CN101344371A - Measuring device and method for linear deformation of cement-based materials at early age - Google Patents
Measuring device and method for linear deformation of cement-based materials at early age Download PDFInfo
- Publication number
- CN101344371A CN101344371A CNA2008101245994A CN200810124599A CN101344371A CN 101344371 A CN101344371 A CN 101344371A CN A2008101245994 A CNA2008101245994 A CN A2008101245994A CN 200810124599 A CN200810124599 A CN 200810124599A CN 101344371 A CN101344371 A CN 101344371A
- Authority
- CN
- China
- Prior art keywords
- test specimen
- cement
- temperature
- test
- based material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000463 material Substances 0.000 title claims abstract description 61
- 239000004568 cement Substances 0.000 title claims abstract description 56
- 238000000034 method Methods 0.000 title claims abstract description 29
- 238000005259 measurement Methods 0.000 claims abstract description 38
- 238000006073 displacement reaction Methods 0.000 claims abstract description 33
- 238000012360 testing method Methods 0.000 claims description 131
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 22
- 238000001035 drying Methods 0.000 claims description 14
- 229910001374 Invar Inorganic materials 0.000 claims description 6
- 229910045601 alloy Inorganic materials 0.000 claims description 6
- 239000000956 alloy Substances 0.000 claims description 6
- 239000004033 plastic Substances 0.000 claims description 5
- 238000013461 design Methods 0.000 claims description 4
- 238000001816 cooling Methods 0.000 claims description 3
- 238000007789 sealing Methods 0.000 claims description 3
- 230000007246 mechanism Effects 0.000 claims 14
- 238000002474 experimental method Methods 0.000 claims 2
- 238000012423 maintenance Methods 0.000 claims 2
- 238000009415 formwork Methods 0.000 abstract description 18
- 238000000926 separation method Methods 0.000 abstract description 5
- 238000005096 rolling process Methods 0.000 abstract description 2
- 239000004567 concrete Substances 0.000 description 23
- 238000010586 diagram Methods 0.000 description 13
- 239000002985 plastic film Substances 0.000 description 8
- 229920006255 plastic film Polymers 0.000 description 8
- 229910000831 Steel Inorganic materials 0.000 description 4
- 238000005336 cracking Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 238000007573 shrinkage measurement Methods 0.000 description 4
- 239000010959 steel Substances 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 238000000691 measurement method Methods 0.000 description 3
- 239000004570 mortar (masonry) Substances 0.000 description 3
- 229910000881 Cu alloy Inorganic materials 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 230000008602 contraction Effects 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229910001172 neodymium magnet Inorganic materials 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 229940099259 vaseline Drugs 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000006072 paste Substances 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
Abstract
本发明公开了一种水泥基材料早龄期线性变形的测量装置及测量方法,其测量装置包括:包括由底板、侧板以及外端板构成的上端开口的测量容腔,在底板上还设置有一滑动的模板,在模板的两端设置内端板,在模板的中部开设有分离槽将所述的模板分成2个滑动模板。与现有技术相比,本发明测量装置在底板上设置滑动的模板,且该模板由分离槽分割成两块,在水泥基材料试件变形时,可通过与水泥基材料粘结的滑动模板测量其位移,不需要等待水泥基材料硬化,从而精确地反映出水泥基材料早龄期线性变形的特性。在底板和模板上分别开设有滑槽,在滑槽内设置滚珠,从而将滑动摩擦变为滚动摩擦,极大地降低了摩擦力,提高了测量的精度。
The invention discloses a measuring device and method for measuring the linear deformation of cement-based materials at an early age. There is a sliding template, and inner end plates are arranged at both ends of the template, and a separation groove is opened in the middle of the template to divide the template into two sliding templates. Compared with the prior art, the measuring device of the present invention is equipped with a sliding formwork on the bottom plate, and the formwork is divided into two pieces by the separation groove. When the cement-based material specimen is deformed, the sliding formwork bonded with the cement-based material can pass through Measuring its displacement does not need to wait for the cement-based material to harden, thus accurately reflecting the characteristics of the linear deformation of the cement-based material at an early age. The bottom plate and the template are provided with chute respectively, and balls are arranged in the chute, so that the sliding friction is changed into rolling friction, the friction force is greatly reduced, and the measurement accuracy is improved.
Description
技术领域 technical field
本发明涉及一种水泥基材料早龄期线性变形的测量装置及方法,可对水泥净浆、砂浆、混凝土等水泥基材料和骨料等固体材料在无约束条件下早龄期线性变形的成型模具并进行测量。在不同加温制度与养护制度下,可测量水泥基材料早龄期的热膨胀系数、自收缩及干燥收缩。The invention relates to a measuring device and method for linear deformation of cement-based materials at an early age, which can be used to form cement-based materials such as cement paste, mortar, concrete, and solid materials such as aggregates under unconstrained conditions. Mold and measure. Under different heating systems and curing systems, it can measure the thermal expansion coefficient, self-shrinkage and drying shrinkage of cement-based materials in the early stage.
背景技术 Background technique
土木工程领域中,混凝土结构的早龄期开裂预测是非常重要的。在混凝土结构早龄期时,混凝土材料的热力学性质极不稳定,混凝土早龄期的各种热力学性质直接决定混凝土早龄期的开裂评价,准确测量混凝土早龄期的各种热力学性质随龄期发展的规律十分必要。热膨胀系数、自收缩及干燥收缩是影响混凝土早龄期开裂的主要因素,因此测量模具的设计必须既适合混凝土早龄期抗扰动能力极差的特点,又能尽量消除模具在测量过程中的误差。In the field of civil engineering, early age cracking prediction of concrete structures is very important. At the early age of the concrete structure, the thermodynamic properties of the concrete material are extremely unstable, and various thermodynamic properties of the early-age concrete directly determine the cracking evaluation of the early-age concrete. Accurately measure various thermodynamic properties of the early-age concrete The law of development is very necessary. The coefficient of thermal expansion, autogenous shrinkage and drying shrinkage are the main factors affecting the cracking of early-age concrete. Therefore, the design of the measurement mold must not only be suitable for the characteristics of the extremely poor anti-disturbance ability of early-age concrete, but also eliminate the error of the mold during the measurement process as much as possible. .
目前测量水泥基材料早龄期变形的主要有体积法和线性法两种。At present, there are mainly two methods for measuring the early-age deformation of cement-based materials: volumetric method and linear method.
在体积法方面,一般以液体为介质,水泥基试件体积变化的测量转化为液体体积变化的测量。中国专利第200510050171.6号利用混凝上体积改变引起容器水位差变化的原理,测量混凝土早龄期的体积变形。此种方法在科研、生产中应用不多,主要原因是常规体积的混凝土拌和物体积难以包裹、体积法试验精度不高等原因。In the volumetric method, liquid is generally used as the medium, and the measurement of the volume change of the cement-based specimen is converted into the measurement of the volume change of the liquid. Chinese Patent No. 200510050171.6 utilizes the principle that the volume change of the concrete causes the change of the container water level difference to measure the volume deformation of the early-age concrete. This method is rarely used in scientific research and production, mainly because it is difficult to wrap the volume of conventional concrete mixture and the test accuracy of the volume method is not high.
在线性法方面,根据《水工试验规程》DL-T 5150-2001中规定,测量水泥基材料热膨胀系数、自收缩的模具为直径200mm、高500mm的铁皮桶,进行热膨胀系数测定的试件至少养护7天以上。《水工试验规程》中没有考虑到水泥基材料的水化温升大部分是在7天龄期前完成的,混凝土初凝后的热膨胀系数对混凝土早龄期开裂预测更具有现实意义。《水工试验规程》没有考虑试件与模具之间摩擦力消除的问题,而且圆柱体试件与我国传统长方体试件不统一,模具粗糙,试验精度低,应该设计新型的模具。In terms of the linear method, according to the provisions of the "Hydraulic Test Regulations" DL-T 5150-2001, the mold for measuring the thermal expansion coefficient and self-shrinkage of cement-based materials is a metal bucket with a diameter of 200mm and a height of 500mm, and the test piece for the determination of the thermal expansion coefficient is at least Conservation for more than 7 days. The "Hydraulic Test Regulations" did not take into account that most of the hydration temperature rise of cement-based materials is completed before the age of 7 days, and the thermal expansion coefficient of concrete after initial setting has more practical significance for predicting cracking of concrete at an early age. "Hydraulic Test Regulations" does not consider the problem of eliminating friction between the test piece and the mold, and the cylindrical test piece is not uniform with the traditional cuboid test piece in my country, the mold is rough, and the test accuracy is low. A new type of mold should be designed.
近年来,公开了一些应用于混凝土早龄期线性变形测量的模具与测试方法。中国专利第200510012299.3号公开了一种混凝土温度线性变形自动化测量系统,提出了测量混凝土线膨胀系数的自动化方法,但其模具对早龄期水泥基材料的测量并不适合。中国专利第200610038892.X号公开了一种混凝土早期自身变形测试方法及装置,能够使得自收缩的测量初始时间提早到浇筑成型后即开始,但由于没有温度控制系统,不适用于混凝土早龄期热膨胀系数的测定。In recent years, some molds and test methods applied to the measurement of linear deformation of early-age concrete have been disclosed. Chinese Patent No. 200510012299.3 discloses an automatic measurement system for concrete temperature linear deformation, and proposes an automatic method for measuring the linear expansion coefficient of concrete, but its mold is not suitable for the measurement of early-age cement-based materials. Chinese Patent No. 200610038892.X discloses a method and device for testing the early self-deformation of concrete, which can make the initial time of self-shrinkage measurement earlier after pouring, but it is not suitable for early-age concrete because there is no temperature control system Determination of the coefficient of thermal expansion.
试验承台材料的热学性能往往被忽略,但却很大程度上影响试验测量的结果,引起很大误差。The thermal performance of the test platform material is often ignored, but it greatly affects the test measurement results, causing large errors.
用于变形测量的导杆多为铜合金导杆,铜合金的热膨胀系数在16.6-17.6×10-6/℃之间,不适合用于环境温度变化大的试验,且与钢模具之间的安装拆卸十分不便。Most of the guide rods used for deformation measurement are copper alloy guide rods. The thermal expansion coefficient of copper alloy is between 16.6-17.6×10 -6 /℃, which is not suitable for tests with large changes in ambient temperature, and the distance between it and the steel mold It is very inconvenient to install and disassemble.
因此,要能精确测量水泥基材料早龄期线性变形,设计测量水泥基材料早龄期线性变形的测量装置及方法十分必要,不仅可以降低热膨胀系数与各种收缩的试验成本,更加有利于水泥基材料早龄期线性变形测量的统一。Therefore, in order to accurately measure the early-age linear deformation of cement-based materials, it is necessary to design a measuring device and method for measuring the early-age linear deformation of cement-based materials, which can not only reduce the test cost of thermal expansion coefficient and various shrinkage, but also benefit cement Unification of linear deformation measurements at early ages of base materials.
发明内容 Contents of the invention
本发明所要解决的技术问题是针对上述现有技术的不足,而提供一种水泥基材料早龄期线性变形的测量装置及方法,使用本模具从水泥基材料稍具塑性后即可进行线性变形的测量,可测量水泥基材料早龄期的热膨胀系数、自收缩及干燥收缩。The technical problem to be solved by the present invention is to provide a measuring device and method for the linear deformation of cement-based materials at an early age in view of the above-mentioned deficiencies in the prior art. Using this mold, the linear deformation can be carried out after the cement-based material has a little plasticity It can measure the thermal expansion coefficient, self-shrinkage and drying shrinkage of cement-based materials in the early stage.
为解决上述技术问题,本发明测量装置包括:包括由底板、侧板以及外端板构成的上端开口的测量容腔,在所述的底板上还滑动的设置有一模板,在所述的模板的两端设置设置内端板,在所述的模板的中部开设有分离槽将所述的模板分成至少2个滑动模板。In order to solve the above-mentioned technical problems, the measuring device of the present invention includes: a measuring chamber comprising a bottom plate, a side plate and an outer end plate with an upper end opening, a template is also slidably arranged on the bottom plate, and Both ends are provided with inner end plates, and a separation groove is opened in the middle of the template to divide the template into at least two sliding templates.
在所述的模板的下端面设置有第一滑槽,在所述的底板的上端面设置有第二滑槽,在所述的第一滑槽与第二滑槽之间设置有滚珠,所述的滑动模板通过设置在第一滑槽以及第二滑槽内的滚珠在所述的底板上滑动。A first chute is provided on the lower end surface of the template, a second chute is provided on the upper end surface of the bottom plate, and a ball is provided between the first chute and the second chute, so The sliding formwork described above slides on the bottom plate through the balls arranged in the first slide groove and the second slide groove.
设置在滑动模板上的第一滑槽为三个,且成三角形布置,设置在底板上的第二滑槽为6个,分别与滑动模板的第一滑槽相适配。There are three first slide grooves arranged on the sliding formwork, which are arranged in a triangle, and there are six second slide grooves arranged on the bottom plate, which are respectively adapted to the first slide grooves of the slide formwork.
在所述的内端板上还设置有凸块。A bump is also arranged on the inner end plate.
所述的内端板的材料为因瓦合金。The material of the inner end plate is Invar alloy.
与现有技术相比,本发明测量装置具有如下优点:Compared with the prior art, the measuring device of the present invention has the following advantages:
1、在底板上滑动的设置模板,且该模板由分离槽分割成两块,在水泥基材料试件收缩时,可通过与水泥基材料粘结的滑动模板测量其位移,不需要等待水泥基材料硬化,从而精确的反映出水泥基材料早龄期线性变形的特性。1. The formwork is set slidingly on the bottom plate, and the formwork is divided into two pieces by the separation groove. When the cement-based material specimen shrinks, its displacement can be measured through the sliding formwork bonded to the cement-based material, without waiting for the cement-based material. The material hardens, thereby accurately reflecting the linear deformation characteristics of cement-based materials at an early age.
2、水泥及材料的收缩量很小,而且在收缩时,产生的变形力也很小,当滑动模板与底板的摩擦力较大时,也不能很好的反映出实际的水泥基材料早龄期线性变形的特性,为此,本发明测量装置,在底板和模板上分别开设有滑槽,在滑槽内设置滚珠,从而将滑动摩擦变为滚动摩擦,极大的降低了摩擦力,提高了测量的精度。2. The shrinkage of cement and materials is very small, and when shrinking, the deformation force generated is also very small. When the friction between the sliding formwork and the bottom plate is large, it cannot well reflect the actual early age of cement-based materials. The characteristics of linear deformation, for this reason, the measuring device of the present invention is provided with chute respectively on the base plate and the template, and balls are arranged in the chute, thereby changing sliding friction into rolling friction, greatly reducing frictional force and improving The accuracy of the measurement.
3、滑槽成三角形布置,一方面可以提高模板在底板上滑动的稳定性,另一方面,也保证了底板和模板的相对平行,使得模板在底板上滑动时,作用力均衡,不会出现倾斜等增大摩擦力的现象发生,进一步提高了测量的精度。3. The chute is arranged in a triangle. On the one hand, it can improve the stability of the formwork sliding on the base plate. On the other hand, it also ensures that the base plate and formwork are relatively parallel, so that when the formwork slides on the base plate, the force is balanced and there will be no The phenomenon of increasing friction such as tilting occurs, further improving the accuracy of measurement.
4、为了进一步提高测量的精度,在外端板内还设置有材料为因瓦合金的内端板,有效减少了内端板温度变形对测量精度的影响,同时,在内端板上还设置凸块,加强试件与内端板的粘结,有利于试件与内端板同步膨胀和收缩。4. In order to further improve the measurement accuracy, an inner end plate made of Invar alloy is also set in the outer end plate, which effectively reduces the influence of temperature deformation of the inner end plate on the measurement accuracy. At the same time, a convex block to strengthen the bond between the test piece and the inner end plate, which is conducive to the simultaneous expansion and contraction of the test piece and the inner end plate.
一种水泥基材料早龄期线性变形的自收缩的测量方法,包括以下步骤,A method for measuring the autogenous shrinkage of cement-based material early age linear deformation, comprising the following steps,
步骤一、将测量装置组装好后,在测量容腔内浇注试件,,浇筑试件后在试件中心放置一只温度传感器,并用塑料薄膜完好密封试件;
步骤二、将测量装置及试件水平安放在承台上,两只石英玻璃导杆吸附在内端板外侧,磁性表座固定在承台两侧,架设高精度位移传感器于石英玻璃导杆上;
步骤三、设测量起始时间的两只高精度传感器的位移值为Ya0和Yb0,在设定温度下养护试件,即温度传感器读数无变化条件下,每隔一定时间间隔,采集试件内温度值和高精度位移传感器的位移值Yat和Ybt;Step 3. Set the displacement values of the two high-precision sensors that measure the starting time as Ya0 and Yb0, and maintain the specimen at the set temperature, that is, under the condition that the readings of the temperature sensors do not change, collect the internal temperature of the specimen at regular intervals. Temperature value and displacement value Yat and Ybt of high precision displacement sensor;
步骤四、龄期t时单位长度下的自收缩εca,t:
其中:L为试件长度。Where: L is the length of the specimen.
所述的承台的材料为因瓦合金。The material of the platform is Invar alloy.
一种水泥基材料早龄期线性变形的热膨胀系数的测量方法,包括以下步骤,A method for measuring the coefficient of thermal expansion of cement-based material early age linear deformation, comprising the following steps,
步骤一、组装两套测量装置,浇筑试件后在第一试件内部放置一只温度传感器,在第二试件中心放置三只温度传感器,并用塑料薄膜完好密封第一试件和第二试件,第一试件进行自收缩试验,第二试件进行热膨胀系数测量试验,两个试验同时进行;
步骤二、将养护箱或变温设备水平安放在承台上,再将第二试件水平安放在养护箱或变温设备内,最后将两只石英玻璃导杆吸附在内端板外侧,并将石英玻璃导杆另一端伸出养护箱或变温设备外,将磁性表座固定在承台两侧,架设高精度位移传感器于石英玻璃导杆上;步骤三、开启养护箱或变温设备,设定变温制度、记录试验开始时两只高精度位移传感器的位移值Ya0和Yb0,采用快速升温降温的方法降低自收缩的影响,每隔一定时间间隔,选取三只温度传感器所测温度变化速率一致的温度变化段作为计算段,计算段的起始点三只温度传感器的平均温度分别为X1,对应的两只高精度位移传感器位移值为Ya1和Yb1,龄期为t1;计算段的终点三只温度传感器13的平均温度分别为X2,对应的两只高精度位移传感器数值为Ya2和Yb2,龄期为t2,;
步骤三、用对应龄期t为时自收缩试验的试验结果进行修正,龄期t时单位长度的试件热膨胀系数αc,t为:Step 3: Use the corresponding age t as Correct the test results of self-shrinkage test at age t, and the coefficient of thermal expansion α c,t per unit length of specimen at age t is:
其中:L为试件长度,εca,t为自收缩。Among them: L is the length of the specimen, ε ca, t is the self-shrinkage.
一种水泥基材料早龄期线性变形的热膨胀系数的测量方法,包括以下步骤,A method for measuring the coefficient of thermal expansion of cement-based material early age linear deformation, comprising the following steps,
步骤一、组装两套测量装置,浇筑试件后在第一试件内部放置一只温度传感器,在第三试件中心放置一只温度传感器,并用塑料薄膜完好密封第一试件,第三试件不密封,第一试件进行自收缩试验,第三试件进行干燥收缩测量试验,两个试验同时进行;
步骤二、将测量装置及试件水平安放在承台上,两只石英玻璃导杆吸附在内端板外侧,磁性表座固定在承台两侧,架设高精度位移传感器于石英玻璃导杆上;
步骤三、设测量起始时间的两只高精度传感器的位移值为Ya0和Yb0,在设定温度下养护试件,即温度传感器读数无变化条件下,每隔一定时间间隔,采集试件内温度值和高精度位移传感器的位移值Yat和Ybt;Step 3. Set the displacement values of the two high-precision sensors that measure the starting time as Ya0 and Yb0, and maintain the specimen at the set temperature, that is, under the condition that the readings of the temperature sensors do not change, collect the internal temperature of the specimen at regular intervals. Temperature value and displacement value Yat and Ybt of high precision displacement sensor;
步骤四、用对应龄期t时自收缩试验的试验结果进行修正,龄期t时单位长度的试件干燥收缩εcd,t为:Step 4: Use the test results of the autogenous shrinkage test at the corresponding age t to make corrections. The drying shrinkage ε cd,t of the specimen per unit length at the age t is:
其中:L为试件长度,εca,t为自收缩。Among them: L is the length of the specimen, ε ca, t is the self-shrinkage.
与现有技术相比,本发明水泥基材料早龄期线性变形的测量方法具有如下优点:Compared with the prior art, the method for measuring the linear deformation of cement-based materials in the early stage of the present invention has the following advantages:
1、采用具有滑动模板的测量装置,并在滑动模板的两端设置内端板,在内端板上连接位移传感器测试试件的收缩量,方法简单,且测量精确度高。1. A measuring device with a sliding template is used, and inner end plates are set at both ends of the sliding template, and displacement sensors are connected to the inner end plates to test the shrinkage of the specimen. The method is simple and the measurement accuracy is high.
2、采用本发明的测量装置,既可以测量水泥基材料的自收缩,同时还可以测量水泥基材料的热膨胀系数、干燥收缩等特性。2. By adopting the measuring device of the present invention, not only the self-shrinkage of the cement-based material can be measured, but also the thermal expansion coefficient, drying shrinkage and other characteristics of the cement-based material can be measured.
3、在测量时,采用热膨胀系数为1.0×10-6/℃的因瓦合金承台及内端板,有效降低试验承台材料以及内端板材料对试验精度和结果的影响。3. In the measurement, the Invar alloy cap and inner end plate with a thermal expansion coefficient of 1.0×10 -6 /°C are used to effectively reduce the influence of the test cap material and the inner end plate material on the test accuracy and results.
4、导杆由纯石英玻璃棒和钕铁硼磁铁片组成,石英的热膨胀系数为0.55×10-6/℃,在温度变化大的条件下,热变形小,且钕铁硼磁铁片的磁力强,能够直接吸附在内端板上,安装拆卸极为方便,提高了测量的效率。4. The guide rod is composed of pure quartz glass rods and NdFeB magnets. The thermal expansion coefficient of quartz is 0.55×10 -6 /°C. Under the condition of large temperature changes, the thermal deformation is small, and the magnetic force of NdFeB magnets Strong, can be directly adsorbed on the inner end plate, easy to install and disassemble, and improve the efficiency of measurement.
附图说明 Description of drawings
图1是本发明水泥基材料早龄期线性变形的测量装置的整体结构示意图。Fig. 1 is a schematic diagram of the overall structure of a measuring device for early-age linear deformation of cement-based materials according to the present invention.
图2为本发明测量装置底板与模板连接结构示意图。Fig. 2 is a schematic diagram of the connection structure between the bottom plate and the template of the measuring device of the present invention.
图3为本发明测量装置底板结构示意图。Fig. 3 is a schematic diagram of the structure of the bottom plate of the measuring device of the present invention.
图4是本发明测量装置外端板结构示意图Fig. 4 is a schematic diagram of the structure of the outer end plate of the measuring device of the present invention
图5是本发明测量装置内端板结构示意图。Fig. 5 is a schematic diagram of the structure of the inner end plate of the measuring device of the present invention.
图6是本发明测试水泥基材料自收缩的装置示意图。Fig. 6 is a schematic diagram of a device for testing self-shrinkage of cement-based materials according to the present invention.
图7是本发明测试水泥基材料热膨胀系数第二试件的测量装置示意图。Fig. 7 is a schematic diagram of a measuring device for testing the second specimen of the coefficient of thermal expansion of cement-based materials according to the present invention.
图8为典型的混凝土早期自收缩试验结果示意图,其中w/c=0.35,水泥用量为480kg/m3,横坐标为龄期(h),纵坐标为应变(×10-6)。Fig. 8 is a schematic diagram of typical early autogenous shrinkage test results of concrete, where w/c=0.35, cement dosage is 480kg/m 3 , the abscissa is age (h), and the ordinate is strain (×10 -6 ).
图9为W∶C∶S=1∶3∶5的砂浆试件,热膨胀系数随龄期变化的示意图,横坐标为龄期(h),纵坐标为热膨胀系数(×10-6/℃)。Figure 9 is a schematic diagram of the variation of the thermal expansion coefficient with age for the mortar specimen of W:C:S=1:3:5, the abscissa is the age (h), and the ordinate is the thermal expansion coefficient (×10 -6 /°C) .
图10为骨料最大粒径分别为16mm和20mm时,混凝土早龄期时干燥收缩随龄期变化的示意图,横坐标为龄期(h),纵坐标为应变(×10-6)。Figure 10 is a schematic diagram of the drying shrinkage of concrete at an early age as a function of age when the maximum particle size of the aggregate is 16 mm and 20 mm, respectively. The abscissa is age (h), and the ordinate is strain (×10 -6 ).
具体实施方式 Detailed ways
下面结合附图,对本发明作详细说明:Below in conjunction with accompanying drawing, the present invention is described in detail:
如图1所以,本发明水泥基材料早龄期线性变形的测量装置,在包括钢底板1,在钢底板1上表面对称开6条长形小槽,并在四周开出相对应于侧板2和外端板3厚度凹槽,以安装侧板2和外端板3,见图2、图3。在底板1上放置有一模板4,该模板4由分离槽7分割成两块滑动模板41,在滑动模板41的下底面各开3条与底板1相对应的长形小槽,在小槽上安置直径略小于小槽宽度的钢珠6,保证滑动模板4在底板1上自由滑动。两块滑动模板41的外侧连接内端板5,内端板5与外端板之间形成试件变形的空间,两块滑动模板41的总长度比两块外端板3之间距离小2mm,浇筑试件前在滑动模板之间插入四氯聚氟乙烯插片,并插进底板1中间凹槽内,待试件稍具塑性,轻轻拔出四氯聚氟乙烯插片,保证模板不影响试件的自由收缩。在内端板5内侧表面焊接4块长方体铁块51,加强试件与内端板5的粘结,有利于试件与内端板5同步膨胀或收缩,详见图5。在侧板2两侧对称开四个孔,将螺栓8插入侧板2上面孔洞,拧紧螺栓8。模板装配完成后,在滑动模板4上表面涂抹凡士林,在凡士林上覆盖双层塑料薄膜,若进行热膨胀系数与自收缩测定试验时,预留塑料薄膜待密封试件使用。试件成型后,用石英玻璃导杆9穿过开孔外端板3,见图4,直接吸附在内端板5外侧,待试件稍具塑性,松开螺栓5,拆除侧板2和外端板3,在不同加温制度和不同养护制度下测量试件的不同性质的早龄期线性变形。As shown in Fig. 1, the measuring device for the linear deformation of the cement-based material in the early stage of the present invention comprises a
采用本发明测量装置对水泥基材料自收缩、热膨胀和干燥收缩的测量方法如下:Adopt measuring device of the present invention to the measurement method of self-shrinkage, thermal expansion and drying shrinkage of cement-based material as follows:
水泥基材料自收缩测量方法:Self-shrinkage measurement method of cement-based materials:
A1、完成测量装置组装,见图6,浇筑试件后在试件中心放置一只温度传感器13,并用塑料薄膜完好密封试件。A1. Complete the assembly of the measuring device, see Figure 6, place a
A2、模具及试件水平安放在承台10上,两只石英玻璃导杆9吸附在内端板5外侧,磁性表座12固定在承台10两侧,架设高精度位移传感器(LVDT)11于石英玻璃导杆9上。A2. The mold and test piece are placed horizontally on the
A3、在设定温度下养护试件,即温度传感器13读数无变化条件下,每隔一定时间间隔,计算机自动读出试件内温度和高精度位移传感器(LVDT)11。设测量起始时间的两只高精度传感器(LVDT)11的读数分别为Ya0和Yb0,随龄期变化后的读数分别为Yat和Ybt;试件长度L,取500mm,龄期t时单位长度下的自收缩εca,t的计算公式如下:A3. Maintain the test piece at the set temperature, that is, under the condition that the reading of the
其中,附图8为典型的混凝土早期自收缩试验结果图,其中w/c=0.35,水泥用量为480kg/m3。Among them, Fig. 8 is a typical concrete early autogenous shrinkage test result diagram, where w/c=0.35, and the cement dosage is 480kg/m 3 .
水泥基材料热膨胀系数测量方法:Measurement method of thermal expansion coefficient of cement-based materials:
B1、完成两套测量装置的组装,浇筑试件后在试件a内部放置一只温度传感器13,在试件B中心放置三只温度传感器13,并用塑料薄膜完好密封试件a和试件b。试件a按照上述A中进行自收缩试验,试件b进行热膨胀系数测量试验,测量装置见图7,两个试验须同时进行。B1. Complete the assembly of two sets of measuring devices. After pouring the test piece, place a
B2、将养护箱或变温设备14水平安放在承台10上,再将试件b水平安放在养护箱或变温设备14内,最后将两只石英玻璃导杆9吸附在内端板5外侧,并将石英玻璃导杆9另一端伸出养护箱或变温设备14外。B2. Place the curing box or temperature-changing equipment 14 horizontally on the
B3、将磁性表座12固定在承台10两侧,架设高精度位移传感器(LVDT)11于石英玻璃导杆9上。B3. Fix the
B4、开启养护箱或变温设备14,设定变温制度,采用快速升温降温的方法降低自收缩的影响,每隔一定时间间隔,计算机自动读出试件内温度和高精度位移传感器(LVDT)11。B4. Turn on the curing box or temperature-changing equipment 14, set the temperature-changing system, and adopt the method of rapid heating and cooling to reduce the influence of self-shrinkage. At regular intervals, the computer automatically reads the temperature inside the test piece and the high-precision displacement sensor (LVDT) 11 .
B5、设试验开始时两只高精度位移传感器(LVDT)11读数为Ya0和Yb0;选取三只温度传感器13所测温度变化速率一致的温度变化段作为计算段,计算段的起始点三只温度传感器13的平均温度分别为X1,对应的两只高精度位移传感器(LVDT)11读数为Ya1和Yb1,龄期为t1;计算段的终点三只温度传感器13的平均温度分别为X2,对应的两只高精度位移传感器(LVDT)11读数为Ya2和Yb2,龄期为t2,试件长度L,取500mm。用对应龄期t为时自收缩试验的试验结果进行修正,龄期t时单位长度的试件热膨胀系数αc,t的计算公式如下:B5, two high-precision displacement transducers (LVDT) 11 readings are Ya0 and Yb0 when the test begins; Choose the temperature change section that the measured temperature change rate of three
其中,附图9为W∶C∶S为1∶3∶5的砂浆,热膨胀系数随龄期变化的示意图。Wherein, accompanying drawing 9 is a schematic diagram of the variation of thermal expansion coefficient with age for mortar with W:C:S ratio of 1:3:5.
水泥基材料干燥收缩测量方法:Measurement method for drying shrinkage of cement-based materials:
C1、完成两套测量装置的组装,浇筑试件后在试件a内部放置一只温度传感器13,在试件c中心放置一只温度传感器13,并用塑料薄膜完好密封试件a,试件c不密封。试件a按照上述A中进行自收缩试验,试件c进行干燥收缩测量试验,两个试验须同时进行。C1. Complete the assembly of two sets of measuring devices. After pouring the test pieces, place a
C2、试件c的干燥收缩试验步骤与A中相同。C2. The drying shrinkage test procedure of specimen c is the same as in A.
C3、在设定温度下养护试件,即温度传感器13读数无变化条件下,每隔一定时间间隔,计算机自动读出试件内温度和高精度位移传感器(LVDT)11。设测量起始时间的两只高精度传感器(LVDT)11的读数分别为Ya0和Yb0,随龄期变化后的读数分别为Yat和Ybt;设长度L,取500mm。用对应龄期t时自收缩试验的试验结果进行修正,龄期t时单位长度的试件干燥收缩εcd,t的计算公式如下:C3. Maintain the test piece at the set temperature, that is, under the condition that the reading of the
其中,附图10为骨料最大粒径分别为16mm和20mm时,混凝土干燥收缩随龄期变化的示意图。Among them, Figure 10 is a schematic diagram of the change of concrete drying shrinkage with age when the maximum particle size of the aggregate is 16mm and 20mm respectively.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2008101245994A CN101344371A (en) | 2008-08-26 | 2008-08-26 | Measuring device and method for linear deformation of cement-based materials at early age |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2008101245994A CN101344371A (en) | 2008-08-26 | 2008-08-26 | Measuring device and method for linear deformation of cement-based materials at early age |
Publications (1)
Publication Number | Publication Date |
---|---|
CN101344371A true CN101344371A (en) | 2009-01-14 |
Family
ID=40246418
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNA2008101245994A Pending CN101344371A (en) | 2008-08-26 | 2008-08-26 | Measuring device and method for linear deformation of cement-based materials at early age |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101344371A (en) |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102192926A (en) * | 2010-02-08 | 2011-09-21 | 普拉德研究及开发股份有限公司 | Cement expansion measurement apparatus and method |
CN102866245A (en) * | 2012-09-17 | 2013-01-09 | 中国建筑科学研究院 | Test method and test device for unrestraint measurement of concrete deformation performance |
CN103163286A (en) * | 2013-03-13 | 2013-06-19 | 浙江建设职业技术学院 | Measuring system for self-constriction of early-age concrete |
CN103293180A (en) * | 2013-06-19 | 2013-09-11 | 福州大学 | Suspension type concrete early-age thermal expansion coefficient testing method and device thereof |
CN103486954A (en) * | 2013-09-24 | 2014-01-01 | 内蒙古科技大学 | Coal mine roadway deformation measuring device and method |
CN103837670A (en) * | 2013-12-27 | 2014-06-04 | 河海大学 | Method and apparatus for measuring early-stage autogenous shrinkage of cement-based material |
CN105445318A (en) * | 2015-01-21 | 2016-03-30 | 长沙理工大学 | Temperature expansion testing method of semi-rigid base material of inorganic binding material |
CN103162604B (en) * | 2013-02-04 | 2016-07-06 | 长沙理工大学 | Real-time testing device and method for volume deformation of cement-based composite material after hardening |
CN106979882A (en) * | 2017-05-27 | 2017-07-25 | 安徽理工大学 | A kind of device and method for being used to make concrete by three-point bending coped beam |
CN107037075A (en) * | 2017-05-31 | 2017-08-11 | 河南理工大学 | One kind expansion grout material solidification process expansion system safety testing device and method of testing |
CN107632143A (en) * | 2017-10-27 | 2018-01-26 | 宁夏大学 | A kind of concrete shrinkage tester |
CN108181347A (en) * | 2018-02-02 | 2018-06-19 | 沈阳建筑大学 | A kind of chute type thermal expansion coefficient of concrete measuring device and measuring method |
CN108535458A (en) * | 2018-04-16 | 2018-09-14 | 福州大学 | For the underwater continuous device and its application method for measuring concrete expansion rate waterborne |
CN108844670A (en) * | 2018-06-20 | 2018-11-20 | 苏州市众寅弹簧制造有限公司 | Simple tension spring tension detection device |
CN108844451A (en) * | 2018-03-21 | 2018-11-20 | 辽宁科技大学 | A kind of more specification multiple degrees of freedom test specimen breathing testers |
CN110455169A (en) * | 2019-08-06 | 2019-11-15 | 深圳市市政工程总公司 | The Material shrinkage deformation test method of beam specimen |
CN110726361A (en) * | 2019-10-11 | 2020-01-24 | 杭州友邦演艺设备有限公司 | Safety detection method for underwater stage lamp inner plate |
CN111122646A (en) * | 2019-12-25 | 2020-05-08 | 中冶建筑研究总院有限公司 | Concrete self-contraction deformation and thermal expansion coefficient measuring device and measuring method |
CN112536918A (en) * | 2020-12-06 | 2021-03-23 | 三亚华盛新混凝土有限公司 | Manufacturing equipment of C25 recycled concrete |
CN113125686A (en) * | 2021-04-20 | 2021-07-16 | 洛阳理工学院 | Cement expansion performance determination method |
CN114839357A (en) * | 2022-03-25 | 2022-08-02 | 河海大学 | Device and method for testing frost heaving stress and frost heaving strain of porous asphalt mixture |
-
2008
- 2008-08-26 CN CNA2008101245994A patent/CN101344371A/en active Pending
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102192926A (en) * | 2010-02-08 | 2011-09-21 | 普拉德研究及开发股份有限公司 | Cement expansion measurement apparatus and method |
CN102866245B (en) * | 2012-09-17 | 2015-04-22 | 中国建筑科学研究院 | Test method and test device for unrestraint measurement of concrete deformation performance |
CN102866245A (en) * | 2012-09-17 | 2013-01-09 | 中国建筑科学研究院 | Test method and test device for unrestraint measurement of concrete deformation performance |
CN103162604B (en) * | 2013-02-04 | 2016-07-06 | 长沙理工大学 | Real-time testing device and method for volume deformation of cement-based composite material after hardening |
CN103163286A (en) * | 2013-03-13 | 2013-06-19 | 浙江建设职业技术学院 | Measuring system for self-constriction of early-age concrete |
CN103293180A (en) * | 2013-06-19 | 2013-09-11 | 福州大学 | Suspension type concrete early-age thermal expansion coefficient testing method and device thereof |
CN103486954A (en) * | 2013-09-24 | 2014-01-01 | 内蒙古科技大学 | Coal mine roadway deformation measuring device and method |
CN103837670A (en) * | 2013-12-27 | 2014-06-04 | 河海大学 | Method and apparatus for measuring early-stage autogenous shrinkage of cement-based material |
CN105445318A (en) * | 2015-01-21 | 2016-03-30 | 长沙理工大学 | Temperature expansion testing method of semi-rigid base material of inorganic binding material |
CN106979882A (en) * | 2017-05-27 | 2017-07-25 | 安徽理工大学 | A kind of device and method for being used to make concrete by three-point bending coped beam |
CN106979882B (en) * | 2017-05-27 | 2019-06-04 | 安徽理工大学 | A device and method for making concrete three-point bending notched beams |
CN107037075A (en) * | 2017-05-31 | 2017-08-11 | 河南理工大学 | One kind expansion grout material solidification process expansion system safety testing device and method of testing |
CN107037075B (en) * | 2017-05-31 | 2019-07-30 | 河南理工大学 | A kind of expansion grout material solidification process expansion system safety testing device and test method |
CN107632143A (en) * | 2017-10-27 | 2018-01-26 | 宁夏大学 | A kind of concrete shrinkage tester |
CN108181347A (en) * | 2018-02-02 | 2018-06-19 | 沈阳建筑大学 | A kind of chute type thermal expansion coefficient of concrete measuring device and measuring method |
CN108844451A (en) * | 2018-03-21 | 2018-11-20 | 辽宁科技大学 | A kind of more specification multiple degrees of freedom test specimen breathing testers |
CN108535458A (en) * | 2018-04-16 | 2018-09-14 | 福州大学 | For the underwater continuous device and its application method for measuring concrete expansion rate waterborne |
CN108844670A (en) * | 2018-06-20 | 2018-11-20 | 苏州市众寅弹簧制造有限公司 | Simple tension spring tension detection device |
CN110455169A (en) * | 2019-08-06 | 2019-11-15 | 深圳市市政工程总公司 | The Material shrinkage deformation test method of beam specimen |
CN110726361A (en) * | 2019-10-11 | 2020-01-24 | 杭州友邦演艺设备有限公司 | Safety detection method for underwater stage lamp inner plate |
CN110726361B (en) * | 2019-10-11 | 2021-07-06 | 杭州友邦演艺设备有限公司 | Safety detection method for underwater stage lamp inner plate |
CN111122646A (en) * | 2019-12-25 | 2020-05-08 | 中冶建筑研究总院有限公司 | Concrete self-contraction deformation and thermal expansion coefficient measuring device and measuring method |
CN112536918A (en) * | 2020-12-06 | 2021-03-23 | 三亚华盛新混凝土有限公司 | Manufacturing equipment of C25 recycled concrete |
CN112536918B (en) * | 2020-12-06 | 2022-02-08 | 三亚华盛新混凝土有限公司 | Manufacturing equipment of C25 recycled concrete |
CN113125686A (en) * | 2021-04-20 | 2021-07-16 | 洛阳理工学院 | Cement expansion performance determination method |
CN113125686B (en) * | 2021-04-20 | 2023-03-14 | 洛阳理工学院 | Cement expansion performance determination method |
CN114839357A (en) * | 2022-03-25 | 2022-08-02 | 河海大学 | Device and method for testing frost heaving stress and frost heaving strain of porous asphalt mixture |
CN114839357B (en) * | 2022-03-25 | 2023-05-16 | 河海大学 | Device and method for testing frost heaving stress and frost heaving strain of porous asphalt mixture |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101344371A (en) | Measuring device and method for linear deformation of cement-based materials at early age | |
CN103149094B (en) | The measuring method of tensile creep of early-age concrete | |
Mejlhede Jensen et al. | A dilatometer for measuring autogenous deformation in hardening Portland cement paste | |
CN103323164B (en) | Testing system for measuring static cracking agent swelling pressure and testing method thereof | |
CN203720174U (en) | Concrete restrained expansion rate testing device | |
CN203881765U (en) | Concrete self-contraction measuring device | |
CN102608152B (en) | Concrete early thermal expansion coefficient testing device and testing method thereof | |
CN201247042Y (en) | Device for measuring early age period linear deformation of cement based material | |
CN101122596A (en) | Concrete cracking sensitivity test device and anti-crack ability evaluation method | |
CN110887959A (en) | Device and method for detecting deformation stress of on-site cement-based material | |
CN101586993A (en) | Concrete early stage frost heave stress test device and test method | |
CN1243237C (en) | Cement mortar and concrete shrinkage stress testing method | |
CN102175382B (en) | Detecting device for detecting lateral pressure of great-mobility concrete template | |
CN104280290A (en) | Device for testing stress-strain of plastic concrete/mortar and use method of device | |
CN101865865A (en) | Non-contact dam concrete early thermal expansion coefficient test method and its equipment | |
CN205581106U (en) | A device for testing self -compaction microdilatancy steel pipe concrete expansion rate | |
CN110542703A (en) | Device and method for monitoring thermal expansion stress and deformation of foamed concrete under confinement | |
CN108254247A (en) | The apparatus and method for of single axle concrete constraint under a kind of difference curing condition | |
Cusson et al. | Measuring early-age coefficient of thermal expansion in high-performance concrete | |
CN115656485A (en) | Method and device for testing non-uniform constrained shrinkage | |
CN110887958A (en) | A kind of cement-based material shrinkage stress detection device and full temperature detection method thereof | |
CN207198157U (en) | A kind of device for measuring cement-based material self-constriction | |
CN107727502A (en) | Concrete for hydraulic structure age morning creep test method | |
CN211402387U (en) | Concrete shrinkage deformation amount detection device | |
CN211292918U (en) | A kind of cement-based material shrinkage stress detection device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Open date: 20090114 |