CN101378102B - Gallium nitride light-emitting device with ultra-high breakdown reverse voltage - Google Patents

Gallium nitride light-emitting device with ultra-high breakdown reverse voltage Download PDF

Info

Publication number
CN101378102B
CN101378102B CN 200710168024 CN200710168024A CN101378102B CN 101378102 B CN101378102 B CN 101378102B CN 200710168024 CN200710168024 CN 200710168024 CN 200710168024 A CN200710168024 A CN 200710168024A CN 101378102 B CN101378102 B CN 101378102B
Authority
CN
Grant status
Grant
Patent type
Prior art keywords
layer
type
based
gan
semiconductor
Prior art date
Application number
CN 200710168024
Other languages
Chinese (zh)
Other versions
CN101378102A (en )
Inventor
方文卿
江风益
熊传兵
王立
莫春兰
蒲勇
Original Assignee
晶能光电(江西)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02576N-type
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds

Abstract

The embodiment of the invention provides a semiconductor light emitting device (LED) based on gallium nitride (GaN), which comprises an n type semiconductor layer based on GaN (n type layer); an active layer; and a p type semiconductor layer based on GaN (p type layer). Before the growth of the active layer and the p type layer grow, epitaxial growth of the n type layer is carried out by using ammonia (NH<3>) as nitrogen source. The flow rate between group V element and group III element is reduced to an end value from an initial value gradually. The LED based on GaN shows the breakdown reverse voltage equal to or larger than 60 volt.

Description

具有超高反向击穿电压的氮化镓发光器件 GaN light emitting device having a reverse breakdown voltage of ultrahigh

技术领域 FIELD

[0001] 本发明涉及氮化稼(GaN)半导体发光器件的设计和制作。 [0001] The present invention relates to the design and production of gallium nitride (GaN) semiconductor light emitting device. 更具体地,本发明涉及用于制作具有超高反向击穿电压的基于GaN的半导体发光器件的方法。 More particularly, the present invention relates to fabricating a GaN-based semiconductor light-emitting device of the ultra-high reverse breakdown voltage.

背景技术 Background technique

[0002] 在基于氮化稼的发光器件(LED)和激光器的开发中的最新成就不仅将发光谱扩展到绿色、蓝色和紫外线区域,而且能够实现高的发光效率。 [0002] In the light emitting device based on the development of gallium nitride (LED) and lasers in recent achievements not only extend to the emission spectrum of green, blue, and ultraviolet region, but also can achieve high light emission efficiency. 这是因为GaN材料具有在这些光谱中允许光子发射的大的直接带隙。 This is because the GaN material having these spectra allow photons emitted in a large direct bandgap. 由于它们的高能量效率、高亮度和长的寿命,基于GaN的半导体LED已经广泛地使用于包括全色彩大型屏幕显示器、交通灯、背光源和固态发光的应用中。 Due to their high energy efficiency, high luminance and long lifetime GaN-based semiconductor LED has been widely used for applications including large-screen full-color displays, traffic lights, backlight, and the solid state light.

[0003] 基于GaN的LED通常包括p_n结的结构。 [0003] GaN-based LED structures typically comprise p_n junction. GaN_LED也可以包括基于GaN的n型半导体层、多量子阱(MQW)有源区域和基于GaN的p型半导体层。 GaN_LED may also include a GaN-based n-type semiconductor layer, the multiple quantum well (MQW) active region and the p-type GaN-based semiconductor layer. 在发光过程中,以如下电压正向偏置P_n结或者MQW区域,该电压造成电流通过有源层从p型层流到n型层。 During lighting, the following P_n junction forward bias voltage or the MQW region, which voltage causes a current flows from the n-type layer p-type layer through the active layer. 然而,LED 有时可能由于许多原因、例如由于受到静电放电(ESD)或者意外地连接到反向电压源而变得反向偏置。 However, LED sometimes a number of reasons, for example due to electrostatic discharge (ESD) connected to the inverting or accidentally becomes reverse biased voltage source. 另外,当交流电压用来驱动LED时,LED变得反向偏置。 Further, when the AC voltage for driving the LED, LED becomes reverse biased.

[0004] 当LED反向偏置时,在反向电压达到基于GaN的LED的反向寄存电压的水平之前几乎没有电流(称为“反向电流”)流过P_n结。 [0004] When the LED is reverse biased, a reverse voltage reaches a level based on current hardly before the GaN LED reverse voltage register (referred to as "reverse current") flows through the junction P_n. 当偏置电压即使瞬间地超过击穿电压时, 反向电流显著地增加,这可能造成对LED的永久损坏。 When the bias voltage exceeds the breakdown voltage even momentarily, the reverse current remarkably increases, which may cause permanent damage to the LED. 注意到归因于ESD的反向偏置可能特别地有害,因为ESD电压可能比LED的典型反向击穿电压大得多,而ESD事件的发生常常是不可预测的。 Noting reverse bias due to the ESD may be particularly harmful, because the ESD voltage may be much larger than a typical reverse breakdown voltage of the LED, and the occurrence of an ESD event is often unpredictable. 常规基于GaN的LED通常表现出低反向击穿电压,因此易于遭受这些反向击穿的风险。 Conventional GaN-based LED is generally exhibit low reverse breakdown voltage, and therefore vulnerable to such risks reverse breakdown.

[0005] 一般希望制作具有高反向击穿电压的基于GaN的LED以增加LED的可靠性。 [0005] It is generally desirable to create an LED having a GaN-based LED to increase the reliability of high reverse breakdown voltage. 然而一直难以在实践中实现高的反向击穿电压。 However, it has been difficult to achieve high reverse breakdown voltage in practice.

发明内容 SUMMARY

[0006] 本发明的一个实施例提供一种基于氮化稼(GaN)的半导体发光器件(LED),包括: n型基于GaN的半导体层(n型层);有源层;以及p型基于GaN的半导体层(p型层)。 [0006] An embodiment of the present invention provides a gallium nitride-based (GaN) semiconductor light emitting device (LED), comprising: n-type GaN-based semiconductor layer (n-type layer); an active layer; and a p-type based GaN-based semiconductor layer (p type layer). 在生长有源层与P型层之前通过使用氨气(NH3)作为氮源来外延地生长n型层。 Before growing the active layer and the P-type layer epitaxially grown n-type layer by using ammonia (NH3) as a nitrogen source. 在n型层的外延生长过程中,V族元素与III族元素的流速比率或者V/III比率从初始值逐渐地减少到最终值。 During the growth of the n-type epitaxial layer, the flow rate ratio of the group V element to the group III element or a V / III ratio is gradually reduced from an initial value to a final value.

[0007] 在对这一实施例的一种变形中,基于GaN的LED表现出等于或者大于60伏特的反向击穿电压。 [0007] In a variation of this embodiment, the GaN-based LED exhibits greater than or equal to 60 volt reverse breakdown voltage.

[0008] 在对这一实施例的一种变形中,初始V/III比率约在1000与10000之间,而最终V/III比率约在150与500之间。 [0008] In a variation of this embodiment, the initial V / III ratio is between about 1000 and 10000, while the final V / III ratio of between about 150 and 500.

[0009] 在又一变形中,初始V/III比率约在2000与5000之间。 [0009] In yet another variation, an initial V / III ratio of about between 2000 and 5000.

[0010] 在又一变形中,最终V/III比率约在200与300之间。 [0010] In yet another variation, the final V / III ratio of between about 200 and 300.

4[0011] 在对这一实施例的一种变形中,有源层充分地接近n型层中达到最终V/III比率时所在的位置。 4 [0011] In a variation of this embodiment, the active layer is sufficiently close to a final location when the V / III ratio of the n-type layer.

[0012] 在对这一实施例的又一变形中,有源层处于在与n型层中达到最终V/III比率时所在的位置相距1000埃之内。 [0012] In a further modification of this embodiment, the active layer is located in a position upon reaching the final V / III ratio and the n-type layer 1000 angstroms apart.

[0013] 在对这一实施例的一种变形中,V/III比率减少工艺在n型层外延生长开始之后不久开始。 [0013] In a variation of this embodiment, V / III ratio reduction process starts shortly after the start epitaxially grown n-type layer.

[0014] 在对这一实施例的一种变形中,V/III比率减少工艺基本上是线性的,其具有基本上恒定的减少速率。 [0014] In a variation of this embodiment, V / III ratio reduction process is substantially linear, having a substantially constant reduction rate.

[0015] 在对这一实施例的一种变形中,V/III比率从初始V/III比率减少到最终V/III比率的持续时间充分地长。 [0015] In a variation of this embodiment, V / III ratio was reduced from an initial V / III ratio to the duration of the final V / III ratio is sufficiently long.

[0016] 在对这一实施例的一种变形中,基于GaN的LED的反向击穿电压等于或者大于110 伏特。 [0016] In a variation of this embodiment, the breakdown voltage of the GaN-based LED is equal to or greater than the reverse 110 volts.

[0017] 在对这一实施例的一种变形中,基于GaN的LED的接通电压等于或者少于3伏特。 [0017] In a variation of this embodiment, the GaN-based LED turn-on voltage is equal to or less than 3 volts.

[0018] 在对这一实施例的一种变形中,有源层是InGaN/GaN多量子阱(MQW)层。 [0018] In a variation of this embodiment, the active layer is InGaN / GaN multiple quantum well (MQW) layer.

附图说明 BRIEF DESCRIPTION

[0019] 图1图示了基于GaN的LED结构的横截面图。 [0019] Figure 1 illustrates a cross-sectional view of a GaN-based LED structure.

[0020] 图2呈现了流程图,该流程图图示了根据本发明的一个实施例在改变NH3流速的同时生长n型GaN层工艺。 [0020] Figure 2 presents a flow diagram illustrating the n-type GaN layer growth process of Example while changing the NH3 flow rate in accordance with the invention.

具体实施方式 detailed description

[0021] 呈现以下描述以使本领域技术人员实现和运用本发明,并且在特定应用及其要求的背景下提供该描述。 [0021] The following description is presented to enable those skilled in the art to make and use the invention, and is provided in the context of a particular application and its requirements. 对公开的实施例的各种修改对于本领域技术人员将是明显的,并且这里定义的一般原理可以适用于其它实施例和应用而不脱离本发明的范围。 Various modifications of the disclosed embodiments to those skilled in the art will be apparent, and the generic principles defined herein may be applied to other embodiments and applications without departing from the scope of the invention. 因此,本发明不限于所示实施例而将赋之以与权利要求书一致的最宽范围。 Accordingly, the present invention is not limited to the embodiments shown in the book widest scope consistent with the claims of Fu.

[0022]鍾 [0022] bell

[0023] 本发明的实施例有助于制作具有超高反向击穿电压的基于GaN的LED。 Example [0023] The present invention facilitates production of ultra-high reverse breakdown voltage of the GaN-based LED. 具体而言, 通过生长n型层,然后外延地生长有源层和p型层来制作这样的基于GaN的LED的结构。 Specifically, by growing an n-type layer, and then epitaxially growing an active layer and a p-type layer to make such a structure of the GaN-based LED. 在沉积n型层的同时,将氨气(NH3)用作氮源。 While n-type layer is deposited, the ammonia (NH3) as a nitrogen source. 取代了使用恒定的NH3流速,调节NH3流速使得V族元素与III族元素之间的流速比率(称为V/III比率)从初始值逐渐地减少到显著低于初始值的最终值。 Instead of using a constant flow rate of NH3, NH3 flow rate adjusted such that the ratio between the flow rate of the group V element to the group III element (referred to as V / III ratio) is gradually reduced from an initial value to a final value significantly lower than the initial value. 控制V/III比率减少工艺使得变化速率递减而减少工艺的持续时间充分地长。 Controlling V / III ratio reduction process that reduces the rate of change decreasing process duration is sufficiently long. 在基于GaN的LED的最终结构中,有源层充分地接近n_型层中到达最终V/III 比率时所在的位置。 GaN-based LED in the final structure, the active layer is sufficiently close to the position n_ type layer where the final V / III ratio.

[0024] 基于GaN的LED结构 [0024] GaN-based LED structure

[0025] 图1图示了根据本发明一个实施例的基于GaN的LED结构100的横截面图。 [0025] FIG. 1 illustrates a cross-sectional view of one embodiment of the present invention, the GaN-based LED structure 100. 如图1中所示,在衬底102上制作基于GaN的LED结构100。 As shown in FIG. 1, on the substrate 102 made of GaN-based LED structure 100. 衬底102可以包括但不限于蓝宝石(A1203)衬底、碳化硅(SiC)衬底、砷化镓(GaAs)衬底和/或硅(Si)衬底。 The substrate 102 may include, but are not limited to the sapphire (A1203) substrate, a silicon carbide (SiC) substrate, a gallium arsenide (GaAs) substrate and / or silicon (Si) substrate.

[0026] 注意到基于GaN的LED结构100包括n型层106、有源层108和p型层110。 [0026] Noting GaN-based LED structure 100 includes an n-type layer 106, the active layer 108 and a p-type layer 110. 这三个层形成LED器件的基本结构。 These three layers form the basic structure of the LED device. 更具体地,在一个实施例中,先在衬底102上外延地生长n More specifically, in one embodiment, the first substrate 102 on the epitaxially grown n

5型层106,然后生长有源层108和p型层110。 5-type layer 106, and then growing an active layer 108 and the p-type layer 110. 在本发明的一个实施例中,有源层108包括InGaN/GaN MQW结构。 In one embodiment of the present invention, the active layer 108 includes a InGaN / GaN MQW structure. MQW结构有助于较高的载流子密度并且因此有助于增加载流子的重新组合速率,这能够提高发光效率。 MQW structure contributes to high carrier density and thus helps to increase the rate of recombination of carriers, which can improve the luminous efficiency.

[0027] 可选地,可以在生长n型层106之前在衬底102上形成缓冲层104。 [0027] Alternatively, the buffer layer 104 may be formed in the n-type layer grown on the substrate 102 before 106. 这对于晶格恒定和/或热膨胀系数匹配的目的而言是有利。 It is advantageous for the purposes of the lattice constant and / or coefficient of thermal expansion matching purposes. 虽然图1中未示出,但是基于GaN的LED结构也可以包括分别电耦合到n型层106和p型层110的n型电极和p型电极。 Although not shown in FIG. 1, the GaN-based LED structure may comprise electrically coupled to the n-type electrode and a p-type electrode of the n-type layer 106 and p-type layer 110. 注意到这些电极可以通过使用任何电极制作技术以任何结构来制作。 It noted that these electrodes may be fabricated in any configuration using any electrode fabrication techniques. 这样的技术包括物理气相沉积和/或化学气相沉积。 Such techniques include physical vapor deposition and / or chemical vapor deposition.

[0028] 用于外延地生长基于GaN的LED结构100的技术可以包括但不限于金属有机化学气相沉积(M0CVD)、分子束外延(MBE)、混合气相外延(HVPE)和/或金属有机气相外延(M0VPE)。 [0028] The techniques for epitaxially grown GaN-based LED structure 100 may include but are not limited to, metal organic chemical vapor deposition (M0CVD), molecular beam epitaxy (MBE), hybrid vapor phase epitaxy (HVPE) and / or a metal organic vapor phase epitaxy (M0VPE).

[0029] 注意到在衬底102上外延生长n型GaN层106需要Ga源和N源两者。 [0029] noted that the substrate 102 is epitaxially grown on the n-type GaN layer 106 needs both the Ga source and the N source. 特别地,三甲基镓(TMGa)和氨(NH3)可以分别用作镓(III族)源和N(V族)源。 In particular, trimethyl gallium (of TMGa) and ammonia (NH3) may be used as a gallium (III group) and a source of N (V Group) source, respectively. 在n型层的制作过程中,TMGa和NH3都处于气相,而这些气体以预定的流速被引入到沉积室中。 In the production process of the n-type layer, of TMGa and NH3 are in the vapor phase, which gas is introduced at a predetermined flow rate into the deposition chamber.

[0030] 通常,在用于n型层的制作工艺过程中维持某一V/III比率。 [0030] Generally, maintaining a V / III ratio in the production process for the n-type layer. 在通常n型层的制作工艺中,V/III比率近似地保持于1000与10000之间,优选为2000与5000之间。 In the production process typically n-type layer, V / III ratio is held approximately between 1000 and 10000, preferably between 2000 and 5000.

[0031] 通过改变NH3流速来实现超高反向击穿电压 [0031] achieved by changing the NH3 flow rate of ultra-high reverse breakdown voltage

[0032] 本发明的实施例提供一种用于通过在n型层沉积过程中通过改变NH3流速使得V/III比率从常规值减少到小于常规值的最终值来实现GaN LED的超高反向击穿电压的方法。 [0032] Embodiments of the present invention to provide an ultra high reverse GaN LED achieved by the deposition of the n-type layer by changing the NH3 flow rate such that the V / III ratio is reduced from the conventional value to a final value is less than the normal value for the method of breakdown voltage. 图2呈现了流程图,该流程图图示了根据本发明的一个实施例在改变NH3流速的同时生长n型层的工艺。 Figure 2 presents a flow chart illustrating an embodiment of the present invention, a process of growing the n-type layer while changing the flow rate of NH3.

[0033] 该工艺从使用与初始V/III比率相对应的初始NH3流速来沉积n型层(操作202) 开始。 [0033] The process from the initial use of the NH3 flow rate of the initial V / III ratio corresponding to the n-type layer is deposited (operation 202) starts. 在本发明的一个实施例中,初始流速可以是通常用于n型层外延生长的正常流速,而初始V/III比率可以在1000与10000之间。 In one embodiment of the present invention, generally the initial flow rate may be used for the epitaxial growth of the n-type layer of normal flow, and the initial V / III ratio may be between 1000 and 10000. 注意到TMGa的流速也被设置成通常以y mol/ min为单位来表示的正常值。 He noted that the flow rate of TMGa is also typically provided y mol / min expressed in units of normal. 在实践中,NH3流速与TMGa流速之比可以近似为2000-5000。 In practice, NH3 flow rate of TMGa flow rate ratio may be approximately 2000-5000.

[0034] 在已经开始n型GaN沉积之后,该工艺然后逐渐地将NH3流速从初始流速减少到造成最终V/III比率的最终流速(操作204)。 [0034] In the n-type GaN has started after the deposition, the process then gradually reduce the flow rate of NH3 to the flow rate from an initial flow rate of eventual final V / III ratio (operation 204). 在一个实施例中,NH3流速的减少可以在外延生长已经开始之后不久开始。 In one embodiment, the flow rate of NH3 can be reduced shortly after the start of the epitaxial growth has started. 在又一实施例中,MV流速可以在已经以初始流速进行外延生长预定时间段之后开始减少。 In yet another embodiment, MV can begin to reduce the flow rate by epitaxial growth after having a predetermined period of time to the initial flow rate. 注意到最终流速显著地小于初始流速。 He noted that the final flow rate is significantly less than the initial flow rate. 在本发明的一个实施例中,最终V/III比率在初始V/III比率的约10%与30%之间。 In one embodiment of the present invention, the final V / III ratio is between about 10% and 30% of the initial V / III ratio. 例如,如果初始V/III比率是2200,则最终V/III比率可以近似为250。 For example, if the initial V / III ratio is 2200, then the final V / III ratio may be approximately 250. 由于源气体的实际流速取决于各种沉积条件,比如沉积室尺寸和生长效率,所以实际流速可以变化。 Since the actual flow rate of source gas for deposition depends on various conditions, such as the growth of the deposition chamber size and efficiency, the actual flow may vary.

[0035] 注意到在一个实施例中通过减少NH3流速来实现的将V/III比率从初始值减少到最终值可以遵循可以通过不同函数来近似的不同形式。 [0035] Note that in one embodiment is achieved by reducing the flow rate of NH3 V / III ratio was reduced from an initial value to a final value may follow a different forms can be approximated by a function of the different embodiments. 这些函数可以包括但不限于具有恒定减少速率的线性减少或者以可变的减少速率曲线为基础的非线性减少。 These functions may include, but is not limited to a constant rate of reduction or a linear reduction curve at a variable rate of decrease based on the nonlinear reduced. 另外,流速减少工艺可以基于一系列离散的小阶跃而不是平滑连续变化。 Further, to reduce the flow rate of the process it may be based on a series of discrete small step rather than smooth, continuous variation. 在又一实施例中,操作204可以包括上述减少技术的组合。 In yet another embodiment, operation 204 may comprise a combination of the above-described reduction techniques. 例如,流速减少过程可以从线性减少开始直至达到中间流速、然后遵循非线性函数继续趋于最终速率。 For example, the process can be reduced to reduce the flow rate from the start until the middle of the linear velocity, and then continue to follow the non-linear function tends final rate.

[0036] 由于NH3流速变化是逐渐的而整个流速变化是显著的,所以流速从初始流速减少到最终流速的持续时段理想上是充分地长的。 [0036] Since the NH3 flow rate change is gradual and the overall flow rate variation is significant, so that the flow rate is reduced from the initial flow rate to a final flow rate over the duration it is sufficiently long. 在本发明的一个实施例中,这一工艺的持续时间等于或者大于n型层的整个外延生长时间的50%。 In one embodiment of the present invention, the duration of this process is equal to or greater than 50% of the total growth time of the epitaxial n-type layer.

[0037] 接着,该过程在已经达到最终流V/III比率时中断NH3流速的逐渐减少(操作206)。 [0037] Next, the process interrupt has been reached when the flow rate gradually decreased NH3 final stream V / III ratio (operation 206). 注意到在n型层中达到最终流速时所在的位置理想上充分地接近n型层与有源层之间的分界面。 Noting achieve sufficiently close to the interface between the n-type layer and the active layer is located over the final position of the flow rate of the n-type layer. 在本发明的一个实施例中,有源层近似地处于与在n型层中达到最终流速时所在的位置相距1000埃之内。 In one embodiment of the present invention, the active layer is approximately in the position where the final flow rate reaches the n-type layer 1000 angstroms apart. 在本发明的又一实施例中,有源层与n型层之间的分界面就是在达到最终流速时所在之处。 In yet another embodiment of the present invention, the interface between the active layer and the n-type layer is reached the place where the final flow rate. 注意到可以在完成n型层外延生长之前达到最终流速。 It noted that the final flow rate can be achieved before the completion of the n-type layer is epitaxially grown. 在这一情况下,系统可以继续以最终流速提供NH3直至n型层沉积工艺结束。 In this case, the system may continue to provide NH3 until the n-type layer deposition process ends at the final flow rate.

[0038] 在本发明的一个实施例中,可以在n型层沉积工艺的整个过程中保持TMGa流速恒定。 [0038], TMGa flow rate may be kept constant throughout the deposition process of the n-type layer in one embodiment of the present invention. 在更多实施例中,可以改变TMGa流速以帮助减少V/III比率。 In further embodiments, TMGa flow rate may be varied to help reduce the V / III ratio. 例如,可以在减少NH3流的同时增加TMGa流速。 For example, TMGa flow rate can be increased while reducing the flow of NH3.

[0039] 在完成n型层的沉积时,在正常的外延生长条件之下执行有源层和p型层的沉积。 [0039] Upon completion of the deposition of the n-type layer, active layer and deposition is performed under the p-type layer epitaxially normal growth conditions.

[0040] 所制造的基于GaN的LED器件的件质 [0040] The quality of the manufactured parts GaN-based LED devices

[0041] 观察到使用这里教导的工艺来制造的基于GaN的LED表现出超高的反向击穿电压。 [0041] observed that use of manufacturing processes taught herein GaN-based LED exhibits ultra-high reverse breakdown voltage. 使用这一技术来获得的典型反向击穿电压可以等于或者大于60伏特。 Using this technique to obtain a typical reverse breakdown voltage may be equal to or greater than 60 volts. 也已经获得等于或者大于110伏特的反向击穿电压。 It has obtained the reverse breakdown voltage equal to or greater than 110 volts. 与通常具有约20伏特反向击穿电压的常规LED相比,使用所提供的技术来制造的GaN LED表现出显著改进的可靠性。 Compared to about 20 volts is generally the reverse breakdown voltage of a conventional LED, using techniques provided by the manufactured GaN LED exhibit significantly improved reliability.

[0042] 另外观察到使用本发明的技术来制造的基于GaN的LED的接通电压可以等于或者少于与使用常规工艺来制造的GaN LED的接通电压基本上相同的3伏特。 [0042] Also observed using the techniques of the present invention may be produced equal to or less than GaN LED turn-on voltage using conventional manufacturing processes substantially the same 3 volt LED-based turn-on voltage of GaN.

[0043] 虽然在GaN LED的背景下描述了本发明,但是所提出的技术也适用于制造基于GaN的半导体激光器以实现高反向击穿电压。 [0043] While the invention has been described in the context of the GaN LED, but the proposed technique is also applicable to manufacturing a GaN-based semiconductor laser in order to achieve a high reverse breakdown voltage.

[0044] 对本发明实施例的以上描述是仅出于解释和说明的目的而呈现的。 [0044] The above embodiments of the present invention is described only for purposes of explanation and illustration presented. 它们并不旨在于穷举本发明或者将本发明限制于公开的形式。 They are not intended to be exhaustive of the present invention or to limit the invention to the form disclosed. 因而,许多修改和变化对于本领域技术人员将是明显的。 Accordingly, many modifications and variations to the skilled in the art will be apparent. 此外,以上公开并不旨在于限制本发明。 Furthermore, the above disclosure is not intended to limit the invention. 本发明的范围通过所附权利要求书来限定。 The scope of the invention be defined by the appended claims.

Claims (25)

  1. 一种基于氮化镓(GaN)的半导体发光器件,包括:n型基于氮化镓的半导体层,即n型层;有源层;以及p型基于氮化镓的半导体层,即p型层;其中在生长所述有源层与所述p型层之前通过使用氨气(NH3)作为氮源来外延地生长所述n型层;以及其中在所述n型层的外延生长过程中V族元素与III族元素的流速比率或者V/III比率从初始值逐渐地减少到最终值。 Based on gallium nitride (GaN) semiconductor light emitting device comprising: an n-type gallium nitride based semiconductor layer, i.e. n-type layer; active layer; and a p-type gallium nitride based semiconductor layer, i.e., p-type layer ; wherein prior to growing the active layer and the p-type layer by using an ammonia (NH3) as a nitrogen source to the epitaxially grown n-type layer; and wherein V is epitaxially grown on the n-type layer in the process the flow rate ratio of group III elements or element V / III ratio is gradually reduced from an initial value to a final value.
  2. 2.根据权利要求1所述的基于氮化镓的半导体发光器件,其中所述基于氮化镓的发光器件表现出等于或者大于60伏特的反向击穿电压。 2. The gallium nitride-based semiconductor light emitting device, wherein the performance according to claim 1, a gallium nitride-based light emitting device 60 is equal to or greater than the reverse breakdown voltage of volts.
  3. 3.根据权利要求1所述的基于氮化镓的半导体发光器件, 其中所述初始V/III比率在1000与10000之间;以及其中所述最终V/III比率在150与500之间。 According to claim gallium nitride-based semiconductor light-emitting device, wherein said initial V / III ratio in claim 1 between 1000 and 10000; and wherein the final V / III ratio between 150 and 500.
  4. 4.根据权利要求3所述的基于氮化镓的半导体发光器件, 其中所述初始V/III比率在2000与5000之间。 4. The gallium nitride-based semiconductor light-emitting device, and 5000 between the initial 3 wherein the V / III ratio at 2000 requirements.
  5. 5.根据权利要求3所述的基于氮化镓的半导体发光器件, 其中所述最终V/III比率在200与300之间。 According to claim gallium nitride-based semiconductor light-emitting device, wherein the final V / III ratio between the 200 and 300 3.
  6. 6.根据权利要求1所述的基于氮化镓的半导体发光器件,其中所述有源层处于在与所述n型层中达到所述最终V/III比率时所在的位置相距1000埃之内。 6. The gallium nitride-based semiconductor light emitting device, wherein the active layer is 1000 angstroms location upon reaching the final V / III ratio of the distance of the n-type layer according to claim 1, .
  7. 7.根据权利要求1所述的基于氮化镓的半导体发光器件,其中所述V/III比率减少工艺在所述n型层外延生长开始之后预定时间段后开始。 According to claim gallium nitride-based semiconductor light-emitting device, wherein the V / III ratio of the reducing process starts after a predetermined period of time after the start epitaxially grown n-type layer.
  8. 8.根据权利要求1所述的基于氮化镓的半导体发光器件,其中所述V/III比率减少工艺基本上是线性的,其具有基本上恒定的减少速率。 8. The semiconductor light emitting device according to claim 1 based on gallium nitride, wherein the V / III ratio reduction process is substantially linear, having a substantially constant reduction rate.
  9. 9.根据权利要求1所述的基于氮化镓的半导体发光器件,其中所述V/III比率从所述初始V/III比率减少到所述最终V/III比率的持续时间等于或者大于所述n型层的整个外延时间的50%。 9. The gallium nitride-based semiconductor light emitting device, wherein the V / III ratio decreases from the initial V / III ratio according to claim 1 to the duration of the final V / III ratio equal to or greater than the 50% of the entire time of the epitaxial n-type layer.
  10. 10.根据权利要求1所述的基于氮化镓的半导体发光器件,其中所述基于氮化镓的发光器件的反向击穿电压等于或者大于110伏特。 Claim 10. The gallium nitride-based semiconductor light-emitting device, wherein the breakdown voltage of greater than or equal to 110 volts on the reverse light-emitting device of gallium nitride 1.
  11. 11.根据权利要求1所述的基于氮化镓的半导体发光器件,其中所述基于氮化镓的发光器件的接通电压等于或者少于3伏特。 11. The gallium nitride-based semiconductor light-emitting devices, wherein said is equal to or less than 3 volts according to claim 1, based on turn-on voltage of the light emitting device of gallium nitride.
  12. 12.根据权利要求1所述的基于氮化镓的半导体发光器件, 其中所述有源层是InGaN/GaN多量子阱(MQW)层。 Claim 12. The gallium nitride-based semiconductor light-emitting device, wherein the active layer is InGaN / GaN multiple quantum well (MQW) layer 1.
  13. 13. 一种用于制作基于氮化镓(GaN)的半导体发光器件的方法,包括:在使用氨气(NH3)作为氮源的同时在生长衬底上外延地生长n型基于氮化镓的半导体层,即n型层,其中在外延地生长所述n型层的同时,将V族元素与III族元素的流速比率或者V/III比率从初始值逐渐地减少到最终值;以及在所述n型层上外延地生长有源层和p型基于氮化镓的半导体层,即P型层; 其中所述n型层、所述有源层和所述p型层形成所述基于氮化镓的发光器件的结构。 13. A method based on gallium nitride (GaN) semiconductor light emitting device for making, comprising: while using ammonia (NH3) as a nitrogen source in the growth substrate is epitaxially grown on an n-type gallium nitride-based a semiconductor layer, i.e. n-type layer, wherein the epitaxially grown n-type layer, while the velocity ratio of the group V element to the group III element or a V / III ratio is gradually reduced from an initial value to a final value; and the epitaxially grown on the active layer and the p-type layer, said n-type gallium nitride based semiconductor layer, i.e., P-type layer; wherein said n-type layer, the active layer and the p-type layer is formed on the nitrogen the light emitting device structure of gallium.
  14. 14.根据权利要求13所述的方法,其中所述基于氮化镓的发光器件表现出等于或者大于60伏特的反向击穿电压。 14. The method according to claim 13, wherein said is equal to or greater than 60 exhibits a reverse breakdown voltage volts gallium nitride-based light emitting device.
  15. 15.根据权利要求13所述的方法,其中所述初始V/III比率在1000与10000之间;以及其中所述最终V/III比率在150与500之间。 15. The method according to claim 13, wherein said initial V / III ratio is between 1000 and 10,000; and wherein said final V / III ratio between 150 and 500.
  16. 16.根据权利要求15所述的方法,其中所述初始V/III比率在2000与5000之间。 16. The method according to claim 15, wherein said initial V / III ratio between 2000 and 5000.
  17. 17.根据权利要求15所述的方法,其中所述最终V/III比率在200与300之间。 17. The method according to claim 15, wherein the final V / III ratio between 200 and 300.
  18. 18.根据权利要求13所述的方法,其中所述有源层处于在与所述n型层中达到所述最终V/III比率时所在的位置相距1000埃之内。 18. The method according to claim 13, wherein the active layer is located at a position upon reaching the final V / III ratio of the n-type layer 1000 angstroms apart.
  19. 19.根据权利要求13所述的方法,其中所述方法还包括在所述n型层外延生长开始之后预定时间段后开始所述V/III比率减少工艺。 19. The method according to claim 13, wherein said method further comprises, after a predetermined period of time after the start of the epitaxial growth of the n-type layer starts V / III ratio reduction process.
  20. 20.根据权利要求13所述的方法,其中逐渐地减少所述V/III比率包括将所述V/III 比率从所述初始V/III比率基本上线性地减少到所述最终V/III比率。 20. The method according to claim 13, wherein said gradually decreasing V / III ratio comprises the V / III ratio from the initial V / III ratio substantially linearly reduced to the final V / III ratio .
  21. 21.根据权利要求13所述的方法,其中将所述V/III比率从所述初始V/III比率逐渐地减少到所述最终V/III比率的持续时间等于或者大于所述n型层的整个外延时间的50%。 21. The method according to claim 13, wherein the V / III ratio is gradually reduced from the initial V / III ratio to the duration of the final V / III ratio equal to or greater than the n-type layer 50% of the entire epitaxial time.
  22. 22.根据权利要求13所述的方法,其中所述基于氮化镓的发光器件的反向击穿电压等于或者大于110伏特。 22. The method of claim 13, wherein the breakdown voltage of greater than or equal to 110 volts on the reverse light-emitting device of gallium nitride.
  23. 23.根据权利要求13所述的方法,其中所述基于氮化镓的发光器件的接通电压等于或者少于3伏特。 23. The method according to claim 13, wherein less than or equal to the ON voltage of 3 V based light emitting device of gallium nitride.
  24. 24.根据权利要求13所述的方法,其中所述有源层是InGaN/GaN多量子阱(MQW)层。 24. A method according to claim 13, wherein the active layer is InGaN / GaN multiple quantum well (MQW) layer.
  25. 25. 一种用于制作基于氮化镓(GaN)的半导体发光器件的系统,包括:沉积机构,配置用以在使用氨气(NH3)作为氮源的同时在生长衬底上外延地生长n型基于氮化镓的半导体层,即n型层,其中所述沉积机构被配置用以将V族元素与III族元素的流速比率或者V/III比率从初始值逐渐地减少到最终值;以及其中所述沉积机构被配置用以在所述n型层上外延地生长有源层和p型基于氮化镓的半导体层,即P型层;其中所述n型层、所述有源层和所述p型层形成所述基于氮化镓的发光器件的结构;以及其中所述基于氮化镓的发光器件表现出等于或者大于60伏特的反向击穿电压。 25. A system for producing a gallium nitride-based (GaN) semiconductor light emitting device, comprising: deposition means configured to simultaneously use ammonia (NH3) as a nitrogen source is grown epitaxially on a growth substrate n type gallium nitride based semiconductor layer, i.e. n-type layer, wherein the deposition mechanism is configured to flow rate ratio of the group V element to the group III element or a V / III ratio is gradually reduced from an initial value to a final value; wherein said mechanism is configured to depositing on the n-type layer epitaxially grown active layer and a p-type gallium nitride based semiconductor layer, i.e., P-type layer; wherein said n-type layer, the active layer layer and the p-type gallium nitride-based light emitting device structure is formed; and wherein the exhibits greater than or equal to 60 volt reverse breakdown voltage of gallium nitride-based light emitting device.
CN 200710168024 2007-08-31 2007-11-02 Gallium nitride light-emitting device with ultra-high breakdown reverse voltage CN101378102B (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2007/002616 WO2009026748A1 (en) 2007-08-31 2007-08-31 Gallium nitride light-emitting device with ultra-high reverse breakdown voltage
CNPCT/CN2007/00261.6 2007-08-31
CNPCT/CN2007/002616 2007-08-31

Publications (2)

Publication Number Publication Date
CN101378102A true CN101378102A (en) 2009-03-04
CN101378102B true CN101378102B (en) 2010-10-13

Family

ID=40386649

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200710168024 CN101378102B (en) 2007-08-31 2007-11-02 Gallium nitride light-emitting device with ultra-high breakdown reverse voltage

Country Status (6)

Country Link
US (1) US8053757B2 (en)
EP (1) EP2183792A1 (en)
JP (1) JP2010537435A (en)
KR (1) KR20100046195A (en)
CN (1) CN101378102B (en)
WO (1) WO2009026748A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8304787B2 (en) * 2009-06-08 2012-11-06 Epistar Corporation Light-emitting device and the manufacturing method thereof
CN106299095A (en) * 2015-06-12 2017-01-04 映瑞光电科技(上海)有限公司 High-voltage LED flip chip and manufacturing method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6060335A (en) 1997-02-12 2000-05-09 Kabushiki Kaisha Toshiba Semiconductor light emitting device and method of manufacturing the same
US20040115853A1 (en) 2002-12-11 2004-06-17 Junko Kobayashi Growth of III-nitride films on mismatched substrates without conventional low temperature nucleation layers

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0864868A (en) * 1994-08-24 1996-03-08 Hitachi Cable Ltd Light emitting diode and gallium nitride crystal and manufacture thereof
JP3604205B2 (en) * 1995-09-18 2004-12-22 日亜化学工業株式会社 The method of growing a nitride semiconductor
US6017774A (en) * 1995-12-24 2000-01-25 Sharp Kabushiki Kaisha Method for producing group III-V compound semiconductor and fabricating light emitting device using such semiconductor
JPH11204885A (en) * 1998-01-08 1999-07-30 Sony Corp Growing method of nitride iii-v group compound semiconductor layer and manufacture of semiconductor layer
US6091085A (en) * 1998-02-19 2000-07-18 Agilent Technologies, Inc. GaN LEDs with improved output coupling efficiency
US6881983B2 (en) * 2002-02-25 2005-04-19 Kopin Corporation Efficient light emitting diodes and lasers
US7436045B2 (en) * 2004-03-04 2008-10-14 Showa Denko K.K. Gallium nitride-based semiconductor device
JP2006344930A (en) * 2005-04-07 2006-12-21 Showa Denko Kk Manufacturing method of group iii nitride semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6060335A (en) 1997-02-12 2000-05-09 Kabushiki Kaisha Toshiba Semiconductor light emitting device and method of manufacturing the same
US20040115853A1 (en) 2002-12-11 2004-06-17 Junko Kobayashi Growth of III-nitride films on mismatched substrates without conventional low temperature nucleation layers

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JP特开2006-120856A 2006.05.11
JP特开2006-344930A 2006.12.21
JP特许3604205B2 2004.12.22

Also Published As

Publication number Publication date Type
CN101378102A (en) 2009-03-04 application
US20110006319A1 (en) 2011-01-13 application
EP2183792A1 (en) 2010-05-12 application
US8053757B2 (en) 2011-11-08 grant
WO2009026748A1 (en) 2009-03-05 application
JP2010537435A (en) 2010-12-02 application
KR20100046195A (en) 2010-05-06 application

Similar Documents

Publication Publication Date Title
US6437374B1 (en) Semiconductor device and method of forming a semiconductor device
Wuu et al. Enhanced output power of near-ultraviolet InGaN-GaN LEDs grown on patterned sapphire substrates
US20100133506A1 (en) Nitride semiconductor light emitting element and method for manufacturing nitride semiconductor
US7312474B2 (en) Group III nitride based superlattice structures
US20120037881A1 (en) Light emitting diode and method of fabricating the same
US6534795B2 (en) Semiconductor light-emitting element
US20100008393A1 (en) Group iii nitride semiconductor light-emitting device and epitaxial wafer
US20100044674A1 (en) Light emitting diode having modulation doped layer
US20030178642A1 (en) Semiconductor light-emitting devices
US20120153252A1 (en) Nano-Structured Light-Emitting Devices
US20020105004A1 (en) Semiconductor light-emitting element
US20070152353A1 (en) Nitride-based light emitting devices and methods of manufacturing the same
CN101645480A (en) Method for enhancing antistatic ability of GaN-based light-emitting diode
CN102368519A (en) Method for enhancing luminous efficiency of multiquantum well of semiconductor diode
US6720570B2 (en) Gallium nitride-based semiconductor light emitting device
US20110309400A1 (en) Nitride semiconductor device and manufacturing method of the device
JP2009054780A (en) Optical semiconductor element and manufacturing method thereof
US20070262293A1 (en) Nitride semiconductor light emitting element
US20060169990A1 (en) Group III nitride-based compound semiconductor light-emitting device and method for producing the same
CN102881788A (en) Epitaxial growth method for improving GaN-based light-emitting diode (LED) quantum well structure to improve carrier recombination efficiency
CN1431722A (en) Blue light emitting device of III group nitrogen semi-conductor
US20030080343A1 (en) Semiconductor light-emitting device and methods for fabricating the same
JP2007227671A (en) Light emitting element
US20100187497A1 (en) Semiconductor device
Son et al. Strain engineering for the solution of efficiency droop in InGaN/GaN light-emitting diodes

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C14 Grant of patent or utility model
PLDC Enforcement, change and cancellation of contracts on pledge of patent right or utility model
PLDC Enforcement, change and cancellation of contracts on pledge of patent right or utility model
PLDC Enforcement, change and cancellation of contracts on pledge of patent right or utility model