于该最大SRS带宽的位置偏移来确定该SRS的频域位置,其特征在于:在确定该最大SRS带宽的频域位置时,将该最大SRS带宽的频域位置与该UpPTS内的物理随机接入信道即PRACH信道的频域位置错开;并且,该最大SRS带宽的频域结束位置与上行系统带宽的上边界的距离大于或等于配置的一第一偏差值,和/或,该最大SRS带宽的频域起始位置与上行系统带宽的下边界的距离大于或等于配置的一第二偏差值。 When A mapping method for measuring uplink channel frequency domain position of the reference signal applied to the LTE system uses a time division duplex mode, uplink pilot transmission sounding reference signal SRS the UpPTS time slot, for the SRS according to the selected when determining the frequency domain position of the maximum SRS bandwidth: maximum bandwidth SRS bandwidth configuration SRS frequency domain position of an SRS bandwidth and the relative positional deviation of the determined largest SRS bandwidth of the SRS frequency domain position, characterized in that , the frequency domain position of the maximum SRS bandwidth within the UpPTS, physical random access channel, i.e., frequency domain location of the PRACH offset; and, the end of the maximum SRS bandwidth in the frequency domain from a boundary position of the uplink system bandwidth is greater than a second deviation value or equal to a first configuration of a deviation value, and / or frequency domain starting position of the SRS bandwidth and the maximum distance from the lower boundary of the uplink system bandwidth is greater than or equal to the configured.
2.如权利要求1所述的映射方法,其特征在于:所述最大SRS带宽的频域起始位置,即最大SRS带宽映射到频域上的第一个子载波的索引根据下式确定:众'一{«—d风风f+'当(("/m。d2)x(2-~)+4)mod2=0 时, °~\kTC+nqifselyN^ ({nf mod2) χ (2 - Nsp)+^)mod 2 ^ 0 ,其中:kTC为所述SRS配置的梳状结构的子载波偏移量,kTC e {0,1} ;Λ「忍为频域上RB的大小,表示为子载波数;A^i为上行系统带宽在频域所对应的RB数;Nsp为所述SRS所在无线帧内,下行到上行转换点的数量;nf为所述SRS所在无线帧的系统帧号;' =0表示无线帧的第一个半帧,4 =1表示无线帧的第二个半帧为最大SRS带宽对应的RB数;Tioffseul为所述第一偏差值,在((111^^^(2-7^) + 4)1110(12 = 0时,noffseta即为最大SRS带宽频域结束位置所在的资源块索引与资源块索引-I的偏差;n。ffsrt,2为所述第二偏差值,在1110(12)42-7^) + ^)111(^2^0时,n。ffset, 2. The method of mapping according to claim 1, wherein: the frequency domain starting position of the maximum SRS bandwidth, i.e. the maximum SRS bandwidth is mapped to a first frequency domain subcarrier index is determined according to the following formula: all 'a { «-d air damper f +' if ((" /m.d2)x(2-~)+4)mod2=0 time, ° ~ \ kTC + nqifselyN ^ ({nf mod2) χ (2 - Nsp) + ^) mod 2 ^ 0, where: kTC said subcarrier offset SRS configuration comb structure, kTC e {0,1}; Λ 'tolerance for the RB size of the frequency domain, expressed as the number of subcarriers; a ^ i is the number of RB uplink system bandwidth corresponds in the frequency domain; of Nsp located SRS to the radio frame, the number of downlink-uplink switch-point; SRS system where the frame number of radio frame nf ; '= 0 indicates the first half frame of a radio frame, 4 = 1 indicates the second half frame is the radio frame number of the maximum SRS bandwidth corresponding to RB; Tioffseul to the first deviation value, the ((^^ 111 ^ (^ 2-7) + 4) 1110 (12 = 0, the resource block index noffseta deviation is the maximum SRS bandwidth frequency domain and ending location of the resource block index -I; n.ffsrt, 2 is the second two deviation value, when 2 ^ 1110 (12) 42-7 ^) + ^) 111 (^ 0, n.ffset, jp为最大SRS带宽频域起始位置所在的资源块索引与资源块索引O的偏差。 Resource block index jp is the maximum SRS bandwidth frequency domain starting position of the resource block index where O deviation.
3.如权利要求2所述的映射方法,其特征在于:所述最大SRS带宽按以下方式来确定:基站选择一个SRS带宽配置并以信令方式通知终端,基站和终端将该SRS带宽配置对应的树型结构中第一层的SRS带宽确定为所述最大SRS带宽所腳,ο ° 3. The mapping method according to claim 2, wherein: said maximum SRS bandwidth determined in the following manner: the base station to select a SRS bandwidth configuration, and notify the terminal to the signaling, the base station and the terminal corresponding to the SRS bandwidth configuration the tree structure of the SRS bandwidth is determined as the first layer of the maximum SRS bandwidth feet, ο °
4.如权利要求2所述的映射方法,其特征在于:所述最大SRS带宽等于为所述SRS选定的SRS带宽配置对应的树型结构中第一层的SRS带宽,基站和终端根据下述方式来选择SRS带宽配置:在iV温对应的SRS带宽配置表或所有SRS带宽配置表中,从最大SRS带宽« '^Nra -{noffseta ⑷)的所有SRS带宽配置中,选择最大SRS带宽最大的一个SRS带宽配置,作为选定的SRS带宽配置,其中,Nea为SRS所在UpPTS内PRACH信道的数量。 4. The method of mapping according to claim 2, wherein: said maximum SRS bandwidth equal to the selected tree structure of the SRS bandwidth configuration SRS in the SRS bandwidth corresponding to the base station and the terminal of the first layer according to the following said mode selecting SRS bandwidth configuration: iV temperature corresponding to the SRS bandwidth configuration table or all of the SRS bandwidth configuration table from the maximum SRS bandwidth « '^ Nra - {noffseta ⑷) all SRS bandwidth configuration, select the maximum SRS bandwidth maximum an SRS bandwidth configuration, as the selected SRS bandwidth configuration, wherein, the number of the UpPTS Nea is located SRS PRACH channel.
5.如权利要求1或2或3或4所述的映射方法,其特征在于:所述第一偏差值根据所述上行系统带宽与其他系统带宽之间在上边界处的保护带宽的要求配置,所述第二偏差值根据所述上行系统带宽与其他系统带宽之间在下边界处的保护带宽的要求配置。 The mapping method 1 or 2 or 3 or claim 4, wherein: said first deviation value disposed in the guard bandwidth in accordance with the requirements at the boundary between the uplink system bandwidth and other system bandwidth the configuration of the second deviation value lower guard bandwidth at the boundary between the uplink system bandwidth and other system bandwidth requirements.
6.如权利要求5所述的映射方法,其特征在于:终端在所述上行导频时隙UpPTS内,按照确定的所述SRS的频域位置发送该SRS,基站则在所述上行导频时隙UpPTS内确定的所述SRS的频域位置接收该SRS。 6. The method of mapping as claimed in claim 5, wherein: the terminal in the UpPTS uplink pilot time slot, sending the SRS according to the SRS frequency domain position determined, then the base station in the uplink pilot determining the UpPTS timeslot of the SRS frequency domain position to receive the SRS.
7. 一种上行信道测量参考信号带宽范围的频域位置的映射方法,应用于采用时分双工模式的长期演进系统中,用于在上行导频时隙UpPTS内传输测量参考信号SRS时,根据下式确定该SRS带宽范围映射到频域上的第一个子载波的索引k'。 Mapping frequency domain position A uplink channel sounding reference signal bandwidth, the LTE system is applied to time division duplex mode, the pilot for uplink sounding reference signal SRS transmit the UpPTS time slot, according to the SRS bandwidth is determined that mapped to the index of the first sub-carrier in the frequency domain k '. ,该SRS带宽范围即为该SRS 选定的SRS带宽配置的最大SRS带宽所在的频带范围: The SRS of the SRS bandwidth is the selected maximum SRS bandwidth configuration SRS bandwidth where the frequency band:
Figure CN101394263BC00031
其中:kTC为所述SRS配置的梳状结构的子载波偏移量,kT。 Wherein: a subcarrier offset kTC configured for the SRS comb structure, kT. e {0,1} ;iV票为频域上RB的大小, 表示为子载波数;为上行系统带宽在频域所对应的RB数;Nsp为所述SRS所在无线帧内, 下行到上行转换点的数量;nf为所述SRS所在无线帧的系统帧号;' =0表示无线帧的第一个半帧,4 =1表示无线帧的第二个半帧…温,。 e {0,1}; iV ticket for an RB in the frequency domain size, expressed as the number of subcarriers; RB is the number of uplink system bandwidth corresponds in the frequency domain; of Nsp is the radio frame where the SRS, downlink to uplink conversion the number of points; NF is located SRS system frame number of the radio frame; '= 0 indicates the first half frame of a radio frame, 4 = 1 indicates the second half frame in a radio frame ... temperature. 为最大SRS带宽对应的RB数;Tioffseul为配置的第一偏差值;n。 RB the maximum number corresponding to the SRS bandwidth; Tioffseul configuration of a first deviation value; n. ffset,2为配置的第二偏差值。 ffset, 2 second deviation value for the configuration.
8.如权利要求7所述的映射方法,其特征在于,所述最大SRS带宽按以下方式来确定:基站选择一个SRS带宽配置并以信令方式通知终端,基站和终端将该SRS带宽配置对应的树型结构中第一层的SRS带宽确定为所述最大SRS 带"WnSRSyO ° 8. The method of mapping according to claim 7, wherein said maximum SRS bandwidth determined in the following manner: the base station to select a SRS bandwidth configuration, and notify the terminal to the signaling, the base station and the terminal corresponding to the SRS bandwidth configuration the tree structure of the SRS bandwidth is determined as the first layer of the maximum SRS band "WnSRSyO °
9.如权利要求8所述的映射方法,其特征在于,所述基站选择的SRS带宽配置的最大SRS带宽须满足 9. The method of mapping according to claim 8, characterized in that the base station selected by the maximum SRS bandwidth configuration SRS bandwidth must be met
Figure CN101394263BC00032
其中Nka 为SRS 所在UpPTS 内PRACH 信道的数量。 Wherein the number of the UpPTS SRS Nka where the PRACH.
10.如权利要求7所述的映射方法,其特征在于:所述最大SRS带宽等于为所述SRS选定的SRS带宽配置对应的树型结构中第一层的SRS带宽,基站和终端根据下述方式来选择SRS带宽配置:在iV恐对应的SRS带宽配置表或所有SRS带宽配置表中,从最大SRS带宽 10. The method of mapping according to claim 7, wherein: said maximum SRS bandwidth equal to the selected tree structure of the SRS bandwidth configuration SRS in the SRS bandwidth corresponding to the base station and the terminal of the first layer according to the following said mode selecting SRS bandwidth configuration: iV fear in the corresponding SRS bandwidth configuration SRS bandwidth configuration table or a table of all, from the maximum SRS bandwidth
Figure CN101394263BC00033
的所有SRS带宽配置中,选择最大SRS带宽最大的一个SRS带宽配置,作为选定的SRS带宽配置,其中,Nea为SRS所在UpPTS内PRACH信道的数量。 All SRS bandwidth configuration, select a maximum of the largest SRS bandwidth configuration SRS bandwidth, as the selected SRS bandwidth configuration, wherein, the number of the UpPTS Nea is located SRS PRACH channel.
11.如权利要求7或8或9或10所述的映射方法,其特征在于:在 11. The method of mapping 7 or 8 or 9 or as claimed in claim 10, characterized in that:
Figure CN101394263BC00034
时,所述第一偏差值即为最大SRS带宽频域结束位置所在的资源块索引与资源块索引^V温—1的偏差;在 When the first offset value is the resource block index with the largest SRS bandwidth frequency resource block end domain location index temperature variation ^ V-1; in
Figure CN101394263BC00035
时,所述第二偏差值为最大SRS带宽频域起始位置所在的资源块索引与资源块索引0的偏差。 When resource block index value is the maximum deviation of the second bandwidth frequency domain starting position of the SRS and the resource block index where 0 is the deviation.
12.如权利要求7所述的映射方法,其特征在于:所述第一偏差值根据所述上行系统带宽与其他系统带宽之间在上边界处的保护带宽的要求配置,所述第二偏差值根据所述上行系统带宽与其他系统带宽之间在下边界处的保护带宽的要求配置。 12. The method of mapping according to claim 7, wherein: said first deviation value disposed in the guard bandwidth in accordance with the requirements at the boundary between the uplink system bandwidth and other system bandwidth, the second deviation the protective value of the configuration of the bandwidth between the lower boundary of the system bandwidth with other uplink system bandwidth requirements.
CN 200810173506 2008-10-29 2008-10-29 Uplink channel measurement reference signal and mapping method for bandwidth range frequency domain position CN101394263B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200810173506 CN101394263B (en) 2008-10-29 2008-10-29 Uplink channel measurement reference signal and mapping method for bandwidth range frequency domain position

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200810173506 CN101394263B (en) 2008-10-29 2008-10-29 Uplink channel measurement reference signal and mapping method for bandwidth range frequency domain position

Publications (2)

Publication Number Publication Date
CN101394263A CN101394263A (en) 2009-03-25
CN101394263B true CN101394263B (en) 2012-02-29

Family

ID=40494363

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200810173506 CN101394263B (en) 2008-10-29 2008-10-29 Uplink channel measurement reference signal and mapping method for bandwidth range frequency domain position

Country Status (1)

Country Link
CN (1) CN101394263B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101848541B (en) 2009-03-27 2013-03-13 电信科学技术研究院 Method and device for sending sounding reference signal
CN101594336B (en) 2009-06-19 2012-12-19 中兴通讯股份有限公司 Method for sending positioning reference signals
CN101616360B (en) 2009-07-24 2012-05-09 中兴通讯股份有限公司 Method and system for sending positioning reference signal
CN103229422B (en) * 2012-11-30 2015-01-21 华为技术有限公司 Method and device for demodulating signals of physical random access channel
CN108282312A (en) * 2017-01-06 2018-07-13 电信科学技术研究院 Uplink transmission method, terminal and base station
CN108809587A (en) * 2017-05-05 2018-11-13 华为技术有限公司 Reference signal sequence determination method, terminal device and network device
CN107911203A (en) * 2017-08-11 2018-04-13 华为技术有限公司 Method for sending and receiving reference signal, network device, terminal device and system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6654429B1 (en) 1998-12-31 2003-11-25 At&T Corp. Pilot-aided channel estimation for OFDM in wireless systems
CN101287261A (en) 2007-04-13 2008-10-15 中兴通讯股份有限公司 Measuring method for quality of wideband wireless channel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6654429B1 (en) 1998-12-31 2003-11-25 At&T Corp. Pilot-aided channel estimation for OFDM in wireless systems
CN101287261A (en) 2007-04-13 2008-10-15 中兴通讯股份有限公司 Measuring method for quality of wideband wireless channel

Also Published As

Publication number Publication date
CN101394263A (en) 2009-03-25

Similar Documents

Publication Publication Date Title
KR100957311B1 (en) Uplink Scheduling Method and Apparatus for Mobile Communication System
RU2623504C2 (en) Communication systems and communication methods of machine type
JP6133913B2 (en) System and method for uplink signaling
US8638652B2 (en) Signal transmission with fixed subcarrier spacing within OFDMA communication systems
CN102113238B (en) Relay station in radio communication system and operating method for the relay station
JP6487950B2 (en) Communication system and communication method for machine type communication
KR101633209B1 (en) Method and apparatus for aggregating carriers in wireless communication systems
CN104012013B (en) d2d transmitting a signal in a wireless communication system (equipment device) device and a transmission method of a signal
US20160127098A1 (en) Method and apparatus for channel access for lte on unlicensed spectrum
CN103340007A (en) Logically distinct network within a LTE network for machine type communications (MTC) terminals
US20130229953A1 (en) Apparatus and method for indicating synchronization signals in a wireless network
CN101933283A (en) Ofdma frame structures for uplinks in mimo networks
EP2734003B1 (en) Method and apparatus for allocating a control channel resource of a relay node
CN101541029A (en) Sending method and device of measure-reference signal under state of carrier aggregation
CN102594513B (en) Enhanced downlink control signal channel transmission method and device
US20120281551A1 (en) method for setting a mobile node specific cyclic prefix in a mobile communication
KR101239865B1 (en) Method and device for enabling multi-carriers aggregation transmission
CN102165716B (en) Femto cell base station synchronization method, and by this method the femtocell base station
CN101273565A (en) Radio communication system and its method
KR20100048900A (en) A wireless comunication method between user euipment and base station in wireless comminication system supprortin a first user using a single frequency band and a second user using multi frequency band
CN103051437A (en) Method for transmitting uplink channel sounding reference signal of time division duplex system
CN102017696B (en) Backward compatible bandwidth expansion
US20120093063A1 (en) Method and device for detecting downlink control information
US9215730B2 (en) Method for transmitting the PDCCH signal
JP2011512089A (en) Alignment structure subcarriers Ofdm multicarrier system

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
C14 Granted