CN101390198A - 蚀刻硅基材料的方法 - Google Patents

蚀刻硅基材料的方法 Download PDF

Info

Publication number
CN101390198A
CN101390198A CNA2007800063282A CN200780006328A CN101390198A CN 101390198 A CN101390198 A CN 101390198A CN A2007800063282 A CNA2007800063282 A CN A2007800063282A CN 200780006328 A CN200780006328 A CN 200780006328A CN 101390198 A CN101390198 A CN 101390198A
Authority
CN
China
Prior art keywords
solution
minutes
silver
molysite
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2007800063282A
Other languages
English (en)
Other versions
CN101390198B (zh
Inventor
M·格林
刘峰明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nexeon Ltd
Original Assignee
Nexeon Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nexeon Ltd filed Critical Nexeon Ltd
Publication of CN101390198A publication Critical patent/CN101390198A/zh
Application granted granted Critical
Publication of CN101390198B publication Critical patent/CN101390198B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30604Chemical etching
    • H01L21/30608Anisotropic liquid etching
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K13/00Etching, surface-brightening or pickling compositions
    • C09K13/04Etching, surface-brightening or pickling compositions containing an inorganic acid
    • C09K13/08Etching, surface-brightening or pickling compositions containing an inorganic acid containing a fluorine compound
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/08Etching
    • C30B33/10Etching in solutions or melts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Weting (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Silicon Compounds (AREA)
  • ing And Chemical Polishing (AREA)

Abstract

描述了在小的局部区域中选择性蚀刻硅衬底以在蚀刻表面中形成柱或柱体的方法。将硅衬底放在氟化氢、银盐和醇的蚀刻溶液中。醇的引入提供了更高的硅柱堆积密度。

Description

蚀刻硅基材料的方法
发明领域
本发明涉及蚀刻硅基材料的方法。
背景技术
已知硅基材料选择性蚀刻产生硅柱例如在制造可再充电锂电池的阳极中是有利的。在经此引用并入本文的US-7033936中描述了一种这样的方法。根据该文献,在硅衬底表面上沉积氯化铯的半球形岛,用薄膜覆盖包括岛的衬底表面,并从表面上除去半球形结构(包括覆盖它们的薄膜)以形成曾经具有半球体的裸露区域的掩膜,通过这样产生掩膜来构造柱体。然后利用反应性离子蚀刻在裸露区域中蚀刻衬底,并通过例如物理溅射除去抗蚀剂从而在未蚀刻区域中,即在半球体位置之间的区域中留下硅柱阵列。
在Peng K-Q,Yan,Y-J,Gao S-P和Zhu J.,Adv.Materials(材料),14(2002),1164-1167,Adv.Functional Materials(功能材料),(2003),13,No 2二月,127-132和Adv.Materials(先进材料),16(2004),73-76中描述了另一化学方法。Peng等人已经展示了通过化学方法在硅上产生纳米柱的一种方式。根据该方法,使用下列溶液在50℃下蚀刻硅片,该硅片可以是n或p-型并具有暴露在溶液中的{111}面:5M HF和20mM AgNO3。以大约20微米/小时形成柱体,并报道了最多24微米的柱体高度。除高度外,没有给出其它尺寸数据,例如平均柱体直径、堆积密度或表面均匀性。该方法仅在大约1平方厘米小片上进行。这些论文中假定的机理为,在初始阶段中在硅表面上无电沉积分离的银纳米簇。在第二阶段中,银纳米簇和它们周围的硅区域充当局部电极,在银纳米簇周围的区域中造成硅电解氧化形成SiF6阳离子,所述SiF6阳离子从蚀刻位置扩散开,在银纳米簇之下留下柱体形式的硅。据建议,可以使用银以外的金属,例如Ni、Fe、Co、Cr和Mg,尤其是硝酸盐形式,以形成硅柱。
K.Peng等人,Angew.Chem.Int.Ed.(德国应用化学),44(2005),2737-2742;和K.Peng等人,Adv.Funct.Mater.(先进的功能材料),16(2006),387-394涉及与Peng等人较早的论文中所述的类似的蚀刻方法,但成核/银纳米粒子沉积步骤和蚀刻步骤在不同溶液中进行。在第一(成核)步骤中,将硅片在4.6M HF和0.01M AgNO3的溶液中放置1分钟。然后第二(蚀刻)步骤在不同的溶液,即4.6M HF和0.135M Fe(NO3)3中进行30或50分钟。这两个步骤均在50℃下进行。报道了分别大约6和4微米高和大约20和20至40纳米直径的柱体。柱体在{111}平面上在{111}方向上生长。没有公开柱体堆积密度(表面均匀性),也没有公开所用硅片的尺寸。硅晶片可以是n或p-型。在这些论文中,与之前的论文相比,对蚀刻步骤提出了不同机理,即除去银(Ag)纳米粒子之下的硅且纳米粒子逐渐下沉到硅体中,在银纳米粒子正下方以外的区域中留下硅柱。
需要更高的柱体,提高的柱体密度和改进的柱体分布均匀性。此外,最好提高柱体形成(蚀刻)速度。此外,因为Peng描述的那些方法局限于{111}面,因此它们的适用性有限。
发明内容
权利要求描述了本发明。
根据现在描述的方法,提供了在硅基衬底上产生硅柱的改进的化学方法。
由从标准半导体材料中的硅晶片上获取的片(其可以为大约1至15平方厘米)开始,将所述片的一面抛光,同时做旧(粗糙化)另一面。晶片平面相当于硅的{100}或{110}晶面。硅可以掺杂以按需要使硅为n-型或p-型,例如使用任何常规掺杂剂。硅片的典型电阻率为1ohm cm乘10的+或-2次幂。例如在n-型硅的情况下,电阻率通常大致为1ohm cm,并且要指出,掺杂水平在本文所述的实施方案中并不关键。
在经受本发明的方法之前,可以使用RCA-1蚀刻(即水:88氨:浓过氧化氢,体积比为1:1:1)均匀地使表面清洁且亲水。在下一制备阶段中,硅片可以在其背面(较粗糙面)上被薄Au/Cr涂层(例如10Au/1Cr,大约200纳米厚的膜)保护。
该蚀刻方法包括两个阶段。第一阶段是成核,其中在硅表面上形成离散的金属沉积物,第二阶段是衬底的实际蚀刻。根据本发明进行这两个阶段产生在密度和高度上都更均匀的柱体阵列。
第一成核阶段在硅表面上形成离散的金属沉积物。在一个实施方案中,成核阶段中所用的水溶液的化学组成为:
- 1至40%v/v的醇,例如乙醇;溶液的典型醇含量基于整个水溶液总体积为5至40%,例如15至40%,任选大约5或6%v/v;
- 1.5至10摩尔(M)氢氟酸,例如5至7.5M,例如大约6.8M(典型浓度的实例为4.5-9M,例如6.8至7.9M;应该指出,HF或氟盐的4.5M、6.8M、7.9M和9M溶液分别相当于在溶液内包含20%、30%、35%和40体积%的浓(40%)HF);
- 5至100mM,例如10至65mM的在氟离子存在下无电沉积在硅衬底上的离散区域中的金属盐,该盐任选为银盐,例如硝酸银;盐的浓度可以为12.6至24mM,例如24mM。(应该指出,12.6至22.1mM溶液相当于含40至70%的31.5mM银溶液的溶液,且24mM溶液相当于含40%的0.06M(60mM)银溶液的溶液)。
进行成核反应的温度可以为0至30℃,例如室温(20℃)。成核反应迅速发生,例如在10秒内,但衬底可以与衬底接触最多大约15分钟,例如大约10分钟。醇,例如乙醇的加入和在相对低温,例如室温下进行成核阶段的作法具有减缓化学过程的作用。因此实现金属沉积物,例如银的更均匀分布,并随后获得更均匀间隔的柱体。
第二阶段是蚀刻,在此期间形成硅柱。蚀刻阶段中所用的溶液可以与成核阶段中所用的相同或不同。如果使用相同溶液,则第二(蚀刻)阶段可以无中断地在第一(成核)阶段之后,且第一和第二阶段的总持续时间通常为5至50分钟。如果使用不同溶液,第一成核阶段通常可以为5至10分钟。蚀刻阶段中所用的溶液可以为:
- 氢氟酸(HF);氟离子的浓度可以为4至15M,例如4.5至8M;
- 可以在氟离子存在下氧化硅的金属盐;该盐任选为银盐或铁盐;并优选为硝酸银或硝酸铁盐。盐的浓度可以为10至40mM,例如20至30mM,例如大约25mM。
醇在蚀刻阶段中不是必要的。
蚀刻阶段根据掺杂密度任选在高于成核阶段的温度下进行;两个阶段之间的温度升高可以为至少20℃,例如至少35℃;蚀刻阶段可以在30至80℃,例如45至75℃,例如60至75℃的温度下进行;在大约45分钟内,可以实现具有大约70至75微米一致高度和0.2微米直径的柱体。蚀刻阶段可以进行较短时间,但柱体则较短。
附带着硅柱的所得硅基衬底可以用作可再充电锂离子电池的阳极,因为本发明人相信,硅柱可以可逆地与锂离子反应而不会分解或破坏,由此提供经过大量充/放电周期的良好电容保持。或者,所述柱体可以从尚未蚀刻的衬底部分上剪切以形成硅纤维。本发明的衬底特别可用在锂离子电池的电极中。
柱体表面密度(覆盖率)可以用下列比率F描述:
F=P/[R+P]
其中P是以柱体存在的硅的量,且R是除去的硅的量。
对于固定的柱体高度,F的值越大,每单位面积的可逆锂离子容量越高,且因此电极的电容越高。此外,F的值越高,可以割下以制造硅纤维的硅材料的量更大。成核阶段使柱体堆积密度F最大化,且申请人已经实现了高达40%的覆盖率。
在上述方法中,F通常为大约15至20%。
在一个实施方案中,本发明提供了蚀刻硅衬底的方法,包括使硅衬底与蚀刻氟酸或氟盐、银盐和醇的溶液接触。银盐是水溶性的,例如硝酸银。溶液的硝酸银含量可以为40至70%,基于31.5mM硝酸银溶液,这相当于最终溶液中的硝酸银浓度为12.6至22.1mM硝酸银。氟酸可包括氟化氢,其在溶液中的含量为30体积%至40体积%,基于浓(40%或22.6M)HF,这相当于最终溶液中的HF浓度为6.8至9M),例如35至40%(最终溶液中的HF浓度为7.9至9M),例如40%(最终溶液中的HF浓度为9M)。醇可以为乙醇,其在最终溶液中的含量可以为15至40%。该溶液也可以包括10至30%,例如20%的水。
该方法可以包括使衬底在10至30℃,例如20℃的溶液中放置5至50分钟,例如10分钟的阶段。该方法可以进一步包括将溶液温度提高至20至75℃达40至45分钟,例如45分钟。
该方法可以包括随后加入另外的银或硝酸银,例如另外的5至10%的银或硝酸银,例如6%。当如前段中提到的那样升高温度时,可以在升高温度时加入银,并可以分别在随后的10和20分钟添加另外两份。
该蚀刻可以在{100}或{110}平面上进行。
本发明还提供了通过上述方法制成的蚀刻硅衬底。
下列两个实施例例证了要求保护的方法:
实施例1
将清洁的硅样品(大约1平方厘米,2-5ohm cm n-型材料,已经如上所述背部涂布)面朝上({100}面)放在含有50毫升蚀刻溶液的聚丙烯烧杯中。蚀刻溶液的组成为:
12.5毫升HF(40%);
2.5毫升乙醇;
35毫升31.5mM AgNO3
其相当于这样的水溶液,其含有:
5.7M的HF;
5%v/v乙醇;
22mM的AgNO3
将样品在室温(大约20℃)下放置10分钟以获得在样品面上的均匀银成核。如下所述,乙醇(或其它醇)在其对HF化学的改性中是重要的。
在成核阶段后进行蚀刻阶段。在蚀刻阶段中,将浸没在上述溶液中的硅衬底在恒温浴中在例如75℃下放置45分钟;换言之,蚀刻阶段中所用的溶液与成核阶段中所用的溶液相同。根据确切条件,尤其是该方法的持续时间,该处理蚀刻硅并产生20至100微米高,通常60至100微米高的柱体。
实施例2
根据另一方法,以如下构成的母溶液为原料:
- 20毫升0.06M AgNO3(最终溶液中24mM);
- 17.5毫升浓HF(最终溶液中7.0M);
- 2.5毫升EtOH(最终溶液中5%v/v);和
- 10毫升H2O
(总共50毫升)。然后进行下列程序(a)至(c)之一:
(a)将清洁的硅样品(大约1平方厘米,2-5ohm cm n-型材料,已经如上所述背部涂布)面朝上({100}面)在含有50毫升上述母溶液的聚丙烯烧杯中在20℃下放置10分钟。紧随此后,将温度升至53℃,并同时加入另外的银盐,在这种情况下通过添加3毫升0.6M AgNO3溶液来加入。在45分钟后,取出并漂洗所述片。所得柱体为~85微米高,这比不二次添加3毫升0.6M AgNO3溶液时获得的高50%。
(b)将清洁的硅样品(大约1平方厘米,2-5ohm cm n-型材料,已经如上所述背部涂布)面朝上({100}面)在含有50毫升上述母溶液的聚丙烯烧杯中在20℃下放置10分钟。紧随在此阶段后,对蚀刻阶段,将温度升至53℃,并同时加入1毫升0.6M AgNO3溶液。在10分钟后,再加入1毫升0.6M AgNO3溶液,并再在10分钟后,加入另外1毫升0.6M AgNO3溶液。在53℃下的总时间为45分钟,产生高85至100微米和平均直径0.2微米的均匀柱体。
硝酸银溶液的这种额外添加可以在蚀刻阶段过程中进行,例如在反应的第15、25和35分钟,例如在反应的第10和20分钟。在此方法中,覆盖率F经计算为15至20%。
(c)将清洁的硅样品(大约1平方厘米,10ohm cm n-型材料,已经如上所述背部涂布)面朝上({100}面)在含有50毫升上述母溶液的聚丙烯烧杯中在20℃下放置10分钟,然后转移到用于蚀刻阶段的新溶液中,该溶液可以例如如下构成:
20毫升水;
12.5毫升60mM Fe(NO3)3(aq);和
17.5毫升40%HF。
在45分钟内获得高40微米的均匀柱体。使用SEM分析测量F,大约为30%。Fe(NO3)3浓度变化造成柱体直径变化,在大约0.2至0.6微米。
Fe(NO3)3和/或AgNO3溶液在蚀刻过程中的连续或逐步添加同时导致改进的均匀性和提高的柱体高度。
据发现,本发明的方法获得了为之前获得的高度的大约5倍的增加的柱体高度,并在若干平方厘米上显著改进了柱体均匀性。因此,可以在10至15厘米直径的晶片上以均匀的高度和堆积密度构造硅基电极。或者,可以使柱体生长以便随后脱离,或“收割”,例如以便制造电池阳极,如更详细地描述在也待审的名称为“A method of fabricating fibres composed ofsilicon or a silicon-based material and their use in lithium rechargeablebatteries(由硅或硅基材料构成的纤维的构造方法及其在可再充电锂电池中的用途)”的专利申请UK 0601319.7(其与本专利共同转让并经此引用并入本文)中。
已经发现,醇(例如C1-4链烷醇,如乙醇)在成核步骤中的引入,提供了许多优点。
首先,在成核作用方面,乙醇添加在第一关键时期(大约10秒持续时间)中导致更均匀的银沉积。这造成柱体的更均匀空间分布。
在考虑组成的影响时,可以进一步理解乙醇添加的作用。特别地,改变乙醇浓度(通过改变水/醇比率但保持50毫升的总体积)对柱体高度具有重要影响,这被认为在成核阶段中发生。因此,如果浓度提高超过5%v/v(即在50毫升总溶液量中2.5毫升乙醇),趋势是降低柱体高度。在下表中列出进一步数据:
乙醇(EtOH)浓度对柱体高度的影响
 
在50毫升总溶液体积中EtOH体积(毫升) 成核时间(分钟)/温度℃ 柱体生长时间(分钟)/温度℃ 柱体高度微米
5(10%) 10/20 45/20 20
5(10%) 10/20 45/45 35
5(10%) 10/20 45/70 40
10(20%) 10/20 45/20 13
10(20%) 10/20 45/45 22
10(20%) 10/20 45/70 20
20(40%) 10/20 45/20 10
20(40%) 10/20 45/45 ~0
20(40%) 10/20 45/70 ~0
在温度影响方面,成核非常迅速发生,<10秒。
室温成核的柱体高于在更高成核温度下获得的那些,因此本发明人相信,对成核阶段使用室温时对该方法具有更好的控制。如果对于10ohm cmn-型硅晶片,温度在室温下(20至25℃)保持10分钟以便成核,然后提高至50℃达45分钟以进行蚀刻阶段,则柱体高度为~30微米。在70℃和75℃之间,柱体高度为~60微米。
高度在~75微米范围内的柱体可以在45分钟内获得。也已经获得高达120微米高的柱体。利用该方法观察到提高的高度的原因是在Fe(NO3)3蚀刻溶液中包含了少量AgNO3(1毫升,在50毫升中加入60mM)。
如果蚀刻阶段在80℃下进行相同时间,则尽管在最初形成柱体,但其被破坏。但是,如果在80℃下进行的蚀刻阶段的蚀刻时间减少,则柱体可见。最后这种结果的出现可能是因为一定的横向蚀刻,这种横向蚀刻会造成锥形的柱体结构,且横向与竖直蚀刻速率的比率随温度而提高。但是,在80℃下在柱体形成中的沉淀物坍塌更可能解释为{110}平面上保护性被吸附物的损失。
据发现,0.1ohm cm至1,000ohm cm范围内的电阻掺杂水平没有影响。此外,该方法对n-和p-型硅均适用。发现,在1至10ohm cm范围内,p-型硅比n-型硅略快地蚀刻。此外,柱体生长不限于{100}平面。在{110}平面上也观察到硅结构的生长,包括与表面倾角为大约45°的柱体和片体。
在{100}平面上的蚀刻产生与晶片表面呈直角的柱体。在{110}平面上,制成与晶片表面呈45°角的柱体。此外,可以在{111}上生长竖直柱体,而在(110)面上具有保护性被吸附物。蚀刻速率为{100}>{111}>>{110}。
通常使用超声进行硅纤维的收割,因为使用刀收割会在纤维材料之外还产生大量微粒硅。
蚀刻方法也可以在极大规模集成(VLSI)电子级单晶片或其不合格样品上进行。作为更便宜的替代物,也可以使用光电级多晶材料。可用的更便宜材料是结晶金属级硅。
会认识到,通过上述方法制成的柱体结构可用在任何适当的实施中,包括可再充电锂离子电池中所用的硅阳极。尽管本文所述的结构被称作“柱体”,但要认识到,包括任何适当的柱状、纤维状或毛状结构。要进一步认识到,上文列出的参数可以适当改变,且所述材料可以由具有适当掺杂的纯硅基材料扩展到例如硅锗混合物。
本文提到的硅基材料包括纯硅或掺杂硅或其它硅基材料,例如硅-锗混合物,或任何其它合适的混合物。制造柱体用的衬底可以是100至0.001Ohm cm的n-或p-型,或其可以是硅的合适合金,例如SixGe1-x
可以使用其它醇代替乙醇,并且可以使用其它蚀刻剂,例如氟盐,例如氟化铵。
蚀刻和成核都是电流交换反应,例如
Si+6F-+4Ag+=(SiF6)2-+4Ag
可以使用其它可溶银盐代替硝酸银,并且可以以可溶盐,尤其是硝酸盐形式采用其它金属以提供电流交换反应,例如电正性接近或低于银的金属。成核需要金属盐,而蚀刻可以使用金属离子或非金属离子,例如氢离子或硝酸根离子(或两者),只要它们的还原电势在正常氢标度下在0至0.8V范围内或与之接近。上文提到的Peng等人的文章提到了可代替银使用的其它金属。可以使用具有+0.8V至0.0V的电势的金属离子(vs标准氢电极(SHE)),例如Cu2+离子(+0.34V(vs SHE))代替银离子。

Claims (29)

1.蚀刻硅衬底的方法,包括使硅衬底与下列物质的水溶液接触:
■氟酸或氟盐,
■能够在氟离子存在下在硅上无电沉积金属的金属盐,和
■醇。
2.如权利要求1所述的方法,其中金属盐是银盐,任选硝酸银。
3.如权利要求2所述的方法,其中溶液的硝酸银含量为0.2至16重量%,例如0.75至0.7重量%。
4.如权利要求1或2所述的方法,其中溶液的金属盐含量,例如银或硝酸银含量为5至100mM,例如12.6至24mM,例如12.6至22.1mM。
5.如前述权利要求任一项所述的方法,其中氟酸包括氟化氢,其含量为3至20重量%,例如8至20%,例如10至15%,例如大约12或13.6%。
6.如前述权利要求任一项所述的方法,其中蚀刻氟酸包括氟化氢,其含量为1.5至10M,例如5至7.5M,例如大约6.8M。
7.如前述权利要求任一项所述的方法,其中所述醇为乙醇。
8.如前述权利要求任一项所述的方法,其中醇含量为最多40体积%,例如3%至40%,例如5至40%,例如15至30%。
9.如前述权利要求任一项所述的方法,进一步包括使衬底放置在0℃至30℃,例如20℃的溶液中的阶段。
10.如权利要求9所述的方法,其中所述放置步骤持续5至50分钟,例如大约10分钟。
11.如前述权利要求任一项所述的方法,进一步包括将溶液温度升至40℃至75℃。
12.如权利要求11所述的方法,其中使衬底在所述升高的温度下在溶液中放置30至100分钟,例如大约45分钟。
13.如前述权利要求任一项所述的方法,进一步包括在该方法过程中加入另外的银盐,例如硝酸银,或铁盐,例如硝酸铁。
14.如权利要求13所述的方法,其中加入的银盐或铁盐的量为0.1至2重量%,例如大约1重量%。
15.如权利要求13或14所述的方法,其中另外的银盐或铁盐的加入量使溶液的银或铁浓度提高2mM至6mM,例如2.85mM至5.45mM。
16.如权利要求13至15任一项所述的方法,当从属于权利要求11或12时,在该方法中在升高温度时加入所述另外的银盐或铁盐。
17.如权利要求16所述的方法,其中在升高温度时加入第一份银盐或铁盐,然后加入另外的至少一份,例如在随后的10和20分钟加入。
18.如权利要求1至11任一项所述的蚀刻硅衬底的方法,其中所述接触步骤构成使用第一溶液的第一阶段,且该方法进一步包括:
第二阶段,包括使硅衬底与包含氟酸和铁盐,例如Fe(NO3)3的第二溶液接触。
19.如权利要求18所述的方法,其中使衬底在第一溶液中放置最多15分钟,例如大约10分钟。
20.如权利要求18或19所述的方法,其中第二阶段在比第一阶段高的温度进行,例如30至80℃,例如45至75℃,例如60至75℃。
21.如权利要求18至20任一项所述的方法,其中第二阶段进行40至50分钟,例如大约45分钟。
22.如权利要求18至21任一项所述的方法,其中第二溶液包括银盐,例如最多60mM的量。
23.如权利要求18至22任一项所述的方法,进一步包括在该方法的过程中向溶液中,尤其是在第二阶段过程中向第二溶液中,加入银盐或铁盐,例如Fe(NO3)3和/或AgNO3
24.如权利要求23所述的方法,其中加入的另外的银盐或铁盐的量是使溶液的银或铁浓度提高最多10mM,例如2mM至6mM的量。
25.如权利要求23或24所述的方法,其中两次或更多次向第二溶液中加入银或铁盐。
26.如权利要求18至25任一项所述的方法,其中使衬底在第二溶液中放置40至50分钟,例如45分钟。
27.如前述权利要求任一项所述的方法,其中蚀刻在{100}平面或{110}平面或{111}平面上进行。
28.通过如前述权利要求任一项所述的方法制成的蚀刻硅衬底。
29.可再充电锂电池,其阳极包含如权利要求28所述的蚀刻硅衬底。
CN2007800063282A 2006-01-23 2007-01-23 蚀刻硅基材料的方法 Expired - Fee Related CN101390198B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB0601318.9 2006-01-23
GBGB0601318.9A GB0601318D0 (en) 2006-01-23 2006-01-23 Method of etching a silicon-based material
PCT/GB2007/000204 WO2007083152A1 (en) 2006-01-23 2007-01-23 Method of etching a silicon-based material

Publications (2)

Publication Number Publication Date
CN101390198A true CN101390198A (zh) 2009-03-18
CN101390198B CN101390198B (zh) 2011-04-13

Family

ID=36010792

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007800063282A Expired - Fee Related CN101390198B (zh) 2006-01-23 2007-01-23 蚀刻硅基材料的方法

Country Status (14)

Country Link
US (1) US8585918B2 (zh)
EP (1) EP1977443A1 (zh)
JP (1) JP5043041B2 (zh)
KR (1) KR101182681B1 (zh)
CN (1) CN101390198B (zh)
BR (1) BRPI0707164A2 (zh)
CA (1) CA2637737C (zh)
GB (1) GB0601318D0 (zh)
IL (1) IL192969A0 (zh)
MX (1) MX2008009435A (zh)
NO (1) NO20083502L (zh)
RU (1) RU2429553C2 (zh)
TW (1) TWI446432B (zh)
WO (1) WO2007083152A1 (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103098265A (zh) * 2010-04-09 2013-05-08 奈克松有限公司 制造由硅或硅基材料构成的结构化粒子的方法及其在锂可充电电池中的用途
CN103477472A (zh) * 2011-04-15 2013-12-25 国立大学法人蔚山科学技术大学校产学协力团 用于锂二次电池的阳极活性材料、制造它的方法和包含它的锂二次电池
CN103563097A (zh) * 2011-05-17 2014-02-05 胜高股份有限公司 太阳能电池用晶片的制造方法、太阳能电池单元的制造方法以及太阳能电池组件的制造方法
CN104011261A (zh) * 2011-12-23 2014-08-27 奈克松有限公司 刻蚀硅结构、形成刻蚀硅结构的方法及其用途
TWI469429B (zh) * 2009-05-07 2015-01-11 Nexeon Ltd 製造用於可充電電池的矽陽極材料的方法
CN104465375A (zh) * 2013-09-17 2015-03-25 中芯国际集成电路制造(上海)有限公司 P型鳍式场效应晶体管的形成方法
CN104575699A (zh) * 2013-10-23 2015-04-29 纳米及先进材料研发院有限公司 具有负温度系数性能的薄膜及其制造方法
CN104756260A (zh) * 2012-10-25 2015-07-01 韩国生产技术研究院 具有硅基板上的纳微复合结构的太阳能电池的制备方法及由此制备的太阳能电池
CN104011261B (zh) * 2011-12-23 2016-11-30 奈克松有限公司 刻蚀硅结构、形成刻蚀硅结构的方法及其用途
CN108459054A (zh) * 2017-02-20 2018-08-28 天津大学 一种硅纳米线—聚吡咯复合材料的制备方法
CN111785944A (zh) * 2020-07-20 2020-10-16 昆明理工大学 等离子活化切割硅废料制备多孔硅/碳/纳米金属复合负极材料的方法

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0601319D0 (en) 2006-01-23 2006-03-01 Imp Innovations Ltd A method of fabricating pillars composed of silicon-based material
FR2914925B1 (fr) 2007-04-13 2009-06-05 Altis Semiconductor Snc Solution utilisee dans la fabrication d'un materiau semi-conducteur poreux et procede de fabrication dudit materiau
GB0709165D0 (en) 2007-05-11 2007-06-20 Nexeon Ltd A silicon anode for a rechargeable battery
GB0713898D0 (en) 2007-07-17 2007-08-29 Nexeon Ltd A method of fabricating structured particles composed of silcon or a silicon-based material and their use in lithium rechargeable batteries
GB0713896D0 (en) 2007-07-17 2007-08-29 Nexeon Ltd Method
US7816031B2 (en) 2007-08-10 2010-10-19 The Board Of Trustees Of The Leland Stanford Junior University Nanowire battery methods and arrangements
US8815104B2 (en) 2008-03-21 2014-08-26 Alliance For Sustainable Energy, Llc Copper-assisted, anti-reflection etching of silicon surfaces
US20090236317A1 (en) * 2008-03-21 2009-09-24 Midwest Research Institute Anti-reflection etching of silicon surfaces catalyzed with ionic metal solutions
US8729798B2 (en) 2008-03-21 2014-05-20 Alliance For Sustainable Energy, Llc Anti-reflective nanoporous silicon for efficient hydrogen production
US8273591B2 (en) * 2008-03-25 2012-09-25 International Business Machines Corporation Super lattice/quantum well nanowires
GB2464158B (en) * 2008-10-10 2011-04-20 Nexeon Ltd A method of fabricating structured particles composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
GB2464157B (en) * 2008-10-10 2010-09-01 Nexeon Ltd A method of fabricating structured particles composed of silicon or a silicon-based material
US11996550B2 (en) 2009-05-07 2024-05-28 Amprius Technologies, Inc. Template electrode structures for depositing active materials
US20100285358A1 (en) 2009-05-07 2010-11-11 Amprius, Inc. Electrode Including Nanostructures for Rechargeable Cells
US9853292B2 (en) 2009-05-11 2017-12-26 Nexeon Limited Electrode composition for a secondary battery cell
GB0908089D0 (en) 2009-05-11 2009-06-24 Nexeon Ltd A binder for lithium ion rechargaable battery cells
GB2470190B (en) 2009-05-11 2011-07-13 Nexeon Ltd A binder for lithium ion rechargeable battery cells
US8450012B2 (en) 2009-05-27 2013-05-28 Amprius, Inc. Interconnected hollow nanostructures containing high capacity active materials for use in rechargeable batteries
CA2815754A1 (en) 2009-11-11 2011-05-19 Alliance For Sustainable Energy, Llc Wet-chemical systems and methods for producing black silicon substrates
US9061902B2 (en) 2009-12-18 2015-06-23 The Board Of Trustees Of The Leland Stanford Junior University Crystalline-amorphous nanowires for battery electrodes
US9780365B2 (en) 2010-03-03 2017-10-03 Amprius, Inc. High-capacity electrodes with active material coatings on multilayered nanostructured templates
CN102844917B (zh) 2010-03-03 2015-11-25 安普雷斯股份有限公司 用于沉积活性材料的模板电极结构
US9172088B2 (en) 2010-05-24 2015-10-27 Amprius, Inc. Multidimensional electrochemically active structures for battery electrodes
GB201009519D0 (en) 2010-06-07 2010-07-21 Nexeon Ltd An additive for lithium ion rechargeable battery cells
US8828765B2 (en) 2010-06-09 2014-09-09 Alliance For Sustainable Energy, Llc Forming high efficiency silicon solar cells using density-graded anti-reflection surfaces
KR20120001589A (ko) * 2010-06-29 2012-01-04 고려대학교 산학협력단 실리콘 태양전지의 전면전극 형성용 유리상 형성제, 이를 포함한 금속 잉크 및 이를 이용한 실리콘 태양전지
GB201014706D0 (en) 2010-09-03 2010-10-20 Nexeon Ltd Porous electroactive material
GB201014707D0 (en) 2010-09-03 2010-10-20 Nexeon Ltd Electroactive material
WO2012067943A1 (en) 2010-11-15 2012-05-24 Amprius, Inc. Electrolytes for rechargeable batteries
CN103283001A (zh) 2011-03-08 2013-09-04 可持续能源联盟有限责任公司 蓝光响应增强的高效黑硅光伏器件
JP5724614B2 (ja) * 2011-05-17 2015-05-27 株式会社Sumco 太陽電池用ウェーハの製造方法、太陽電池セルの製造方法、および太陽電池モジュールの製造方法
JP5724718B2 (ja) * 2011-07-25 2015-05-27 株式会社Sumco 太陽電池用ウェーハの製造方法、太陽電池セルの製造方法、および太陽電池モジュールの製造方法
JP5880055B2 (ja) * 2012-01-12 2016-03-08 株式会社Sumco 太陽電池用ウェーハの製造方法、太陽電池セルの製造方法、および太陽電池モジュールの製造方法
GB2492167C (en) 2011-06-24 2018-12-05 Nexeon Ltd Structured particles
EP2727175A4 (en) 2011-07-01 2015-07-01 Amprius Inc ELECTRODE TEMPLATE STRUCTURES WITH IMPROVED ADHESION PROPERTIES
GB201117279D0 (en) * 2011-10-06 2011-11-16 Nexeon Ltd Etched silicon structures, method of forming etched silicon structures and uses thereof
JP5857614B2 (ja) 2011-10-17 2016-02-10 日産自動車株式会社 リチウムイオン二次電池用負極活物質
WO2013114095A1 (en) 2012-01-30 2013-08-08 Nexeon Limited Composition of si/c electro active material
GB2499984B (en) 2012-02-28 2014-08-06 Nexeon Ltd Composite particles comprising a removable filler
GB201205178D0 (en) * 2012-03-23 2012-05-09 Nexeon Ltd Etched silicon structures, method of forming etched silicon structures and uses thereof
GB2502625B (en) 2012-06-06 2015-07-29 Nexeon Ltd Method of forming silicon
US9206523B2 (en) * 2012-09-28 2015-12-08 Intel Corporation Nanomachined structures for porous electrochemical capacitors
GB2507535B (en) 2012-11-02 2015-07-15 Nexeon Ltd Multilayer electrode
KR101460438B1 (ko) * 2013-04-04 2014-11-12 고려대학교 산학협력단 알루미늄 표면 처리 방법
KR101567203B1 (ko) 2014-04-09 2015-11-09 (주)오렌지파워 이차 전지용 음극 활물질 및 이의 방법
KR101604352B1 (ko) 2014-04-22 2016-03-18 (주)오렌지파워 음극 활물질 및 이를 포함하는 리튬 이차 전지
US9923201B2 (en) 2014-05-12 2018-03-20 Amprius, Inc. Structurally controlled deposition of silicon onto nanowires
GB2533161C (en) 2014-12-12 2019-07-24 Nexeon Ltd Electrodes for metal-ion batteries
US10292384B2 (en) 2015-12-18 2019-05-21 International Business Machines Corporation Nanostructures fabricated by metal assisted chemical etching for antibacterial applications
RU2624839C1 (ru) * 2016-03-24 2017-07-07 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский университет "Московский институт электронной техники" (МИЭТ) Способ формирования нитей кремния металл-стимулированным травлением с использованием серебра
CN106206779A (zh) * 2016-08-01 2016-12-07 中国科学院高能物理研究所 以硅纳米柱阵列为基底的异质结太阳电池及其制备方法
US20190372117A1 (en) * 2017-02-23 2019-12-05 The Board Of Regents For Oklahoma State University Hierarchical nanostructured silicon-based anodes for use in a lithium-ion battery
KR102311328B1 (ko) * 2017-08-18 2021-10-14 오씨아이 주식회사 실리콘 질화막 식각 방법 및 이를 이용한 반도체 소자의 제조 방법
US11233288B2 (en) * 2018-07-11 2022-01-25 International Business Machines Corporation Silicon substrate containing integrated porous silicon electrodes for energy storage devices
CN114012103B (zh) * 2021-10-21 2023-03-07 云南省产品质量监督检验研究院 一种在硅表面制备尺寸可控银纳米粒子的方法

Family Cites Families (217)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB980513A (en) 1961-11-17 1965-01-13 Licentia Gmbh Improvements relating to the use of silicon in semi-conductor devices
US3351445A (en) 1963-08-07 1967-11-07 William S Fielder Method of making a battery plate
GB1014706A (en) 1964-07-30 1965-12-31 Hans Ohl Improvements in or relating to devices for controlling the dosing of a plurality of different pourable substances for the production of mixtures
US4002541A (en) 1972-11-03 1977-01-11 Design Systems, Inc. Solar energy absorbing article and method of making same
SU471402A1 (ru) 1973-03-02 1975-05-25 Предприятие П/Я Г-4671 Травильный раствор
SU544019A1 (ru) 1975-07-22 1977-01-25 Одесский Ордена Трудового Красного Знамени Государственный Университет Им.И.И.Мечникова Травитель дл полупроводниковых материалов
US4436796A (en) 1981-07-30 1984-03-13 The United States Of America As Represented By The United States Department Of Energy All-solid electrodes with mixed conductor matrix
JPS63215041A (ja) 1987-03-04 1988-09-07 Toshiba Corp 結晶欠陥評価用エツチング液
US4950566A (en) 1988-10-24 1990-08-21 Huggins Robert A Metal silicide electrode in lithium cells
JP3347354B2 (ja) * 1991-02-15 2002-11-20 キヤノン株式会社 エッチング方法および半導体基材の作製方法
JP2717890B2 (ja) * 1991-05-27 1998-02-25 富士写真フイルム株式会社 リチウム二次電池
DE4202454C1 (zh) 1992-01-29 1993-07-29 Siemens Ag, 8000 Muenchen, De
US5660948A (en) * 1995-09-26 1997-08-26 Valence Technology, Inc. Lithium ion electrochemical cell
US5907899A (en) 1996-06-11 1999-06-01 Dow Corning Corporation Method of forming electrodes for lithium ion batteries using polycarbosilanes
JP3713900B2 (ja) 1996-07-19 2005-11-09 ソニー株式会社 負極材料及びこれを用いた非水電解液二次電池
US6022640A (en) 1996-09-13 2000-02-08 Matsushita Electric Industrial Co., Ltd. Solid state rechargeable lithium battery, stacking battery, and charging method of the same
JP3296543B2 (ja) * 1996-10-30 2002-07-02 スズキ株式会社 めっき被覆アルミニウム合金、及びそのシリンダーブロック、めっき処理ライン、めっき方法
US6337156B1 (en) 1997-12-23 2002-01-08 Sri International Ion battery using high aspect ratio electrodes
JP4399881B2 (ja) 1998-12-02 2010-01-20 パナソニック株式会社 非水電解質二次電池
WO2000033401A1 (fr) * 1998-12-02 2000-06-08 Matsushita Electric Industrial Co., Ltd. Cellule secondaire d'electrolyte du type non aqueux
JP3624088B2 (ja) 1998-01-30 2005-02-23 キヤノン株式会社 粉末材料、電極構造体、それらの製造方法、及びリチウム二次電池
JPH11283603A (ja) 1998-03-30 1999-10-15 Noritake Co Ltd 電池用セパレーター及びその製造方法
US6235427B1 (en) * 1998-05-13 2001-05-22 Fuji Photo Film Co., Ltd. Nonaqueous secondary battery containing silicic material
JP2948205B1 (ja) 1998-05-25 1999-09-13 花王株式会社 二次電池用負極の製造方法
US6063995A (en) * 1998-07-16 2000-05-16 First Solar, Llc Recycling silicon photovoltaic modules
KR100276656B1 (ko) * 1998-09-16 2001-04-02 박찬구 박막형 복합 재료 양극으로 구성된 고체형 이차 전지
CN1160186C (zh) * 1999-06-03 2004-08-04 宾夕法尼亚州研究基金会 纳米尺度的组合物、复合结构、其制造和应用
GB9919479D0 (en) 1999-08-17 1999-10-20 Imperial College Island arrays
WO2001031724A1 (fr) 1999-10-22 2001-05-03 Sanyo Electric Co., Ltd. Electrode pour pile au lithium et accumulateur au lithium
US7195842B1 (en) 1999-10-22 2007-03-27 Sanyo Electric Co., Ltd. Electrode for use in lithium battery and rechargeable lithium battery
WO2001031723A1 (fr) * 1999-10-22 2001-05-03 Sanyo Electric Co., Ltd. Electrode pour accumulateur au lithium et accumulateur au lithium
AU7951300A (en) * 1999-10-22 2001-04-30 Sanyo Electric Co., Ltd. Method for producing material for electrode for lithium cell
JP2003514353A (ja) 1999-11-08 2003-04-15 ネオフォトニクス・コーポレイション 特定サイズの粒子を含む電極
JP2000348730A (ja) 2000-01-01 2000-12-15 Seiko Instruments Inc 非水電解質二次電池
US6353317B1 (en) 2000-01-19 2002-03-05 Imperial College Of Science, Technology And Medicine Mesoscopic non-magnetic semiconductor magnetoresistive sensors fabricated with island lithography
US7335603B2 (en) * 2000-02-07 2008-02-26 Vladimir Mancevski System and method for fabricating logic devices comprising carbon nanotube transistors
CN1236509C (zh) * 2000-03-13 2006-01-11 佳能株式会社 可充电锂电池电极材料、电极结构体、电池、及其相应生产方法
JP2001291514A (ja) 2000-04-06 2001-10-19 Sumitomo Metal Ind Ltd 非水電解質二次電池用負極材料とその製造方法
US6399246B1 (en) * 2000-05-05 2002-06-04 Eveready Battery Company, Inc. Latex binder for non-aqueous battery electrodes
US6334939B1 (en) 2000-06-15 2002-01-01 The University Of North Carolina At Chapel Hill Nanostructure-based high energy capacity material
JP4137350B2 (ja) 2000-06-16 2008-08-20 三星エスディアイ株式会社 リチウム二次電池用の負極材料及びリチウム二次電池用の電極及びリチウム二次電池並びにリチウム二次電池用の負極材料の製造方法
NL1015956C2 (nl) 2000-08-18 2002-02-19 Univ Delft Tech Batterij en werkwijze voor het vervaardigen van een dergelijke batterij.
CA2420104C (en) 2000-09-01 2012-10-30 Sanyo Electric Co., Ltd. Negative electrode for lithium secondary cell and method for producing the same
US20040061928A1 (en) 2000-09-25 2004-04-01 William Stewart Artificially structured dielectric material
WO2002047185A2 (en) 2000-12-06 2002-06-13 Huggins Robert A Improved electrodes for lithium batteries
DE10064494A1 (de) * 2000-12-22 2002-07-04 Bosch Gmbh Robert Verfahren zur Herstellung eines Halbleiterbauelements sowie ein nach dem Verfahren hergestelltes Halbleiterbauelement, wobei das Halbleiterbauelement insbesondere eine bewegliche Masse aufweist
KR100545613B1 (ko) * 2001-01-18 2006-01-25 산요덴키가부시키가이샤 리튬 이차 전지
JP2002279974A (ja) 2001-03-19 2002-09-27 Sanyo Electric Co Ltd 二次電池用電極の製造方法
US7141859B2 (en) * 2001-03-29 2006-11-28 Georgia Tech Research Corporation Porous gas sensors and method of preparation thereof
JP2002313319A (ja) 2001-04-09 2002-10-25 Sanyo Electric Co Ltd リチウム二次電池用電極及びリチウム二次電池
US6887623B2 (en) 2001-04-09 2005-05-03 Sanyo Electric Co., Ltd. Electrode for rechargeable lithium battery and rechargeable lithium battery
EP1258937A1 (en) 2001-05-17 2002-11-20 STMicroelectronics S.r.l. Micro silicon fuel cell, method of fabrication and self-powered semiconductor device integrating a micro fuel cell
JP4183401B2 (ja) 2001-06-28 2008-11-19 三洋電機株式会社 リチウム二次電池用電極の製造方法及びリチウム二次電池
US7070632B1 (en) 2001-07-25 2006-07-04 Polyplus Battery Company Electrochemical device separator structures with barrier layer on non-swelling membrane
KR100382767B1 (ko) 2001-08-25 2003-05-09 삼성에스디아이 주식회사 리튬 2차 전지용 음극 박막 및 그의 제조방법
EP1313158A3 (en) 2001-11-20 2004-09-08 Canon Kabushiki Kaisha Electrode material for rechargeable lithium battery, electrode comprising said electrode material, rechargeable lithium battery having said electrode , and process for the production thereof
US7252749B2 (en) 2001-11-30 2007-08-07 The University Of North Carolina At Chapel Hill Deposition method for nanostructure materials
JP4035760B2 (ja) 2001-12-03 2008-01-23 株式会社ジーエス・ユアサコーポレーション 非水電解質二次電池
WO2003063271A1 (en) 2002-01-19 2003-07-31 Huggins Robert A Improved electrodes for alkali metal batteries
US20030135989A1 (en) 2002-01-19 2003-07-24 Huggins Robert A. Electrodes for alkali metal batteries
JP4199460B2 (ja) * 2002-01-23 2008-12-17 パナソニック株式会社 角形密閉式電池
US7147894B2 (en) 2002-03-25 2006-12-12 The University Of North Carolina At Chapel Hill Method for assembling nano objects
JP3896025B2 (ja) * 2002-04-10 2007-03-22 三洋電機株式会社 二次電池用電極
US6916679B2 (en) 2002-08-09 2005-07-12 Infinite Power Solutions, Inc. Methods of and device for encapsulation and termination of electronic devices
US8236443B2 (en) 2002-08-09 2012-08-07 Infinite Power Solutions, Inc. Metal film encapsulation
US20070264564A1 (en) 2006-03-16 2007-11-15 Infinite Power Solutions, Inc. Thin film battery on an integrated circuit or circuit board and method thereof
US8021778B2 (en) 2002-08-09 2011-09-20 Infinite Power Solutions, Inc. Electrochemical apparatus with barrier layer protected substrate
US8445130B2 (en) 2002-08-09 2013-05-21 Infinite Power Solutions, Inc. Hybrid thin-film battery
US20080003496A1 (en) 2002-08-09 2008-01-03 Neudecker Bernd J Electrochemical apparatus with barrier layer protected substrate
JP2004095264A (ja) 2002-08-30 2004-03-25 Mitsubishi Materials Corp リチウムイオン二次電池用負極及び該負極を用いて作製したリチウムイオン二次電池
US20060154071A1 (en) 2002-09-05 2006-07-13 Itaru Homma Carbon fine powder coated with metal oxide, metal nitride or metal carbide, process for producing the sdame, and supercapacitor and secondary battery carbon fine powder
US20040126659A1 (en) * 2002-09-10 2004-07-01 Graetz Jason A. High-capacity nanostructured silicon and lithium alloys thereof
JP4614625B2 (ja) 2002-09-30 2011-01-19 三洋電機株式会社 リチウム二次電池の製造方法
JP4037229B2 (ja) * 2002-09-30 2008-01-23 日立マクセル株式会社 リチウム二次電池用電極と、これを負極とするリチウム二次電池
GB2395059B (en) * 2002-11-05 2005-03-16 Imp College Innovations Ltd Structured silicon anode
CA2411695A1 (fr) 2002-11-13 2004-05-13 Hydro-Quebec Electrode recouverte d'un film obtenu a partir d'une solution aqueuse comportant un liant soluble dans l'eau, son procede de fabrication et ses utilisations
JP3664252B2 (ja) 2002-11-19 2005-06-22 ソニー株式会社 負極およびそれを用いた電池
JP4088957B2 (ja) * 2002-11-19 2008-05-21 ソニー株式会社 リチウム二次電池
JP4025995B2 (ja) 2002-11-26 2007-12-26 信越化学工業株式会社 非水電解質二次電池負極材及びその製造方法並びにリチウムイオン二次電池
AU2003294586A1 (en) 2002-12-09 2004-06-30 The University Of North Carolina At Chapel Hill Methods for assembly and sorting of nanostructure-containing materials and related articles
US7491467B2 (en) 2002-12-17 2009-02-17 Mitsubishi Chemical Corporation Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
US20040214085A1 (en) * 2003-01-06 2004-10-28 Kyou-Yoon Sheem Negative active material for rechargeable lithium battery, method of preparing same, and rechargeable lithium battery
US8048568B2 (en) 2003-01-06 2011-11-01 Samsung Sdi Co., Ltd. Negative active material for rechargeable lithium battery and rechargeable lithium battery
JP3827642B2 (ja) 2003-01-06 2006-09-27 三星エスディアイ株式会社 リチウム二次電池用負極活物質及びその製造方法並びにリチウム二次電池
JP2004281317A (ja) 2003-03-18 2004-10-07 Matsushita Electric Ind Co Ltd 非水電解質二次電池用電極材料とその製造方法、ならびにそれを用いた非水電解質二次電池
US20040185346A1 (en) 2003-03-19 2004-09-23 Takeuchi Esther S. Electrode having metal vanadium oxide nanoparticles for alkali metal-containing electrochemical cells
US6969690B2 (en) 2003-03-21 2005-11-29 The University Of North Carolina At Chapel Hill Methods and apparatus for patterned deposition of nanostructure-containing materials by self-assembly and related articles
US7378041B2 (en) 2003-03-26 2008-05-27 Canon Kabushiki Kaisha Electrode material for lithium secondary battery, electrode structure comprising the electrode material and secondary battery comprising the electrode structure
JP4027255B2 (ja) 2003-03-28 2007-12-26 三洋電機株式会社 リチウム二次電池用負極及びその製造方法
US20040241548A1 (en) 2003-04-02 2004-12-02 Takayuki Nakamoto Negative electrode active material and non-aqueous electrolyte rechargeable battery using the same
EP1638158A4 (en) 2003-05-22 2010-08-25 Panasonic Corp SECONDARY BATTERY WITH A WATER-FREE ELECTROLYTE AND METHOD FOR THE PRODUCTION THEREOF
US7094499B1 (en) 2003-06-10 2006-08-22 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Carbon materials metal/metal oxide nanoparticle composite and battery anode composed of the same
JP4610213B2 (ja) * 2003-06-19 2011-01-12 三洋電機株式会社 リチウム二次電池及びその製造方法
US7318982B2 (en) 2003-06-23 2008-01-15 A123 Systems, Inc. Polymer composition for encapsulation of electrode particles
JP4095499B2 (ja) 2003-06-24 2008-06-04 キヤノン株式会社 リチウム二次電池用の電極材料、電極構造体及びリチウム二次電池
CA2432397A1 (fr) * 2003-06-25 2004-12-25 Hydro-Quebec Procede de preparation d'electrode a partir d'un silicium poreux, electrode ainsi obtenue et systeme electrochimique contenant au moins une telle electrode
JPWO2005006469A1 (ja) 2003-07-15 2007-09-20 伊藤忠商事株式会社 集電構造体及び電極構造体
KR100595896B1 (ko) 2003-07-29 2006-07-03 주식회사 엘지화학 리튬 이차 전지용 음극 활물질 및 그의 제조 방법
KR100496306B1 (ko) 2003-08-19 2005-06-17 삼성에스디아이 주식회사 리튬 금속 애노드의 제조방법
KR100497251B1 (ko) 2003-08-20 2005-06-23 삼성에스디아이 주식회사 리튬 설퍼 전지용 음극 보호막 조성물 및 이를 사용하여제조된 리튬 설퍼 전지
DE10347570B4 (de) 2003-10-14 2015-07-23 Evonik Degussa Gmbh Anorganische Separator-Elektroden-Einheit für Lithium-Ionen-Batterien, Verfahren zu deren Herstellung, Verwendung in Lithium-Batterien und Lithium-Batterien mit der anorganischen Separator-Elektroden-Einheit
JP4497899B2 (ja) * 2003-11-19 2010-07-07 三洋電機株式会社 リチウム二次電池
US7816032B2 (en) 2003-11-28 2010-10-19 Panasonic Corporation Energy device and method for producing the same
JP3925867B2 (ja) * 2003-12-17 2007-06-06 関西ティー・エル・オー株式会社 多孔質層付きシリコン基板を製造する方法
US7521153B2 (en) 2004-03-16 2009-04-21 Toyota Motor Engineering & Manufacturing North America, Inc. Corrosion protection using protected electron collector
US7348102B2 (en) 2004-03-16 2008-03-25 Toyota Motor Corporation Corrosion protection using carbon coated electron collector for lithium-ion battery with molten salt electrolyte
US7468224B2 (en) 2004-03-16 2008-12-23 Toyota Motor Engineering & Manufacturing North America, Inc. Battery having improved positive electrode and method of manufacturing the same
JP4263124B2 (ja) * 2004-03-25 2009-05-13 三洋電機株式会社 半導体素子の製造方法
US7790316B2 (en) 2004-03-26 2010-09-07 Shin-Etsu Chemical Co., Ltd. Silicon composite particles, preparation thereof, and negative electrode material for non-aqueous electrolyte secondary cell
US8231810B2 (en) 2004-04-15 2012-07-31 Fmc Corporation Composite materials of nano-dispersed silicon and tin and methods of making the same
US7781102B2 (en) 2004-04-22 2010-08-24 California Institute Of Technology High-capacity nanostructured germanium-containing materials and lithium alloys thereof
CN102351169B (zh) 2004-04-30 2013-11-27 纳米系统公司 纳米线生长和获取的体系和方法
KR100821630B1 (ko) 2004-05-17 2008-04-16 주식회사 엘지화학 전극 및 이의 제조방법
US20060019115A1 (en) 2004-05-20 2006-01-26 Liya Wang Composite material having improved microstructure and method for its fabrication
CN1980879B (zh) * 2004-07-01 2011-03-02 巴斯福股份公司 由丙烷生产丙烯醛、丙烯酸或其混合物的方法
FR2873854A1 (fr) 2004-07-30 2006-02-03 Commissariat Energie Atomique Procede de fabrication d'une electrode lithiee, electrode lithiee susceptible d'etre obtenue par ce procede et ses utilisations
US20060088767A1 (en) 2004-09-01 2006-04-27 Wen Li Battery with molten salt electrolyte and high voltage positive active material
US20060051670A1 (en) * 2004-09-03 2006-03-09 Shin-Etsu Chemical Co., Ltd. Non-aqueous electrolyte secondary cell negative electrode material and metallic silicon power therefor
US7955735B2 (en) 2004-11-15 2011-06-07 Panasonic Corporation Non-aqueous electrolyte secondary battery
US7635540B2 (en) 2004-11-15 2009-12-22 Panasonic Corporation Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery comprising the same
US7939218B2 (en) * 2004-12-09 2011-05-10 Nanosys, Inc. Nanowire structures comprising carbon
JP4824394B2 (ja) 2004-12-16 2011-11-30 パナソニック株式会社 リチウムイオン二次電池用負極、その製造方法、およびそれを用いたリチウムイオン二次電池
KR100738054B1 (ko) 2004-12-18 2007-07-12 삼성에스디아이 주식회사 음극 활물질, 그 제조 방법 및 이를 채용한 음극과 리튬전지
CN100511781C (zh) 2004-12-22 2009-07-08 松下电器产业株式会社 复合负极活性材料及其制备方法以及非水电解质二次电池
JP4229062B2 (ja) * 2004-12-22 2009-02-25 ソニー株式会社 リチウムイオン二次電池
JP4095621B2 (ja) 2005-03-28 2008-06-04 アドバンスド・マスク・インスペクション・テクノロジー株式会社 光学画像取得装置、光学画像取得方法、及びマスク検査装置
JP2006290938A (ja) 2005-04-06 2006-10-26 Nippon Brake Kogyo Kk 摩擦材
CA2506104A1 (en) 2005-05-06 2006-11-06 Michel Gauthier Surface modified redox compounds and composite electrode obtain from them
US7569202B2 (en) * 2005-05-09 2009-08-04 Vesta Research, Ltd. Silicon nanosponge particles
US20080138710A1 (en) 2005-05-10 2008-06-12 Ben-Jie Liaw Electrochemical Composition and Associated Technology
US7700236B2 (en) 2005-09-09 2010-04-20 Aquire Energy Co., Ltd. Cathode material for manufacturing a rechargeable battery
TWI254031B (en) 2005-05-10 2006-05-01 Aquire Energy Co Ltd Manufacturing method of LixMyPO4 compound with olivine structure
US7799457B2 (en) 2005-05-10 2010-09-21 Advanced Lithium Electrochemistry Co., Ltd Ion storage compound of cathode material and method for preparing the same
US7887954B2 (en) 2005-05-10 2011-02-15 Advanced Lithium Electrochemistry Co., Ltd. Electrochemical composition and associated technology
US7781100B2 (en) 2005-05-10 2010-08-24 Advanced Lithium Electrochemistry Co., Ltd Cathode material for manufacturing rechargeable battery
FR2885734B1 (fr) 2005-05-13 2013-07-05 Accumulateurs Fixes Materiau nanocomposite pour anode d'accumulateur au lithium
JP2006351516A (ja) 2005-05-16 2006-12-28 Toshiba Corp 負極活物質及び非水電解質二次電池
FR2885913B1 (fr) 2005-05-18 2007-08-10 Centre Nat Rech Scient Element composite comprenant un substrat conducteur et un revetement metallique nanostructure.
JP4603422B2 (ja) 2005-06-01 2010-12-22 株式会社タカギセイコー 樹脂製タンクの表面処理方法
WO2006129415A1 (ja) 2005-06-03 2006-12-07 Matsushita Electric Industrial Co., Ltd. 非水電解質二次電池およびその負極の製造方法
KR100684733B1 (ko) * 2005-07-07 2007-02-20 삼성에스디아이 주식회사 리튬 이차 전지
JP4876468B2 (ja) * 2005-07-27 2012-02-15 パナソニック株式会社 非水電解質二次電池
US8080334B2 (en) 2005-08-02 2011-12-20 Panasonic Corporation Lithium secondary battery
CN100438157C (zh) * 2005-08-29 2008-11-26 松下电器产业株式会社 用于非水电解质二次电池的负极、其制造方法以及非水电解质二次电池
US7524529B2 (en) 2005-09-09 2009-04-28 Aquire Energy Co., Ltd. Method for making a lithium mixed metal compound having an olivine structure
CN100431204C (zh) * 2005-09-22 2008-11-05 松下电器产业株式会社 负极和使用该负极制备的锂离子二次电池
JP2007123242A (ja) * 2005-09-28 2007-05-17 Sanyo Electric Co Ltd 非水電解質二次電池
JP5155172B2 (ja) 2005-10-13 2013-02-27 スリーエム イノベイティブ プロパティズ カンパニー 電気化学セルの使用方法
KR100759556B1 (ko) 2005-10-17 2007-09-18 삼성에스디아이 주식회사 음극 활물질, 그 제조 방법 및 이를 채용한 음극과 리튬전지
US20070099084A1 (en) 2005-10-31 2007-05-03 T/J Technologies, Inc. High capacity electrode and methods for its fabrication and use
KR100749486B1 (ko) 2005-10-31 2007-08-14 삼성에스디아이 주식회사 리튬 이차 전지용 음극 활물질, 그의 제조 방법 및 그를포함하는 리튬 이차 전지
JP2007128766A (ja) 2005-11-04 2007-05-24 Sony Corp 負極活物質および電池
US20070117018A1 (en) 2005-11-22 2007-05-24 Huggins Robert A Silicon and/or boron-based positive electrode
KR100949330B1 (ko) 2005-11-29 2010-03-26 삼성에스디아이 주식회사 리튬 이차 전지용 음극 활물질 및 그를 포함하는 리튬 이차전지
JP2007165079A (ja) 2005-12-13 2007-06-28 Matsushita Electric Ind Co Ltd 非水電解質二次電池用負極とそれを用いた非水電解質二次電池
US7906238B2 (en) 2005-12-23 2011-03-15 3M Innovative Properties Company Silicon-containing alloys useful as electrodes for lithium-ion batteries
KR100763892B1 (ko) 2006-01-20 2007-10-05 삼성에스디아이 주식회사 음극 활물질, 그 제조 방법, 및 이를 채용한 음극과 리튬전지
GB0601319D0 (en) 2006-01-23 2006-03-01 Imp Innovations Ltd A method of fabricating pillars composed of silicon-based material
US7951242B2 (en) 2006-03-08 2011-05-31 Nanoener Technologies, Inc. Apparatus for forming structured material for energy storage device and method
US7972731B2 (en) 2006-03-08 2011-07-05 Enerl, Inc. Electrode for cell of energy storage device and method of forming the same
US7776473B2 (en) 2006-03-27 2010-08-17 Shin-Etsu Chemical Co., Ltd. Silicon-silicon oxide-lithium composite, making method, and non-aqueous electrolyte secondary cell negative electrode material
CN101411007A (zh) 2006-03-30 2009-04-15 三洋电机株式会社 锂二次电池及其制造方法
KR101328982B1 (ko) 2006-04-17 2013-11-13 삼성에스디아이 주식회사 음극 활물질 및 그 제조 방법
CN100563047C (zh) 2006-04-25 2009-11-25 立凯电能科技股份有限公司 适用于制作二次电池的正极的复合材料及其所制得的电池
KR101483123B1 (ko) 2006-05-09 2015-01-16 삼성에스디아이 주식회사 금속 나노결정 복합체를 포함하는 음극 활물질, 그 제조방법 및 이를 채용한 음극과 리튬 전지
KR100863733B1 (ko) 2006-05-15 2008-10-16 주식회사 엘지화학 바인더로서 폴리우레탄을 물리적으로 혼합한폴리아크릴산이 포함되어 있는 전극 합제 및 이를 기반으로하는 리튬 이차전지
JP2007305546A (ja) 2006-05-15 2007-11-22 Sony Corp リチウムイオン電池
US20070269718A1 (en) 2006-05-22 2007-11-22 3M Innovative Properties Company Electrode composition, method of making the same, and lithium ion battery including the same
US8080335B2 (en) 2006-06-09 2011-12-20 Canon Kabushiki Kaisha Powder material, electrode structure using the powder material, and energy storage device having the electrode structure
JP5200339B2 (ja) 2006-06-16 2013-06-05 パナソニック株式会社 非水電解質二次電池
JP5398962B2 (ja) 2006-06-30 2014-01-29 三洋電機株式会社 リチウム二次電池及びその製造方法
US7964307B2 (en) 2006-07-24 2011-06-21 Panasonic Corporation Negative electrode for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
JP2008034266A (ja) 2006-07-28 2008-02-14 Canon Inc リチウム二次電池用負極材料の製造方法
US7722991B2 (en) 2006-08-09 2010-05-25 Toyota Motor Corporation High performance anode material for lithium-ion battery
US8124277B2 (en) 2006-08-29 2012-02-28 Unitika Ltd. Binder for electrode formation, slurry for electrode formation using the binder, electrode using the slurry, rechargeable battery using the electrode, and capacitor using the electrode
JP5039956B2 (ja) 2006-09-07 2012-10-03 トヨタ自動車株式会社 負極活物質、負極およびリチウム二次電池
WO2008044683A1 (fr) 2006-10-10 2008-04-17 Panasonic Corporation Électrode négative pour accumulateur secondaire à électrolyte non aqueux
US8187754B2 (en) 2006-10-11 2012-05-29 Panasonic Corporation Coin-type non-aqueous electrolyte battery
KR100778450B1 (ko) 2006-11-22 2007-11-28 삼성에스디아이 주식회사 리튬 이차 전지용 음극 활물질, 이의 제조 방법 및 이를포함하는 리튬 이차 전지
KR100814816B1 (ko) 2006-11-27 2008-03-20 삼성에스디아이 주식회사 리튬 이차 전지용 음극 활물질 및 그를 포함하는 리튬 이차전지
JP4501081B2 (ja) 2006-12-06 2010-07-14 ソニー株式会社 電極の形成方法および電池の製造方法
JP2008171802A (ja) 2006-12-13 2008-07-24 Matsushita Electric Ind Co Ltd 非水電解質二次電池用負極とその製造方法およびそれを用いた非水電解質二次電池
JP4321584B2 (ja) 2006-12-18 2009-08-26 ソニー株式会社 二次電池用負極および二次電池
US7709139B2 (en) 2007-01-22 2010-05-04 Physical Sciences, Inc. Three dimensional battery
JP5143437B2 (ja) 2007-01-30 2013-02-13 日本カーボン株式会社 リチウムイオン二次電池用負極活物質の製造方法、負極活物質及び負極
JP2010518581A (ja) 2007-02-06 2010-05-27 スリーエム イノベイティブ プロパティズ カンパニー 新規結合剤を含む電極、並びにその製造方法及び使用方法
US20080206631A1 (en) 2007-02-27 2008-08-28 3M Innovative Properties Company Electrolytes, electrode compositions and electrochemical cells made therefrom
US20090053589A1 (en) * 2007-08-22 2009-02-26 3M Innovative Properties Company Electrolytes, electrode compositions, and electrochemical cells made therefrom
US20080206641A1 (en) 2007-02-27 2008-08-28 3M Innovative Properties Company Electrode compositions and electrodes made therefrom
JP2008234988A (ja) 2007-03-20 2008-10-02 Sony Corp 負極およびその製造方法、ならびに電池およびその製造方法
KR100859687B1 (ko) 2007-03-21 2008-09-23 삼성에스디아이 주식회사 리튬 이차 전지용 음극 활물질 및 그를 포함하는 리튬 이차전지
KR100796664B1 (ko) 2007-03-21 2008-01-22 삼성에스디아이 주식회사 리튬 이차 전지용 음극 활물질 및 이를 포함하는 리튬 이차전지
EP1978587B1 (en) * 2007-03-27 2011-06-22 Hitachi Vehicle Energy, Ltd. Lithium secondary battery
US8361333B2 (en) * 2007-03-28 2013-01-29 Life Bioscience, Inc. Compositions and methods to fabricate a photoactive substrate suitable for shaped glass structures
JP4979432B2 (ja) * 2007-03-28 2012-07-18 三洋電機株式会社 円筒型リチウム二次電池
JP2008243717A (ja) * 2007-03-28 2008-10-09 Mitsui Mining & Smelting Co Ltd 非水電解液二次電池及びその製造方法
US20080241703A1 (en) * 2007-03-28 2008-10-02 Hidekazu Yamamoto Nonaqueous electrolyte secondary battery
JP2008269827A (ja) * 2007-04-17 2008-11-06 Matsushita Electric Ind Co Ltd 電気化学素子の電極材料およびその製造方法並びにそれを用いた電極極板および電気化学素子
GB0709165D0 (en) 2007-05-11 2007-06-20 Nexeon Ltd A silicon anode for a rechargeable battery
JP5338041B2 (ja) * 2007-06-05 2013-11-13 ソニー株式会社 二次電池用負極および二次電池
US20090087731A1 (en) * 2007-09-27 2009-04-02 Atsushi Fukui Lithium secondary battery
CN101442124B (zh) 2007-11-19 2011-09-07 比亚迪股份有限公司 锂离子电池负极用复合材料的制备方法及负极和电池
US20090186267A1 (en) * 2008-01-23 2009-07-23 Tiegs Terry N Porous silicon particulates for lithium batteries
KR101406013B1 (ko) * 2008-03-17 2014-06-11 신에쓰 가가꾸 고교 가부시끼가이샤 비수 전해질 2차 전지용 부극재 및 그것의 제조 방법, 및 비수 전해질 2차 전지용 부극 및 비수 전해질 2차 전지
JP2009252348A (ja) 2008-04-01 2009-10-29 Panasonic Corp 非水電解質電池
US8034485B2 (en) * 2008-05-29 2011-10-11 3M Innovative Properties Company Metal oxide negative electrodes for lithium-ion electrochemical cells and batteries
US20100085685A1 (en) * 2008-10-06 2010-04-08 Avx Corporation Capacitor Anode Formed From a Powder Containing Coarse Agglomerates and Fine Agglomerates
GB2464157B (en) 2008-10-10 2010-09-01 Nexeon Ltd A method of fabricating structured particles composed of silicon or a silicon-based material
GB2464158B (en) 2008-10-10 2011-04-20 Nexeon Ltd A method of fabricating structured particles composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
KR101065778B1 (ko) * 2008-10-14 2011-09-20 한국과학기술연구원 탄소나노튜브 피복 실리콘-구리 복합 입자 및 그 제조 방법과, 이를 이용한 이차전지용 음극 및 이차전지
JP4952746B2 (ja) * 2008-11-14 2012-06-13 ソニー株式会社 リチウムイオン二次電池およびリチウムイオン二次電池用負極
CN101740747B (zh) 2008-11-27 2012-09-05 比亚迪股份有限公司 一种硅负极和含有该硅负极的锂离子电池
US20100285358A1 (en) * 2009-05-07 2010-11-11 Amprius, Inc. Electrode Including Nanostructures for Rechargeable Cells
GB0908089D0 (en) 2009-05-11 2009-06-24 Nexeon Ltd A binder for lithium ion rechargaable battery cells
GB2470190B (en) 2009-05-11 2011-07-13 Nexeon Ltd A binder for lithium ion rechargeable battery cells
ES2867474T3 (es) * 2009-05-19 2021-10-20 Oned Mat Inc Materiales nanoestructurados para aplicaciones de batería
US20100330419A1 (en) * 2009-06-02 2010-12-30 Yi Cui Electrospinning to fabricate battery electrodes

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI469429B (zh) * 2009-05-07 2015-01-11 Nexeon Ltd 製造用於可充電電池的矽陽極材料的方法
CN103098265B (zh) * 2010-04-09 2016-01-20 奈克松有限公司 制造由硅或硅基材料构成的结构化粒子的方法及其在锂可充电电池中的用途
CN103098265A (zh) * 2010-04-09 2013-05-08 奈克松有限公司 制造由硅或硅基材料构成的结构化粒子的方法及其在锂可充电电池中的用途
CN103477472B (zh) * 2011-04-15 2016-01-20 国立大学法人蔚山科学技术大学校产学协力团 用于锂二次电池的阳极活性材料、制造它的方法和包含它的锂二次电池
CN103477472A (zh) * 2011-04-15 2013-12-25 国立大学法人蔚山科学技术大学校产学协力团 用于锂二次电池的阳极活性材料、制造它的方法和包含它的锂二次电池
CN103563097A (zh) * 2011-05-17 2014-02-05 胜高股份有限公司 太阳能电池用晶片的制造方法、太阳能电池单元的制造方法以及太阳能电池组件的制造方法
CN103563097B (zh) * 2011-05-17 2016-01-20 胜高股份有限公司 太阳能电池用晶片的制造方法、太阳能电池单元的制造方法以及太阳能电池组件的制造方法
CN104011261A (zh) * 2011-12-23 2014-08-27 奈克松有限公司 刻蚀硅结构、形成刻蚀硅结构的方法及其用途
CN104011261B (zh) * 2011-12-23 2016-11-30 奈克松有限公司 刻蚀硅结构、形成刻蚀硅结构的方法及其用途
CN104756260A (zh) * 2012-10-25 2015-07-01 韩国生产技术研究院 具有硅基板上的纳微复合结构的太阳能电池的制备方法及由此制备的太阳能电池
US9972732B2 (en) 2012-10-25 2018-05-15 Korea Institute Of Industrial Technology Method for manufacturing solar cells having nano-micro composite structure on silicon substrate and solar cells manufactured thereby
CN104756260B (zh) * 2012-10-25 2016-12-28 韩国生产技术研究院 具有硅基板上的纳微复合结构的太阳能电池的制备方法及由此制备的太阳能电池
US9530914B2 (en) 2012-10-25 2016-12-27 Korea Institute Of Industrial Technology Method for manufacturing solar cells having nano-micro composite structure on silicon substrate and solar cells manufactured thereby
CN104465375A (zh) * 2013-09-17 2015-03-25 中芯国际集成电路制造(上海)有限公司 P型鳍式场效应晶体管的形成方法
CN104465375B (zh) * 2013-09-17 2017-09-29 中芯国际集成电路制造(上海)有限公司 P型鳍式场效应晶体管的形成方法
CN104575699B (zh) * 2013-10-23 2017-09-22 纳米及先进材料研发院有限公司 具有负温度系数性能的薄膜及其制造方法
CN104575699A (zh) * 2013-10-23 2015-04-29 纳米及先进材料研发院有限公司 具有负温度系数性能的薄膜及其制造方法
CN108459054A (zh) * 2017-02-20 2018-08-28 天津大学 一种硅纳米线—聚吡咯复合材料的制备方法
CN108459054B (zh) * 2017-02-20 2020-06-19 天津大学 一种硅纳米线—聚吡咯复合材料的制备方法
CN111785944A (zh) * 2020-07-20 2020-10-16 昆明理工大学 等离子活化切割硅废料制备多孔硅/碳/纳米金属复合负极材料的方法
CN111785944B (zh) * 2020-07-20 2023-04-28 昆明理工大学 等离子活化切割硅废料制备多孔硅/碳/纳米金属复合负极材料的方法

Also Published As

Publication number Publication date
NO20083502L (no) 2008-08-13
CN101390198B (zh) 2011-04-13
US20100233539A1 (en) 2010-09-16
RU2429553C2 (ru) 2011-09-20
IL192969A0 (en) 2009-02-11
GB0601318D0 (en) 2006-03-01
EP1977443A1 (en) 2008-10-08
CA2637737C (en) 2016-03-01
KR20090004858A (ko) 2009-01-12
TW200735205A (en) 2007-09-16
WO2007083152A1 (en) 2007-07-26
MX2008009435A (es) 2009-01-13
JP5043041B2 (ja) 2012-10-10
US8585918B2 (en) 2013-11-19
JP2009524264A (ja) 2009-06-25
KR101182681B1 (ko) 2012-09-14
TWI446432B (zh) 2014-07-21
RU2008132685A (ru) 2010-02-27
CA2637737A1 (en) 2007-07-26
BRPI0707164A2 (pt) 2011-08-02

Similar Documents

Publication Publication Date Title
CN101390198B (zh) 蚀刻硅基材料的方法
TWI460908B (zh) 製造由矽或以矽為主的材料構成的結構化粒子的方法及其在鋰可充電電池的用途
CN103098265B (zh) 制造由硅或硅基材料构成的结构化粒子的方法及其在锂可充电电池中的用途
JP2015514310A (ja) エッチングされたシリコン構造、エッチングされたシリコン構造を形成する方法およびその使用
CN106119976B (zh) 多晶黑硅制绒用扩孔酸液的添加剂及其应用
CN105612277A (zh) 用于大量生产硅纳米线和/或纳米带的方法以及使用所述硅纳米线和/或纳米带的锂电池和阳极
CN109686816A (zh) 钝化接触n型太阳电池的制备方法
CN101429680A (zh) 金属铜基底上直接生长一维纳米氧化亚铜阵列的制备方法
TW201126744A (en) Methods of texturing surfaces for controlled reflection
CN108193281A (zh) 多晶黑硅制绒工艺
CN114086259B (zh) 一种无醇型两亲性制绒添加剂及其制备方法
CN106653889A (zh) 用于刻蚀太阳能电池硅片表面的制绒液及其应用
CN103451632A (zh) 微纳米银、铜或银铜合金薄膜及其制备方法
CN106229386A (zh) 一种银铜双金属mace法制备黑硅结构的方法
CN108538720B (zh) 一种晶体硅各向异性湿法腐蚀方法
CN105826429A (zh) 一种微纳复合绒面结构黑硅、黑硅太阳能电池的制备方法
Smith et al. Catalyst self-assembly for scalable patterning of sub 10 nm ultrahigh aspect ratio nanopores in silicon
CN106653890B (zh) 包含倒四棱锥绒面结构的多晶硅片及其应用
CN102278769A (zh) 孔内嵌导电含能材料的点火器件及其制法
Liu et al. HF/HCl/H2O/MnO2 System for High-Performance Texturization on Multi-Crystalline Silicon
Lee et al. Influence of doping on Ni electroless deposition at single crystalline Si
Benoit et al. Silicon nanowires: condition of synthesis and size selection
CN109943888A (zh) 一种降低多晶黑硅制绒后绒面差异的挖孔酸液添加剂及其应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110413

Termination date: 20170123

CF01 Termination of patent right due to non-payment of annual fee