CN101341617B - 供电系统及其控制方法 - Google Patents

供电系统及其控制方法 Download PDF

Info

Publication number
CN101341617B
CN101341617B CN2006800479698A CN200680047969A CN101341617B CN 101341617 B CN101341617 B CN 101341617B CN 2006800479698 A CN2006800479698 A CN 2006800479698A CN 200680047969 A CN200680047969 A CN 200680047969A CN 101341617 B CN101341617 B CN 101341617B
Authority
CN
China
Prior art keywords
power generation
output
chemical reaction
temperature
generation part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2006800479698A
Other languages
English (en)
Other versions
CN101341617A (zh
Inventor
美藤仁保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casio Computer Co Ltd
Original Assignee
Casio Computer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Casio Computer Co Ltd filed Critical Casio Computer Co Ltd
Publication of CN101341617A publication Critical patent/CN101341617A/zh
Application granted granted Critical
Publication of CN101341617B publication Critical patent/CN101341617B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/04373Temperature; Ambient temperature of auxiliary devices, e.g. reformers, compressors, burners
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/323Catalytic reaction of gaseous or liquid organic compounds other than hydrocarbons with gasifying agents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M16/00Structural combinations of different types of electrochemical generators
    • H01M16/003Structural combinations of different types of electrochemical generators of fuel cells with other electrochemical devices, e.g. capacitors, electrolysers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • H01M8/04022Heating by combustion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04037Electrical heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04544Voltage
    • H01M8/04559Voltage of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04574Current
    • H01M8/04589Current of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04895Current
    • H01M8/0491Current of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0435Catalytic purification
    • C01B2203/044Selective oxidation of carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/047Composition of the impurity the impurity being carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • C01B2203/0822Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel the fuel containing hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • C01B2203/0827Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel at least part of the fuel being a recycle stream
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1217Alcohols
    • C01B2203/1223Methanol
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1288Evaporation of one or more of the different feed components
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/1614Controlling the temperature
    • C01B2203/1619Measuring the temperature
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/1614Controlling the temperature
    • C01B2203/1623Adjusting the temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/30Fuel cells in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/10Applications of fuel cells in buildings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Combustion & Propulsion (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Fuel Cell (AREA)

Abstract

提供了一种供电系统。化学反应部分接收发电燃料,并且重整该发电燃料,以产生含有氢气的发电气体。发电部分接收发电气体、使一部分所述发电气体反应以产生电能、将电能供应给负载、以及将所述发电气体中的未反应的成份作为废气排出。加热部分接收所述废气,并且使用所述废气来产生热能,以加热所述化学反应部分。输出控制部分对从所述发电部分输出的电能的量进行控制。控制部分控制从所述发电部分输出的电能的量,以将基于所述热能设定的所述化学反应部分的温度改变为预定温度。

Description

供电系统及其控制方法
技术领域
本发明涉及一种供电系统及其控制装置和控制方法,并且更具体地涉及一种供电系统,其接收发电燃料以产生含有氢气的发电气体并将所产生的气体供应给发电单元,以执行发电操作,并且还涉及其控制装置和控制方法。
背景技术
近年来,随着对环境问题或者能源问题的关注,燃料电池(或者使用燃料电池的供电系统)作为供电系统(或者发电系统)已经吸引了大家的注意,其形成了下一代的主流。正如所公知的,燃料电池的发电理论具有的优点在于:极少排放温室气体或者污染物,并且对环境(环境负荷)的影响非常小,这是因为利用了使用氢气和氧气的电化学反应来输出电能。此外,可以实现的发电效率(能量转换效率)远远高于常规发电系统(例如,基于通过燃烧例如矿物燃料而获得的热能等来产生电能的系统)的发电效率,因此旨在在各种工业领域中进行大规模扩展的研究和发展都在积极的进行中。
这里,虽然将高浓度氢气作为施加的发电燃料直接供应给燃料电池是令人期望的,但是直接将这种氢气供应给燃料电池主体的系统很难广泛且迅速地扩展,这是因为在产生、存储和供应氢气时的技术方面或安全方面或者在诸如提供社会基础设施等经济观点上难以进行。这个系统被实际用于相对大型的系统中,例如特定商业设施中的发电单元,或者用于驱动某些特殊车辆的驱动设备中的发电单元。
另一方面,当将使用燃料电池的供电系统应用到例如笔记本电脑或移动电话等小型便携式电子设备(便携式设备)中时,大家认为使用基于碳氢化合物的液体燃料(酒精),例如甲醇或乙醇是现实的,所述基于碳氢化合物的液体燃料容易获得并且便于使用,且具有低的制造成本。
在使用这种液体燃料的供电系统中,作为向燃料电池供应发电燃料的模式,直接燃料供应模式和重整燃料供应模式都是公知的,其中,直接燃料供应模式是直接向燃料电池主体供应相应的发电燃料(甲醇),而重整燃料供应模式是供应通过重整相应的发电燃料而获得的氢气。
在采用直接燃料供应模式的燃料电池中,由于诸如甲醇等发电燃料可以直接供应给燃料电池主体,因此在燃料供应路径中不需要后面描述的燃料重整器等的结构等,并且这种燃料电池(供电系统)的优点在于其结构可以简化。然而,采用这种模式的燃料电池一般具有的缺陷在于:它的发电效率(能量转换效率)低于采用重整燃料供应模式的燃料电池的发电效率。
另一方面,采用重整燃料供应模式的燃料电池的优点在于:它的发电效率(能量转换效率)高于采用直接燃料供应模式的燃料电池的发电效率,这是由于可以将通过重整诸如甲醇等发电燃料而产生的高纯度(高浓度)氢气供应给燃料电池主体。
下面将简要介绍一种常规技术中的供电系统,这种供电系统应用了采用重整燃料供应模式的燃料电池。
图6是示出了常规技术中采用重整燃料供应模式的燃料电池所应用的供电系统的结构实例的示意性方框图。
图7示出了适用于供电系统的化学反应部分中的化学反应的实例的示意图,其中采用重整燃料供应模式的燃料电池适用于该供电系统。
如图6所示,应用了常规技术中的燃料电池的供电系统一般包括:燃料供应部分310,在该燃料供应部分310中,存储或装入了诸如甲醇等发电燃料;化学反应部分320,其重整所述发电燃料以产生主要含有氢气的发电气体;以及发电电池部分330,其基于使用所产生的氢气和大气中的氧气的电化学反应来产生并输出电能。
这里,如图6和图7所示,化学反应部分320包括:至少一个蒸发器(燃料蒸发器)321,其对由发电燃料(例如,甲醇CH3OH)和水(H2O)组成的水溶液进行汽化(蒸发),以产生燃料气体;重整器322,其基于重整反应改良燃料气体,以产生含有氢气(H2)的发电气体;以及一氧化碳去除器(下文将其称作“CO去除器”)323,其基于选择氧化反应将二氧化碳(CO2)中的有害一氧化碳(CO)和重整反应中作为副产品产生的少量一氧化碳(CO)转换成二氧化碳CO2,并除去经转换的二氧化碳CO2
在这样的结构中,当将由化学反应部分320产生的高浓度氢气供应给发电电池部分330的正极侧时,利用该氢气产生氢离子和电子。当氢离子穿过置于在正极和负极之间的质子交换膜而与负极侧上的氧分子(大气中的氧气)相结合时,从正极侧朝着负极侧移动的电子被输出,从而产生电能。应注意的是,化学反应部分和发电电池部分中的具体化学反应将在“具体实施方式”的部分中详细介绍。
同时,在应用了采用重整燃料供应模式的燃料电池的供电系统中,从化学反应部分320供应给发电电池部分320的氢气的量必须保持恒定,以稳定驱动与该供电系统连接的负载。这里,化学反应部分320中的氢气的产生状态(重整器322中的重整反应的进展状态)受温度条件控制,其中,该温度条件根据包括重整器322的化学反应部分320来设定。因此,必须将化学反应部分320设定为预定的高温状态,必须保持这种状态,并且必须将重整器322中的重整反应的进展状态保持在预定状况,以便保持由化学反应部分320产生的氢气的量恒定。
这里,作为使化学反应部分320保持在预定高温状态(固定温度)的方法,下列技术等是公知的。也就是说,例如,在发电电池部分330的发电操作(电化学反应)中,通过使用燃烧热来执行加热,该燃烧热是通过燃烧设置在化学反应部分320附近的催化燃烧室(未示出)中含有的剩余未反应氢气的废气而获得的,或者通过使用从电加热器(未示出)等获得的热量来执行加热,以将其设定到预定高温状态。
具体来说,在通过使用废气的燃烧热来将化学反应部分320(重整器322)设定到预定高温状态(固定温度)的技术中,对供应给废气燃烧室的废气或氧气的量进行控制,这允许设定废气燃烧的程度(产生的燃烧热的量),进而控制化学反应部分320(重整器322)中的氢气的产生状态(重整反应的进展状态)。
然而,将其中采用通过使用废气的燃烧热来控制化学反应部分(重整器)的温度状态的结构和方法的供电系统设定为供应氢气,所述氢气的量大于发电操作所需的氢气的量与化学反应部分(重整器)内的氢气产生操作中所需的作为热能的氢气的量的总和,以便基于发电电池部分中的发电操作来稳定输出固定的电能(电流)。也就是说,从发电电池部分中排出的废气中的氢气的量被设定为远远大于废气燃烧室中消耗的量(即,重整器产生热能所需要的量)。
这里,在由化学反应部分(重整器)产生的氢气中,实际上,无法将发电操作(电化学反应)和氢气产生操作(废气燃烧)中未利用的氢气排放到系统的外部。因此,该氢气必须在例如残余气体燃烧器中燃烧,以转换成(消耗)水。
因此,该供电系统具有的问题在于,利用发电燃料产生的一部分氢气会被不经济地消耗掉,从而降低了发电效率(能量转换效率)。此外,必须额外提供残余气体燃烧室及其外围设备(例如阀门或流量计),因此该供电系统还具有系统尺寸增加、控制复杂、制造成本增加、以及其它问题。
发明内容
在接收发电燃料以产生含有氢气的发电气体并将所产生的气体供应给发电部分以执行发电操作的供电系统、该供电系统的控制装置、以及该供电系统的控制方法中,本发明的优点在于:产生的氢气可以得到高效的利用,从而提高了发电效率,而没有系统尺寸增加、控制复杂或者生产成本增加等问题。
为了获得该优点,根据本发明的供电系统包括:化学反应部分,其接收发电燃料并利用化学反应重整该发电燃料,以产生含有氢气的发电气体;发电部分,其接收发电气体、使一部分所述发电气体反应以产生电能、将所产生的电能供应给负载、以及将所述发电气体中的未反应的成份作为废气排出;加热部分,其接收所述废气、使用所述废气来产生热能、以及加热所述化学反应部分;输出控制部分,其对从所述发电部分输出的电能的量进行控制;以及控制部分,其利用所述输出控制部分来控制从所述发电部分输出的电能的量,以将所述化学反应部分的温度改变为预定温度,其中该化学反应部分的温度是基于由所述加热部分产生的热能设定的,其中所述输出控制部分根据从所述发电部分输出的电能的量来控制从所述发电部分输出的输出电流的电流值,并且其中所述控制部分包括电流值判断部分,其判断从所述发电部分输出的所述输出电流的电流值是否落入其中所述发电部分展现特定发电特性的范围内。
所述供电系统还包括温度测量部分,其测量所述化学反应部分的温度。所述温度测量部分还起到电加热器的作用,该电加热器产生热能,以加热所述化学反应部分。所述控制部分基于由所述温度测量部分测量的所述化学反应部分的温度来对从所述发电部分输出的电能的量进行控制。
所述化学反应部分具有重整器,该重整器基于重整反应来产生所述发电气体。所述预定温度是适于所述重整器部分中的所述重整反应的温度。所述控制部分包括温度比较模块,其用于将由所述温度测量部分测量的所述化学反应部分的温度与所述预定温度进行比较,并且所述控制部分基于由所述温度比较模块获得的比较结果来对从所述发电部分输出的电能的量进行控制。
所述加热部分基于使用含在所述废气中的氢气的燃烧反应来产生热能。废气中的氢气的量根据由所述输出控制部分控制的所述发电部分输出的电能的量而变化。所述加热部分所产生的热能的量是根据含在所述废气中的氢气的量设定的。
所述供电系统还包括:电压转换部分,其对从所述发电部分输出的电能进行转换,以产生具有预定电压值和电流值的负载驱动功率,并将所产生的负载驱动功率供应给负载;以及功率保持部分,其存储从所述发电部分输出的电能。所述电压转换部分对存储在所述功率保持部分中的电能进行转换,以产生所述负载驱动功率。
根据本发明的供电系统包括:化学反应部分,其接收发电燃料并利用化学反应重整该发电燃料,以产生含有氢气的发电气体;发电部分,其接收发电气体、使一部分所述发电气体反应以产生电能、将所产生的电能供应给负载、以及将所述发电气体中的未反应的成份作为废气排出;加热部分,其接收所述废气、使用所述废气来产生热能、以及加热所述化学反应部分;输出控制部分,其对从所述发电部分输出的电能的量进行控制;以及控制部分,其利用所述输出控制部分来控制从所述发电部分输出的电能的量,以将所述化学反应部分的温度改变为预定温度,其中该化学反应部分的温度是基于由所述加热部分产生的热能设定的,其中所述控制部分包括电压值判断部分,当从所述发电部分输出电能时,所述电压值判断部分对来自所述发电部分的输出电压的电压值进行检测,并且判断所述输出电压的电压值是否落入了其中所述发电部分展现特定发电特性的范围内。
所述化学反应部分包括:蒸发器,其接收所述发电燃料和水,并且对所供应的发电燃料和水进行蒸发;以及重整器,其接收由所述蒸发器产生的经蒸发的发电燃料和水,并基于催化反应来产生作为所述发电气体的含有氢气的气体。所述发电燃料是其成份中含有氢原子的液体燃料,并且所述加热部分将所述热能供应给所述燃料重整器。
所述发电部分例如是质子交换膜燃料电池,其基于使用含在所述发电气体中的氢气的电化学反应来产生电能。
为了获得该优点,根据本发明的供电系统的控制装置是包括下列部分的供电系统的控制装置,该供电系统包括:化学反应部分,其接收发电燃料并利用化学反应重整该发电燃料,以产生含有氢气的发电气体;发电部分,其接收所述发电气体并使一部分所述发电气体反应以产生电能;以及加热部分,其接收从所述发电部分排出的废气、使用所述废气来产生热能、以及加热所述化学反应部分。所述控制装置包括:输出控制部分,其对从所述发电部分输出的电能的量进行控制;以及控制部分,其利用所述输出控制部分来控制从所述发电部分输出的电能的量,以将所述化学反应部分的温度改变为预定温度,其中该化学反应部分的温度是基于由所述加热部分产生的热能设定的,其中所述输出控制部分根据从所述发电部分输出的电能的量来控制从所述发电部分输出的输出电流的电流值,所述控制部分包括电流值判断部分,其判断所述输出电流的电流值是否落入其中所述发电部分展现特定发电特性的范围内。
所述控制装置还包括温度测量部分,其测量所述化学反应部分的温度。所述控制部分基于由所述温度测量部分测量的所述化学反应部分的温度来对所述发电部分输出的电能的量进行控制。
所述预定温度是适于所述化学反应部分中的所述化学反应的温度。所述控制部分基于由所述温度测量部分测量的所述化学反应部分的温度与所述预定温度之间的差值来控制从所述发电部分输出的电能的量。
根据本发明的供电系统的控制装置是包括下列部分的供电系统的控制装置,该供电系统包括:化学反应部分,其接收发电燃料并利用化学反应重整该发电燃料,以产生含有氢气的发电气体;发电部分,其接收所述发电气体并使一部分所述发电气体反应以产生电能;以及加热部分,其接收从所述发电部分排出的废气、使用所述废气来产生热能、以及加热所述化学反应部分。所述控制装置包括:输出控制部分,其对从所述发电部分输出的电能的量进行控制;以及控制部分,其利用所述输出控制部分来控制从所述发电部分输出的电能的量,以将所述化学反应部分的温度改变为预定温度,其中该化学反应部分的温度是基于由所述加热部分产生的热能设定的,所述控制部分包括电压值判断部分,当从所述发电部分输出电能时,所述电压值判断部分对来自所述发电部分的输出电压的电压值进行检测,并且判断所述输出电压的电压值是否落入了其中所述发电部分展现特定发电特性的范围内。
为了获得该优点,根据本发明的供电系统的控制方法是包括下列部分的供电系统的控制方法,该供电系统包括:化学反应部分,其接收发电燃料并利用化学反应重整该发电燃料,以产生含有氢气的发电气体;发电部分,其接收所述发电气体并使一部分所述发电气体反应以产生电能;以及加热部分,其接收从所述发电部分排出的废气、使用所述废气来产生热能、以及加热所述化学反应部分。所述控制方法包括:测量所述化学反应部分的温度的操作;以及根据测量到的所述化学反应部分的温度对从所述发电部分输出的电能的量进行控制以将所述化学反应部分的温度改变为预定温度的操作,其中该化学反应部分的温度是基于由所述加热部分产生的热能设定的,其中对从所述发电部分输出的电能的量进行控制的操作包括以下操作:根据从所述发电部分输出的电能的量来控制从所述发电部分输出的输出电流的电流值;以及判断从所述发电部分输出的所述输出电流的电流值是否落入其中所述发电部分展现特定发电特性的范围内。
对从所述发电部分输出的电能的量进行控制的操作包括以下操作:将测量到的所述化学反应部分的温度与所述预定温度进行比较;以及根据所述化学反应部分的温度与所述预定温度之间的差值来增加/减小从所述发电部分输出的电能的量。
对从所述发电部分输出的电能的量进行控制的操作还包括以下操作:当确定从所述发电部分输出的所述输出电流的电流值在其中所述发电部分展现所述特定发电特性的范围之外时,将从所述发电部分输出的所述输出电流的电流值返回到其中所述发电部分展现特定发电特性的范围内。
根据本发明的供电系统的控制方法是包括下列部分的供电系统的控制方法,该供电系统包括:化学反应部分,其接收发电燃料并利用化学反应重整该发电燃料,以产生含有氢气的发电气体;发电部分,其接收所述发电气体并使一部分所述发电气体反应以产生电能;以及加热部分,其接收从所述发电部分排出的废气、使用所述废气来产生热能、以及加热所述化学反应部分。所述控制方法包括:测量所述化学反应部分的温度的操作;以及根据测量到的所述化学反应部分的温度对从所述发电部分输出的电能的量进行控制以将所述化学反应部分的温度改变为预定温度的操作,其中该化学反应部分的温度是基于由所述加热部分产生的热能设定的,其中对从所述发电部分输出的电能的量进行控制的操作包括以下操作:当从所述发电部分输出电能时,检测所述发电部分的输出电压的电压值;以及判断所述输出电压的所述电压值是否落入其中所述发电部分展现特定发电特性的范围内。
对从所述发电部分输出的电能的量进行控制的操作还包括以下操作:当确定所述输出电压的电压值在其中所述发电部分展现特定发电特性的范围之外时,控制从所述发电部分输出的输出电流的电流值,以使得所述输出电压的电压值落入其中所述发电部分展现所述特定发电特性的范围内。
图1的示意性方框图示出了根据本发明的供电系统及其控制装置的实施例;
附图说明
图2的示意性方框图示出了应用于根据本实施例的供电系统的发电电池部分的实例;
图3的示意性电路方框图示出了应用于根据本实施例的供电系统的输出电流控制部分的实例;
图4的流程图示出了根据本实施例的供电系统中的控制方法的实例;
图5的视图示出了应用于根据本实施例的供电系统的发电电池部分的输出特性(发电特性);
图6的示意性方框图示出了常规技术中采用重整燃料供应模式的燃料电池所应用的供电系统的结构实例;以及
图7的示意图示出了应用于供电系统的燃料重整部分中的化学反应的实例,该供电系统应用了采用重整燃料供应模式的燃料电池。
现在,将在下文中基于举例说明的实施例,详细介绍根据本发明的供电系统、该供电系统的控制装置以及该供电系统的控制方法。
具体实施方式
<供电系统>
首先将介绍根据本发明的供电系统及其控制装置的结构。
图1的示意性方框图示出了根据本发明的供电系统及其控制装置的实施例。
应注意,本文将描述甲醇作为发电燃料的实例。
如图1所示,根据第一实施例的供电系统具有的设备大致包括:燃料箱200,其中装入了含有甲醇CH3OH和水H2O的作为发电燃料的混合液体(甲醇溶液);化学反应部分100,其基于通过使用甲醇CH3OH、水H2O和大气中的氧气O2的一系列化学反应(这将在后面详细描述)来产生氢气H2;由燃料电池形成的发电电池部分(燃料电池;发电部分)150,其基于使用从化学反应部分100提供的氢气H2和大气中的氧气O2的电化学反应来产生并输出电能;输出控制部分160,其控制输出电流的电流值,并基于来自后面描述的系统控制部分170的控制信号(电流控制值)来控制作为输出的输出,所述输出电流的电流值与发电电池部分150所产生的电能相对应;DC/DC转换器(电压转换部分)180,其将发电电池部分150输出的电能转换成所期望的电压值,并控制电能存储在二次电池190中或者控制电能输出到负载;二次电池(存储部分)190,例如蓄电池,其存储从发电电池部分150输出的电能;以及系统控制部分(控制部分)170,其控制每个设备中的操作以进一步控制供电系统的驱动状态(其主要是化学反应部分100中的化学反应(重整反应)的进展状态或者发电电池部分150中的发电操作)。
下文将详细介绍每一个设备。
(化学反应部分)
如图1所示,化学反应部分100具体包括:发电燃料蒸发器110,其加热并蒸发(汽化)从燃料箱200提供的甲醇溶液,以产生包括甲醇气体和潮湿蒸气的燃料气体;燃料重整器120,其基于使用所述燃料气体的催化反应(蒸汽重整反应)来产生含有氢气H2的发电气体;CO去除器130,其基于使用氧气O2和一氧化碳CO的催化反应(选择氧化反应)来除去一氧化碳CO,从而产生二氧化碳,其中所述一氧化碳CO是在燃料重整器120中的催化反应中产生氢气时所产生的副产品;废气催化燃烧室(加热部分)140,其基于使用大气中的氧气O2和含有未反应氢气H2的废气的催化燃烧反应,产生用于促进或保持至少在发电燃料蒸发器110、燃料重整器120和CO去除器130中的每个化学反应所需的热能,其中所述未反应氢气H2是在供电系统处于稳定状态下供应给发电电池部分150的氢气H2中的在发电电池部分150内未发生电化学反应的那部分氢气;电加热器/温度计(温度测量部分)HS1、HS2和HS3,其使用启动供电系统时存储在二次电池190中的电能来产生促进或保持至少在发电燃料蒸发器110、燃料重整器120和CO去除器130中的每个化学反应所需的热能,并且测量发电燃料蒸发器110、燃料重整器120和CO去除器130中的温度状态。
此外,在燃料箱200与发电燃料蒸发器110之间的燃料供应路径上,设置了流体泵PN1、控制驱动器DR1、流体阀VL1和流量计FL1,其中流体泵PN1用于提供(排出)燃料箱200的甲醇溶液,控制驱动器DR1用于控制该流体泵PN1的驱动状态,流体阀VL1用于设定供应给发电燃料蒸发器110的甲醇溶液的量,而流量计FL1用于检测所述供应量。
此外,由于CO去除器130、废气催化燃烧室140和发电电池部分150中的各种化学反应(催化反应、电化学反应及其它反应)都需要氧气,因此还提供了用于吸收和供应大气中的空气的气泵PN2、用于控制该气泵PN2的驱动状态的控制驱动器DR2、用于设定供应给CO去除器130、废气催化燃烧室140和发电电池部分150中的每一个的氧气的供应量的流体阀VL2、VL3和VL4,以及用于测量所述供应量的流量计FL2、FL3和FL4。
这里,各个控制驱动器DR1和DR2基于从系统控制部分170发出的指令(控制信号CD)来控制泵PN1和PN2的状态。另外,流量计FL1到FL4向系统控制部分170输出供应给每个设备的甲醇溶液和空气的流率数据FO。
各个电加热器/温度计HS1到HS3被设置成临近或紧靠发电燃料蒸发器110、燃料重整器120和CO去除器130,并且在供电系统启动时产生适于促进在发电燃料蒸发器110、燃料重整器120和CO去除器130中的各个化学反应的热能。控制驱动器DR3、DR4和DR5分别与电加热器/温度计HS1到HS3连接,该控制驱动器DR3、DR4和DR5用于控制对发电燃料蒸发器110、燃料重整器120和CO去除器130中的由热能实现的温度的测量。各个控制驱动器D3到D5调整将要排出的热能,同时基于系统控制部分170发出的指令(控制信号CD)来监测由各个电加热器/温度计HS1到HS3检测到的温度。
值得注意的是,在具有上述结构的供电系统中,在根据本实施例的化学反应部分100内的废气催化燃烧室140、燃料重整器120和CO去除器130以及发电燃料蒸发器110中的每一个中,例如,可以应用半导体设备制造技术来形成精细槽,将该精细槽作为绝缘基板上的反应管道,或者设置多个隔板来形成反应管道,其中的每个隔板都由薄的金属板构成,或者可以将预定的催化剂施加到被构造为精细化学反应器(微反应器)的管道的内壁上。
此外,对于每个电加热器/温度计HS1到HS3,可以应用具有例如薄膜电阻材料的部件,该部件紧靠着上述的每一种结构。
此外,可以采用每个化学反应器与薄膜电阻器顺序叠加的结构。例如,如图1所示,第一单元具有电加热器/温度指示器HS1和叠加在其中的发电燃料蒸发器110,第二单元具有电加热器/温度指示器HS2和叠加在其中的燃料重整器120,第三单元具有电加热器/温度指示器HS3和叠加在其中的CO去除器130。这些单元是按照适当的顺序叠加的(图1示出了一种结构,在该结构中,第一单元、第二单元和第三单元按照提到的顺序进行叠加)。这些单元通过诸如管之类的管道相互连接,并且所获得的结构被密封在真空绝缘容器中。
这里,利用以下方式形成管道,使得发电燃料蒸发器110的出口与燃料重整器120的供应端口连接,燃料重整器120的出口与CO去除器130的供应端口连接,以及CO去除器130的出口与发电电池部分150连接。
值得注意的是,已经针对以下结构进行了说明:在该结构中,将甲醇和水的混合液体(甲醇溶液)密封在燃料箱200中,并且将该混合液体供应给发电燃料蒸发器110。然而,本发明并不限于此。例如,甲醇和水可以密封在各自的箱中(即,甲醇箱和水箱),并且可以将甲醇和水从这些箱通过分别提供的泵、控制驱动器、流体阀和流量计(即,各自的供应系统)供应给发电燃料蒸发器110。
现在将具体介绍在化学反应部分100(发电燃料蒸发器110、燃料重整器120以及CO去除器130)中产生氢气的一系列化学反应(加热和蒸发处理、蒸汽重整反应和选择氧化反应)。
首先,在发电燃料蒸发器110内的蒸发过程中,当启动供电系统时,控制电加热器/温度指示器HS1。此外,在供电系统中的发电操作处于稳定的稳定状态下,控制废气催化燃烧室140中的废气的催化燃烧反应,以将发电燃料蒸发器110的温度条件设定到一定温度,该温度不低于甲醇CH3OH和水H2O的混合液体(甲醇溶液)的沸点(例如大约120℃)。因此,混合液体受热并蒸发,从而产生燃料气体。
然后,在燃料重整器120内的蒸汽重整反应过程中,类似于蒸发过程,通过将温度条件设定为250℃到400℃,或者优选设定为大约270℃到300℃,基于电加热器/温度指示器HS2或废气催化燃烧室140供应的热能,利用所述燃料气体产生含有氢气H2的发电气体,如下面的化学反应式(1)所示。要注意的是,如图7中的(a)所示,在该蒸汽重整反应中,除了产生氢气H2以外,还产生了作为副产品的二氧化碳CO2和少量一氧化碳CO。
CH3OH+H2O→3H2+CO2…(1)
如图7中的(b)所示,为了除去这些有害的副产品,在CO去除器130内的CO去除过程中,类似于蒸发过程,通过将温度条件设定为120℃到200℃,或者优选设定为大约140℃到180℃,基于电加热器/温度指示器HS3或废气催化燃烧室140供应的热能,大气中的氧气O2与一氧化碳CO发生反应,从而实现了产生二氧化碳CO2的选择氧化反应,如下面的化学反应式(2)所示。
CO+(1/2)O2→CO2…(2)
因此,化学反应部分100对燃料箱200提供的含有甲醇CH3OH(发电燃料)和水H2O的混合液体(甲醇溶液)进行重整,以产生高纯度(高浓度,70%到75%)的氢气H2
(发电电池部分)
图2的示意性方框图示出了应用于根据本实施例的供电系统的发电电池部分的实例。这里介绍了一个实例,在该实例中,采用公知的质子交换膜燃料电池作为构成发电电池部分的燃料电池的例子。
如图2所示,发电电池部分150具有正极ELa,它由其上附着了例如铂或铂钌的催化剂微粒的碳电极形成;负极ELc,它由其上附着了铂等的催化剂微粒的碳电极形成;以及薄膜状的质子交换膜(离子交换膜)LYi,它插入在正极ELa和负极ELc之间。发电电池部分150以如此方式构成,使得将通过对化学反应部分100中的发电燃料(甲醇CH3OH)重整所获得的高纯度(高浓度)氢气H2供应给正极ELa侧,另一方面,将气泵PN2所吸收的大气中的氧气O2以预定流率通过流体阀VL4和流量计FL4不断地供应给负极ELc侧。
这里,在根据本实施例的发电电池部分150中,将通过蒸发燃料箱200输出的甲醇溶液所获得的燃料气体供应给对该燃料气体进行重整的燃料重整器120中,并且只将通过在CO去除器130中除去一氧化碳CO所获得的高浓度氢气H2馈送到正极ELa。
此外,就与具有该结构的发电电池部分150中的发电操作有关的电化学反应而言,当将氢气H2供应给正极ELa时,如下面的化学反应式(3)所示,利用催化反应,分离出电子e-,从而产生了氢离子H+,并且这些离子经由质子交换膜LYi、负极ELc侧传送。利用构成正极ELa的碳电极,将电子e-输出并供应给负载LD。
H2→H++2e-…(3)
另一方面,当将空气中的氧气O2供应给负极ELc时,通过负载LD传送的电子e-与通过质子交换膜LYi传送的氢离子H+和氧气O2利用催化物质进行反应,从而产生作为副产品的水H2O,如下面的化学反应式(4)所示。
2H++1/2O2+2e-→H2O…(4)
这里,化学反应式(3)和(4)所示的一系列电化学反应在大约60℃到80℃的相对低温的温度条件下进行。供应给正极ELa的氢气H2进行反应,从而发生消耗,并基于这些电化学反应转换成电能。然而,供应的氢气H2中消耗掉的百分比(氢气利用率)取决于发电电池部分150输出的电能的量,并且将未消耗掉的且作为未反应氢气剩下的氢气H2作为废气排出。这里,当从发电电池部分150取出电能时,为了在发电电池部分150中适当地执行电化学反应,并防止发电电池发生损坏或恶化,氢气利用率的值具有适当的范围。正如后面将要描述的,通常将氢气利用率设定为落入75%到95%的范围内。当依照此范围从发电电池部分150中取出与电能对应的电流时,电流值被限制在从后面描述的预定最小电流值到最大电流值的范围内。发电电池部分150的输出功率被限制在落入不小于后面描述的预定最小功率值的范围内。发电电池部分150的输出电压被设定在落入不小于后面描述的最小电压值的范围内。当超过这些范围时,发电电池部分150中的电能产生操作将变得不稳定。
应注意的是,发电电池部分150所排出的废气被供应给化学反应部分100中的废气催化燃烧室140中,基于催化燃烧反应转换成热能,并利用废气来设定并保持上述燃料重整器120、CO去除器130和发电燃料蒸发器110内的每一个中的温度状态(适于每个化学反应的固定温度)。
(输出控制部分)
图3的示意性电路方框图示出了根据本实施例的供电系统所采用的输出控制部分。
输出控制部分160设置在发电电池部分150的电能输出部分中。例如,如图3所示,输出控制部分160包括:P沟道型晶体管(场效应晶体管)Tr1,其具有连接到其的电流路径,其中该P沟道型晶体管Tr1位于输入侧触点IN和输出侧触点OUT之间,该输入侧触点IN与发电电池部分150连接,而输出侧触点OUT经由DC/DC转换器180与电子设备等的负载连接;P沟道型晶体管Tr2和Tr3以及电阻元件R,其具有连接到其的各个电流路径,该P沟道型晶体管Tr2和Tr3以及电阻元件R串联连接在输入侧触点IN与接地电势GND之间;比较器(放大器)AP1,其一个输入端与输出侧触点OUT连接,而另一个输入端与晶体管Tr2和Tr3的连接触点(触点N1)连接,并且输出端与晶体管Tr3的栅极端连接;数模转换器DAC,其对由系统控制部分170输出的数字信号形成的控制信号(电流控制值)进行数模转换,以产生设定电压Vset;以及比较器AP2,其一个输入端与薄膜晶体管Tr3和电阻元件R的连接触点(触点N2)连接,另一个输入端被施加了数模转换器DAC输出的设定电压Vset,并且输出端(触点N3)与晶体管Tr2和Tr1的栅极端连接。
在具有该电路结构的输出控制部分160中,利用比较器AP1和晶体管Tr3,将相对于流经输出侧触点OUT的输出电流Iout(即,对应于发电电池部分150输出的电能的电流值)的例如1/1000(Iout/1000)的电流设置为经由电阻元件R流经接地电势GND。将电流流经电阻元件R时在触点N2处产生的电势施加到比较器AP2的一个输入端。此外,基于由系统控制部分170输出的数字信号形成的控制信号(电流控制值),将由数模转换器DAC产生的设定电压(模拟电压)Vset施加到比较器AP2的另一个输入端。
从而,基于通过比较所述触点N2处的电势与设定电压Vset而获得的输出电势(即,触点N3处的电势),比较器AP2控制晶体管Tr1和Tr2的导通状态(开和关)。因此,基于由系统控制部分170输出的数字信号所组成的控制信号(电流控制值),对与发电电池部分150输出的电能相对应的电流值(输出电流Iout)进行逐步控制(步进控制)。也就是说,相对于发电电池部分150,晶体管Tr1用作负载,使得根据比较器AP2的输出来控制相对于发电电池部分150的负载的大小。相对于发电电池部分150,输出控制部分160用作所谓的电子负载。
这里,在根据本实施例的输出控制部分160中,当输出电流Iout超过基于控制信号(电流控制值)所设定的电流值(设定电流)Ilim时,控制该输出电流Iout,以使其与设定电流Ilim具有相同的电流值(Iout=Ilim),并且控制输出电流Iout的电流值,以使其不超过设定电流Ilim。应注意的是,当电阻元件R的电阻值是1kΩ时,设定电流Ilim与基于控制信号所产生的设定电压Vset之间的关系由下面的表达式表示。
Ilim/1000=Vset/R→Ilim(=Iout)=1000×Vset/R
应注意的是,设置在根据本发明的供电系统中的发电电池部分150的输出部分中的输出控制部分160并不限于图3所示的电路结构。没有必要说明的是,输出控制部分160还可以有其它的电路结构,只要它具有的功能等效于基于系统控制部分170输出的控制信号来控制输出电流Iout的电流值。
另外,虽然图1将输出控制部分160描述为独立的结构,但是本发明并不限于此。可以将输出控制部分160与例如DC/DC转换器180构成为一体。在这种情况下,系统控制部分170输出的控制信号(电流控制值)经由DC/DC转换器180输入到例如输出控制部分160中的数模转换器DAC。
(DC/DC转换器/二次电池)
在供电系统的稳定操作中,DC/DC转换器180对发电电池部分150输出的电能进行转换以产生具有预定电压值和电流值的负载驱动功率、将所产生的功率供应给电子设备等的负载、产生要被输出到系统控制部分170或各个驱动器DR1到DR5的控制驱动功率、以及使用经转换的电压来对二次电池190进行充电以使得电能存储在二次电池190中。此外,例如,在供电系统启动或临时过载的情况下,使用存储在二次电池190中的电能来产生将要供应给电子设备等的负载的负载驱动功率,并且产生要被输出到系统控制部分170或者各个驱动器DR1到DR5的控制驱动功率。应注意的是,对于二次电池190,可以采用公知的各种蓄电池组,或者可以采用双电层电容器等,这可以减少厚度和重量,并且在充电/放电特性上更优。
(系统控制部分)
系统控制部分170包括例如CPU、ROM、RAM、模数转换器、数模转换器和其它未示出的设备,并且系统控制部分170控制各个设备中的操作。
具体来说,基于例如用户启动供电系统的操作,系统控制部分170在预定时刻从燃料箱200将预定量的甲醇溶液经由流体泵PN1、流体阀VL1和流量计FL1供应给发电燃料蒸发器110,并将发电燃料蒸发器110设定为预定的温度状态,从而控制蒸发甲醇溶液的蒸发过程中的操作状态(燃料蒸发操作),以便产生燃料气体。
此外,系统控制部分170将燃料重整器120设定为预定的温度状态,以便对用于重整在发电燃料蒸发器110中产生的燃料气体(甲醇CH3OH和水H2O)的蒸汽重整反应过程(燃料重整操作)中的操作状态进行控制,以产生含有氢气H2的发电气体。
另外,系统控制部分170在预定时刻经由气泵PN2、流体阀VL2和流量计FL2向CO去除器130供应预定量的氧气O2。此外,系统控制部分170将CO去除器130设定为预定的温度状态,以便控制CO去除过程的操作状态,该CO去除过程由除掉燃料重整器120所产生的发电气体中的一氧化碳CO的选择氧化反应构成,以便产生高浓度的氢气H2
此外,相对于其中将经过CO去除器130而产生的高浓度氢气直接供应给正极Ela侧的发电电池部分150,系统控制部分170在预定时刻经由气泵PN2、流体阀VL4和流量计FL4向负极Elc侧供应预定量的氧气O2,从而基于由化学反应式(4)和(5)表示的一系列电化学反应来对产生预定电能的发电操作的操作状态进行控制。
这里,关于发电燃料蒸发器110中的蒸发过程,燃料重整器120中的蒸汽重整反应过程和CO去除器130中的CO去除过程,在启动供电系统时,基于通过向电加热器/温度计HS1、HS2和HS3中的每一个供电所释放的热能,可以实现预定的温度状态。此外,在供电系统的稳定状态中,将含有氢气(即,未在发电电池部分150中的电化学反应中反应并剩下的氢气)的废气供应给废气催化燃烧室140,而不需使用电加热器/温度计HS1、HS2和HS3,并且在预定时刻将预定量的氧气O2经由气泵PN2、流体阀VL3和流量计FL3供应给废气催化燃烧室140。因此,基于由废气催化燃烧室140中的催化燃烧反应所产生的热能来实现预定的温度状态。
上面提到的化学反应部分100和发电电池部分150中的每个操作控制是通过下列方式实现的。也就是说,在系统控制部分170中,例如,CPU执行存储在ROM等中的各种控制程序,以对各个流量计FL1到FL4的每个流率数据(供应量数据)FO、电加热器/温度计HS1到HS3所测量的每个温度数据(在狭义上,通过各个控制驱动器DR3到DR5所接收的数据信号)、发电电池部分150输出的对应于电能的电流值(输出电流值)以及其它进行模数转换,并取出转换后的数据。输出阀门驱动信号VD、驱动器控制信号CD和其它基于每个数据(测量值)进行数模转换的信号,其中阀门驱动信号VD是驱动流体阀VL1到VL4所需的,而驱动器控制信号CD对驱动所述泵PN1、PN2及电加热器/温度计HS1到HS3的驱动器DR1到DR5进行控制。
此外,基于由从系统控制部分170输出到输出控制部分160的数字信号所组成的控制信号(电流控制值),对由发电电池部分150中的电化学反应产生并随后输出的电能的电流值进行控制,并且利用DC/DC转换器180将其转换成预定电压值。将具有设定电流值和电压值的电能临时存储在二次电池190中。此后,或者没有这个存储操作,将它作为负载驱动功率供应给未示出的负载(电子设备等),并且还可以将它作为控制驱动功率供应给系统控制部分170和各个控制驱动器DR1到DR5。
另外,在根据本实施例的供电系统内的系统控制部分170中,具体而言,为了在供电系统处于稳定状态下设定并保持化学反应部分100中的各个设备(发电燃料蒸发器110、燃料重整器120或者CO去除器130)的固定的温度状态,供应给废气催化燃烧室140的废气的量不是使用阀门等控制的。然而,输出控制部分160基于系统控制部分输出的控制信号(电流控制值)对与发电电池部分150中的发电操作所产生的电能相对应的电流值进行控制,从而调整废气中的氢气的量。
原因在于:构成发电电池部分150的燃料电池中消耗(用于电化学反应)的氢气的量(氢气利用率)通常是基于与由电化学反应产生并随后输出的电能相对应的输出电流的电流值唯一确定的。因此,控制与发电电池部分150输出的电能相对应的输出电流的电流值可以确定发电电池部分150的氢气利用率。基于该利用率,对供应给废气催化燃烧室140的废气中的氢气的量进行调整。因此,可以任意控制由催化燃烧反应产生的热能(发热量),从而将化学反应部分100中的每个设备的温度状态设定并保持为恒定。
因此,由于发电电池部分150供应的废气中的氢气的量被调整为废气催化燃烧室140中所需要的量(即,化学反应部分100中用于产生氢气的每个化学反应所需要的热能的产生量),因此废气中的氢气全部由废气催化燃烧室140中的催化燃烧反应消耗掉。
(供电系统中的控制方法)
现在将具体介绍具有上述结构的供电系统中的控制方法。
图4的流程图示出了根据本实施例的供电系统中的控制方法的实例。
在根据本实施例的供电系统中,系统控制部分(温度比较部分、电流值设定部分、电流值判断部分和电压值判断部分)170使用电加热器/温度计HS1到HS3来监测(监控)化学反应部分100中的每个设备(发电燃料蒸发器110、燃料重整器120或者CO去除器130)中的温度状态、将所监测的状态设定为适于每个化学反应产生氢气的固定温度状态、并且执行温度控制以便保持该温度状态。
此外,当该化学反应部分100中的每个设备的温度状态由于任意因数而变化时(例如,外部温度的变化、发电电池部分150的输出特性的变化、或者废气催化燃烧室140中的催化燃烧反应的特性的恶化),执行下面的一系列控制操作来增大/减小与发电电池部分150输出的电能相对应的输出电流的电流值,从而控制废气中的氢气的量,这样可以设置温度状态,并使温度状态保持恒定。
应注意的是,下文将详细介绍对构成化学反应部分100的燃料重整器120进行温度控制的实例。没有必要说明的是,可以将等效的控制方法应用于包括下文将要描述的其它设备(发电燃料蒸发器110和CO去除器130)的实例。
在根据本实施例的供电系统中的化学反应部分100(燃料重整器120)的温度控制中,首先,利用电加热器/温度指示器HS2一直、周期性地或者在任意时刻测量(检测)燃料重整器120的温度状态,并且将测量到的温度状态提供给系统控制部分170(S111;温度测量步骤)。具体来说,系统控制部分170向控制驱动器DR4提供驱动器控制信号CD,从而少量的电流流到电加热器/温度指示器HS2,并且经由控制驱动器DR4取出该时刻的电压值,将其作为温度测量数据。此外,基于温度测量数据(电压值)计算该时刻的电阻值,从而得到燃料重整器120的温度。
然后,判断燃料重整器120的温度(重整器温度)与预置温度条件(设定温度)是否相匹配(S112;温度比较步骤)。当重整器温度与设定温度相匹配时,控制返回到步骤S111,从而继续燃料重整器120的温度测量操作。另一方面,当所述重整器温度不同于所述设定温度时,判断所述重整器温度是否高于所述设定温度(S113)。
当所述重整器温度低于所述设定温度时,减小发电电池部分150的输出电流Iout,以便升高温度,并且减小发电电池部分150中的氢气利用率,以便增加废气中的氢气量。当所述重整器温度高于所述设定温度时,增加发电电池部分150的输出电流Iout,以便降低温度,并且增加发电电池部分150中的氢气利用率,以便减少废气中的氢气量。这里,发电电池部分150所输出的输出电流Iout的电流值被限制在从后面描述的最小电流值到最大电流值的范围内。这样,当在步骤S113确定所述重整器温度低于所述设定温度时,在S114(电流值判断步骤)判断所述发电电池部分150的输出电流Iout的电流值是否不大于预置的最小电流值(设定的最小电流)。另一方面,当重整器温度高于设定温度时,在S121(电流值判断步骤)判断输出电流Iout的电流值是否不小于预置的最大电流值。
当发电电池部分150的输出电流Iout的值不大于所述最小电流值(设定的最小电流)时(步骤S114),由于输出电流Iout的电流值不能减小到低于该值,因此确定所述电流值过小,并且另外设置在供电系统或者其上安装了供电系统的电子设备中的通知部分(显示器、扬声器或者类似设备)给出错误信息(S120)。这里,在给出错误信息之后,控制返回到步骤S111,从而继续燃料重整器120的温度测量操作,或者根据输出电流Iout的电流值的极小化程度而关闭供电系统(停止操作)。
另一方面,当输出电流Iout的电流值大于最小电流值(设定的最小电流)时,使输出电流的电流值的大小减小一级(S115;电流值设定步骤)。具体来说,将从系统控制部分170输出到如图3所示的输出控制部分的控制信号的电流控制值从特定值变化到比该特定值低一级的值,从而使发电电池部分150的输出电流Iout的电流值减小一级。
当重整器温度利用这种方式低于设定温度时,减小了发电电池部分150的输出电流Iout的电流值,从而降低了发电电池部分150中的氢气的消耗量(降低氢气利用率)。结果,可以增加从发电电池部分150排出的含在废气中的氢气的量,并由此可以增加从废气催化燃烧室140供应给燃料重整器120的热能,从而升高了重整器的温度。
然后,发电电池部分150输出的功率被限制在不小于后面描述的最小功率值(设定的最小功率)的范围内。经由DC/DC转换器180,读取电流值降低一级的发电电池部分150的输出电压,将其作为电压数据,以计算产生的功率(S116),并判断所产生的功率(经计算的值)是否不大于最小功率值(S117;电压值判断步骤)。
当产生的功率(经计算的值)大于最小功率值(设定的最小功率)时(步骤S117),控制返回到步骤S111,从而继续燃料重整器120的温度测量操作。另一方面,当产生的功率(经计算的值)不大于最小功率值(设定的最小功率)时,确定所述输出功率过小(低功率判断),通知部分提供错误信息(S118),并且使输出电流Iout的电流值的大小增加一级(S119)。具体来说,对系统控制部分170输出到输出控制部分160的控制信号的电流控制值进行改变,使其比在步骤S115设定的值高一级,从而使发电电池部分150的输出电流Iout的电流值增加一级(存储电流值)。然后,控制返回到步骤S111,从而继续燃料重整器120的温度测量操作。
此外,当输出电流Iout的电流值不小于最大电流值(设定的最大电流)时(步骤S121),由于输出电流Iout的电流值不能再增加了,因此确定所述电流值过大,并且所述通知部分(显示器、扬声器或者类似设备)给出错误信息(S127)。这里,在给出错误信息之后,控制返回到步骤S111,从而继续燃料重整器120的温度测量操作,或者根据输出电流的值的极大化程度而关闭供电系统(停止操作)。
另一方面,当输出电流Iout的电流值小于最大电流值(设定的最大电流)时,将从系统控制部分170输出到输出控制部分160的控制信号的电流控制值从特定值变化为比该特定值高一级的值,从而使输出电流Iout的电流值增加一级(S122;电流值设定步骤)。
当重整器温度利用这种方式高于设定值时,升高发电电池部分150的输出电流Iout的电流值,以增加发电电池部分150中的氢气的消耗量(增加氢气利用率)。结果,由于从发电电池部分150排出的含在废气中的氢气的量减少了,因此可以减少从废气催化燃烧室140供应给燃料重整器120的热能,从而降低重整器的温度。
然后,将发电电池部分150的输出电压的值限制在不小于后面描述的最小电压值(设定的最小电压)的范围内。经由DC/DC转换器180,读取电流值增加一级的发电电池部分150的输出电压,将其作为电压数据(S123),并判断电压值(读取到的值)是否小于最小电压值(设定的最小电压)(S124;电压值判断步骤)。
当所述电压值(读取到的值)不小于最小电压值(设定的最小电压)时(步骤S124),控制返回到步骤S111,从而继续燃料重整器120的温度测量操作。另一方面,当所述电压值(读取到的值)小于最小电压值(设定的最小电压)时,确定所述电压值过小(低电压判断),所述通知部分给出错误信息(S125),并且对从系统控制部分170输出到输出控制部分160的控制信号的电流控制值进行改变,使其比在步骤S122设定的值高一级。结果,使对应于电能的电流值(输出电流Iout)降低一级(S126)。然后,控制返回到步骤S111,从而继续燃料重整器120的温度测量操作。
顺便提一下,当在步骤S120和S127给出错误信息并随后所述控制返回到步骤S111以继续温度测量操作时,由于重整器温度实际上不会迅速地变到适当状态,因此可以控制例如流体阀VL3或者流体阀VL1,流体阀VL3调整供应给废气催化燃烧室140的氧气的量,而流体阀VL1间接调整供应给燃料重整器12的燃料气体的量。结果,燃料重整器120的温度状态改变为适当状态,然后,控制在步骤S111的温度测量操作,使其继续进行。
现在,将具体介绍应用于根据本实施的供电系统的发电电池部分的发电特性与控制方法之间的关系。
图5的视图示出了应用于根据本实施例的供电系统的发电电池部分的输出特性(发电特性)。
在供电系统的控制方法中(对化学反应部分进行温度控制),发电电池部分150输出的电能的控制范围具有极限,并且通常在氢气利用率在75%到95%的发电操作范围内执行控制。
此外,在根据本实施例的供电系统中,如前所述,发电电池部分150所输出的电能被供应给DC/DC转换器180,将所述电能转换成预定的固定电压,然后将其作为负载驱动功率馈送到负载。
在这种供电系统中,如图5所示,当与发电电池部分150输出的电能对应的电流值(输出电流)增加时,发电电池部分150的电压值(输出电压)往往逐步降低(参见,测量的电压值的特性曲线)。
此外,当电流值(输出电流)增加时,基于电压值计算的功率值(产生的功率)往往大体上线性增加,并且该功率值在发电电池部分150的氢气利用率为75%到95%的控制范围内(发电电池部分150的普通控制范围)具有最大值(参见,测量的功率值的特性曲线)。
这里,图4的流程图和图5的输出特性图所示的设定的最小电流、设定的最大电流、设定的最小功率以及设定的最小电压是与发电电池部分150稳定工作的范围的极值相对应的设定值,以便防止发电电池的输出急剧下降或者防止发电电池发生损坏或恶化。
如上所述,在处于其中发电电池150的氢气利用率为75%到95%的控制范围(普通控制范围)内和在发电电池稳定工作的范围内,极好地实现了供电系统中的控制方法(一系列温度控制操作)。
这里,当供电系统正常操作时,其被设计成在上述范围内极好地操作。然而,当发生发电电池部分150的输出电压或基于该输出电压计算的功率值(产生的功率)下降到低于设定的最小电压或者设定的最小功率的现象时,这意味着在供电系统中出现了任意的故障(机能失常)。在这种情况下,DC/DC转换器180偏离能够实现正常操作的范围,并且不能保持由供电系统驱动的负载(电子设备等)的正常操作。当出现这种状态时,给出(例如显示)错误信息,燃料重整器120的温度状态改变为正常状态,并且然后继续燃料重整器120的温度测量操作,或者关闭供电系统(停止操作)。
如上所述,在根据本实施例的供电系统的控制方法中,当燃料重整器120的温度高于设定温度时,增加发电电池部分150的输出电流的电流值,以提高发电电池部分150中的氢气的消耗量,从而增大了氢气利用率。也就是说,在温度增加时,促进了燃料重整器120中的重整反应,并且产生的氢气超过了在发电电池部分150和废气催化燃烧室140中消耗掉的氢气的量,并且废气中的氢气的量增加。当出现这种现象时,发电电池部分150中的氢气利用率的增大相对地减小了废气中的氢气的量,从而减小了由废气催化燃烧室140产生的热能,因此降低了燃料重整器120中的温度。
另一方面,当燃料重整器120的温度低于设定温度时,降低发电电池部分150的输出电流的电流值,以减小发电电池部分150中的氢气的消耗量,从而降低了氢气利用率。也就是说,在温度降低时,抑制了燃料重整器120中的重整反应,并且产生的氢气少于在发电电池部分150和废气催化燃烧室140中消耗掉的氢气的量。当出现这种现象时,减小发电电池部分150的氢气利用率相对地增大了废气中的氢气的量,以升高由废气催化燃烧室140产生的热能,从而增加了燃料重整器120中的温度。
如上所述,当发电电池部分150中的氢气利用率根据化学反应部分100(燃料重整器120)的温度适当调整时,含在发电电池部分150供应给废气催化燃烧室140的废气中的氢气的量可以相对地增加/减小一定的量,该一定量是在废气催化燃烧室140中产生热能所需要的,以便废气中的氢气可以全部消耗掉。因此,可以提高供电系统的发电效率。特别是在根据本发明的供电系统的控制方法中,由于对化学反应部分100的温度控制可以在一定范围内执行,在该范围内,产生电能的发电电池部分150和将负载驱动功率供应给负载的DC/DC转换器180都可以极好地操作,因此可以使整个供电系统的驱动状态最优化以进一步改善发电效率。
此外,在根据本实施例的供电系统中,基于直接从化学反应部分100(燃料重整器120)馈送的氢气的量,控制发电电池部分150中的发电操作(即,氢气利用率)和供应给废气催化燃烧室140的废气中的氢气的量。因此,不必再提供如结合常规技术介绍的这些用于控制供应给废气催化燃烧室140的废气的供应量的阀门、流量计等。另外,废气催化燃烧室140排出的气体(排出气体)几乎不含有氢气。因此,不必再提供如结合常规技术所介绍的残余气体燃烧器。另外,可以减小尺寸或者简化供电系统的结构,或者降低生产成本。
应注意的是,在供电系统的控制方法中,已经针对以下这种实例给出了说明,即,电加热器/温度指示器HS2对构成化学反应部分100的燃料重整器120中的温度状态进行监测,并且根据该温度来调整供应给废气催化燃烧室140的废气中的氢气的量。然而,本发明并不局限于此。例如,当基于废气催化燃烧室140供应的热能来设定并保持处于稳定状态的供电系统的化学反应部分100中的各个设备(发电燃料蒸发器110、燃料重整器120和CO去除器130)的温度状态时,电加热器/温度计HS1、HS2和HS3可以对构成化学反应部分100的发电燃料蒸发器110、燃料重整器120和CO去除器130中的至少一个的温度状态进行监测,从而根据该温度来调整供应给废气催化燃烧室140的废气中的氢气的量。
此外,在根据前面实施例的供电系统中,已经对将甲醇用作发电燃料的例子给予了说明。然而,本发明并不局限于此。还可以将其它基于碳氢化合物(乙醇)的液体燃料用作发电燃料,只要它们的成份中含有氢原子。
此外,在供电系统中,已经对将质子交换膜燃料电池用作发电电池部分的例子给予了说明,其中该发电电池部分通过使用由化学反应部分产生的氢气来产生电力。然而,本发明并不局限于此,可以使用具有其它构造的燃料电池。此外,本发明可以极好地应用于各种构造,例如基于机械能转换功能等的构造(其使用化学反应部分产生的氢气的燃烧反应等所包含的压能来旋转发电机,以便产生电能(例如燃气涡轮机、旋转电机或斯特林发动机的内部燃烧或者外部燃烧发电))、或者利用由燃烧反应所包含的热能(温差发电)的构造。

Claims (23)

1.一种供电系统,包括:
化学反应部分,其接收发电燃料并利用化学反应重整所述发电燃料,以产生含有氢气的发电气体;
发电部分,其接收发电气体、使一部分所述发电气体反应以产生电能、将所产生的电能供应给负载、以及将所述发电气体中的未反应的成份作为废气排出;
加热部分,其接收所述废气、使用所述废气来产生热能、以及加热所述化学反应部分;
输出控制部分,其对从所述发电部分输出的电能的量进行控制;以及
控制部分,其利用所述输出控制部分来控制从所述发电部分输出的电能的量,以将所述化学反应部分的温度改变为预定温度,其中该化学反应部分的温度是基于由所述加热部分产生的热能设定的,
其中所述输出控制部分根据从所述发电部分输出的电能的量来控制从所述发电部分输出的输出电流的电流值,并且
其中所述控制部分包括电流值判断部分,其判断从所述发电部分输出的所述输出电流的电流值是否落入其中所述发电部分展现特定发电特性的范围内。
2.根据权利要求1所述的供电系统,还包括温度测量部分,其测量所述化学反应部分的温度,
其中所述控制部分基于由所述温度测量部分测量的所述化学反应部分的温度来对从所述发电部分输出的电能的量进行控制。
3.根据权利要求2所述的供电系统,
其中所述化学反应部分具有重整器,其基于重整反应来产生所述发电气体,
所述预定温度是适于所述重整器中的所述重整反应的温度,并且
所述控制部分包括温度比较模块,其用于将由所述温度测量部分测量的所述化学反应部分的温度与所述预定温度进行比较,并且所述控制部分基于由所述温度比较模块获得的比较结果来对从所述发电部分输出的电能的量进行控制。
4.根据权利要求2所述的供电系统,
其中所述温度测量部分还用作电加热器,其产生热能来加热所述化学反应部分。
5.根据权利要求1所述的供电系统,
其中所述加热部分基于使用含在所述废气中的氢气的燃烧反应来产生所述热能。
6.根据权利要求5所述的供电系统,
其中所述废气中的氢气的量根据由所述输出控制部分控制的所述发电部分输出的电能的量而变化,并且
所述加热部分所产生的热能的量是根据含在所述废气中的氢气的量设定的。
7.根据权利要求1所述的供电系统,还包括电压转换部分,其对从所述发电部分输出的所述电能进行转换,以产生具有预定电压值和电流值的负载驱动功率,并将所产生的负载驱动功率供应给负载。
8.根据权利要求7所述的供电系统,还包括功率保持部分,其存储从所述发电部分输出的电能,
其中所述电压转换部分对存储在所述功率保持部分中的电能进行转换,以产生所述负载驱动功率。
9.根据权利要求1所述的供电系统,
其中所述化学反应部分包括:
蒸发器,其接收所述发电燃料和水,并且对所供应的发电燃料和水进行蒸发;以及
重整器,其接收由所述蒸发器产生的经蒸发的发电燃料和水,并基于催化反应来产生作为所述发电气体的含有氢气的气体。
10.根据权利要求9所述的供电系统,
其中所述发电燃料是其成份中含有氢原子的液体燃料。
11.根据权利要求9所述的供电系统,
其中所述加热部分将所述热能供应给所述燃料重整器。
12.根据权利要求1所述的供电系统,
其中所述发电部分基于使用含在所述发电气体中的氢气的电化学反应来产生所述电能。
13.根据权利要求12所述的供电系统,
其中所述发电部分是质子交换膜燃料电池。
14.一种供电系统,包括:
化学反应部分,其接收发电燃料并利用化学反应重整所述发电燃料,以产生含有氢气的发电气体;
发电部分,其接收发电气体、使一部分所述发电气体反应以产生电能、将所产生的电能供应给负载、以及将所述发电气体中的未反应的成份作为废气排出;
加热部分,其接收所述废气、使用所述废气来产生热能、以及加热所述化学反应部分;
输出控制部分,其对从所述发电部分输出的电能的量进行控制;以及
控制部分,其利用所述输出控制部分来控制从所述发电部分输出的电能的量,以将所述化学反应部分的温度改变为预定温度,其中该化学反应部分的温度是基于由所述加热部分产生的热能设定的,
其中所述控制部分包括电压值判断部分,当从所述发电部分输出电能时,所述电压值判断部分对所述发电部分的输出电压的电压值进行检测,并且判断所述输出电压的电压值是否落入了其中所述发电部分展现特定发电特性的范围内。
15.供电系统的控制装置,所述供电系统包括:化学反应部分,其接收发电燃料并利用化学反应重整所述发电燃料,以产生含有氢气的发电气体;发电部分,其接收所述发电气体并使一部分所述发电气体反应以产生电能;以及加热部分,其接收从所述发电部分排出的废气并且使用所述废气来产生热能,以加热所述化学反应部分,
所述控制装置包括:
输出控制部分,其对从所述发电部分输出的电能的量进行控制;以及
控制部分,其利用所述输出控制部分来控制从所述发电部分输出的电能的量,以将所述化学反应部分的温度改变为预定温度,其中该化学反应部分的温度是基于由所述加热部分产生的热能设定的,
其中所述输出控制部分根据从所述发电部分输出的电能的量来控制从所述发电部分输出的输出电流的电流值,
其中所述控制部分包括电流值判断部分,其判断所述输出电流的电流值是否落入其中所述发电部分展现特定发电特性的范围内。
16.根据权利要求15所述的控制装置,还包括温度测量部分,其测量所述化学反应部分的温度,
其中所述控制部分基于由所述温度测量部分测量的所述化学反应部分的温度来对所述发电部分输出的电能的量进行控制。
17.根据权利要求16所述的控制装置,
其中所述预定温度是适于所述化学反应部分中的所述化学反应的温度,并且
所述控制部分基于由所述温度测量部分测量的所述化学反应部分的温度与所述预定温度之间的差值来控制从所述发电部分输出的电能的量。
18.供电系统的控制装置,所述供电系统包括:化学反应部分,其接收发电燃料并利用化学反应重整所述发电燃料,以产生含有氢气的发电气体;发电部分,其接收所述发电气体并使一部分所述发电气体反应以产生电能;以及加热部分,其接收从所述发电部分排出的废气并且使用所述废气来产生热能,以加热所述化学反应部分,
所述控制装置包括:
输出控制部分,其对从所述发电部分输出的电能的量进行控制;以及
控制部分,其利用所述输出控制部分来控制从所述发电部分输出的电能的量,以将所述化学反应部分的温度改变为预定温度,其中该化学反应部分的温度是基于由所述加热部分产生的热能设定的,
其中所述控制部分包括电压值判断部分,当从所述发电部分输出所述电能时,所述电压值判断部分对所述发电部分的输出电压的电压值进行检测,并且判断所述输出电压的电压值是否落入了其中所述发电部分展现特定发电特性的范围内。
19.供电系统的控制方法,所述供电系统包括:化学反应部分,其接收发电燃料并利用化学反应重整所述发电燃料,以产生含有氢气的发电气体;发电部分,其接收所述发电气体并使一部分所述发电气体反应以产生电能;以及加热部分,其接收从所述发电部分排出的废气并且使用所述废气来产生热能,以加热所述化学反应部分,
所述控制方法包括:
测量所述化学反应部分的温度的操作;以及
基于测量到的所述化学反应部分的温度对从所述发电部分输出的电能的量进行控制以将所述化学反应部分的温度改变为预定温度的操作,其中该化学反应部分的温度是基于由所述加热部分产生的热能设定的,
其中对从所述发电部分输出的电能的量进行控制的操作包括以下操作:
根据从所述发电部分输出的电能的量来控制从所述发电部分输出的输出电流的电流值;以及
判断从所述发电部分输出的所述输出电流的电流值是否落入其中所述发电部分展现特定发电特性的范围内。
20.根据权利要求19所述的控制方法,
其中对从所述发电部分输出的电能的量进行控制的操作包括以下操作:
将测量到的所述化学反应部分的温度与所述预定温度进行比较;以及
根据所述化学反应部分的温度与所述预定温度之间的差值来增加/减小从所述发电部分输出的电能的量。
21.根据权利要求19所述的控制方法,
其中对从所述发电部分输出的电能的量进行控制的操作还包括以下操作:
当确定从所述发电部分输出的所述输出电流的电流值在其中所述发电部分展现所述特定发电特性的范围之外时,将从所述发电部分输出的所述输出电流的电流值返回到其中所述发电部分展现所述特定发电特性的范围内。
22.供电系统的控制方法,所述供电系统包括:化学反应部分,其接收发电燃料并利用化学反应重整所述发电燃料,以产生含有氢气的发电气体;发电部分,其接收所述发电气体并使一部分所述发电气体反应以产生电能;以及加热部分,其接收从所述发电部分排出的废气并且使用所述废气来产生热能,以加热所述化学反应部分,
所述控制方法包括:
测量所述化学反应部分的温度的操作;以及
基于测量到的所述化学反应部分的温度对从所述发电部分输出的电能的量进行控制以将所述化学反应部分的温度改变为预定温度的操作,其中该化学反应部分的温度是基于由所述加热部分产生的热能设定的,
其中对从所述发电部分输出的电能的量进行控制的操作包括以下操作:
当从所述发电部分输出电能时,检测所述发电部分的输出电压的电压值;以及
判断所述输出电压的所述电压值是否落入其中所述发电部分展现特定发电特性的范围内。
23.根据权利要求22所述的控制方法,
其中对从所述发电部分输出的电能的量进行控制的操作还包括以下操作:
当确定所述输出电压的电压值在其中所述发电部分展现特定发电特性的范围之外时,控制从所述发电部分输出的所述输出电流的电流值,以使得所述输出电压的电压值落入其中所述发电部分展现所述特定发电特性的所述范围内。
CN2006800479698A 2005-12-19 2006-12-18 供电系统及其控制方法 Expired - Fee Related CN101341617B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005364490A JP4839821B2 (ja) 2005-12-19 2005-12-19 電源システム、電源システムの制御装置及び電源システムの制御方法
JP364490/2005 2005-12-19
PCT/JP2006/325673 WO2007072955A1 (en) 2005-12-19 2006-12-18 Power supply system and control method thereof

Publications (2)

Publication Number Publication Date
CN101341617A CN101341617A (zh) 2009-01-07
CN101341617B true CN101341617B (zh) 2010-07-14

Family

ID=37888065

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2006800479698A Expired - Fee Related CN101341617B (zh) 2005-12-19 2006-12-18 供电系统及其控制方法

Country Status (7)

Country Link
US (1) US8142941B2 (zh)
EP (1) EP1964201A1 (zh)
JP (1) JP4839821B2 (zh)
KR (1) KR101029647B1 (zh)
CN (1) CN101341617B (zh)
TW (1) TWI335099B (zh)
WO (1) WO2007072955A1 (zh)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008024277B4 (de) 2007-06-29 2010-11-18 Yazaki Corp. Stromzuführungssystem
JP4274279B2 (ja) * 2007-11-02 2009-06-03 トヨタ自動車株式会社 内燃機関
US7869905B2 (en) * 2008-02-07 2011-01-11 Oracle America, Inc. Method and apparatus for using a heater to control the temperature of a power supply in a computer system
JP5078696B2 (ja) 2008-03-27 2012-11-21 Jx日鉱日石エネルギー株式会社 燃料電池システムの負荷追従運転方法
US9212058B2 (en) * 2009-04-19 2015-12-15 Christopher Lawrence de Graffenried, SR. Synthetic hydrogen-based gas manufacture and use
US9354618B2 (en) 2009-05-08 2016-05-31 Gas Turbine Efficiency Sweden Ab Automated tuning of multiple fuel gas turbine combustion systems
US8437941B2 (en) 2009-05-08 2013-05-07 Gas Turbine Efficiency Sweden Ab Automated tuning of gas turbine combustion systems
US9671797B2 (en) 2009-05-08 2017-06-06 Gas Turbine Efficiency Sweden Ab Optimization of gas turbine combustion systems low load performance on simple cycle and heat recovery steam generator applications
US9267443B2 (en) 2009-05-08 2016-02-23 Gas Turbine Efficiency Sweden Ab Automated tuning of gas turbine combustion systems
DE102009030236B4 (de) * 2009-06-23 2021-05-27 Eberspächer Climate Control Systems GmbH & Co. KG Brennstoffzellensystem und Betriebsverfahren
JP5433323B2 (ja) * 2009-07-02 2014-03-05 Jx日鉱日石エネルギー株式会社 燃料電池システムの負荷追従運転方法
JP2012142125A (ja) * 2010-12-28 2012-07-26 Jx Nippon Oil & Energy Corp 燃料電池システム
CN103236555B (zh) * 2012-11-05 2015-01-28 华中科技大学 一种固体氧化物燃料电池系统及热电协同控制方法
CN105873854B (zh) 2013-11-06 2019-02-05 瓦特燃料电池公司 使用钙钛矿作为其结构组分的重整器
CN105705227B (zh) 2013-11-06 2018-09-25 瓦特燃料电池公司 液体燃料催化部分氧化重整器和燃料电池系统、以及产生电力的方法
US9627699B2 (en) 2013-11-06 2017-04-18 Watt Fuel Cell Corp. Gaseous fuel CPOX reformers and methods of CPOX reforming
KR101832864B1 (ko) 2013-11-06 2018-02-27 와트 퓨얼 셀 코퍼레이션 기체 반응 매질 플로우 관리용 매니폴드를 가지는 화학 반응기
KR101796509B1 (ko) 2013-11-06 2017-12-01 와트 퓨얼 셀 코퍼레이션 액체 연료 촉매 부분산화 개질 장치 및 촉매 부분산화 개질 방법
CN105706283B (zh) 2013-11-06 2018-11-06 瓦特燃料电池公司 集成的气态燃料催化部分氧化重整器和燃料电池系统、以及产生电力的方法
CN105738819A (zh) * 2016-02-03 2016-07-06 成都雅骏新能源汽车科技股份有限公司 一种电池管理系统总电流估算方法
KR101857470B1 (ko) * 2016-04-18 2018-05-14 현대자동차주식회사 공기 유량 제어 방법 및 시스템
CN105871402A (zh) * 2016-04-20 2016-08-17 苏州慧得赛物联网技术有限公司 一种续航持久的对讲通讯装置
DE102017001564B4 (de) * 2017-02-20 2020-01-16 Diehl Aerospace Gmbh Verfahren zum Starten einer Brennstoffzellenanordnung und Brennstoffzellenanordnung
EP3680470A4 (en) * 2017-09-07 2021-06-02 Renaissance Energy Research Corporation POWER GENERATION SYSTEM

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1602561A (zh) * 2002-05-15 2005-03-30 松下电器产业株式会社 燃料电池发电装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6436561B1 (en) * 1999-07-21 2002-08-20 General Motors Corporation Methanol tailgas combustor control method
JP2001229941A (ja) * 2000-02-16 2001-08-24 Nissan Motor Co Ltd 燃料電池システム
JP2001231176A (ja) 2000-02-18 2001-08-24 Toshiba Corp 燃料電池電源装置
JP2002289226A (ja) * 2001-03-27 2002-10-04 Osaka Gas Co Ltd 燃料電池発電装置の改質器温度制御システム
JP3979057B2 (ja) * 2001-10-16 2007-09-19 日産自動車株式会社 燃料電池システムの制御装置
US6555989B1 (en) * 2001-11-27 2003-04-29 Ballard Power Systems Inc. Efficient load-following power generating system
US6884533B2 (en) * 2002-05-31 2005-04-26 Ballard Generation Systems Utilization based power plant control system
TW558852B (en) 2002-07-12 2003-10-21 Asia Pacific Fuel Cell Tech Control apparatus and method of fuel cell set
JP3912249B2 (ja) 2002-09-30 2007-05-09 日本電気株式会社 燃料電池の運転方法および燃料電池を搭載した携帯機器
JP3899518B2 (ja) * 2002-09-30 2007-03-28 カシオ計算機株式会社 燃料電池システム及びその駆動制御方法並びに電源システムを備えた電子機器
JP4576599B2 (ja) * 2002-10-15 2010-11-10 カシオ計算機株式会社 温度制御装置及びその温度制御方法並びに温度制御装置を備えた電源システム
JP2005135666A (ja) * 2003-10-29 2005-05-26 Ebara Ballard Corp 燃料電池システム
JP4704690B2 (ja) * 2004-02-06 2011-06-15 株式会社日立製作所 燃料電池発電システム
JP4501060B2 (ja) * 2004-03-08 2010-07-14 トヨタ自動車株式会社 燃料電池電源装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1602561A (zh) * 2002-05-15 2005-03-30 松下电器产业株式会社 燃料电池发电装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JP特开2001-231176A 2001.08.24

Also Published As

Publication number Publication date
JP4839821B2 (ja) 2011-12-21
KR101029647B1 (ko) 2011-04-15
TW200733465A (en) 2007-09-01
WO2007072955A1 (en) 2007-06-28
KR20080068756A (ko) 2008-07-23
CN101341617A (zh) 2009-01-07
TWI335099B (en) 2010-12-21
JP2007172855A (ja) 2007-07-05
US20070141417A1 (en) 2007-06-21
EP1964201A1 (en) 2008-09-03
US8142941B2 (en) 2012-03-27

Similar Documents

Publication Publication Date Title
CN101341617B (zh) 供电系统及其控制方法
CN100438165C (zh) 直接甲醇燃料电池系统及其控制方法
CN102414899B (zh) 固体电解质型燃料电池
US6783879B2 (en) Dynamic fuel processor mechanization and control
CN101322268A (zh) 基于利用率的燃料电池监测和控制
CN102035005B (zh) 固体电解质型燃料电池
US8546029B2 (en) Solid oxide fuel cell
EP1744391A1 (en) Method of correcting flow rate in fuel supply unit of fuel cell system
JPWO2013150722A1 (ja) 水素生成装置およびその運転方法、ならびに燃料電池システム
US6607855B2 (en) Control system for fuel cell
US20080026272A1 (en) Fuel supply system for fuel cell and fuel cell system using the same
US8637199B2 (en) Fuel cell using organic fuel
JP2003217619A (ja) コージェネレーションシステム
US8071248B2 (en) Structure and method for optimizing system efficiency when operating an SOFC system with alcohol fuels
CN103367779B (zh) 固体氧化物型燃料电池装置
JP5683031B2 (ja) 燃料電池システムおよびその運転方法
JP4998843B2 (ja) 電源システム及びその制御方法
JP2008529228A (ja) 燃料電池システムおよび関連する制御方法
KR101147234B1 (ko) 연료 전지 시스템
KR101201809B1 (ko) 연료 전지 시스템
JP2005150044A (ja) 改質蒸気用水流量制御方法
JP4929565B2 (ja) 燃料電池発電装置
JP2006331907A (ja) 直接メタノール型燃料電池
JP2007294453A (ja) 液体燃料電池の燃料供給方法
KR20070035854A (ko) 연료농도 측정장치를 구비한 연료전지 시스템

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100714

Termination date: 20141218

EXPY Termination of patent right or utility model