CN101383075A - Ultraviolet-infrared composite flame detection alarm with optical self-checking function and method - Google Patents
Ultraviolet-infrared composite flame detection alarm with optical self-checking function and method Download PDFInfo
- Publication number
- CN101383075A CN101383075A CNA200810228237XA CN200810228237A CN101383075A CN 101383075 A CN101383075 A CN 101383075A CN A200810228237X A CNA200810228237X A CN A200810228237XA CN 200810228237 A CN200810228237 A CN 200810228237A CN 101383075 A CN101383075 A CN 101383075A
- Authority
- CN
- China
- Prior art keywords
- detector
- ultraviolet
- infrared
- circuit
- signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 57
- 239000002131 composite material Substances 0.000 title claims abstract description 23
- 230000003287 optical effect Effects 0.000 title claims abstract description 21
- 238000000034 method Methods 0.000 title claims abstract description 19
- 238000012545 processing Methods 0.000 claims abstract description 26
- 238000000605 extraction Methods 0.000 claims abstract description 14
- 238000004891 communication Methods 0.000 claims abstract description 12
- 238000000825 ultraviolet detection Methods 0.000 claims description 11
- 238000005516 engineering process Methods 0.000 claims description 9
- 230000004224 protection Effects 0.000 claims description 8
- 230000006750 UV protection Effects 0.000 claims description 6
- 230000003321 amplification Effects 0.000 claims description 6
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 6
- 230000004044 response Effects 0.000 claims description 5
- 238000002955 isolation Methods 0.000 claims description 4
- 230000001186 cumulative effect Effects 0.000 claims description 2
- 230000035945 sensitivity Effects 0.000 claims description 2
- 244000249914 Hemigraphis reptans Species 0.000 claims 5
- 150000001875 compounds Chemical class 0.000 claims 3
- 230000033228 biological regulation Effects 0.000 claims 1
- 230000005764 inhibitory process Effects 0.000 claims 1
- 238000009434 installation Methods 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 abstract description 29
- 238000005070 sampling Methods 0.000 abstract description 18
- 238000012360 testing method Methods 0.000 description 13
- 230000001681 protective effect Effects 0.000 description 11
- 238000007689 inspection Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 9
- 230000007613 environmental effect Effects 0.000 description 4
- 239000000779 smoke Substances 0.000 description 4
- 230000002159 abnormal effect Effects 0.000 description 3
- 230000009977 dual effect Effects 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000008054 signal transmission Effects 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- 101100190529 Arabidopsis thaliana PIN7 gene Proteins 0.000 description 1
- 102000005591 NIMA-Interacting Peptidylprolyl Isomerase Human genes 0.000 description 1
- 108010059419 NIMA-Interacting Peptidylprolyl Isomerase Proteins 0.000 description 1
- 101150087393 PIN3 gene Proteins 0.000 description 1
- 102000007315 Telomeric Repeat Binding Protein 1 Human genes 0.000 description 1
- 108010033711 Telomeric Repeat Binding Protein 1 Proteins 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000004378 air conditioning Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000002329 infrared spectrum Methods 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 238000002211 ultraviolet spectrum Methods 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
Images
Landscapes
- Fire-Detection Mechanisms (AREA)
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
Abstract
本发明涉及带有光学自检功能的紫外红外复合火焰探测报警器及方法,特点是红外发光管与带通放大电路相连;紫外发光管和紫外光电探测管与智能紫外驱动及信号采样电路相连;在探测器电源转换电路输出端连接一个紫外提取及转换电路,在智能紫外驱动及信号采样电路输出端连接探测器数据主处理电路;在探测器外部信号输入检测及自检红外LED驱动电路和探测器数据主处理电路输出端连接带通放大电路;在探测器数据主处理电路和探测器电源转换电路输出端连接探测器隔离电源485通讯电路、探测器4-20mA信号输出电路和探测器继电器输出电路。本发明优点是通过紫外红外混合判断火焰信号,降低误报率并提高探测器对使用环境的适应性达到较高智能程度。
The invention relates to an ultraviolet-infrared composite flame detection alarm device with an optical self-check function and a method thereof, and is characterized in that an infrared luminescent tube is connected with a band-pass amplifier circuit; an ultraviolet luminescent tube and an ultraviolet photoelectric detection tube are connected with an intelligent ultraviolet driving and signal sampling circuit; Connect an ultraviolet extraction and conversion circuit at the output end of the detector power conversion circuit, connect the detector data main processing circuit at the output end of the intelligent ultraviolet drive and signal sampling circuit; The output end of the detector data main processing circuit is connected to the band-pass amplifier circuit; the output end of the detector data main processing circuit and the detector power conversion circuit is connected to the detector isolated power supply 485 communication circuit, the detector 4-20mA signal output circuit and the detector relay output circuit. The invention has the advantages of judging the flame signal through the combination of ultraviolet and infrared, reducing the false alarm rate and improving the adaptability of the detector to the use environment to achieve a higher degree of intelligence.
Description
技术领域 technical field
本发明属于火灾自动探测报警领域,特别涉及一种带有光学自检功能紫外红外复合火焰探测报警器及方法。The invention belongs to the field of automatic fire detection and alarm, in particular to an ultraviolet-infrared composite flame detection alarm with an optical self-check function and a method thereof.
背景技术 Background technique
早期,国际上使用普通式紫外或单波段红外火焰探测器作为保护大空间及地下建筑消防安全的手段,但由于其受技术水平及工艺水平的限制,在实际应用中对环境干扰的抵抗能力较差,易产生误报警。近几年来,国内外还有人研究利用CCD火焰成像技术来探测火焰,由于相应的早期火灾图象探测的基础理论研究尚不充分,在一定程度上限制了火灾图像技术的发展。因此,近年来日本、瑞士等国家已先后开发研制并成功使用双波段红外火焰探测器用于大空间及地下建筑的消防安全保护。它可进一步抑制环境干扰信号的干扰,提高探测器的可靠性,成为保护地下与大空间建筑消防安全的最新产品。In the early days, ordinary ultraviolet or single-band infrared flame detectors were used internationally as a means to protect the fire safety of large spaces and underground buildings. Poor, prone to false alarms. In recent years, some people at home and abroad have studied the use of CCD flame imaging technology to detect flames. Due to the lack of basic theoretical research on the corresponding early fire image detection, the development of fire image technology has been limited to a certain extent. Therefore, in recent years, Japan, Switzerland and other countries have successively developed and successfully used dual-band infrared flame detectors for fire safety protection of large spaces and underground buildings. It can further suppress the interference of environmental interference signals, improve the reliability of the detector, and become the latest product for protecting the fire safety of underground and large space buildings.
随着我国经济建设的飞速发展,大空间建筑及地下建筑的数量不断增加,如大型公共娱乐场所、大型仓库、大型集贸市场、飞机库、车库、油库、候车大厅和侯机大厅、地下隧道、地铁站道、地下大型停车场和地下商业街等。由于此类建筑内部往往举架高、跨度大,火灾初期烟扩散受建筑内部安装的空调和通风系统等影响较大,有的场所人员密集,易燃品多,火灾隐患多,而且此类建筑火灾蔓延迅速,生成烟气毒性大,人员疏散避难及增援扑救困难,一旦发生火灾往往造成很大的经济损失和恶劣的社会影响,因此,地下及大空间建筑已成为消防保卫的重点对象之一。With the rapid development of my country's economic construction, the number of large space buildings and underground buildings is increasing, such as large public entertainment places, large warehouses, large bazaars, hangars, garages, oil depots, waiting halls and waiting halls, underground tunnels , subway station road, underground large parking lot and underground commercial street, etc. Because the interior of this type of building is often elevated and spanned, the smoke diffusion at the initial stage of the fire is greatly affected by the air-conditioning and ventilation systems installed inside the building. The fire spreads rapidly, the generated smoke is highly toxic, and it is difficult to evacuate and rescue people. Once a fire occurs, it often causes great economic losses and adverse social impacts. Therefore, underground and large-space buildings have become one of the key objects of fire protection. .
地下及大空间建筑的特殊性,普通的点型感烟、感温火灾探测报警系统无法迅速采集火灾发出的烟温变化信息,因而难以满足早期探测并预报此类建筑火灾的要求。国际上早期使用普通式紫外、单波段红外火焰探测器作为保护大空间建筑的手段,但由于其受技术水平及工艺水平的限制,在实际应用中对环境干扰的抑制能力较差,容易产生误报警。Due to the particularity of underground and large-space buildings, ordinary point-type smoke and temperature-sensing fire detection and alarm systems cannot quickly collect information on changes in smoke temperature emitted by fires, so it is difficult to meet the requirements for early detection and prediction of such building fires. Common ultraviolet and single-band infrared flame detectors were used early in the world as a means of protecting large-space buildings. However, due to limitations of technical and technological levels, the ability to suppress environmental interference is poor in practical applications, and errors are prone to occur. Call the police.
发明内容 Contents of the invention
针对现有技术存在的问题,本发明提供一种带有光学自检功能的紫外红外复合火焰探测报警器及方法,综合采用火焰紫外与红外光谱型号的双信息传感技术、两种波段优化技术和综合火灾识别软件算法。Aiming at the problems existing in the prior art, the present invention provides an ultraviolet-infrared composite flame detection and alarm device with an optical self-inspection function and a method, which comprehensively adopts dual information sensing technology of flame ultraviolet and infrared spectrum models, and two waveband optimization technologies and integrated fire recognition software algorithms.
本发明的带有光学自检功能的紫外红外复合火焰探测报警器,包括紫外保护镜片、红外保护镜片、带通放大电路,数据主处理电路,智能紫外驱动及信号采样电路,控制器电源转换电路、控制器继电器输出电路、控制器4-20mA信号输出电路、紫外提取及转换电路、紫外发光管、红外发光管、紫外光电探测管、控制器隔离电源485通讯电路、外反光板和结构固定装置;在紫外保护镜片和红外保护镜片的后安装反光板;红外发光管与带通放大电路相连;紫外发光管和紫外光电探测管与智能紫外驱动及信号采样电路相连;在探测器电源转换电路输出端连接一个紫外提取及转换电路,在智能紫外驱动及信号采样电路的输出端连接探测器数据主处理电路;在探测器外部信号输入检测及探测器自检红外LED驱动电路和探测器数据主处理电路的输出端连接带通放大电路;在探测器数据主处理电路和探测器电源转换电路的输出端连接探测器隔离电源485通讯电路、探测器4-20mA信号输出电路和探测器继电器输出电路。The ultraviolet-infrared composite flame detection alarm device with optical self-checking function of the present invention includes ultraviolet protection lens, infrared protection lens, band-pass amplifier circuit, data main processing circuit, intelligent ultraviolet driving and signal sampling circuit, controller power conversion circuit , controller relay output circuit, controller 4-20mA signal output circuit, ultraviolet extraction and conversion circuit, ultraviolet light-emitting tube, infrared light-emitting tube, ultraviolet photoelectric detection tube, controller isolated
本发明的探测器自检流程:通过内部定时器,累计时间达到预先设定时间时,探测器检测紫外传感器信号是否存在火焰信号,若无火焰信号则启动紫外发光管,并检测紫外传感器是否正常,正常则进入检测红外传感器,不正常即报紫外探测器故障;同时探测器检测红外传感器信号是否存在火焰信号,若无火焰信号则启动红外发光管,并检测红外传感器是否正常,正常则进入火警判断流程,不正常即报红外探测器故障。The detector self-inspection process of the present invention: through the internal timer, when the cumulative time reaches the preset time, the detector detects whether there is a flame signal in the signal of the ultraviolet sensor, and if there is no flame signal, starts the ultraviolet light-emitting tube and detects whether the ultraviolet sensor is normal If it is normal, it will enter to detect the infrared sensor, if it is not normal, it will report the failure of the ultraviolet detector; at the same time, the detector will detect whether there is a flame signal in the signal of the infrared sensor, if there is no flame signal, it will start the infrared light-emitting tube, and check whether the infrared sensor is normal, and if it is normal, it will enter the fire alarm Judgment process, if abnormal, report infrared detector failure.
本发明的外壳包括后盖、前盖、壳体、前面板、反光板、紫外保护镜片、紫外探测板、红外探测板和红外保护镜片,红外探测板、系统和紫外探测板固定在前面板上,探测器输出接口板固定在壳体的后盖部分,前面板与后盖部分通过信号线连接。The casing of the present invention includes a back cover, a front cover, a housing, a front panel, a reflector, an ultraviolet protection lens, an ultraviolet detection plate, an infrared detection plate and an infrared protection lens, and the infrared detection plate, the system and the ultraviolet detection plate are fixed on the front plate , the detector output interface board is fixed on the back cover part of the shell, and the front panel and the back cover part are connected by signal lines.
本发明的智能紫外驱动及信号采样电路通过采用8位单片机U12作为紫外驱动,通过PIN7控制三级管N1驱动的单输入双输出升压变压器T1,通过快恢复二极管以及电阻电容耦合得到紫外光电管所需的高压,采用脉冲驱动;通过PIN4-63个管脚与U8主处理器进行通讯,根据主处理器不同的信号控制不同的紫外驱动方式。紫外光电探测管和紫外发光管采用升压变压器供电。The intelligent ultraviolet drive and signal sampling circuit of the present invention adopts 8-bit single-chip microcomputer U12 as the ultraviolet drive, controls the single-input double-output step-up transformer T1 driven by the three-stage tube N1 through PIN7, and obtains the ultraviolet photoelectric tube through the fast recovery diode and resistance-capacitance coupling The required high voltage is driven by pulses; it communicates with the U8 main processor through PIN4-63 pins, and controls different UV driving modes according to different signals of the main processor. The ultraviolet photoelectric detection tube and the ultraviolet luminescent tube are powered by a step-up transformer.
本发明的带通放大电路,主要分为红外信号提取、红外传感器放大、增益调整、门槛电压调整和信号转换电路。红外信号提取电路为电源通过红外传感器U1连接到U5的PIN3再通过R1接地,U5的PIN1和PIN2短接,并采用动态门槛技术;U5B、U6A、U6C构成红外传感器放大电路,并采用数字缩放技术;U6C和双路数字电位器U7的1路构成增益调整电路;U6B和双路数字电位器U7的0路构成门槛电压调整电路;通过D3、R6、D4、R38、R14、C45、E6组成信号转换电路。The band-pass amplifying circuit of the present invention is mainly divided into infrared signal extraction, infrared sensor amplification, gain adjustment, threshold voltage adjustment and signal conversion circuit. The infrared signal extraction circuit is a power supply connected to PIN3 of U5 through infrared sensor U1 and then grounded through R1, PIN1 and PIN2 of U5 are short-circuited, and dynamic threshold technology is used; U5B, U6A, and U6C form an infrared sensor amplification circuit, and digital zoom technology is used ; U6C and 1 channel of the dual digital potentiometer U7 form a gain adjustment circuit; U6B and 0 channel of the dual digital potentiometer U7 form a threshold voltage adjustment circuit; the signal is composed of D3, R6, D4, R38, R14, C45, and E6 conversion circuit.
本发明的探测器继电器输出电路采用无源继电器信号输出;探测器4-20mA信号输出电路通过单片机的脉宽调制信号输出;探测器隔离电源485通讯电路采用光耦、电源隔离模块、485通讯芯片以及3个瞬间抑制二极管抑制外部通讯时信号线上的干扰信号。The detector relay output circuit of the present invention adopts passive relay signal output; the detector 4-20mA signal output circuit outputs the pulse width modulation signal through the single-chip microcomputer; the detector
本发明紫外红外复合火焰探测器的方法包括以下步骤;The method for the ultraviolet-infrared composite flame detector of the present invention comprises the following steps;
步骤一系统初始化
系统复位,关中断,继电器、端口、RAM和定时器T0、T1初始化,采集报警设置和灵敏度设置,点亮红色LED 5秒,绿色LED 5秒,AD初始化,定时器T2初始化,设定并开中断,清看门狗标志位,循环等待中断。Reset the system, turn off the interrupt, initialize the relay, port, RAM and timer T 0 , T 1 , collect the alarm setting and sensitivity setting, light the red LED for 5 seconds, and the green LED for 5 seconds, initialize AD, initialize the timer T 2 , set Set and open the interrupt, clear the watchdog flag, and wait for the interrupt in a loop.
步骤二信号采集,通过编码实现
通过T2定时中断后进行AD转换得到两个通道的信号幅值和频率数据。通过中断判断,进行相应的中断操作,进入T2定时中断服务子程序后操作顺序为:T2定时中断初始化;火警判断;是否需要频率采集;是否需要幅值采样数据;是否需要进行火警综合判断;然后T2定时中断返回。After the T2 timing interrupt, AD conversion is performed to obtain the signal amplitude and frequency data of the two channels. Through the interrupt judgment, perform the corresponding interrupt operation. After entering the T2 timing interrupt service subroutine, the operation sequence is: T2 timing interrupt initialization; fire alarm judgment; whether frequency acquisition is required; whether amplitude sampling data is required; whether comprehensive fire alarm judgment is required ; Then T2 timing interrupt returns.
步骤三信号处理
对采集的数据进行算法带入运算,通过算法判断是否有火灾发生,具体算法为;The collected data is brought into operation by algorithm, and the algorithm is used to judge whether there is a fire. The specific algorithm is as follows;
1、红外火焰幅值判断1. Infrared flame amplitude judgment
(1)基于固定基值判断(1) Judgment based on fixed base value
当Ai-Ca≥Cb且(Ai-Ca)/n≥Cb,其中n为自然数,其中Ai为火焰通道当前红外AD采样幅值,Ca为火焰通道固定基值,Cb为红外响应固定值,是通道的信号幅值增加的比值;在设定的判断次数内满足该条件则判断幅值满足火警条件,跳过基于补偿基值判断程序并进行闪烁频率判断;当Ai-Ca<Cb时,进行基于补偿基值判断;When A i -Ca≥Cb and (A i -Ca)/n≥Cb, where n is a natural number, where Ai is the current infrared AD sampling amplitude of the flame channel, Ca is the fixed base value of the flame channel, and Cb is the fixed value of the infrared response , is the ratio of the signal amplitude increase of the channel; if this condition is met within the set number of judgments, the amplitude is judged to meet the fire alarm condition, and the judgment procedure based on the compensation base value is skipped and the flicker frequency judgment is performed; when A i -Ca<Cb , judge based on the compensation base value;
(2)基于补偿基值判断(2) Judging based on the compensation base value
当Ai-Ca1≥Cb1且(Ai-Ca1)/n≥Cb1,其中Ca1为火焰通道补偿基值,Cb为红外响应补偿值,在设定的判断次数内满足该条件则判断幅值满足火警条件,并进行闪烁频率判断;When A i -Ca 1 ≥ Cb 1 and (A i -Ca 1 )/n ≥ Cb 1 , where Ca 1 is the flame channel compensation base value, and Cb is the infrared response compensation value, the condition is met within the set judgment times Then it is judged that the amplitude meets the fire alarm condition, and the flashing frequency is judged;
2、红外火焰频率判断2. Infrared flame frequency judgment
红外火焰通道在设定的判断次数内频率数据平均值为Fav,4≤Fav≤20,并且火焰通道红外采样频率数据依次为Fa0(当前)、Fa1、Fa2、……、Fai(i=N),其中连续4次频率满足4≤Fai≤20(i=N),则闪烁频率判断满足火警报警条件。The average value of the frequency data of the infrared flame channel within the set judgment times is Fav, 4≤Fav≤20, and the infrared sampling frequency data of the flame channel are Fa 0 (current), Fa 1 , Fa 2 ,..., Fa i ( i=N), wherein the frequency satisfies 4≤Fa i≤20 (i=N) for 4 consecutive times, then the flickering frequency is judged to meet the fire alarm condition.
3、紫外火焰频率信号判断3. Judgment of ultraviolet flame frequency signal
紫外火焰通道在设定的判断次数内频率数据平均值为Fuv,Fmin≤Fuv≤Fmax,并且紫外火焰通道频率数据依次为Fu0(当前)、Fu1、Fu2、……Fui(i=N),其中连续4次频率满足Fmin≤Fai≤Fmax(i=N),则紫外闪烁频率判断满足火警报警条件。The average value of the frequency data of the ultraviolet flame channel in the set judgment times is Fuv, Fmin≤Fuv≤Fmax, and the frequency data of the ultraviolet flame channel are Fu 0 (current), Fu 1 , Fu 2 ,... Fu i (i= N), where the frequency satisfies Fmin≤Fa i≤Fmax (i=N) for 4 consecutive times, then the ultraviolet flicker frequency is judged to meet the fire alarm condition.
4、紫外红外复合判断。4. Ultraviolet and infrared composite judgment.
当红外符合火警时,输出红外火警信号,当紫外符合火警时,输出紫外火警信号,当两种信号有一种符合火警信号时,另一种处于火警预警状态时,根据预先设置的对比参数进行配对,若符合报警状态则报火警。When the infrared matches the fire alarm, the infrared fire alarm signal is output; when the ultraviolet light matches the fire alarm, the ultraviolet fire alarm signal is output; when one of the two signals matches the fire alarm signal, and the other is in the fire alarm warning state, it is paired according to the preset comparison parameters , if it meets the alarm state, it will report a fire alarm.
步骤四 信号输出
通过探测器4-20mA信号输出电路或探测器继电器输出电路将报警信号输出,是报警信号则运行结束,不是报警信号则进入探测器自检。The alarm signal is output through the detector 4-20mA signal output circuit or the detector relay output circuit. If it is an alarm signal, the operation ends. If it is not an alarm signal, it enters the detector self-test.
发明效果Invention effect
1.采用智能的紫外光电管驱动,采用8位单片机进行单独的脉冲驱动,可根据不同探测时间要求进行不同配置方式的驱动,简化了原有紫外光电管需要多个芯片协调驱动脉宽,相对采用交流持续供电的工作方式则大大降低了功耗。设计了升压变压器,实现了采用一个变压器提供紫外光电探测管以及紫外发光管的供电,通过配合主处理器的多路计数,结合多路不同信号等级的采样电路,可对不同电压等级的信号进行计数,改变以往紫外探测只是进行脉冲信号个数统计,没有针对信号等级进行区分的现状。1. Using intelligent ultraviolet photoelectric tube drive, using 8-bit single-chip microcomputer for separate pulse drive, can be driven in different configurations according to different detection time requirements, simplifying the original ultraviolet photoelectric tube that requires multiple chips to coordinate the drive pulse width, relatively The working mode of continuous AC power supply greatly reduces power consumption. A step-up transformer is designed to realize the use of a transformer to provide the power supply for the ultraviolet photodetector tube and the ultraviolet light-emitting tube. By cooperating with the multi-channel counting of the main processor and combining multiple sampling circuits with different signal levels, the signals of different voltage levels can be analyzed. Counting changes the current situation that the previous ultraviolet detection only counts the number of pulse signals without distinguishing the signal level.
2.采用数字缩放技术以及动态门槛的火焰频率提取电路,探测器针对红外传感器进行带通放大,并通过采用数字电位器进行放大增益调整,通过放大增益调整为探测器进行探测过程中存在近距离大火的火焰信号探测提供了解决方案;探测器采用了数字电位器结合运放进行火焰频率信号提取,保证了探测器在不同环境下,本底漂移时,对火焰信号的提取始终有效。2. Using digital zoom technology and flame frequency extraction circuit with dynamic threshold, the detector performs band-pass amplification for the infrared sensor, and adjusts the amplification gain by using the digital potentiometer, and through the amplification gain adjustment, there is a short distance during the detection process of the detector The flame signal detection of the fire provides a solution; the detector uses a digital potentiometer combined with an operational amplifier to extract the flame frequency signal, ensuring that the detector is always effective in extracting the flame signal when the background drifts in different environments.
3.采用紫外发光管和红外发光管,结合经过特殊加工的反光板,构成了探测器光学完整性,保证了探测器在具备探测火焰功能的同时,又具备了探测器内部传感器失效检测的功能,同时也实现了针对探测器保护镜片的污染检测。3. The use of ultraviolet light-emitting tubes and infrared light-emitting tubes, combined with specially processed reflectors, constitutes the optical integrity of the detector, ensuring that the detector not only has the function of detecting flames, but also has the function of detecting the failure of internal sensors of the detector , and also realized the pollution detection for the detector protective lens.
4.采用无源继电器信号输出,RS485工业通讯接口,4-20MA信号输出3种通讯方式,基本兼容市面上大多数的控制器,具有很好的兼容性能,采用隔爆型结构,适用于各种工业场所。4. Adopt passive relay signal output, RS485 industrial communication interface, 4-
附图说明 Description of drawings
图1为带有光学自检功能的紫外红外复合火焰探测报警器整机结构示意图;Fig. 1 is a schematic diagram of the structure of an ultraviolet-infrared composite flame detection alarm with an optical self-check function;
图2为带有光学自检功能的紫外红外复合火焰探测报警器系统结构示意图;Figure 2 is a schematic structural diagram of an ultraviolet-infrared composite flame detection alarm system with an optical self-check function;
图3为带有光学自检功能的紫外红外复合火焰探测报警器基本设计原理框图;Fig. 3 is a block diagram of the basic design principle of the ultraviolet-infrared composite flame detection alarm with optical self-checking function;
图4为带有光学自检功能的紫外红外复合火焰探测报警器的系统流程图;Fig. 4 is the system flowchart of the ultraviolet-infrared composite flame detection alarm with optical self-checking function;
图5为带有光学自检功能的紫外红外复合火焰探测报警器的红外探测数据处理流程图;Fig. 5 is the infrared detection data processing flowchart of the ultraviolet-infrared composite flame detection alarm with optical self-checking function;
图6为红外探测板上固定的电路图,其中,Fig. 6 is the fixed circuit diagram on the infrared detection board, wherein,
(a)为探测器带通放大电路图;(a) is a detector band-pass amplifier circuit diagram;
(b)为探测器外部信号输入检测及自检红外LED驱动电路图;(b) Infrared LED drive circuit diagram for detector external signal input detection and self-inspection;
(c)为探测器双色LED驱动电路图;(c) is the circuit diagram of the dual-color LED driver of the detector;
图7为系统及紫外探测板上固定的电路图,其中,Fig. 7 is the fixed circuit diagram on the system and the ultraviolet detection board, wherein,
(a)为探测器电源转换电路;(a) is a detector power conversion circuit;
(b)为探测器数据主处理电路;(b) is the detector data main processing circuit;
(c)为智能紫外驱动及信号采样电路;(c) is an intelligent ultraviolet driving and signal sampling circuit;
(d)为紫外传感器自检驱动电路;(d) is an ultraviolet sensor self-test driving circuit;
(e)为紫外信号提取及转换电路;(e) an ultraviolet signal extraction and conversion circuit;
图8为探测器输出接口板上固定的电路图,其中,Fig. 8 is a fixed circuit diagram on the detector output interface board, wherein,
(a)为探测器电源极性转换电路及电源防干扰电路;(a) It is the detector power supply polarity conversion circuit and the power supply anti-interference circuit;
(b)为探测器4-20MA信号输出电路;(b) is the detector 4-20MA signal output circuit;
(c)为探测器隔离电源电路;(c) isolate the power supply circuit for the detector;
(d)为控制器隔离电源485通讯电路;(d) 485 communication circuits for the isolated power supply of the controller;
(e)为探测器继电器输出电路;(e) is the detector relay output circuit;
图中1为后盖,2为壳体,3为前盖,4为前面板,5为紫外保护镜片,6为紫外探测板,7为红外探测板,8为红外保护镜片,9反光板,10外壳,11支架,12探测器输出接口板。In the figure, 1 is the rear cover, 2 is the housing, 3 is the front cover, 4 is the front panel, 5 is the UV protection lens, 6 is the UV detection plate, 7 is the infrared detection plate, 8 is the infrared protection lens, 9 is the reflector, 10 shells, 11 brackets, 12 detector output interface boards.
具体实施方式 Detailed ways
如图1所示,外壳包括后盖、前盖、壳体、前面板、紫外保护镜片、紫外探测板、反光板、红外探测板和红外保护镜片,红外探测板、系统和紫外探测板固定在前面板上,探测器输出接口板固定在壳体的后盖部分,前面板与后盖部分通过信号线连接。其中红外保护镜片要求采用对1-14μm的红外光的透过率高于85%的材料制作,环境适应性要求耐腐蚀、擦拭、湿热及高低温。紫外保护镜片要求采用对200-1000nm的紫外光的透过率高于85%的材料制作,环境适应性要求耐腐蚀、擦拭、湿热及高低温。As shown in Figure 1, the housing includes a rear cover, a front cover, a housing, a front panel, an ultraviolet protective lens, an ultraviolet detection plate, a reflector, an infrared detection plate and an infrared protective lens, and the infrared detection plate, the system and the ultraviolet detection plate are fixed on On the front panel, the detector output interface board is fixed on the back cover of the housing, and the front panel and the back cover are connected through signal lines. Among them, the infrared protective lens is required to be made of a material with a transmittance of 1-14 μm infrared light higher than 85%, and the environmental adaptability requires corrosion resistance, wiping, damp heat and high and low temperature. UV protective lenses are required to be made of materials with a transmittance of 200-1000nm ultraviolet light higher than 85%, and environmental adaptability requires corrosion resistance, wiping, damp heat and high and low temperature.
如图2和图3所示,探测器电源转换电路通过电源转换获得不同的电路模块需要的电压,紫外信号提取及转换电路的+12v输入端与探测器电源转换电路+12v输出端相连,紫外信号提取以及转换电路的3.3v输出端与智能紫外驱动及信号采样电路的+3.3v输入端相连;智能紫外驱动及信号采样电路的输出端与探测器数据主处理电路的输入端相连;探测器双色LED驱动电路的输入端与探测器电源转换电路的24v输出端相连,探测器双色LED驱动电路输出端分别与探测器外部信号输入检测及自检红外LED驱动电路和紫外传感器自检驱动电路的输入端相连;探测器外部信号输入检测及自检红外LED驱动电路的输出端与带通放大电路的输入端相连;带通放大电路的输出端与探测器数据主处理电路的输入端相连,探测器电源极性转换电路及电源防干扰电路的输入端与探测器电源转换电路+24v输出端相连;探测器数据主处理电路的输出端与控制器4-20mA信号输出电路相连,控制器4-20mA信号输出电路与探测器电源转换电路+24v输出端相连,探测器继电器输出电路的输入端分别与探测器数据主处理电路的输出端和探测器电源转换电路+12v输出端相连,具体电路连接如图6、7、8所示。As shown in Figure 2 and Figure 3, the detector power conversion circuit obtains the voltage required by different circuit modules through power conversion. The +12v input terminal of the ultraviolet signal extraction and conversion circuit is connected to the +12v output terminal of the detector power conversion circuit. The 3.3v output terminal of the signal extraction and conversion circuit is connected with the +3.3v input terminal of the intelligent ultraviolet drive and signal sampling circuit; the output terminal of the intelligent ultraviolet drive and signal sampling circuit is connected with the input terminal of the detector data main processing circuit; The input end of the two-color LED drive circuit is connected to the 24v output end of the detector power conversion circuit, and the output end of the detector two-color LED drive circuit is respectively connected to the external signal input detection and self-test of the detector. The infrared LED drive circuit and the ultraviolet sensor self-test drive circuit The input end is connected; the output end of the detector external signal input detection and self-inspection infrared LED drive circuit is connected with the input end of the band-pass amplifier circuit; the output end of the band-pass amplifier circuit is connected with the input end of the detector data main processing circuit, and the detection The input end of the detector power supply polarity conversion circuit and the power supply anti-interference circuit is connected with the +24v output end of the detector power conversion circuit; the output end of the detector data main processing circuit is connected with the controller 4-20mA signal output circuit, and the controller 4- The 20mA signal output circuit is connected to the +24v output terminal of the detector power conversion circuit, and the input terminal of the detector relay output circuit is respectively connected to the output terminal of the detector data main processing circuit and the +12v output terminal of the detector power conversion circuit. The specific circuit connection As shown in Figures 6, 7, and 8.
带通放大电路输出红外火焰辐值信号以及红外频率信号至探测器数据主处理电路;探测器外部信号输入检测及自检红外LED驱动电路,检测外部自检信号并输出到探测器数据主处理电路,同时接收系统板的红外自检驱动信号来驱动自检红外LED驱动电路,探测器双色LED驱动电路,接收系统板上的双色LED控制信号来驱动双色LED驱动电路。紫外驱动及信号采样电路,通过独立的处理器输出升压变压器驱动信号,接收探测器数据主处理电路的调整信号并根据该信号输出不同的驱动信号;紫外信号提取及转换电路,通过电压变换处理驱动紫外光电管,并通过信号提取及转换获得紫外火焰信号输出到探测器数据主处理电路;紫外传感器自检驱动电路,接收探测器数据主处理电路的自检控制信号,驱动紫外发光管;探测器数据主处理电路,采集红外辐值信号、红外频率信号、紫外数据和其他输入信号,并进行数据处理。探测器电源极性转换电路及电源防干扰电路,提供无极性的直流电源接口;控制器4-20mA信号输出电路接收探测器数据主处理电路输出的PWM信号,并转换成标准的4-20MA输出电路;探测器继电器输出电路,接收探测器数据主处理电路输出不同的驱动信号,并输出对应的继电器信号。The band-pass amplifier circuit outputs the infrared flame amplitude signal and the infrared frequency signal to the detector data main processing circuit; the detector external signal input detection and self-inspection infrared LED drive circuit detects the external self-inspection signal and outputs it to the detector data main processing circuit , while receiving the infrared self-test driving signal of the system board to drive the self-test infrared LED drive circuit, the detector two-color LED drive circuit, and receiving the two-color LED control signal on the system board to drive the two-color LED drive circuit. The ultraviolet driving and signal sampling circuit outputs the driving signal of the step-up transformer through an independent processor, receives the adjustment signal of the main processing circuit of the detector data and outputs different driving signals according to the signal; the ultraviolet signal extraction and conversion circuit is processed by voltage conversion Drive the ultraviolet photoelectric tube, and obtain the ultraviolet flame signal through signal extraction and conversion and output it to the main processing circuit of the detector data; the self-test driving circuit of the ultraviolet sensor receives the self-test control signal of the main processing circuit of the detector data, and drives the ultraviolet light-emitting tube; The main processing circuit of the device data collects infrared radiation signal, infrared frequency signal, ultraviolet data and other input signals, and performs data processing. Detector power supply polarity conversion circuit and power supply anti-interference circuit provide non-polar DC power interface; the controller 4-20mA signal output circuit receives the PWM signal output by the detector data main processing circuit and converts it into a standard 4-20MA output circuit; the detector relay output circuit, the main processing circuit receiving the detector data outputs different drive signals, and outputs corresponding relay signals.
红外传感器、红外发光管、带通放大电路、探测器外部信号输入检测及自检红外LED驱动电路和探测器双色LED驱动电路固定在红外检测板上;紫外驱动及信号采样电路、数据主处理电路、探测器电源转换电路、紫外信号提取电路和紫外传感器自检驱动电路都固定在系统及紫外检测板上;探测器电源极性转换电路以及电源防干扰电路、探测器隔离电源485通讯电路、探测器4-20mA信号输出电路和探测器继电器输出电路都在探测器信号输出接口板上。红外探测板与系统及紫外探测板的信号传输通过插针连接,板间采用螺栓固定在前面板上,系统及紫外探测板与信号输出接口板的信号传输通过软线连接,探测器信号输出接口板固定在探测器的后盖部分。其中探测器通过固定在后盖上探测器信号输出接口板接线,并通过隔爆接口接到控制系统中。Infrared sensor, infrared light-emitting tube, band-pass amplifier circuit, detector external signal input detection and self-inspection infrared LED drive circuit and detector two-color LED drive circuit are fixed on the infrared detection board; ultraviolet drive and signal sampling circuit, data main processing circuit , the detector power conversion circuit, the ultraviolet signal extraction circuit and the ultraviolet sensor self-test drive circuit are fixed on the system and the ultraviolet detection board; the detector power polarity conversion circuit and the power anti-interference circuit, the detector
紫外传感器自检驱动电路驱动自检紫外发光管发出紫外光,通过紫外保护镜片后打到反光板上后反射,再次通过紫外保护镜片进入紫外传感器,通过采集当前的探测值对比预先设置的紫外发光管调制频率和传感器的初始探测参数,判断传感器是否处于正常工作状态,并可根据探测信号的频率变化幅度推断出紫外保护镜片是否需要清洗或更换;同时探测器外部信号输入检测及自检红外LED驱动电路驱动自检红外LED发出红外光,通过红外保护镜片后打到反光板上后反射,再次通过红外保护镜片进入红外传感器,通过采集当前的探测值对比预先设置的红外LED调制频率以及传感器的初始探测参数,判断传感器是否处于正常工作状态,并可根据探测值的变化幅度推断出红外保护镜片是否需要清洗或更换。The UV sensor self-test drive circuit drives the self-test UV light-emitting tube to emit ultraviolet light, which passes through the UV protective lens and hits the reflector after reflection, and then enters the UV sensor through the UV protective lens again, and compares the preset UV luminescence by collecting the current detection value Control the modulation frequency and the initial detection parameters of the sensor to judge whether the sensor is in a normal working state, and infer whether the ultraviolet protective lens needs to be cleaned or replaced according to the frequency change range of the detection signal; at the same time, the detector external signal input detection and self-inspection infrared LED The driving circuit drives the self-test infrared LED to emit infrared light, which passes through the infrared protective lens and hits the reflector after reflection, and then enters the infrared sensor through the infrared protective lens again, and compares the preset infrared LED modulation frequency and sensor’s modulation frequency by collecting the current detection value. The initial detection parameters determine whether the sensor is in normal working condition, and can infer whether the infrared protective lens needs to be cleaned or replaced according to the change range of the detection value.
探测器自检流程:通过内部定时器,累计时间达到预先设定时间时,探测器检测紫外传感器信号是否存在火焰信号,若无火焰信号则启动紫外发光管,并检测紫外传感器是否正常,正常则进入检测红外传感器,不正常即报紫外探测器故障;同时探测器检测红外传感器信号是否存在火焰信号,若无火焰信号则启动红外发光管,并检测红外传感器是否正常,正常则进入火警判断流程,不正常即报红外探测器故障。Detector self-inspection process: through the internal timer, when the accumulated time reaches the preset time, the detector detects whether there is a flame signal in the signal of the ultraviolet sensor. If there is no flame signal, it starts the ultraviolet light-emitting tube and detects whether the ultraviolet sensor is normal. Enter the detection infrared sensor, if it is abnormal, it will report the failure of the ultraviolet detector; at the same time, the detector will detect whether there is a flame signal in the signal of the infrared sensor, if there is no flame signal, start the infrared light-emitting tube, and check whether the infrared sensor is normal, if it is normal, enter the fire alarm judgment process, If it is abnormal, it will report the infrared detector failure.
1.采用如图1所示的报警器,按照图4所示的流程实施检测,依以下步骤进行红外检测:1. Use the alarm shown in Figure 1, implement the detection according to the process shown in Figure 4, and perform infrared detection according to the following steps:
步骤一 设定原始数据,在探测器上电的同时被初始化,即:
假定红外响应固定值为Cb,火焰通道固定基值为Ca,火焰通道补偿基值为Ca1,火焰通道当前红外AD采样幅值为A1,火焰通道红外幅值相对于固定基值增加值△A0=A1-Cb,火焰通道红外幅值相对于补偿基值增加值△A1=A1-Cb,火焰通道红外采样频率数据依次为Fa0(当前),Fa1,Fa2,Fa3(前3次)火焰通道当前4次红外频率数据平均值为Fap,N为自然数,数据大小根据传感器的信号比进行设定。Assuming that the infrared response is fixed at Cb, the flame channel’s fixed base value is Ca, the flame channel’s compensation base value is Ca 1 , the current infrared AD sampling amplitude of the flame channel is A 1 , and the infrared amplitude of the flame channel is increased by △ relative to the fixed base value A 0 =A 1 -Cb, the increase value of the infrared amplitude of the flame channel relative to the compensation base value △A 1 =A 1 -Cb, the infrared sampling frequency data of the flame channel are Fa 0 (current), Fa 1 , Fa 2 , Fa 3 (First 3 times) The average value of the current 4 infrared frequency data of the flame channel is Fap, N is a natural number, and the data size is set according to the signal ratio of the sensor.
步骤二 基于固定基值判断,工作流程如图5所示
当Ai-Ca>Cb,连续4次满足该条件则直接判断红外幅值满足火警条件。并跳过基于补偿基值判断程序并进行闪烁频率判断;当Ai-Ca<Cb,则直接进行基于补偿基值判断。When A i -Ca>Cb, if this condition is satisfied for 4 consecutive times, it is directly judged that the infrared amplitude meets the fire alarm condition. And skip the judgment procedure based on the compensation base value and judge the flicker frequency; when A i -Ca<Cb, directly judge based on the compensation base value.
步骤三 基于补偿基值判断
当Al-Ca1>Cb且连续4次满足该条件则直接判断红外幅值满足火警条件。When Al-Ca 1 >Cb and this condition is met for 4 consecutive times, it is directly judged that the infrared amplitude meets the fire alarm condition.
步骤四 闪烁频率判断
4≤Fap≤20,并且Fa0(当前),Fa1,Fa2,Fa3(前3次)其中有至少2个满足4≤Fa(i)≤20i=0,1,2,3则判断满足频率满足火警条件。反之,则不满足火警条件。4≤Fap≤20, and at least 2 of Fa 0 (current), Fa 1 , Fa 2 , Fa 3 (previous 3 times) satisfy 4≤Fa(i)≤20i=0, 1, 2, 3, then judge Satisfy the frequency to meet the fire alarm condition. Otherwise, the fire alarm condition is not met.
2.如图4所示,依以下步骤进行紫外判断:2. As shown in Figure 4, carry out UV judgment according to the following steps:
步骤一 设定原始数据,在探测器上电的同时被初始化,即:
假定紫外响应固定高值为X0,火焰通道固定低值为Y0,火焰通道当前紫外频率采样高值为Z1,火焰通道当前紫外频率采样低值为K1,Assume that the fixed high value of the UV response is X 0 , the fixed low value of the flame channel is Y 0 , the high value of the current UV frequency sampling of the flame channel is Z 1 , and the low value of the current UV frequency sampling of the flame channel is K 1 ,
步骤二 紫外火焰判断程序
当Z1-X0>0,连续4次满足该条件则直接判断紫外高值满足火警条件,进行下一判断;当K1-Y0>0,且连续4次满足该条件则直接判断紫外低值满足火警条件,反之则不报警。When Z 1 -X 0 >0, and this condition is met for 4 consecutive times, it is directly judged that the high UV value meets the fire alarm condition, and the next judgment is made; when K 1 -Y 0 >0, and this condition is met for 4 consecutive times, it is directly judged that the ultraviolet Low value satisfies fire alarm conditions, otherwise no alarm will be given.
3.紫外红外复合判断3. Ultraviolet and infrared composite judgment
当红外符合火警时,输出红外火警信号,当紫外符合火警时,输出紫外火警信号,当两种信号有一种符合火警信号时,另一种处于火警预警状态时,根据预先设置的对比参数进行配对,若符合报警状态则报火警。When the infrared matches the fire alarm, the infrared fire alarm signal is output; when the ultraviolet light matches the fire alarm, the ultraviolet fire alarm signal is output; when one of the two signals matches the fire alarm signal, and the other is in the fire alarm warning state, it is paired according to the preset comparison parameters , if it meets the alarm state, it will report a fire alarm.
4.信号输出4. Signal output
通过探测器4-20mA信号输出电路或探测器继电器输出电路将报警信号输出,是报警信号则运行结束,不是报警信号则进入探测器自检。The alarm signal is output through the detector 4-20mA signal output circuit or the detector relay output circuit. If it is an alarm signal, the operation ends. If it is not an alarm signal, it enters the detector self-test.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 200810228237 CN101383075B (en) | 2008-10-23 | 2008-10-23 | Ultra-violet and infrared composite flame detecting alarm having optical self-checking function and method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 200810228237 CN101383075B (en) | 2008-10-23 | 2008-10-23 | Ultra-violet and infrared composite flame detecting alarm having optical self-checking function and method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101383075A true CN101383075A (en) | 2009-03-11 |
CN101383075B CN101383075B (en) | 2011-03-23 |
Family
ID=40462897
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 200810228237 Active CN101383075B (en) | 2008-10-23 | 2008-10-23 | Ultra-violet and infrared composite flame detecting alarm having optical self-checking function and method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101383075B (en) |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101847306A (en) * | 2009-03-27 | 2010-09-29 | 能美防灾株式会社 | Fire detector |
CN102013149A (en) * | 2010-12-09 | 2011-04-13 | 河南汉威电子股份有限公司 | Infrared multifrequency flame detector |
CN102163361A (en) * | 2011-05-16 | 2011-08-24 | 公安部沈阳消防研究所 | Image-type fire detection method based on cumulative prospect image |
CN102496236A (en) * | 2011-12-27 | 2012-06-13 | 公安部沈阳消防研究所 | Direct-injection type flame detector with self-checking light source and flame detection method |
CN102708647A (en) * | 2012-06-25 | 2012-10-03 | 北京中恩时代科技有限责任公司 | Image and multi-band infrared-ultraviolet compound fire disaster detection system and method |
CN103065421A (en) * | 2011-10-24 | 2013-04-24 | 成都宏天电传工程有限公司 | Fire disaster monitor and control system |
CN104501851A (en) * | 2014-12-05 | 2015-04-08 | 广东美的制冷设备有限公司 | Self-checking circuit, self-checking method and self-checking system for photosensitive element as well as air conditioner |
WO2015080795A1 (en) * | 2013-11-27 | 2015-06-04 | Detector Electronics Corporation | Ultraviolet light flame detector |
CN106023512A (en) * | 2016-07-27 | 2016-10-12 | 中国人民解放军93325部队 | Intelligent fireproof alarm system |
CN106155055A (en) * | 2016-07-13 | 2016-11-23 | 百度在线网络技术(北京)有限公司 | Method for early warning and device for automatic driving vehicle |
CN106408843A (en) * | 2016-10-09 | 2017-02-15 | 九江中船消防设备有限公司 | Three-band infrared flame detector having automatic calibration function |
CN106781179A (en) * | 2017-01-10 | 2017-05-31 | 国网浙江嵊州市供电公司 | A kind of mountain fire monitoring system |
CN107170173A (en) * | 2017-05-27 | 2017-09-15 | 重庆英卡电子有限公司 | Infrared and ultraviolet flame detector control system and its control method |
CN110111482A (en) * | 2018-07-20 | 2019-08-09 | 深圳怡化电脑股份有限公司 | A kind of method, apparatus of equipment self-inspection, ATM and storage medium |
CN110310452A (en) * | 2019-07-29 | 2019-10-08 | 中煤科工集团重庆研究院有限公司 | Spark auto-induction discernment sensor |
CN110827503A (en) * | 2019-10-11 | 2020-02-21 | 中国直升机设计研究所 | Circuit detection device and method of photosensitive flame detection system |
CN111396611A (en) * | 2020-04-29 | 2020-07-10 | 大连度达理工安全系统有限公司 | A mechanical active flameproof device |
CN113570832A (en) * | 2021-07-28 | 2021-10-29 | 郑州海为电子科技有限公司 | Water outlet alarm device of underwater detection equipment |
CN113720457A (en) * | 2021-09-14 | 2021-11-30 | 徐州海德测控技术有限公司 | Ultraviolet flame detector |
CN116386298A (en) * | 2023-03-16 | 2023-07-04 | 浙江华消科技有限公司 | Self-checking method, device and system for infrared flame detector |
CN116481988A (en) * | 2023-04-27 | 2023-07-25 | 营口天成消防设备有限公司 | Automatic adjusting method for reflection type linear light beam smoke fire detector |
CN117405233A (en) * | 2023-09-19 | 2024-01-16 | 中国船舶集团有限公司第七一三研究所 | A kind of ultraviolet and infrared dual-band composite flame detection method and device |
CN118424460A (en) * | 2024-04-26 | 2024-08-02 | 苏州谱融传感科技有限公司 | Flame detector and its calibration and analysis system based on artificial intelligence |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201270076Y (en) * | 2008-10-23 | 2009-07-08 | 公安部沈阳消防研究所 | Ultra-violet and infrared composite flame detecting alarm having optical self-checking function |
-
2008
- 2008-10-23 CN CN 200810228237 patent/CN101383075B/en active Active
Cited By (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103514705A (en) * | 2009-03-27 | 2014-01-15 | 能美防灾株式会社 | Fire detector |
CN103514705B (en) * | 2009-03-27 | 2016-08-10 | 能美防灾株式会社 | Fire detector |
CN101847306B (en) * | 2009-03-27 | 2014-04-02 | 能美防灾株式会社 | Fire detector |
CN101847306A (en) * | 2009-03-27 | 2010-09-29 | 能美防灾株式会社 | Fire detector |
CN102013149A (en) * | 2010-12-09 | 2011-04-13 | 河南汉威电子股份有限公司 | Infrared multifrequency flame detector |
CN102163361A (en) * | 2011-05-16 | 2011-08-24 | 公安部沈阳消防研究所 | Image-type fire detection method based on cumulative prospect image |
CN102163361B (en) * | 2011-05-16 | 2012-10-17 | 公安部沈阳消防研究所 | An Image-based Fire Detection Method Based on Foreground Accumulated Images |
CN103065421A (en) * | 2011-10-24 | 2013-04-24 | 成都宏天电传工程有限公司 | Fire disaster monitor and control system |
CN102496236A (en) * | 2011-12-27 | 2012-06-13 | 公安部沈阳消防研究所 | Direct-injection type flame detector with self-checking light source and flame detection method |
CN102708647B (en) * | 2012-06-25 | 2013-11-20 | 北京中恩时代科技有限责任公司 | Image and multi-band infrared-ultraviolet compound fire disaster detection system and method |
CN102708647A (en) * | 2012-06-25 | 2012-10-03 | 北京中恩时代科技有限责任公司 | Image and multi-band infrared-ultraviolet compound fire disaster detection system and method |
WO2015080795A1 (en) * | 2013-11-27 | 2015-06-04 | Detector Electronics Corporation | Ultraviolet light flame detector |
CN104501851A (en) * | 2014-12-05 | 2015-04-08 | 广东美的制冷设备有限公司 | Self-checking circuit, self-checking method and self-checking system for photosensitive element as well as air conditioner |
CN106155055A (en) * | 2016-07-13 | 2016-11-23 | 百度在线网络技术(北京)有限公司 | Method for early warning and device for automatic driving vehicle |
CN106023512A (en) * | 2016-07-27 | 2016-10-12 | 中国人民解放军93325部队 | Intelligent fireproof alarm system |
CN106408843A (en) * | 2016-10-09 | 2017-02-15 | 九江中船消防设备有限公司 | Three-band infrared flame detector having automatic calibration function |
CN106408843B (en) * | 2016-10-09 | 2019-08-02 | 九江中船消防设备有限公司 | A kind of three wave band infrared flame detectors having automatic calibration function |
CN106781179A (en) * | 2017-01-10 | 2017-05-31 | 国网浙江嵊州市供电公司 | A kind of mountain fire monitoring system |
CN107170173A (en) * | 2017-05-27 | 2017-09-15 | 重庆英卡电子有限公司 | Infrared and ultraviolet flame detector control system and its control method |
CN110111482B (en) * | 2018-07-20 | 2022-05-10 | 深圳怡化电脑股份有限公司 | Equipment self-checking method and device, ATM (automatic Teller machine) and storage medium |
CN110111482A (en) * | 2018-07-20 | 2019-08-09 | 深圳怡化电脑股份有限公司 | A kind of method, apparatus of equipment self-inspection, ATM and storage medium |
CN110310452A (en) * | 2019-07-29 | 2019-10-08 | 中煤科工集团重庆研究院有限公司 | Spark auto-induction discernment sensor |
CN110827503A (en) * | 2019-10-11 | 2020-02-21 | 中国直升机设计研究所 | Circuit detection device and method of photosensitive flame detection system |
CN111396611A (en) * | 2020-04-29 | 2020-07-10 | 大连度达理工安全系统有限公司 | A mechanical active flameproof device |
CN113570832A (en) * | 2021-07-28 | 2021-10-29 | 郑州海为电子科技有限公司 | Water outlet alarm device of underwater detection equipment |
CN113720457A (en) * | 2021-09-14 | 2021-11-30 | 徐州海德测控技术有限公司 | Ultraviolet flame detector |
CN116386298A (en) * | 2023-03-16 | 2023-07-04 | 浙江华消科技有限公司 | Self-checking method, device and system for infrared flame detector |
CN116481988A (en) * | 2023-04-27 | 2023-07-25 | 营口天成消防设备有限公司 | Automatic adjusting method for reflection type linear light beam smoke fire detector |
CN117405233A (en) * | 2023-09-19 | 2024-01-16 | 中国船舶集团有限公司第七一三研究所 | A kind of ultraviolet and infrared dual-band composite flame detection method and device |
CN118424460A (en) * | 2024-04-26 | 2024-08-02 | 苏州谱融传感科技有限公司 | Flame detector and its calibration and analysis system based on artificial intelligence |
CN118424460B (en) * | 2024-04-26 | 2024-12-03 | 苏州谱融传感科技有限公司 | Flame detector and its calibration and analysis system based on artificial intelligence |
Also Published As
Publication number | Publication date |
---|---|
CN101383075B (en) | 2011-03-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101383075B (en) | Ultra-violet and infrared composite flame detecting alarm having optical self-checking function and method thereof | |
CN102496236B (en) | Direct-injection type flame detector with self-checking light source and flame detection method | |
CN2932336Y (en) | Infrared and ultraviolet composite flame detector | |
CN102821525B (en) | A multifunctional emergency light control system and its control method | |
CN102708647A (en) | Image and multi-band infrared-ultraviolet compound fire disaster detection system and method | |
CN102496235B (en) | Image fire detector possessing optical integrity and method thereof | |
CN103198604B (en) | A kind of device and method promoting gas in mine pipeline fire detector reliability | |
CN202454031U (en) | Self-checking light source direct flame detector | |
CN110514592A (en) | Smoke detector and its control method | |
CN201270076Y (en) | Ultra-violet and infrared composite flame detecting alarm having optical self-checking function | |
CN201540627U (en) | Multi-parameter infrared flame detector | |
KR102519595B1 (en) | Automatic Fire Extinguishing System For Automobile Engine Room | |
CN105469529B (en) | A kind of image-type fire communication alarming device | |
CN1719481A (en) | Dual-band infrared flame detector and its detection method | |
CN207235150U (en) | A kind of tunnel intelligent street lamp control system | |
CN207731450U (en) | A kind of tunnel accident alarm system | |
CN205384707U (en) | Conflagration communication alarm device | |
CN105469533A (en) | Fire communication alarm device | |
CN2516966Y (en) | Fire detection control equipment with sunlight and blind light identification function | |
CN201698552U (en) | Tunnel fire detection alarming system based on double-wavelength flame detector | |
CN116486540A (en) | Fire alarm device for personnel evacuation and its working method | |
CN205751119U (en) | A kind of image-type fire communication alarming device | |
CN211479248U (en) | Smog fire detection system | |
JP2022121650A (en) | disaster prevention system | |
KR101680429B1 (en) | Smart walkway lighting device and method for operating smart walkway lighting device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CP01 | Change in the name or title of a patent holder | ||
CP01 | Change in the name or title of a patent holder |
Address after: 110034 No. 218-20, Wen Da Road, Huanggu District, Shenyang, Liaoning. Patentee after: Shenyang Institute of Fire Protection, Ministry of Emergency Management Address before: 110034 No. 218-20, Wen Da Road, Huanggu District, Shenyang, Liaoning. Patentee before: Shenyang Fire-Extiquishing Inst., Public Security Ministry |