CN101341243A - Method, apparatus and system for biodiesel production from algae - Google Patents

Method, apparatus and system for biodiesel production from algae Download PDF

Info

Publication number
CN101341243A
CN101341243A CNA2006800398900A CN200680039890A CN101341243A CN 101341243 A CN101341243 A CN 101341243A CN A2006800398900 A CNA2006800398900 A CN A2006800398900A CN 200680039890 A CN200680039890 A CN 200680039890A CN 101341243 A CN101341243 A CN 101341243A
Authority
CN
China
Prior art keywords
algae
tube
apparatus
system
thermal barrier
Prior art date
Application number
CNA2006800398900A
Other languages
Chinese (zh)
Inventor
J·T·西尔斯
Original Assignee
索利克斯生物燃料公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US71131605P priority Critical
Priority to US60/711,316 priority
Priority to US73356905P priority
Priority to US60/733,569 priority
Priority to US60/740,855 priority
Priority to US74085505P priority
Priority to US75758706P priority
Priority to US60/757,587 priority
Priority to US81810206P priority
Priority to US60/818,102 priority
Application filed by 索利克斯生物燃料公司 filed Critical 索利克斯生物燃料公司
Publication of CN101341243A publication Critical patent/CN101341243A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/12Unicellular algae; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/02Photobioreactors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/12Bioreactors or fermenters specially adapted for specific uses for producing fuels or solvents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/06Tubular
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/20Material Coatings
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/26Constructional details, e.g. recesses, hinges flexible
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/20Degassing; Venting; Bubble traps
    • C12M29/22Oxygen discharge
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M33/00Means for introduction, transport, positioning, extraction, harvesting, peeling or sampling of biological material in or from the apparatus
    • C12M33/10Means for introduction, transport, positioning, extraction, harvesting, peeling or sampling of biological material in or from the apparatus by centrifugation ; Cyclones
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M33/00Means for introduction, transport, positioning, extraction, harvesting, peeling or sampling of biological material in or from the apparatus
    • C12M33/18Rollers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M37/00Means for sterilizing, maintaining sterile conditions or avoiding chemical or biological contamination
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/12Means for regulation, monitoring, measurement or control, e.g. flow regulation of temperature
    • C12M41/18Heat exchange systems, e.g. heat jackets or outer envelopes
    • C12M41/24Heat exchange systems, e.g. heat jackets or outer envelopes inside the vessel
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M43/00Combinations of bioreactors or fermenters with other apparatus
    • C12M43/02Bioreactors or fermenters combined with devices for liquid fuel extraction; Biorefineries
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M43/00Combinations of bioreactors or fermenters with other apparatus
    • C12M43/04Bioreactors or fermenters combined with combustion devices or plants, e.g. for carbon dioxide removal
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P1/00Preparation of compounds or compositions, not provided for in groups C12P3/00 - C12P39/00, by using microorganisms or enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P5/00Preparation of hydrocarbons or halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6436Fatty acid esters
    • C12P7/649Biodiesel, i.e. Fatty acid alkyl esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1011Biomass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels
    • Y02E50/13Bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste
    • Y02E50/34Methane
    • Y02E50/343Methane production by fermentation of organic by-products, e.g. sludge
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Bio-feedstock

Abstract

The present disclosure concerns methods, apparatus, compositions and systems relating to closed bioreactors for algal culture and harvesting. In certain embodiments, the system may comprise bags with various layers, including a thermal barrier layer, that may be used to contain the algal culture and/or to thermally regulate the temperature of the algal culture. The system may comprise various mechanisms for moving fluid within the sytem, such as a roller type mechanism, and may provide temperature regulation by compartmentalization of the fluid to regulate absorption of solar radiation and/or conductive or emissive heat loss and gain. Various mechanisms may be used to harvest and process the algae and/or to convert algal oil into biodiesel and other products.

Description

由藻类生产生物柴油的方法、设备和系统 The method of producing an algae biodiesel, devices and systems

技术领域 FIELD

[0001]本发明涉及用于生长并收获藻类和/或其他水生生物的方法、组合物、设备和系统。 [0001] The present invention relates to a method for growing and harvesting algae and / or other aquatic organisms, compositions, devices and systems. 某些实施方式涉及由藻类生产有用产品诸如生物燃料(例如生物柴油、甲醇、乙醇)、生物聚合物、化学前体和/或动物或人类食物的方法、组合、装置和系统。 Certain embodiments relate to the production of useful products such as algae biofuel (e.g. biodiesel, methanol, ethanol), biopolymers, chemical precursors, and / or human food or animal methods, compositions, apparatus and systems. 其他实施方式涉及利用这样的系统从诸如电厂排放等来源中除去二氧化碳。 Further embodiments relate to the use of such a system for removing carbon dioxide emissions from sources such as power plants.

背景技术 Background technique

[0002]在1996年,位于Golden,Colorado的国家可再生能源实验室(National Renewable Energy Laboratory(NREL))被迫放弃其10年2千5百万美元的水生物种项目,所述项目着力于从非同寻常的生产性藻类物种中提取生物柴油。 [0002] in 1996, is located in Golden, Colorado's National Renewable Energy Laboratory (National Renewable Energy Laboratory (NREL)) was forced to abandon its 10-year 25 million dollar aquatic species project, the project focused on biodiesel is extracted from the extraordinary productivity of algae species. 在失去项目基金之前,政府科学家们已证实可获得相比从大豆种植实现的燃料生产每英亩高200倍的油类生产率。 Before the loss of project funds, government scientists have confirmed availability compared to 200 times more oil per acre productivity high fuel production from soybean achieve. 然而,三个基本问题限制了藻类养殖的商业化潜力。 However, three basic problems limit the commercial potential of algae farming.

[0003]所述三个问题是:[1]1996年的油价较低,难以和其竞争。 [0003] The three problems are: [1] lower oil 1996, and its difficult to compete. [2]当在敞开环境的池塘中生长时,难以保护所述富油藻类免遭浸入生物的消耗和取代。 [2] When grown in ponds in open environments, difficult to protect against algae is immersed in the oil-rich biological consumption and substituted. [3]藻类在狭窄的温度带里才能最好地生产油类,而夜间天空辐射及低温日和高温日以及过量的太阳IR辐射通过激烈地改变养殖温度干扰了NREL的池塘试验。 [3] algae in a narrow temperature band where best to produce oil, and the night sky radiation and low temperature and high temperature day and day of excess solar IR radiation by drastically changing the culture temperature interfere with the test pond at NREL.

[0004]在本领域中存在以下需求,即需要技术和方法以解决这些问题,以及提供在比开放池塘模式更好地进行温度控制的生物封闭系统中的价格具有竞争力的藻类养殖类生物柴油生产。 [0004] The need exists in this art, the need methods and techniques to solve these problems, and to provide the algae culture-based biodiesel biological price closed temperature control system in a better mode than the open pond competitive produce.

发明内容 SUMMARY

[0005]在某些实施方式中,此处所公开的和所主张的方法、组合物、设备和系统提供了由藻类养殖进行生物柴油生产,其价格相当于或者低于由石油类生产的柴油成本。 [0005] In certain embodiments, the methods herein disclosed and claimed, compositions, apparatus and system provided by the algae cultivation biodiesel production, its price is equivalent to or lower than the cost of diesel oil produced by the . 所述封闭养殖和收获系统极大地减少了藻类污染、藻类消耗性微生物和/或其他外来物种的问题。 The closed cultivation and harvesting systems greatly reduce the pollution of algae, the algae consumption problem microorganisms and / or other exotic species. 在更优选的实施方式中,所述设备设计为在室外环境中安装和运行,使其暴露于环境光线、温度和气候。 In a more preferred embodiment, the device is designed to be installed and operating in an outdoor environment, it is exposed to ambient light, temperature and weather. 所述设备、系统和方法提供了改进的热量调控,其经设计能将温度保持在兼容最佳生长和油类生产的范围内。 The apparatus, system and method provide improved heat regulation, which is designed capable of maintaining the temperature in the production of oil and compatible with optimal growth range. 所述系统的另一优点在于其能够在对于普通农作物诸如玉米、小麦、大豆、油菜或大米的耕作而言不够肥沃或者无用的土地上进行建造和运行。 Another advantage of the system is that it can be constructed and operated on, such as maize, wheat cultivation, soybeans, rice, oilseed rape, or in terms of insufficient or useless for normal fertile crop land.

[0006]所述封闭生物反应器技术以低能源消耗稳定了藻类养殖温度,适用于任何规模。 [0006] The closed bioreactor technology with low energy consumption of the algae cultivation temperature stabilized, for any size. 通过以可负担的成本解决了温度和入侵物种的问题,并加入其他技术,本发明人开发了能用于从主要由工业、农业和生活废物进行养殖的藻类生产大量高价值产品的系统。 By an affordable cost to solve the problem of invasive species and temperature, and add other techniques, the inventors have developed a system can be used to produce large quantities of high-value products from algae cultivation mainly by industrial, agricultural and domestic wastes. 在一些实施方式中,所述藻类养殖可直接用于提供动物或人类食物来源,例如养殖可食用藻类诸如螺旋藻。 In some embodiments, the algae culture can be directly used to provide an animal or human food source, such as edible algae, such as Spirulina culture. 在其他实施方式中,所述藻类养殖可用于支持二级食物来源的生长,诸如食用藻类的虾或其他水生生物。 In other embodiments, the growth of the algae culture can be used to support two food sources, such as the consumption of algae shrimp or other aquatic organisms. 虾类养殖以及其他可食用物种的水生养殖的方法在本领域内已知并可采用熟知的物种诸如日本对虾(Penaeus japonicus)、桃红对虾(Penaeus duorarum)、褐对虾(Penaeus aztecus)、白对虾(Penaeus setiferus)、西方对虾(Penaeusoccidentalis)、南美白对虾(Penaeus vannamei)或其他对虾种。 Shrimp farming methods and other edible aquatic species farmed and known in the art using well-known species such as Japanese shrimp (Penaeus japonicus), pink shrimp (Penaeus duorarum), brown shrimp (Penaeus aztecus), white shrimp ( Penaeus setiferus), Western shrimp (Penaeusoccidentalis), South American white shrimp (Penaeus vannamei) shrimp or other species. 本领域技术人员将意识到本公开并非限制性的,其他食用藻类的可食用物种也可被养殖和收获。 Those skilled in the art will recognize that the disclosure is not limiting, other edible edible species of algae can also be farmed and harvested.

[0007]一个实施方式涉及制造生物柴油的方法、设备和系统。 [0007] One embodiment relates to a method for producing biodiesel, devices and systems. 高油藻类品种在封闭系统中养殖并收获。 High oil algae species farmed and harvested in a closed system. 藻类完全地或者部分地从培养液中分离,所述培养液可被过滤、灭菌和再次使用。 Algae completely or partially separated from the broth, the broth may be filtered, sterilized and used again. 油从所述藻类细胞中分离并利用标准酯交换反应技术如已知的Connemann方法(参见例如美国专利第5,354,878号,其全文在此以引用的方式引入)加工为柴油。 Separating the oil from the algal cells using standard techniques such as transesterification Connemann known methods (see, e.g. U.S. Pat. No. 5,354,878, which is incorporated herein by reference) is a diesel processing. 然而,可设想的是任何已知的将藻类油产品转化为生物柴油的方法均可被采用。 However, it is contemplated that any known algae oil product was converted to biodiesel methods may be employed.

[0008]在其他实施方式中,所述系统、设备和方法可用于从例如由电厂、工厂和/或其他二氧化碳固定产生来源排放的废气中除去二氧化碳污染。 [0008] In other embodiments, the systems, apparatus and methods for removing carbon dioxide from the exhaust gas pollution for example, from power plants, factories, and / or other source of carbon dioxide emissions generated in the fixing. 可将CO 2引入所述封闭系统反应器中,例如通过向水性培养液中鼓泡。 It may be CO 2 is introduced into the reactor in closed system, for example by bubbling the aqueous broth. 在优选实施方式中,可通过多孔氯丁二烯橡胶膜鼓气将CO 2引入,该方式形成具有高表面体积比的小气泡以实现最大程度的交换。 In preferred embodiments, the butadiene rubber through the porous membrane chlorine gas CO 2 is introduced into the drum, the small gas bubbles are formed having a high surface to volume ratio in order to achieve maximum exchange. 在更优选的实施方式中,可在水柱底部引入气泡,其中水流方向与气泡移动方向相反。 In a more preferred embodiment, the gas bubbles may be introduced at the bottom of the water column, wherein the direction of flow opposite to the direction of movement of the bubble. 该逆流设置通过增加气泡接触水性培养液的时间从而最大程度地进行气体交换。 The countercurrent contact with an aqueous medium is provided by increasing the time of the bubbles so that gas exchange maximally. 为进一步提高CO 2溶解,可增加所述水柱的长度从而延长气泡接触培养液的时间。 To further enhance the dissolution of CO 2, the length of the water column so as to increase the extension time bubble contact broth. CO 2溶解在水中生成H 2 CO 3 ,然后可由光合藻类“固定”以生成有机化合物。 CO 2 generated H 2 CO 3 was dissolved in water, followed by photosynthetic algae "fixed" to generate an organic compound. 据估计,安装在大约60平方英里(4.5英里半径)的表面积的此处公开的系统和装置能固定足够多的CO 2以完全净化十亿瓦特电厂的碳排放。 It is estimated that the disclosed systems and devices installed in the surface area of about 60 square miles (4.5 mile radius) can be fixed here enough carbon to completely purify one billion watts power plant CO 2. 同时,二氧化碳将提供基本营养以支持藻类生长。 Meanwhile, the carbon dioxide will provide essential nutrients to support the growth of algae. 这样的装置能产生藻类油脂和烃类联产物,大约能产生14,000加仑/英亩/年的总燃料输出,吸收6百万吨/年由电厂产生的CO 2 Such means can generate algae oils and hydrocarbon co-product, the total fuel to produce an output of approximately 14,000 gal / acre / year, the absorbent 6 million tons / year produced by the power plant CO 2. 由生成的生物柴油加上通过无氧(anarobically)消化所述藻类的烃类部分生成的甲烷加上所产生的潜在碳额度(carbon credits)的价值将产生巨大净利润,其超过由普通的燃煤电厂或天然气发电厂所产生的电力能源价值两倍以上。 Potential value of carbon credits (carbon credits) is generated by the biodiesel by adding the anaerobic digestion algae (anarobically) hydrocarbon adding section generates methane produced will have a great profit that exceeds by a common fuel the value of electric energy generated by coal or natural gas power plants more than twice.

[0010]虽然有成千上万种天然藻类,其中任何一种都可用于生物柴油生产以及形成其他产物,在某些实施方式中,所述藻类可经过基因改造从而进一步提高每单位英亩的生物柴油供料。 [0010] Although there are thousands of natural algae, any of which can be used for the production of biodiesel and other products are formed, in some embodiments, the algae can be genetically engineered to further increase the biological per acre diesel feed. 用于特定产品输出的藻类基因改造采用本领域内已知技术是相对简易直接的。 Genetically modified for a particular product output algae using techniques known in the art is a relatively simple straightforward. 然而,此处公开的低成本的养殖、收获和产物提取方法可采用转基因藻类或非转基因藻类。 However, it disclosed herein a low cost breeding methods can be harvested and the product was extracted a transgenic or non-transgenic algae algae. 熟练技术人员将认识到不同的藻类品种(strains)将表现出不同的生长和产油率,以及在不同条件下,所述系统可含有单一藻类品种或具有不同性质的品种的混合物,或者藻类品种与共生细菌。 The skilled artisan will recognize that different strains of algae (strains) will exhibit different growth rates and the oil, and under different conditions, the system may contain a single species or a mixture of algae species different properties, or algae species and symbiotic bacteria. 所使用的藻类可为地理位置、温度敏感性、光强度、pH敏感性、盐度、水质量、可用营养、温度或光照的季节差异、由所述藻类获得的最终希望产品以及其他各种因素等优化。 Algae used may be location, temperature sensitivity, light intensity, pH sensitive, salinity, water quality, nutrient availability, or seasonal temperature differences in illumination, algae obtained by the final desired product, and various other factors and other optimizations.

[0011]所公开的封闭生物反应器系统和方法可扩展到任何所需要的制造水平,使之能在充分低于当前批发价格下进行生物柴油供料生产;甚至不需要考虑政府对生物柴油燃料进行补贴的因素。 [0011] closed bioreactor system and methods disclosed may be extended to any desired level of manufacturing, so that it can be well below the current biodiesel wholesale price of feed production; do not even consider biodiesel fuel government factors Affecting subsidies.

[0012]一些实施方式涉及用于藻类养殖的温度控制的装置、方法和系统。 [0012] means, methods and systems of some embodiments relate to temperature control of algae cultivation. 在一个优选实施方式中,所述封闭生物反应器由柔软的塑料管子和可调节的阻热层(thermal barrier layer)组成。 In a preferred embodiment, the bioreactor is closed by a flexible plastic tube and the adjustable thermal barrier (thermal barrier layer) composition. 所述管子和阻热层可由多种材料制成,诸如聚乙烯、聚丙烯、聚氨酯、聚碳酸酯、聚乙烯吡咯烷酮、聚氯乙烯、聚苯乙烯、聚对苯二甲酸乙二醇酯、聚萘二甲酸乙二酯、聚对苯二甲酸1,4-环己烷二亚甲酯、聚烯烃、聚丁烯、聚丙烯酸酯和聚偏氯乙烯。 The tube and the thermal barrier layer may be made of various materials, such as polyethylene, polypropylene, polyurethane, polycarbonate, polyvinyl pyrrolidone, polyvinyl chloride, polystyrene, polyethylene terephthalate, polyethylene naphthalate, polyethylene terephthalate, poly 1,4-cyclohexane dimethylene terephthalate, polyolefins, polybutylene, polyvinylidene chloride, and polyacrylates. 在涉及光合藻类或食用所述藻类的生物体的养殖的实施方式中,所述阻热材料优选为表现出在红色和蓝色波长下至少50%,优选为超过60%,更优选为超过75%,更优选为超过90%,更优选为超过90%,最优选为约100%的可见光透过率。 In the embodiment of the edible algae or photosynthetic algae cultured organism, the heat-resistant material preferably exhibits at red and blue wavelengths of at least 50%, preferably more than 60%, more preferably more than 75 %, more preferably more than 90%, more preferably more than 90%, and most preferably about 100% of the visible light transmittance. 在其他优选实施方式中,用于所述管子顶面的材料表现出至少90%,更优选为超过95%,更优选为超过98%,最优选为约100%的可见光透过率。 In other preferred embodiments, the top surface of the material for the tube exhibits at least 90%, more preferably more than 95%, more preferably more than 98%, and most preferably about 100% of the visible light transmittance. 在优选实施方式中采用聚乙烯。 In a preferred embodiment polyethylene embodiment. 聚乙烯可以同时让长波黑体辐射和红色以及蓝色可见光透过,使得所述温度控制系统可以将水内部的热辐射至夜空并使藻类接受可见光以支持光合作用,而无论所述培养液位于阻热层的上方或下方。 Polyethylene simultaneously allowing long-wave black body radiation and visible light through the red and blue, the temperature control system such that the heat radiation to the interior of the water may be visible in the night sky and receiving support algal photosynthesis, regardless of the culture fluid resistance is located above or below the thermal layer. 与某些替代性类型的塑料相比,聚乙烯表现出更高的与室温黑体辐射相关的长波红外光透射。 Compared to some alternative types of plastic, polyethylene exhibits a higher temperature associated with the long-wave infrared blackbody radiation light transmission. 在各种实施方式中,UV阻挡材料薄层可以涂覆在所述管子表面以减少塑料的UV降解。 In various embodiments, UV barrier sheet material may be coated on the surface of the tube of plastic to reduce UV degradation. 在其他实施方式中,可将能把红外(IR)或紫外(UV)光转变为可见光(可进行光合作用)的荧光染料加入到管子中以提高光合生物的太阳能捕获效率。 In other embodiments, the can may be infrared (IR) or ultraviolet (UV) light into visible light (available for photosynthesis) fluorescent dye was added to the tube to increase the efficiency of the photosynthetic organisms capture solar energy. 这些染料在本领域内已知,例如用于涂覆温室的玻璃或塑料表面,或者用在将UV转变为可见光波长的荧光照明系统中。 These dyes known in the art, for example, glass or plastic surface coated greenhouses, or for use in the UV into fluorescent lighting system in the wavelength of visible light. (参见例如Hemming et al.,2006,Eur.J.Hort.Sci.71(3);Hemming et al.,in International Conference on Sustainable Greenhouse Systems, (Straten et al.,eds.)2005.) (See, e.g. Hemming et al, 2006, Eur.J.Hort.Sci.71 ( 3);. Hemming et al, in International Conference on Sustainable Greenhouse Systems, (Straten et al, eds) 2005....)

[0013]在管内采用阻热层的实施方式中,含有藻类的水性培养液可导引至所述阻热层之上或之下。 [0013] The embodiment of the thermal barrier within the tube, the aqueous medium containing algae may be directed to the thermal barrier layer above or below. 在低温条件下,液体可导引至所述阻热层之上,使其接受更多的包括红外波长的日光辐射,从而升高温度。 At low temperatures, the liquid may be directed to the thermal layer on the barrier, to accept more wavelengths including infrared solar radiation, thereby raising the temperature. 在高温条件下,液体可导引至所述阻热层以下,对其部分遮挡免受日光辐射,同时通过与下方的底面层(ground layer)相接触而流失热量。 Under high temperature conditions, the liquid may be directed to the thermal barrier, their partial occlusion against solar radiation, while the loss of heat by contact with the bottom surface layer (ground layer) below. 在更多的其他实施方式中,位于所述封闭反应器下方的地面可用作冷源和/或热源,在白天储存热量并在夜间释放热量。 In further other embodiments, the ground located beneath the closed reactor can be used as a heat sink and / or heat, and the heat store releases heat in the daytime during the night.

[0014]当所述阻热层位于上方时(在管子顶部),管中的液体与外界的辐射热交换和传导热交换均被隔绝。 [0014] When the thermal barrier layer is located above (at the top of the tube), the radiant heat pipe with the outside of the liquid exchange and conductive heat exchange are isolated. 然而,其与下方的地面有紧密的热接触。 However, with the ground below in close thermal contact. 当所述阻热层位于下方时,液体同时通过辐射和传导可容易地由环境获得热量或者流失热量至环境。 When the thermal barrier is located below, while the liquid can be easily obtained by radiation and conduction of heat from the environment or heat loss to ambient. 有效地,所述阻热层用作热控开关,可用于利用适宜的环境条件诸如夜晚、白天、雨水、多云等以获得或遮挡热量从而控制所述流体的温度。 Effectively, the thermal barrier used as a thermal switch, may be used using a suitable environmental conditions such as at night, daytime, rain, cloudy or the like to obtain a heat shield to control the temperature of the fluid. 在所述装置之下的地面具有热质量,当阻热层位于上方位置时,地面温度也可通过紧密热接触进行调节。 Having a thermal mass in the ground beneath the apparatus, when a position located above the thermal barrier, the surface temperature can be adjusted by intimate thermal contact. 该热质量中的热能可用于进一步调节流体的温度。 The thermal mass of the heat may be used to further adjust the temperature of the fluid. 如果预报夜间较冷,则在白天令阻热层位于下方位置时流体可被加热至略高于最佳温度(optimum temperature)。 If the forecast cold night, in the daytime so that the thermal barrier fluid may be heated to slightly above the optimum temperature (optimum temperature) is in the lower position. 阻热层变换至上方位置能够将正热量传递至地面热质量中。 Thermal barrier can be shifted to a position above the positive heat transferred to the surface of the thermal mass. 可以进行数次流体变暖和地面加热循环。 It can be ground several fluid warming and heating cycles. 通过在较冷的夜里使阻热层保持在上方位置传递至地面热质量中的热量可以再传递回所述液体中,从而使水温稳定在最优范围中。 By making the cold night to maintain thermal barrier to heat transfer surface at a position above the thermal mass may be then passed back to the liquid, so that the optimum range of temperature stability.

[0015]另外一种情况,当预报白天过热时,阻热层在夜间可以处于下方位置直至混合物的温度略微低于最佳温度,然后将其移动至上方位置,使得冷却水与地面相接触,降低地面温度。 [0015] Another case, when the overheating prediction daytime, at night, the thermal barrier may be in the down position until the temperature of the mixture slightly below the optimum temperature, then moved to the upper position, so that the cooling water in contact with the ground, reduce the surface temperature. 该循环可在夜间重复数次。 This cycle may be repeated several times during the night. 当接下来的一天气温升高时,升起阻热层,以使流体与地面热接触从而延长流体以可接受低温保持的时间。 The following day when the temperature rises, the thermal barrier is raised, so that the fluid in thermal contact with the ground to extend to an acceptable fluid retention time of low temperature.

[0016]其他实施方式可包括其中进行液体循环并从所述封闭生物反应器中提取氧气或其他气体的装置和方法。 [0016] Other embodiments may include a loop and wherein the liquid extraction apparatus and method of oxygen or other gases from the closed bioreactor. 在优选实施方式中,可装配大型辊以使其在封闭管子表面滚动,沿袋子推动液体。 In a preferred embodiment, the assembly may be closed so large roller rolling surface of the tube, to move a liquid along the bag. 除移动流体之外,所述辊还用于收集溶解气体的气泡,诸如由光合生物产生的氧气,可将其从系统中除去从而降低对藻类生长的氧气抑制。 In addition to moving fluid, said further roller for collecting bubbles of dissolved gas, such as oxygen produced by photosynthetic organisms, can be removed to reduce oxygen inhibition of the growth of algae from the system. 由于辊压并未一直延伸至管子底部,因此辊的移动在辊的正下方形成高速度的局部“回流(backwash)”以用于净化下方的管子表面从而减少管子表面的粘附物及管子表面的生物毁损,并且使沉积在管子底部的生物体再次悬浮。 Since the roll does not extend to the bottom of the tube, thus moving the roller and the adherend surface of the tube is formed of a high speed local "reflux (backwash)" for the purification of the tube below the surface of the tube so as to reduce the surface immediately below the roller biological damage, and the organism deposited at the bottom of the tube was suspended again. 类似地,在所述管子顶部位于辊前的聚集气泡和气/水界面的移动也净化了上方的管子表面,减少了生物污渍形成并提高了透过上表面的光透过率。 Similarly, movement of the tube located at the top front roller aggregated gas bubbles and / water interface can be purified above the surface of the tube, reducing the formation of stains and biological improved light transmission through the upper surface. 所述辊系统对于沿管子移动流体同时使能抑制水生生物生长和分裂的水剪切降至最低是优选的方法。 The roller system for moving the fluid along the tube water can be suppressed while minimizing shear aquatic growth and division is the preferred method. 所述辊系统的另一优点在于当流体由阻热层之下转向至其上时,由于所述辊在沿管子滚动时将阻热层半封闭至管子底部,因此该辊提供了用于将漂浮阻热层移动至管子底部的低能耗机械。 Another advantage of the system is that when the upper roller when the fluid steering to under the thermal barrier which, since the roller rolling along the tube when the thermal barrier to the semi-closed bottom of the tube, so that the roller is provided for moves to the bottom of the tube of low-energy mechanical flotation thermal barrier.

[0017]可配置收集系统,诸如吸泵以将浓缩的含油藻类的悬浮液虹吸出所述系统。 [0017] The collection system may be configured, such as a suction pump to a concentrated suspension of algae oil siphoned off the system. 在更优选的实施方式中,流经生物反应器的水流经设计产生“漩涡(whirlpool)”效果,例如在袋子一端的小室中。 In a more preferred embodiment, the water flow through the bioreactor is designed to produce "vortex (Whirlpool)" effects, for example in a bag one end of the chamber. 所述漩涡造成藻类浓缩并部分地从液体培养液中分离,允许更有效的收获,或者除去不需要的代谢副产品诸如死细胞和含有粘液的细菌。 The resulting swirl of algae was concentrated and partially separated from the liquid culture medium, allowing for more efficient harvesting or removal of unwanted metabolic byproducts and dead cells, such as bacteria contain mucus. 也可以提供其他装置以添加营养和/或从所述封闭生物反应器中除去废物。 Other means may also be provided to add nutrients and / or removal of waste from the closed bioreactor. 一个或多个吸泵管可与所述漩涡系统可操作地相连从而提高从所述装置中收获和/或向所述装置中添加营养的效率。 A plurality of suction pumps or tubes may be harvested from the apparatus to improve and / or addition of nutrients to the Efficiency means operatively associated with said swirl system.

[0018]某些实施方式涉及轴向涡旋叶轮以使藻类悬浮液区域(volume)在生物反应器的顶部一英寸的范围内旋转,在密集水养殖中这可能是能接收足够光合日照水平的唯一区域。 [0018] Certain embodiments relate to an axial vortex inducers algae suspension area (Volume) in a range of rotation of the top of the bioreactor one inch in intensive aquaculture in photosynthesis which may be capable of receiving a sufficient level of sunshine The only area. 管内水柱的旋转造成生物体在位于管子顶部的光线充足区域与位于管子底部的黑暗区域之间的周期性运动。 Rotation of the inner tube of the water column causing organisms between periodic motion at the top of the pipe lit and dark areas of the region of the bottom of the tube. 在优选实施方式中,装有藻类的软管约有12英寸高。 In a preferred embodiment, the tube containing algae about 12 inches high. 在高藻类密度下,日光仅仅能穿透悬浮液顶部大约1英寸的层。 At high density of algae, only about 1 inch sunlight can penetrate the top layer of the suspension. 没有使水柱旋转的装置时,位于顶部一英寸内的水生生物将过分暴露于日光而位于底部11英寸的水生生物将暴露得不够。 No rotation of the device when the water column, aquatic organisms located within the top one inch of overexposure to sunlight and 11 inches at the bottom of the aquatic organisms are exposed enough. 在优选实施方式中,所述轴向漩涡叶轮包括在软塑料管中的内流偏转器(结构化轴向流动旋转器),讨论如下。 In a preferred embodiment, the impeller includes an inner swirl axial flow deflector flexible plastic tube (structured axial flow spinner), discussed below.

[0019]在示例性实施方式中,所述偏转器可具有沿管子垂直延伸的6英寸宽,12英寸长的软塑料条(strip),并在中部缩窄为2英寸,并且由所述条的顶部至底部扭转90度。 [0019] In an exemplary embodiment, the deflector may have 6 inches wide along the vertically extending tube, 12 inches long flexible plastic strip (Strip), and narrow in the middle of 2 inches, and is composed of the strip the top to the bottom is twisted 90 °. 在图17B的示例性描述中,从边缘观察所述条因此2英寸的中间宽度不可见。 In the example described in FIG. 17B, the width of the middle 2 inches thus not visible from observation of the strip edges. 例如,所述条可以横跨管的宽度以约1英尺的间隔放置(方形推进器,定义为其推进距离=其直径的推进器)。 For example, the strip may span the width of the tube to be placed about 1 foot intervals (square pusher, defined as the advance distance = diameter of the propeller). 在该示例性描述中,当流体流经管结构时,管中盛有的1英尺厚的藻类将以螺旋方式向前移动,旋转周期为纵向3.14英寸。 In this exemplary description, when the fluid flowing through the tube structure, the tube filled one foot thick, some algae will move forward in a spiral manner, longitudinal rotation period of 3.14 inches. 考虑一排横跨管子宽度延伸的条状物,交替的条将显示为顺时针或逆时针旋转。 Consider a row of strips extending across the width of the tube, the bar will be displayed alternately rotate clockwise or counterclockwise. 从水柱沿管的轴向向下移动的角度,单一水柱将沿管子的整个长度向下顺时针或逆时针旋转,而相邻的水柱为反向旋转。 Water column from the axial direction of the tube moves downward angle, a single column of water along the entire length of the clockwise or counterclockwise rotation of the tube downward, while the reverse rotation of the adjacent water column. 这将使相邻水柱间的摩擦诱发的液流紊乱降至最低。 This will minimize the flow disturbance induced by friction between adjacent water column. 旋转的宽度、角度和所述条的间距(包括相邻两排条状物之间的间距)可以经过调整从而对独立藻类细胞进出高光度区域的结构化的(structured)低摩擦、低随机紊乱轴向旋转进行优化。 Rotating the width, the pitch angle and the strip (including the spacing between two adjacent rows of fingers) may be adjusted so as to separate out the algae cell structure of high luminous intensity region (Structured) low friction, low random disturbances optimized axial rotation. 在管子内部采用阻热层的实施方式中,一组轴向涡旋叶轮可放置在所述阻热层的一侧,而另一组可放置在所述阻热层的另一侧。 Embodiment employs thermal barrier inside the tube, a set of axial swirl vanes may be placed on one side of the thermal barrier, and another set may be placed on the other side of the thermal barrier layer. 由于通过轴向涡旋叶轮的伸展可将紊流降至最低,预计当采用内部阻热层时,可导引流体发身偏转从而使得大部分水流,优选约90%或者90%以上的水流导引至所述阻热层以上或者以下。 Since axially extending through the impeller vortex turbulence can be minimized, is expected when using an internal thermal barrier, the fluid guide may be made so that most of the flow deflection body, hydraulic conductivity more preferably about 90%, or 90% introduced to the above thermal barrier layer or less. 在这样的构造中,一组轴向涡旋叶轮折叠在阻热层和管子的顶部或底部之间,而另一组将完全伸展。 In such a configuration, a set of axial vortex inducers folded between the top or bottom thermal barrier and the tube, while the other set will be fully extended. 尽管这些轴向涡旋叶轮可被设想为0.01”厚的聚乙烯软条,它们也可以是硬质铰链固定的塑料结构体或者甚至是突出于袋子内表面的定向片或定向环,并且所述阻热层实际上并未将一层与另一层相连接。在所有情况下,定向性元件经设置以产生略等于袋子通道高度的周期性并排式的反向旋转的轴向水流。由轴向涡旋叶轮引起的水流模型在图17A~B中举例说明。 Although these axial swirl vanes may be conceived to 0.01 "thick flexible polyethylene strip, which may be a hard plastic hinge securing a structure or even a sheet or projection orientation to the orientation of the bag ring inner surface, and the the thermal barrier is not actually connected to one another. in all cases, the orientation of the element is arranged to periodically generate roughly equal to the height of side by side counter-rotating axial flow passage bag. a shaft model due to the flow vortex impeller illustrated in FIG 17A ~ B.

[0020]在一些实施方式中,阻热层的辐射性质可通过加入其他具有选定的光学特性的材料来进行调整。 [0020] In some embodiments, the thermal barrier properties of the radiation may be adjusted by the addition of other optical characteristics having a selected material. 例如,来自特定源地的石英砂可具有所希望的光学性质并能嵌入所述阻热层的上表面。 E.g., quartz sand from a particular source may have the desired optical properties and can be embedded on the surface of the thermal barrier layer. (参见例如图10)。 (See, e.g. FIG. 10). 作为另外一种选择,具有选定的光学特性的掺杂玻璃或石英小珠或瓷砖可嵌入所述阻热层的上表面。 Alternatively, having selected optical properties of the doped glass or quartz beads or ceramic tiles can be embedded in the upper surface of the thermal barrier layer. 图11显示了理想化的阻热层的示例性光透射特性。 Figure 11 shows the light transmission characteristics of an exemplary idealized thermal barrier. 当前使用的阻热层材料(发泡聚乙烯)能透过约60%的光合作用光线,可采用透射75%或75%以上光线的材料。 Thermal barrier material (foamed polyethylene) currently used by about 60% transparent to light of the photosynthesis, the transmittance can be 75% or more than 75% of light material.

[0021]各种实施方式可涉及在环境条件下对藻类养殖进行建模的装置和方法。 [0021] Various embodiments may involve an apparatus and method for algae culture model under ambient conditions. 用于条件优化和藻类品种选择的远程传感生物反应器的实例在图8中示出。 Examples of conditions for optimizing algae species and the selected remote sensing bioreactor is shown in FIG. 8.

附图说明 BRIEF DESCRIPTION

[0022]以下附图构成本说明书的一部分,并且包括在本说明书中以进一步描述本发明的某些实施方式。 [0022] The following drawings form part of the present specification, the present specification and are included to further illustrate certain embodiments of the present invention. 通过参考一个或多个附图并联合此处提出的具体实施方式的详细描述能更好地理解所述实施方式。 By reference to one or more of the drawings and detailed description of specific embodiment of the combined embodiments set forth herein can be better understood with the embodiments.

[0023]图1示例性系统示意图 [0023] Fig 1 a schematic diagram of an exemplary system

[0024]图2示例性水产养殖场鸟瞰图 [0024] FIG 2 illustrates a bird's-eye view aquaculture farm

[0025]图3示例性具有辊和收获漩涡的生物反应器 [0025] FIG 3 illustrates exemplary bioreactor and harvesting rollers having a whirlpool

[0026]图4示例性热控制系统 [0026] FIG. 4 exemplary thermal control system

[0027]图5示例性生物污垢对策(纳米涂层) [0027] Figure 5 illustrates exemplary biofouling Countermeasures (nanocoating)

[0028]图6连续流动式高压灭菌器 [0028] FIG. 6 continuous flow autoclaves

[0029]图7示例性提取辊 [0029] Figure 7 illustrates exemplary extraction roller

[0030]图8示例性远程驱动生物反应器技术 [0030] Figure 8 illustrates exemplary remote drive Bioreactor

[0031]图9替代性生物反应器双袋系统 [0031] FIG 9 an alternative bioreactor twin bag system

[0032]图10由Goleta Beach,CA取得的砂样的辐射特性 [0032] FIG. 10 is made Goleta Beach, CA acquired radiation characteristic gritty

[0033]图11示例性的用于阻热层的理想化材料的透射特性 [0033] FIG. 11 idealized transmission characteristics for the thermal barrier material is an exemplary

[0034]图12示例性的用于气体溶解的CO 2鼓泡器 [0034] FIG. 12 for an example of dissolved CO 2 gas bubbler

[0035]图13示例性漩涡装置的模型 [0035] The model 13 swirl the exemplary device of FIG.

[0036]图14示例性漩涡装置的更多细节,显示了驻留管和加速锥以及固定管(stator fins) [0036] Further details of an exemplary vortex device 14 showing the acceleration and the dwell tube cone and a fixed pipe (stator fins)

[0037]图15A漩涡装置的流体结构 [0037] The structure of the fluid vortex apparatus 15A in FIG.

[0038]图15B具有吸泵管的漩涡 [0038] FIG 15B having vortex suction pump tube

[0039]图16在封闭生物反应器中具有和不具有阻热层时水温的计算机模拟 [0039] FIG 16 is a computer simulation closed bioreactor when the water temperature with and without a thermal barrier

[0040]图17由示例性轴向涡旋叶轮引起的水流 [0040] Figure 17 an exemplary flow caused by the axial vortex inducers

[0041]图18示例性生物反应器的1/5规模的封闭系统模型 [0041] 18 1/5 scale bioreactor exemplary closure system model of FIG.

[0042]图19示例性辊、侧壁(side wall)和具有CO 2鼓泡器的末端小室 [0042] FIG exemplary roller 19, the side wall (side wall) and a small end having a CO 2 chamber bubbler

[0043]图20示例性辊、侧壁和放有漩涡装置的末端小室 [0043] FIG exemplary roller 20, the side walls and the end placed vortex chamber means

[0044]图21双向辊系统的水流旁路的优选实施方式 [0044] The bypass flow system of the duplex rollers 21 of the preferred embodiment of FIG.

[0045]图22示例性的用于双向辊系统的“中凸式平底盘(bellpan)” [0045] 22 An exemplary system for duplex rollers map "belly pan (bellpan)"

[0046]图23漩涡装置的描述性实施方式 [0046] The exemplary embodiments described embodiment swirl device 23 of FIG.

[0047]图24软管结构和附件装置的实例 [0047] The example of FIG. 24 and hose structure of the accessory device

[0048]图25优选辊驱动系统的实例 [0048] Examples of preferred roller drive system 25 of FIG.

[0049]图26示例性的反应袋侧壁设计 [0049] FIG. 26 is an exemplary reaction sidewall design bags

[0050]图27示例性的生物反应器装置控制系统 [0050] FIG. 27 is an exemplary bioreactor system control means

[0051]图28示例性控制循环 [0051] The exemplary control loop 28 of FIG.

[0052]图29示例性的用于管顶部表面的Frenel图案 [0052] FIG. 29 for an exemplary pattern Frenel top surface of the tube

具体实施方式 Detailed ways

[0053]此处没有另外定义的术语根据其明确的常有含义使用。 [0053] The term not otherwise defined herein according to its use often clear meaning.

[0054]此处所使用的“a”或者“an”可以指一个或多个物品。 [0054] As used herein, "a" or "an" may refer to one or more items.

[0055]此处所使用的“约”指加减十个百分点,例如“约100”指90~110之间的任何数。 [0055] As used herein, "about" means plus or minus ten percent, for example, "about 100" means any number between 90 to 110.

提高油产量的转基因藻类 Improve transgenic algae oil production

[0056]在某些实施方式中,用于制造生物柴油的藻类可以经过基因改造(转基因)从而含有一个或多个独立的核酸序列,所述核酸序列提高油类生产或提供用于藻类养殖、生长、收获或使用的其他特性。 [0056] In certain embodiments, the algae for producing biodiesel may be genetically modified (transgenic) to contain one or more independent nucleic acid sequence, said nucleic acid sequence or to provide improved production of oil for algae cultivation, other characteristics of growing, harvesting or use. 稳定转化藻类的方法和含有有用的独立核酸的组合物在本领域是公知的,并且可以在本发明的实践中采用任何这样的方法和组合物。 The method of stably transformed algae and comprising separate nucleic acid useful in the present compositions are well known in the art, and may employ any such methods and compositions in the practice of the present invention. 有用的示例性转化方法包括微弹轰击法、电穿孔法、原生质体融合、PEG-介导转化、覆盖碳化硅晶须的DNA或使用病毒介导的转化(参见例如Sanford et al.,1993,Meth.Enzymol.217:483-509;Dunahay et al.,1997,Meth.Molec.Biol.62:503-9;USPatent Nos.5,270,175;5,661,017,在此以引用的方式引入)。 Useful Exemplary transformation methods include microprojectile bombardment, electroporation, protoplast fusion, PEG- mediated transformation, DNA covering the silicon carbide whiskers, or use of virus-mediated transformation (see, for example, Sanford et al., 1993, Meth.Enzymol.217: 483-509; Dunahay et al, 1997, Meth.Molec.Biol.62: 503-9; USPatent Nos.5,270,175; 5,661,017, incorporated herein by reference).

[0057]例如,美国专利第5,661,017号公开了含有叶绿素C的藻类诸如硅藻(Bacillariophyceae)、金藻(Chrysophyceae)、褐藻(Phaeophyceae)、黄藻(Xanthophyceae)、针胞藻(Raphidophyceae)、土栖藻(Prymnesiophyceae)、隐藻(Cryptophyceae)、小环藻(Cyclotella)、舟形藻(Navicula)、简柱藻(Cylindrotheca)、三角褐指藻(Phaeodactylum)、双眉藻(Amphora)、牟氏角毛藻(Chaetoceros)、菱形藻(Nitzschia)或双环海链藻(Thalassiosira)的藻类转化方法。 [0057] For example, U.S. Patent No. 5,661,017 discloses a chlorophyll C-containing algae such as diatoms (Bacillariophyceae), golden algae (Chrysophyceae), brown algae (Phaeophyceae), Xanthophyta (Xanthophyceae), Synechocystis pin (Raphidophyceae), soil-inhabiting algae (Prymnesiophyceae), cryptophycin (cryptophyceae), Cyclotella (Cyclotella), Navicula (Navicula), Jane danicus (Cylindrotheca), Phaeodactylum (Phaeodactylum), Amphora (Amphora), Chaetoceros muelleri ( Chaetoceros), Nitzschia (Nitzschia) or bicyclic Thalassiosira (of Thalassiosira) algae transformation methods. 也公开了含有有用的核酸诸如乙酰辅酶A羧化酶的组合物。 Also discloses a composition acetyl coenzyme A carboxylase, such as a nucleic acid containing useful.

[0058]在各种实施方式中,选择性标记(selectable marker)也可加入到单独的核酸或载体中以选择已转化的藻类。 [0058] In various embodiments, the selectable marker (selectable marker) also be added to the algae alone to select nucleic acid or vector transformed. 有用的选择性标记可包括新霉素磷酸转移酶、氨基糖苷磷酸转移酶、氨基糖苷乙酰转移酶、氯霉素乙酰转移酶、潮霉素B磷酸转移酶、博来霉素结合蛋白、草丁膦乙酰转移酶、溴苯腈水解酶、耐草甘膦5-烯醇丙酮莽草酸-3-磷酸合成酶、耐侧厚壳桂碱核糖体蛋白S14、耐吐根碱核糖体蛋白S14、耐磺脲乙酰乳酸合成酶、耐咪唑啉酮乙酰乳酸合成酶、耐链黑霉素16S核糖体RNA、耐壮观霉素16S核糖体RNA、耐红霉素23S核糖体RNA或耐甲基苯并咪唑微管蛋白。 Useful selectable marker may include neomycin phosphotransferase, aminoglycoside phosphotransferase, aminoglycoside acetyltransferase, chloramphenicol acetyl transferase, hygromycin B phosphotransferase, bleomycin binding protein, glufosinate phosphinothricin acetyltransferase, bromoxynil hydrolase, glyphosate-tolerant 5- enolpyruvylshikimate-3-phosphate synthase, an alkali-resistant side concinna ribosomal protein S14, emetine resistance ribosomal protein S14, resistance acetolactate synthase sulfonylurea, imidazolinone-tolerant acetolactate synthase, neomycin-resistant strand black 16S ribosomal RNA, spectinomycin resistance 16S ribosomal RNA, ribosomal RNA 23S erythromycin-resistant or corrosion-methylbenzimidazole tubulin. 增强转基因表达的调节核酸序列也是已知的,诸如硅藻乙酰辅酶A羧化酶5′-未翻译调节控制序列、硅藻乙酰辅酶A羧化酶3′-未翻译调节控制序列及其组合。 Enhanced transgene expression regulatory nucleic acid sequences are also known, such as diatoms acetyl coenzyme A carboxylase 5'-untranslated regulatory control sequences, acetyl coenzyme A carboxylase diatoms 3'-untranslated regulatory control sequences, and combinations thereof.

藻类的分离和油的提取 Extraction and separation of algae oil

[0059]在各种实施方式中,可以采用本领域内已知的任何方法从培养液中分离藻类和提取各种藻类成分诸如油。 [0059] In various embodiments, any method known in the art of separating algae and algae extract various components such as oil from the culture broth. 例如,采用直立漩涡循环、收获漩涡和/或吸泵管可从培养液中部分分离藻类,如下所讨论。 For example, with vertical swirl cycle, the harvest swirl and / or a suction pump tube can be partially separated from the culture broth of algae, as discussed below. 作为另外一种选择,大体积容量的工业规模商用离心机也可用于其他分离方法的补充或者替代。 Alternatively, large-volume capacity commercial industrial scale centrifuge can be used to supplement other or alternative separation methods. 这样的离心机可通过已知的商业途径获得(例如Cimbria Sket或IBG Monforts,Germany;Alfa Laval A/S,Denmark)。 Such centrifuges can be obtained (e.g. Cimbria Sket or IBG Monforts, Germany; Alfa Laval A / S, Denmark) by known commercial sources. 离心、沉降和/或过滤也可用于从其他藻类成分中纯化油。 Centrifugation, sedimentation and / or filtration can be used to purify the oil from other algae components. 通过加入凝聚剂诸如粘土(例如粒径小于2微米)、硫酸铝或聚丙烯酰胺可以促进从水性培养液中分离藻类。 By adding a coagulant such as clays (e.g. a particle size less than 2 microns), aluminum sulfate or polyacrylamide can facilitate the separation of the aqueous from the algae culture solution. 在凝聚剂的存在下,藻类可以通过简单的重力沉淀分离,或者可以通过离心更容易地分离。 In the presence of the coagulant, the algae can be precipitated isolated by simple gravity, or may be more easily separated by centrifugation. 藻类的凝聚类分离在例如美国专利申请公报第20020079270号公开,在此以引用的方式引入。 Flocculating algae class separation in e.g. U.S. Patent Application Publication No. 20020079270 disclosed, herein incorporated by reference.

[0060]技术人员将认识到本领域内已知的从液体培养基中分离细胞诸如藻类的任何方法都可以被采用。 [0060] the art will recognize that known in the art of separating the cells from the culture broth by any method, such as algae, can be employed. 例如,美国专利申请公报第20040121447号和美国专利第6,524,486号(在此以引用的方式分别引入)公开了用于从水性培养液中部分地分离藻类的切线流过滤设备和装置。 For example, U.S. Patent Application Publication No. 20040121447 and U.S. Patent No. 6,524,486 (herein incorporated by reference, respectively) disclose a tangential flow filtration apparatus and a means for separating algae from partially aqueous medium. 其他从培养液中分离藻类的方法在美国专利第5,910,254号和第6,524,486号中公开,在此以引用的方式分别引入。 Other methods of separating the algae from the culture solution in U.S. Patent Nos. 5,910,254 and No. 6,524,486 are disclosed herein are incorporated by reference. 也可以采用用于藻类分离和/或提取的其他公开方法(参见例如,Rose et al.,Water Scienceand Technology 1992,25:319-327;Smith et al.,Northwest Science,1968,42:165-171;Moulton et al.,Hydrobiologia 1990,204/205:401-408;Borowitzka et al.,Bulletin of Marine Science,1990,47:244-252;Honeycutt,Biotechnology and Bioengineering Symp.1983,13:567-575)。 Other disclosed methods may also be employed (see, e.g., Rose et al, Water Scienceand Technology 1992,25 algae separated and / or extracted for:. 319-327; Smith et al, Northwest Science, 1968,42: 165-171. ; Moulton et al, Hydrobiologia 1990,204 / 205: 401-408; Borowitzka et al, Bulletin of Marine Science, 1990,47:. 244-252; Honeycutt, Biotechnology and Bioengineering Symp.1983,13:. 567-575) .

[0061]在各种实施方式中,可以使藻类破裂以促进油和其他成分的分离。 [0061] In various embodiments, the algae can be disrupted to facilitate separation of oil and other ingredients. 可以采用任何已知的细胞破裂方法,诸如超声、法式压滤、渗压震扰、机械剪切、冷压、热冲击、转子-定子破裂机、阀型处理器、固定几何处理器、氮气减压或任何其他的已知方法。 Cells may be broken by any known method, such as ultrasonic, French press, osmotic shock, mechanical shearing, cold, heat shock, the rotor - a stator disruptor, processor type valve, fixed geometry processor, nitrogen Save pressure, or any other known methods. 大容量商用细胞破裂机可由已知途径购得(例如,GEA Niro Inc.,Columbia,MD;ConstantSystems Ltd.,Daventry,England;Microfluidics,Newton,MA.)。 Commercial large-capacity cell disruptor available by known routes (e.g., GEA Niro Inc., Columbia, MD; ConstantSystems Ltd., Daventry, England; Microfluidics, Newton, MA.). 在水性悬浮液中破裂微藻类的方法在例如美国专利第6,000,551中公开,在此以引用的方式引入。 Method microalgae rupture in aqueous suspension in, for example, disclosed in U.S. Patent No. 6,000,551, in the embodiment herein incorporated by reference.

将藻类转化为生物柴油 The algae into biodiesel

[0062]将光合衍生物质转化为生物柴油的各种方法在本领域内已知,而任何这样已知的方法均可用在本发明的实践之中。 [0062] The photosynthetic biodiesel-derived substances into various methods known in the art, and any such known method may be used in the practice of the invention. 例如,藻类可以被收获、从液体培养基中分离、细胞溶解并分离油成分。 For example, the algae can be harvested, separated from the liquid medium, cells were lysed and separated oil component. 藻类制造的油富含甘油三酸酯。 Oil-rich algae produced triglycerides. 这样的油可以通过公知方法诸如Connemann方法(参见例如美国专利第5,354,878号,在此以引用的方式引入)转化为生物柴油。 Such oils can Connemann methods (see, e.g. U.S. Pat. No. 5,354,878, herein incorporated by reference) by known methods such as conversion to biodiesel. 标准酯转移方法涉及甘油三酸酯和醇通常为甲醇之间的碱催化的酯转移反应。 The method relates to standard transesterification of triglycerides and alcohols are usually transferred to the base catalyzed reaction between the ester of methanol. 甘油三酸酯的脂肪酸转移至甲醇,生成烷基酯(生物柴油)并释放出甘油甘油被移除并可用于其他用途。 Fatty acid triglyceride is transferred to methanol, to produce alkyl ester (biodiesel) and glycerol the glycerol released is removed and may be used for other purposes.

[0063]优选实施方式可涉及Connemann方法(美国专利第5,354,878号)的使用。 [0063] Preferred embodiments of the method may involve the use Connemann (U.S. Pat. No. 5,354,878) is. 与批量反应法(例如J.Am.Oil Soc.61:343,1984)不同,所述Connemann方法采用反应混合物通过反应柱的连续流动,其中流速低于甘油的下降速度。 And batch reaction method (e.g. J.Am.Oil Soc.61: 343,1984) different from the method using the reaction mixture was Connemann continuous flow through the reaction column, wherein the flow rate is below the rate of decline of glycerol. 这使得甘油连续地从生物柴油中分离。 This makes the separation of glycerol from the biodiesel continuously. 所述反应混合物可经过另外的反应柱进行处理以完成酯转移过程。 The reaction mixture may be subjected to an additional treatment to complete the transesterification reaction column process. 通过水相萃取可以除去残留的甲醇、甘油、游离脂肪酸和催化剂。 Phase extraction may remove methanol, glycerol, free fatty acids and residual catalyst by water. 所述Connemann法是从植物来源诸如油菜籽油生成生物柴油的成熟方法,截止到2003年,在德国使用时生产了每年约1百万吨的生物柴油(Bockey,“Biodiesel production and marketing in Germany,” www.projectbiobus.com/IOPD_E_RZ.pdf) The law is Connemann rapeseed oil generated from plant sources such as biodiesel mature method, as of 2003, the production of biodiesel for about 1 million tons per year when used in Germany (Bockey, "Biodiesel production and marketing in Germany, "www.projectbiobus.com/IOPD_E_RZ.pdf).

[0064]然而,技术人员也将意识到可以采用在本领域内已知的用于从含有油的甘油三酯中制造生物柴油的任何方法,例如美国专利第4,695,411号;第5,338,471号;第5,730,029号;第6,538,146号;第6,960,672号,以引用的方式在此分别引入。 [0064] However, the skilled person will also be appreciated in the art may be employed in any method known for producing biodiesel from triglycerides containing oil, for example, U.S. Pat. No. 4,695,411; No. 5,338,471; 5,730,029 of No; No. 6,538,146; No. 6,960,672, are incorporated by reference herein. 也可以采用不涉及酯转移的替代性方法。 Alternative methods that do not involve transesterification may also be employed. 例如,通过热解作用、气化或热化学液化(参见例如Dote,1994,Fuel 73:12;Ginzburg,1993,Renewable Energy 3:249-52;Benemannand Oswald,1996,DOE/PC/93204-T5)。 For example, by pyrolysis, gasification or liquefaction thermochemical (see, e.g. Dote, 1994, Fuel 73: 12; Ginzburg, 1993, Renewable Energy 3: 249-52; Benemannand Oswald, 1996, DOE / PC / 93204-T5) .

其他藻类产物 Other algae products

[0065]在某些实施方式中,所公开的方法、组合物和装置可用于动物或人类可食用藻类的养殖。 [0065] In certain embodiments, the disclosed methods, compositions and devices may be used for human consumption or animal breeding algae. 例如,螺旋藻(Spirulina)是富含营养诸如蛋白质、氨基酸、维生素B-12和类胡萝卜素的浮游蓝绿藻。 For example, Spirulina (fromSpirulina) is rich in nutrients such as proteins, amino acids, vitamin B-12 and blue-green algae floating carotenoids. 在藻类养殖场里生长的供人类消耗的螺旋藻每年已超过1千公吨。 Spirulina algae for human consumption in farms where growth has exceeded 1,000 metric tons per year. 技术人员将意识到采用所声称的系统可以生长、收获和利用任何类型的自由生长的藻类,包括可食用藻类诸如螺旋藻Spirulina、盐藻Dunaliella或扁藻Tetraselmis(参见美国专利第6,156,561号和第6,986,323号,在此以引用的方式分别引入。) Art will appreciate that using the claimed system may be grown, harvested, and the use of any type of free growth of algae, such as Spirulina fromSpirulina include edible algae, Dunaliella salina, Tetraselmis sp or flat (see U.S. Pat. Nos. 6,156,561 and 6,986,323 No., herein incorporated by reference, respectively.)

[0066]采用所声称的方法、装置和系统还可以生产其他基于藻类的产品。 [0066] The claimed method, apparatus and system may also produce other algae-based products. 例如,美国专利第5,250,427号,在此以引用的方式引入,公开了将有机物质诸如藻类光转化为可生物降解的塑料的方法。 For example, U.S. Patent No. 5,250,427, herein incorporated by reference, discloses a process for the conversion of organic matter such as algae in biodegradable plastics. 可以采用任何通过养殖普通或转基因藻类制造有用产品的已知方法。 Any known method of producing useful products by ordinary culture or transgenic algae can be employed.

实施例 Example

[0067]此处公开并对其主张权利的方法、组合物、装置和系统涉及支持大规模低成本养殖和收获水生藻类养殖的技术。 [0067] disclosed herein and their method claimed in the compositions, apparatus and system for low-cost large-scale farming involves support and harvesting of aquatic algae culture. 该技术可用于支持不同种类的藻类能提供的各种产品的工业生产。 The technology can be used for industrial production to support different types of algae can provide a variety of products. 该技术可用于经济地支持藻类的大规模养殖和收获。 This technology can be used to cost-effectively support large-scale farming and harvesting algae. 所公开的装置在此处通常称为“生物反应器”、“光生物反应器”、“封闭系统生物反应器”和/或“生物反应器装置”。 The apparatus disclosed herein is generally called a "bioreactor", "photobioreactor", "closed system bioreactor" and / or "bioreactor means." 其他与生物反应器一同使用的机器、装置和/或技术包括灭菌技术、CO 2注入技术和/或提取技术。 Other machines and use with the bioreactor, devices and / or technologies, including sterilization techniques, CO 2 injection techniques and / or extraction techniques.

实施例1.生物反应器系统 Example 1. bioreactor system

[0068]图1描述了示例性系统的示意图。 [0068] Figure 1 depicts a schematic diagram of an exemplary system. 该示例性系统的要素包括生物反应技术、收获技术、灭菌技术、CO 2注入技术、提取技术、远程驱动生物反应器技术。 Elements of the exemplary system comprises a bioreactor technology, harvesting techniques, sterilization techniques, CO 2 injection technique, extraction, remote drive bioreactor technology. 如图1所描述,藻类养殖运作可由动物饲养运作获得养分,诸如猪肥料。 Depicted in Figure 1, the operation of the algae culture can be obtained nutrient animal feeding operation, such as a pig manure. 在经过处理和灭菌之后,这样的有机营养可被保存和/或加入到养殖培养液中以支持藻类生长。 After processing and sterilization, such as organic nutrients may be stored and / or to the culture medium to support the growth of algae. 由于光合藻类“固定”CO 2以转化为有机碳化合物,CO 2源诸如电厂废气可被利用以将溶解的CO 2加入到培养基中。 Since photosynthetic algae "fixed" to be converted to CO 2 of organic carbon compounds, CO 2 source such as a power plant flue gas may be utilized to dissolve the CO 2 added to the medium. CO 2和营养物可被藻类所利用以制造油和其他生物产物。 Of CO 2 and nutrients can be utilized to produce the algae oil and other biological products. 藻类经收获并且可以提取出油、蛋白质、油脂、糖类和其他成分。 Algae can be harvested and extracted oil, protein, fat, carbohydrates and other ingredients. 未用于生物柴油制造的有机成分可回收为动物饲料、肥料、藻类生长的营养物,作为甲烷发生器的给料或其他产品。 The organic component used is not recycled biodiesel manufacturing an animal feed, fertilizer, nutrient algal growth, methane generator as feed or other products. 所提取的油可进行处理,例如通过与低分子量醇包括但不限于甲醇进行酯转移反应以生成甘油、脂肪酸酯和其他产品。 The extracted oils can be treated, including but not limited to, for example, transesterification reaction was carried out to produce a glycerol, fatty acid esters and other products with a low molecular weight alcohol by methanol. 脂肪酸酯可用于生产生物柴油。 Fatty acid esters can be used to produce biodiesel. 正如本领域内已知,酯转移可通过批量或连续流动方法进行并可采用多种催化剂,诸如金属醇酸盐、金属氢化物、金属碳酸盐、金属乙酸盐、各种酸或碱,尤其是醇钠或氢氧化钠或氢氧化钾。 As known in the art, transesterification may be carried out using a variety of catalysts and by batch or continuous flow process, such as alkyd metal salts, metal hydrides, metal carbonates, metal acetates, various acids or bases, especially sodium hydroxide or potassium hydroxide or an alcohol.

[0069]所述封闭生物反应器系统的产品不受限制,可包括生物柴油、航空煤油、火花点火燃料、甲烷、生物聚合物(塑料)、人类食品、动物饲料、药物产品诸如维生素和药物、氧气、废水软化(产品清除)、废气净化(例如截留CO 2 )。 [0069] The closed bioreactor system products is not limited, it may include a bio-diesel, jet fuel, spark-ignition fuel, methane, biopolymers (plastics), human food, animal feed, pharmaceutical products and drugs such as vitamins, oxygen, waste water softening (Clear product), an exhaust gas purifying (e.g. cutoff CO 2).

实施例2.生物反应器养殖 Example 2. Bioreactor cultivation embodiment

[0070]某些示例性实施方式在图2中进行描述,其显示了藻类养殖的封闭生物反应器系统的鸟瞰图。 [0070] Certain exemplary embodiments will be described in FIG. 2, which shows an aerial view of a closed culture of algae bioreactor system. 在该示例性描述中,藻类作物在平放于地面上的基本水平的干净塑料管中生长,管内有足量生长培养液流过,从而保持藻类悬浮。 In this exemplary description, the algae crop lying on the ground to a substantially horizontal clean plastic tube growth, the growth medium has a sufficient amount of fluid flow through the inner tube, so as to maintain the algae suspension. (基本水平意味着在单个生物反应器下的地表面的斜率大约在1英寸的水平范围内,因此混合、水流动和塑料管压力等作用在整个管内通常为恒定。然而,熟练技术人员能认识到在其他实施方式中,也可采用台地方式以实现独立生物反应器的大型阵列,其中将流体由整个系统中的较低部分泵至较高部分)。 (Substantially horizontal means approximately in the horizontal range of 1 inch, and therefore the role of the mixed water flows and plastic tube pressure is generally constant over the entire tube in the slope of the ground surface in a single bioreactor. However, the skilled artisan will recognize in large arrays to other embodiments, the platform may be used to effect an independent manner the bioreactor, wherein the fluid from the lower portion of the pump throughout the system to a higher part). 在优选实施方式中,所述管子为薄壁式以实现经济性,并且受到侧壁限制而散布在地面上直至其充满约8~12英寸厚的水。 In a preferred embodiment, the thin-walled tube to achieve economical, and by the limitations sidewall spread on the ground until it is filled with water from about 8 to 12 inches thick. 这大约是负载藻类的水可旋转通过从而使所有部分能均等地接受红色和蓝色光合作用光照的最大厚度,由于其他藻类的吸收和遮挡效果,该光合作用光照仅能穿透约1英寸。 This load is about algae may be rotated by water so that all parts can equally accept the maximum thickness of the red and blue light photosynthesis, the masking effect due to absorption and other algae, the photosynthesis light penetrates only about 1 inch. 管子的宽度名义上可以大约为10~20英尺,长度为大约100~600英尺。 Nominal width of the tube may be approximately 10 to 20 feet, a length of about 100 to 600 feet. 然而,熟练技术人员可以认识到这样的尺度并非限制性的,也可以采用其他长度、宽度和厚度。 However, the skilled in the art may recognize that such dimensions are not limiting, may be employed other length, width and thickness. 通常,在所述水性培养液中存在营养物、适当的盐度或矿物质含量、CO 2和日光。 Typically, the presence of nutrients, suitable salinity or mineral content, CO 2 and sunlight in the aqueous broth. 所述培养液中已放入所需藻类,所述藻类经选择提供特别的最终产品并且能在生物反应器中良好生长,因此只要生长条件适宜,其将繁殖合增殖。 The culture medium has been placed in the desired algae, the algae selected to provide a particular end product and can grow well in a bioreactor, so long as the appropriate growth conditions, which together propagation proliferation. 参考图1优选的系统示意图,所述生物反应器仅仅是向该反应器进料并从中收获藻类的整个系统的一个组成部分。 The preferred system of FIG. 1 with reference to a schematic diagram, the bioreactor is only a part of the feed to the reactor and algae harvested from the whole system.

[0071]再次参考图2,所述图描述了每天能够生产6000加仑生物柴油的相对较小的养殖场的示例性布局图。 [0071] Referring again to Figure 2, the diagram illustrates a relatively smaller layout view of an exemplary farms to produce 6000 gallons of biodiesel per day. 所述示图显示了1400个独立的生物反应器象蕨类植物叶一样与中心服务轨道相连。 The diagram shows the image as ferns leaf connected to the service center rail 1400 separate bioreactor. 熟练技术人员能认识到其他结构也是可能的,虽然在优选实施方式中采用的是盛有生长中的藻类的或多或少的直线袋排列。 Skilled in the art will recognize that other configurations are possible, although the preferred embodiment employed in the bag are arranged in a straight line in a more or less long Sheng Yousheng algae.

实施例3.封闭系统生物反应器装置 Example 3. The closed system bioreactor apparatus embodiment

[0072]图3A~D显示了封闭系统生物反应器装置的非限制性实例。 [0072] FIGS. 3A ~ D shows non-limiting examples of closed system bioreactor apparatus. 水性培养液盛放在基本透明的软管(袋子)中,以下将进行更详细的讨论。 The aqueous medium accommodating tube in a substantially transparent (bags), the following will be discussed in more detail. 袋子的液体内容物通过滚过袋子表面的可移动辊推动其前方的液体而进行循环。 It is circulated liquid contents of the bag to move a liquid through which the front surface of the bag rolled over the movable roller. 在该非限制性实例中,所述辊沿着辊支撑轨道行进并由缆绳牵引,所述缆绳与在所述轨道顶部滚动前进的车架(carriage)连接。 In this non-limiting example, the roller travels along the roller by pulling the cable support track, and rolling said cable on top of the forward frame rail (Carriage) connection. 在图25中描述的辊驱动系统提供了辊运动的驱动力。 Roll drive system depicted in FIG. 25 provides the driving force of the roller motion. 在此处未示出的替代性实施方式中,当所述辊抵达袋的末端时,它们可以旋转或者向上升起,沿连续椭圆路径返回起始点。 In an alternative embodiment not shown here, when the arrival of the bag to the roll end, they may be rotated or lifted up, it returns the starting point along a continuous oval path. 然而,在所示优选实施方式中,采用双向辊,其由袋子的一端移动至另一端,然后反向回到起始点,如下所讨论。 However, in the preferred embodiment shown, the two-way roller which moves from one end to the other end of the bag, and then reverse back to the starting point, as discussed below. 辊系统的使用提供了液体循环并产生低流体剪切力,和用于流动运动的标准机械泵形成对比。 Using a roller system provides a liquid circulation and low fluid shear forces generated, and a mechanical pump for the flow movement, standard contrast.

[0073]图3A显示了示例性的双袋系统,每袋可操作地与辊相结合。 [0073] FIG 3A shows an exemplary twin bag system, each bag is operable in combination with the roller. 所述袋通过小室在末端相连,所述小室中固定有CO 2鼓泡器、漩涡装置、各种传感器(例如pH、溶解的O 2 、导电率、温度)、移动阻热层的促动器(actuator)以及用于运送水、营养物和/或已收获的水生生物诸如藻类的管道连接头。 The bag is connected through a small chamber at the end, is fixed to said chamber in a CO 2 bubbler, swirl means, various sensors (such as pH, dissolved O 2, conductivity, temperature), a mobile thermal barrier actuator (Actuator) and means for delivering water, nutrients and / or harvested aquatic algae such as a pipe connector.

[0074]如图3B所示,在双向辊系统中,管子可放置在地面上,所述辊基本平行于地面行进。 As shown in [0074] FIG. 3B, a two-way roller system, the tube may be placed on the ground, said roller traveling substantially parallel to the ground. 然而,在管子末端,管子下的地面可经过开挖形成凹部,其可用以下描述的“中凸平底盘”镶衬。 However, at the end of the pipe, the pipe may pass through the ground excavation is formed a recess portion, "convex pans" which can be used as described below lined. 该设置可使得在所述辊抵达管子末端并位于所述中凸平底盘上时管内的水在辊下流动。 This setting may be such that the arrival of the roller tube end and located in the water inside the tube on the chassis of the flat convex flow under the roller. 在充分地减缓水流之后,所述辊可反向并移动返回其起始位置,由此在所述装置中形成交替的顺时针和反时针水流。 After the water is sufficiently slow, the rollers may be reversed and moved back to its initial position, thereby forming alternating clockwise and counterclockwise flow in the device.

[0075]所述辊形成某种蠕动泵,但在两方面存在不同。 [0075] The roll forming certain peristaltic pump, but differ in two aspects. 其一,蠕动推动力由重力对流体的拉平作用(leveling action)提供而不是在许多泵里常见的回弹力(elastic return)。 First, the impetus provided peristaltic pump instead of many in common resilient (elastic return) by the flattening effect of gravity on the fluid (leveling action). 其二,辊仅仅向下挤压管子的85%而不是全部。 Second, the roll pressed down only 85% but not all of the pipe. 这意味着辊前后的流体压力差导致在所述辊的正下方形成相对高速的反向液流,如下所讨论。 This means that the fluid pressure before and after the formation of relatively high speed roller difference causes reverse flow immediately below the roller, as discussed below. 在一些实施方式中,所述辊速度(以及因此的液流速度)可大约为1英尺/秒。 In some embodiments, the roll speed (and thus the flow rate) may be approximately 1 ft / sec.

[0076]在各种实施方式中,所述水性培养液可用于养殖光合藻类。 [0076] In various embodiments, the aqueous medium may be used for the cultivation of photosynthetic algae. 在光合作用中,所述藻类吸收CO 2并释放出氧气。 In photosynthesis, the algae CO 2 absorption and release oxygen. 当辊沿袋子的上表面移动时,氧气、其他气体、流动培养液和藻类被推至辊前。 When the surface of the roller moves along the bag, oxygen, other gases, and the algae culture solution flow pushed to the front roller. 这不仅使所述藻类通过袋,而且也提供了对于培养液的混合作用。 This not only makes the algae through the bag, but also provides a mixing action to the culture solution. 所述辊可以推动在其前方的气泡。 The roller may push the bubbles in front of it. 所述气体是由水释放的气体、未吸收的CO 2和光合藻类释放的氧气的组合。 The gas is a gas released from the water, the combination of CO 2 and non-photosynthetic algae release the absorbed oxygen. 辊前方的气袋可在末端小室处收集并排放至大气中或者保存,以避免光合作用的氧气抑制。 Front roll bag can be collected and stored or discharged to the atmosphere in the chamber at the end, in order to avoid oxygen inhibition of photosynthesis. 在一些实施方式中,所保存的氧气可在夜晚再次注入装置中以支持非光合作用阶段的藻类新陈代谢。 In some embodiments, the algae may be stored oxygen to support the metabolism of non-photosynthetic apparatus stage reinjected at night. 作为另外一种选择,收集的氧气可经管道输送至电厂以提高其燃烧过程的效率。 Alternatively, the collected oxygen can be delivered to the plant via a conduit to improve the efficiency of the combustion process. 所述辊也可引起藻类的光回转(optical turnover),这对于调整其光输入是有利的。 The rotary roller may also cause light algae (optical turnover), which for adjusting the light input is advantageous. 否则藻类将变得光过饱和或者光匮乏,而油产量降低。 Otherwise algae will become oversaturated light or lack of light, while reducing oil production.

[0077]如图3B-D所示,辊并未一直延伸至管子底部。 [0077] As shown in FIG. 3B-D, the roller does not extend to the bottom of the tube. 这导致在辊的正下方形成高速回流,施加在辊前的流体上的力导致在辊下的流体向后移动。 This results in a high-speed roller immediately below reflux, the force exerted on the fluid causes the fluid to the front rollers at the roller is moved backward. 该回流有多种作用,包括冲刷管子的底表面以减少生物污损以及使沉积在袋子底部的藻类或其他水生生物重新悬浮于培养液中。 This was refluxed for several purposes, including flushing the bottom surface of the tube to reduce biofouling and causing deposition of algae or other aquatic organisms at the bottom of the bag resuspended in culture medium.

[0078]在所述袋中可以包括阻热层,将液体部分分为上下层以进行热控制。 [0078] The bag may include a thermal barrier, the liquid portion is divided into upper and lower layers for thermal control. 根据流体运动的调节方式,液体可主要流至位于所述阻热层以上的管子的上层(图3D)或流至位于所述阻热层以下的管子的下层(图3C)。 The adjustment method of fluid motion, the liquid may be located above the main flow to the heat resistance of the upper layer of the tube (FIG. 3D) is located in or flows to the heat resistance of the layer below the lower tube (FIG. 3C). 图3B显示位于两个不同位置的辊以描述隔膜控制。 3B shows in two different positions of the roller separator to describe control. 当液体位于上层时,收集的气泡挤压软管的上表面(图3D)。 When the liquid is located in the upper layer, the bubbles collect on the pressing surface of the hose (Figure 3D). 位于辊前方的移动的气-水界面随之冲刷所述软管的上表面,减少生物污损并保持管子上表面的光透射。 Moving the roller in front of the air - water interface will scour the surface of the hose, to reduce biofouling and held on the light transmitting surface of the tube. 可以通过加入1英寸直径1/4英寸厚度的低漂浮冲洗碟提高冲洗作用,所述冲洗碟有目的在流体中循环且倾向于被推挤在辊的前方。 Flushing action can be improved by the addition of a low thickness of 1/4 inch 1 inch diameter dish floating flushing, the flushing purpose dish and tend to circulate fluid pushed in front of the roller. 本领域技术人也可以设计类似尺寸的其他固体形状物以冲洗流体系统的内部。 Skilled in the art can also design other solid shapes were similar size to the internal fluid irrigation system. 实践中,可以在所述生物反应器中放置成千上万的这类碟子或其他固体形状物,但不能多到使光透射明显降低。 In practice, thousands of such dishes can be placed or other solid shaped article in the bioreactor, but no more to the light transmission is significantly reduced. 在收获前可用筛子将其从藻类混合物中分离,并且其浮性足够低从而能被由前方的辊引起的主要液流冲洗入位于辊前的气泡空间中。 Available sieve separated from the mixture prior to harvesting the algae, and which is low enough to be floating by the main flow front of the roller caused by bubbles rinsed into the space in front of the roller. 当液体位于下层时(图3C),所述阻热层的下侧也以相同方式被冲刷以保持透过其的光透射。 When (FIG. 3C) located on the lower liquid, the lower side of the thermal barrier is also flushed to maintain its light transmission through in the same manner.

[0079]如图3A~B所示,各种机件(mechanism)可以装入所述装置中,例如在袋的末端,以用于收获藻类,注入或排出气体、营养物和/或废物或者用于其他用途。 [0079] FIG 3A ~, various parts B (mechanism) can be loaded into the device, for example, at the end of the bag, for harvesting algae, injection or exhaust gases, nutrients and / or waste or used for other purposes. 在优选实施方式中,袋末端的水力流体运动可设计为促进立式漩涡循环的形成,在下文中将详细描述,其可以用于提高水生生物收获,气体和/或营养物引入,废物清除,或者其他目的的效率。 In a preferred embodiment, the hydraulic fluid moving the bag end can be designed to promote circulation of the vertical vortex is formed, is described in detail hereinafter, which may be used to improve the harvesting of aquatic organisms, gases and / or nutrients introduced, waste removal, or efficiency for other purposes. 图3A~B的右侧显示用于收获水生生物的漩涡装置,在下文中将更详细地描述。 The right side of FIG. 3A ~ B display means for swirl harvesting aquatic organisms, described in more detail below.

[0080]所述描述性实施方式显示了仅65英尺长的研究模型,具有的各独立生物反应器袋的宽度为52英寸。 [0080] The embodiments described above show the model to study only 65 feet, a width of each individual bioreactor bag having a 52 inch. 在优选的生产规模实施方式中,两个袋子中的任一个将约为300英尺长,10~20英尺宽,单个生物反应器装置的光合作用总面积为0.15~0.30英亩。 In a preferred embodiment, the scale of production, any one of the two bag about 300 feet long, 10 to 20 feet wide, a total area of ​​photosynthesis single bioreactor apparatus is 0.15 to 0.30 acres. 每一个如此的生物反应器每天(或更长)将产生大约7~14加仑的生物柴油。 Per day (or more) of each of such bioreactor will produce about 7 to 14 gallons of biodiesel.

[0081]在一些实施方式中,单根管可形成为包括上层、内部阻热层和下层,如图4和图23的右侧所示。 [0081] In some embodiments, the individual tubes may be formed as shown in the right comprises an upper layer and a lower inner thermal barrier, FIG. 4 and FIG. 23. 在图9所公开的替代性实施方式中,采用了双袋系统,具有分开的上层袋和下层袋以及其间的阻热层。 In the alternative embodiment of FIG. 9 embodiment disclosed, using a twin bag system, having separate upper and lower bags and bags thermal barrier therebetween. 在运行时,这样的系统将与以上讨论的单袋系统完全相同。 In operation, the single bag system, such a system will be discussed more exactly. 双袋系统的优势在于潜在地消除了密封侧面接缝的要求,提供了更好的结构稳定性并降低了成本。 Advantages twin bag system is that potentially eliminating side seams the sealing requirements, provide better structural stability and reduces costs. 此外,由于高辐射层和绝热器(以下讨论)不需要防水,因此提供了更多的材料选择。 Further, since the high emissivity layer and the insulator (discussed below) does not need water, thus providing more material choice. 并且,由于所述阻热层并不与藻类接触,消除了所述材料被生物污损的可能。 Further, since the thermal barrier layer is not in contact with the algae, eliminating the possibility of biological fouling material. 最后,当更换袋子时可以保留所述绝热器和高辐射层,实现额外的成本节约。 Finally, when replacing the bag may retain the insulator and the high emissivity layer and achieve additional cost savings. 图9还显示了可选的一层即放置在袋和地面之间的地面平滑层,诸如飞灰,其可用于单袋或双袋系统。 9 also shows an optional layer that is placed in the ground layer between the bag and the smooth surface, such as fly ash, which can be used in a single bag or double bag system. 飞灰是可由当地电厂获得的低成本材料,并且是具有充分腐蚀性质的材料从而阻止植物在所述生物反应器袋下生长。 Fly ash is a low cost material obtained by the local power plant, and a material having sufficient properties to prevent the growth of corrosion in the plant bioreactor bag. 包括盐的其他材料也可以放置在所述袋的下方以阻止生长。 Other materials include salts may also be placed under the bag to prevent the growth. 覆盖上层袋的网是可选的。 Network covering the top of the bag is optional.

实施例4.水性培养液的热控制 Example 4. The thermal control aqueous medium of embodiment

[0082]在图3的示例性实施方式中,具有优选构造的管子具有其中包括沿着中心部位水平安装的高辐射绝热隔膜(阻热层)的结构。 [0082] In the exemplary embodiment of FIG. 3, the tube having a preferred configuration having a configuration which includes a horizontal portion mounted along a central high radiation heat insulating membrane (heat resistant layer). 该隔膜的最后几英寸可利用棒而变坚固,其可被促动器抬高以隔离上层管或者压低以封闭下层管。 The last few inches of the diaphragm can be toughened by the bar, which can be raised to isolate the actuator down to enclose the upper or lower pipe tube. 所述棒经构造具有柔软的密封边缘以用作单向阀门,使得即使当所述隔膜被夹紧以防止流体进入时流体或气体也能流出上层管或下层管。 The rod is constructed with a soft sealing edge to serve as a check valve, so that even when the membrane is clamped to prevent fluid or gas can flow out to upper layer or the lower layer fluid enters the tube. 这使得所述辊可以从小室中挤出残留的液体或气体而不管隔膜阀门的位置如何。 This makes the rollers may be liquid or gas from the chamber remaining in the extrusion regardless of the position of the diaphragm valve. 左侧辊(图3C)显示为使液体滚动进入管子的底部,经过阻热层的下方,流出而进入左手边的小室中。 Roll left (FIG. 3C) is shown as the liquid enters the bottom of the tube to scroll through the bottom, flows into the thermal barrier layer is left in the chamber. 之后,液体重新循环回到右侧,此处隔膜位于下方位置,液体流经阻热层的上方,使之充满管子的顶部。 Thereafter, the liquid recirculated back right, where the diaphragm is located in the lower position, above the liquid flowing through the thermal barrier, so as to fill the top of the tube. 这是所述隔膜的位置如何引起液体在管子的上层部分和下层部分之间运动而没有消耗大量能源的例子。 This is how the position of the diaphragm causes movement of the liquid portion of the tube between the upper and lower portions without large energy consumption example. 该运动的目的对液体进行热控制。 The purpose of the movement of the thermal control fluid.

[0083]生物反应器热控制的非限制性实例在图4中描述,其显示了沿其长度方向观察的一个软管的横截面。 [0083] Non-limiting examples of thermally controlled bioreactor described in Figure 4, which shows a cross section of a hose viewed along its length. 热控制的目的在于保持培养液中的藻类处于其最佳温度并防止管子在低于0度的环境温度下冰冻,或者防止在炎热的夏日里过热。 Purpose is to maintain the thermal control algae culture solution at its optimum temperature and to prevent the tube from freezing at ambient temperatures below 0 degrees, or to prevent overheating in the summer heat. 所述热控制方面涉及具有选定的光学和/或热辐射特性的不同袋部件的使用。 The thermal control involves the use of a different member of the bag having a selected optical and / or thermal radiation characteristics. 例如,顶片(例如0.01英寸厚的透明聚乙烯)可允许光线进入以及热量的进出。 For example, the topsheet (e.g., 0.01 inches thick transparent polyethylene) and may allow light to enter the heat out. 内部阻热层包括经设计以吸收红外但允许用于光合作用的可见光透过的柔软片材,其覆盖在绝热体(conductive insulator)上。 Internal thermal barrier comprises a flexible sheet designed to absorb infrared sheet but allows for visible light transmittance of photosynthesis, which covers the insulating body (conductive insulator). 在一些实施方式中,所述阻热层可以是包括与IR吸收片材相连的柔软绝热器片材的组合体。 In some embodiments, the thermal barrier may comprise a combination of flexible sheet connected to the insulator sheet and IR absorption. 所述绝热器可包括例如1 / 2英寸(R2)或1英寸(R4)厚的发泡聚乙烯层。 The insulator may comprise, for example, 1/2 inches (R2) or 1 inch (R4) thick foamed polyethylene layer. 所述管子还包括底部片材,其通常但并非必须与顶部片材的组成相同。 The tube further comprises a bottom sheet, which is typically, but not necessarily the same as the composition of the top sheet.

[0084]所述管子可以通过侧面密封两片(上层合下层)或三片(上层、内部阻热层和下层)软塑料形成,不过也可以采用其他方式,诸如通过圆柱形塑料片材的连续压出或吹制提供无缝管。 [0084] The tube can be sealed by two side surfaces (a lower layer is laminated) or three (upper, lower and internal thermal barrier) is formed of soft plastic, but may also be used in other ways, such as a continuous cylindrical plastic sheet by extruded or blown to provide seamless. 耐物理/机械破裂但导热的地面片材可放置在地面和所述管子之间。 Resistance to physical / mechanical disruption but thermally conductive sheet may be placed on the floor between the ground and the tube. 地面可经过处理或者制备为相对平坦、光滑、导热和防植物。 Ground may be treated or prepared as a relatively flat, smooth, heat conduction and anti plants. 可以提供侧壁以物理支持充满液体的管子和/或在所述管子的侧面提供额外的绝热以及附加地支持和导引所述辊架。 It may provide physical support to the sidewall of the tube filled with liquid and / or to provide additional thermal insulation on the side of the tube as well as additional support and guide the roll stand.

[0085]如图4所示,在非绝热模式中,水流经管内的阻热层的上方,允许热辐射至冷(夜间)空气或者在日间由太阳红外辐射中吸取热量。 [0085] As shown in FIG. 4, in the non-adiabatic mode, the upper thermal barrier administered in flow, allowing heat radiation to a cold (night) or air absorbs heat during the day by the solar infrared radiation. 该模式也能获得用于光合作用的可见光的最大吸收。 This pattern can be obtained for the maximum absorption of visible light photosynthesis. 传热也可通过传导或对流以及IR辐射或吸收进行。 Radiation or heat may be absorbed by conduction or convection and IR. 在绝热模式中,液体流经阻热层的下方,通过与地面热质量相接触从而热稳定所述液体温度。 In the adiabatic mode, the liquid flows through the lower thermal barrier, by contact with the ground so that the thermal mass of thermally stable temperature of the liquid. 所述阻热层将液体与太阳IR辐射相隔绝。 The thermal barrier liquid and isolated from the solar IR radiation. 可见光仍可透过阻热层以支持光合作用,不过透过率低于100%。 Still visible through the thermal barrier to support photosynthesis, but less than 100% transmittance. 在夜间,与地面的接触使液体变暖,而在日间,与地面的接触将使液体冷却。 At night, the liquid in contact with the ground warming contact during the day, with the ground will cause the liquid to cool. 在一些实施方式中,与地面之间的来回的热传递可将地面用作冷源或热源从而在日间或夜间调节液体温度。 In some embodiments, the heat transfer back and forth between the ground floor can be used as a heat source or a cold source so as to adjust the temperature of the liquid in the day or night. 例如,在日间将热传递至地面并在夜间从其吸收热量以在冬季月份里保持所述液体温暖,或者在夜间由地面传热并在日间使用地面作为冷源以在夏季冷却所述液体。 For example, in transferring heat to the ground during the day and at night to retain the heat absorbed from the liquid warmer during the winter months, the heat transfer from the ground at night or in the ground and used as a heat sink during the day in summer to cool the liquid.

[0086]在替代性的实施方式中,可以采用使用电厂水的主动热调节。 [0086] In an alternative embodiment, the active thermal conditioning plant water may be employed. 来自电厂冷却塔的热水可泵入位于部分生物反应器管道以下的塑料毯中。 From the power plant cooling tower water may be pumped into the bioreactor conduit portion located below the plastic blanket. 当天气寒冷时,此额外的热源可用于防止冰冻和/或低于最佳藻类生长温度。 When the weather is cold, this additional heat source may be used to prevent freezing, and / or algae growth below the optimum temperature. 熟练的技术人员将认识到可以采用各种热源,诸如电厂废气、地热、储存的太阳能或其他替代热能。 The skilled artisan will recognize that various heat sources may be employed, such as plant waste gas, geothermal, solar storage or other alternative energy. 此外,在炎热季节或强日照地区,可有效运转的蒸发或其他冷却系统可用于防止藻类过热。 Further, in the hot season areas or strong sunlight, which can effectively operate an evaporator or other cooling systems can be used to prevent overheating of the algae.

[0087]在一些实施方式中,阻热层的辐射特性可通过加入具有选定的光学特性的其他材料而进行调整,诸如具有选定的光学特性的石英砂(ee,例如图10)、掺杂玻璃或石英小珠或瓷砖可嵌入所述阻热层的上表面。 [0087] In some embodiments, the radiation characteristics of the thermal barrier may be carried out by addition of other materials having a selected optical characteristic adjustment, such as quartz sand (EE, e.g. FIG. 10) having selected optical properties of the doped heteroaryl glass or quartz beads or ceramic tiles can be embedded in the upper surface of the thermal barrier layer.

[0088]以上讨论的热控制机械非常有效地将控制温度保持在最佳藻类生长范围内。 [0088] The thermal control machine discussed above is effective to control the temperature is maintained within an optimal range of algal growth. 图16显示了计算建模的水温数据,采用2006年1月至6月间Fort Collins,Colorado的环境条件,以及R-4(1英寸厚的泡沫)阻热层和理想的红外吸收层(参见图11)。 Figure 16 shows the calculated temperature data for modeling, between January 2006 to June Fort Collins, Colorado environmental conditions, as well as R-4 (1 inch thick foam) and the thermal barrier layer over the infrared absorption (see Figure 11). 在存在阻热层(灰色)和不存在阻热层(黑色)时对所述水温范围进行建模。 (Gray) and in the presence of modeling thermal barrier layer thermal barrier layer (black) the absence of the temperature range. 可以看出,存在阻热层时春季和夏季的温度主要稳定在20□~30℃,而不存在所述阻热层时,夏季的水温达到45℃或者更高。 As can be seen, the presence of thermal barrier main spring and summer temperature stabilized at 20 □ ~ 30 ℃, without the presence of the thermal barrier, the water temperature in summer reaches 45 ℃ or higher. 所述阻热层使最高夏季水温降低大约10℃。 The thermal barrier so that the maximum temperature in summer is reduced by approximately 10 ℃. 该阻热层在将冬季水温维持在最佳范围内的效果较差。 The thermal barrier layer is inferior in the winter, the water temperature is maintained within an optimum range of results. 各种替代性方法可用于冬季水生生物生产,诸如使用来自补充源的热(例如电厂废气),生产单元位于冬季温度不太冷的较温暖的气候中,或者采用耐寒藻类诸如红球藻。 Various alternative methods may be used for the production of winter aquatic organisms, such as using heat (e.g., power plant flue gas) from a supplemental source, the production unit is located is not too cold winter temperatures warmer climates, such as algae or with cold Haematococcus.

实施例5.漩涡和吸泵 Example 5. vortex suction pump and

[0089]替代性设计的示例性收获漩涡在图3的右侧进行描述,优选的驻留管设计详细显示在图15A和15B中。 [0089] Exemplary alternative designs swirl harvested right side of Figure 3 will be described, the preferred dwell tube design is shown in detail in FIGS. 15A and 15B. 虽然生物反应器的优选实施方式包括这样的漩涡装置,但所述装置并不受限于此,并且在替代性的实施方式中,也可以采用从培养液中收获藻类的其他方法和设备。 Although the preferred embodiment of the bioreactor includes a swirl device, but the device is not limited thereto, and, in alternative embodiments may also use other methods and apparatus for harvesting the algae from the culture broth. 所述漩涡的主要目的在于能吸取由含有所需产品的藻类(或其他水生生物)所增强的液体。 The main purpose is to be able to absorb the vortex algae (or other aquatic organisms) from the desired product containing the enhanced liquid. 次要目的在于提取需要从所述培养液中取出的液体成分,诸如主要由有害细菌构成的mucilage或泡沫。 Secondary aims mucilage or extracted from the culture liquid foam components requires liquid removed, such as harmful bacteria mainly constituted. 密度分离型(densityseparating)漩涡有大量潜在用途,对应于可在光-生物反应器中生长的许多不同的产品类型。 Density separation type (densityseparating) a large number of potential uses swirl, corresponds to a light - many different types of products in the growth bioreactor. 不同种类以及处于不同环境或者生命阶段的藻类可比液体培养液重或轻,这取决于油、糖和气泡,以及根据其盐含量和温度具有不同密度的生长培养液的浓度。 And different types of algae in different environments or stages of life than the liquid medium heavy or light, depending on the sugar and bubbles, and the concentrations of oil, depending on the growth culture medium having a salt content and temperature of different densities. 除藻类之外的水生生物也可以照这样通过密度差异从液体中分离。 Aquatic algae except as such may be separated from the liquid by the density difference.

[0090]如图15所示,当液体离开位于左侧的管子隔膜阀门区域时(标记为入流),其在位于1 / 2深度位置的斜坡处堆积并必然加速大约2倍。 [0090] As shown, when the liquid leaves the tube diaphragm valve region located on the left (labeled as inlet), which is deposited at the ramp 15 is located at the 1/2 position and depth about 2 times the acceleration inevitable. 所述流体然后环绕并撞击加速锥,然后流过其边缘并穿过驻留管落下而进入小室底部。 The fluid then strikes acceleration cone surrounds and then through the edges thereof and through the drop tube into the bottom of the residence chamber. 落入驻留管引发漩涡行为,所述液体进入孔之后将越转越快。 Dwell tube vortex behavior falls initiator, said liquid entrance hole after the faster and faster. 无论其旋转多块,由漩涡形成的离心力程度均和孔的面积与袋的横截面积之比以及辊速及管子挤压比成比例。 A plurality of rotating regardless of the extent of the centrifugal force are formed by the vortex and roll speed ratio and the cross-sectional area of ​​the tube and the hole area ratio of the bag is proportional to the extrusion. 驻留管的目的是在液体必须减速进入较低的小室之前,将所述离心分离力保持尽可能长的驻留时间。 Object resides tube is to be decelerated before the liquid enters the lower chamber, the centrifugal separation force remains as long as possible residence time. 当含有大量盐或矿物质的水以及重的或絮凝的藻类在驻留管中被推至所述旋转漩涡(spinning whirlpool)的外侧时,气泡、低密度藻类以及其他低密度成分迁移至漩涡的中心。 When the weight of water and contains a lot or flocculation of algae or mineral salt is pushed to the outside of the rotating vortex (spinning whirlpool) resident in the tube, bubbles, algae, and other low density components migrate to the vortex density center. “吸泵”管可放置在所述漩涡的中心(图15B),可选的具有可变直径的孔隙,以收集可能富含某种特定产品的该漩涡的中心物。 "Suction pump" tube may be positioned at the center (FIG. 15B) of the vortex, optionally having a variable diameter of the pores, may be rich in the center thereof to collect the vortex of a particular product. 所述吸泵使混合物减慢旋转并将其导入螺杆驱动的脱水过滤器,或者高速的连续离心机,或者二者,或者其他提取和脱水装置。 The slow rotation of the suction pump and the mixture introduced into the dewatering screw drive filters, centrifuges or continuous high-speed, or both, or other extraction and dewatering device. 在移取产物之后的含营养物的水可经过滤以除去可能支持细菌生长的残留生物碎片,然后用UV光杀菌并返回所述生物反应器。 Containing nutrients after pipetting product water may be filtered to remove the residue may support bacterial growth biological debris, and sterilized with UV light and then returned to the bioreactor. 所述脱水装置可将浓缩的藻类或其他产品运输至收集传送带或其他装置上以由直线排列的多个生物反应器中收集藻类并将大量藻类运输至中央处理设施以提取油。 The dewatering apparatus may be concentrated algae or transported to other products collected by the plurality of bioreactors arranged in linear mass transport of algae and the algae collected to the central processing facility to extract oil on a conveyor belt or other means. 所述藻类可分裂成块状物并通过下落空间而到达传送带上,或者可以通过bioseptic单向阀门传送以防止传送带上的外来生物进入生物反应器并导致单一养殖的破坏或“感染”由一个反应器扩散至另一反应器的可能。 The algae may be split into chunks fall through space and onto a conveyor belt, or may be transmitted by bioseptic way valve to prevent alien organisms on the conveyor belt into the bioreactor culture and result in the destruction of a single or "infected" by the reaction of a diffuser to another of the reactor possible. 在另一种结构中,也显示在图15B中,所述吸泵可由位于驻留管内侧的贯穿孔构成从而收集液体中具有最高密度的成分。 In another configuration, also shown in FIG. 15B, the suction pump may be located through holes constituting resides inside the tube to collect the liquid component having the highest density. 例如,这些可以是富含油和糖的藻类,其中油和糖的比例使得所述藻类重于所述培养液。 For example, these may be sugar-rich oil and algae, wherein the proportion of sugar such that the oil and heavier than the algae culture solution.

[0091]所述漩涡的另一目的可用作替代性的CO 2注入装置。 [0091] Another object of the vortex may be used as an alternative means of CO 2 injection. 这可发生在所述漩涡的底部,液体在离开控制口之后被旋转甩出。 This may occur at the bottom of the vortex, the liquid is thrown out after leaving the rotary control port. 气体诸如纯CO 2 ,或来自电厂、工厂或其他来源的替代性的富含CO 2的废气可被注入漩涡的中心区域或者刚好位于中心吸泵管的开口之下。 Pure gases such as CO 2, or CO-rich exhaust gas from an alternative power plants, factories, or other sources 2 may be injected or central region of the vortex center is located just below the opening of the suction tubing. 在该位置,由于所述吸泵管和向下的反向水流的限制因此可防止气泡趋向于漩涡的中心。 In this position, the pump tube and limit the downward reverse current can be prevented from absorbing bubbles tend to center of the vortex. 然而由于浮力和向下的水流同时存在,因而气泡由其来源孔变到足够大时存在一段驻留时间。 However, due to buoyancy and the downward flow exist, and thus the source of bubbles by the presence of foramen dwell time period is sufficiently large. 气泡的尺寸压缩并加速其周围的水流,使得该气泡作为在更缓慢的水流中负载的小气泡离开其生成孔。 Compressed size of the bubbles and accelerate the surrounding water, as small bubbles so that the bubbles in the load leaving the slower water flow that generates holes. 在优选实施方式中,在气泡融合并升至管子顶部之前,大量气体被吸入液体中。 In a preferred embodiment, prior to the fusion and the bubbles rise to the top of the tube, a large amount of gas is drawn into the liquid.

[0092]对所述生物反应器而言,有可能通过氯丁橡胶注射器将空气鼓入,或者透过所述生物反应器顶部表面的直接渗透而直接从空气中获得CO 2 [0092] For the bioreactor, it is possible by neoprene air into the syringe, or direct penetration through the top surface of the bioreactor and the CO 2 is obtained directly from the air. 在一些实施方式中,在所述管子的顶部内侧可配置有1英寸直径的氢氧化钠混合物小袋,封闭在透气防水膜之后,所述透气防水膜可由对CO 2显示了极高通透性的聚苯乙烯膜形成。 In some embodiments, the top inside of the tube may be configured with sodium hydroxide mixture pouch 1 inch diameter, closed after the breathable and waterproof membrane, said breathable and waterproof membrane may be made of CO 2 shows extremely high permeability polystyrene film. 当这些小袋部分接触外界大气时,它们可以选择性地吸收空气中的CO 2成分。 When the pouch portion contacted to the ambience, they may selectively absorb the CO 2 in the air component. 然后当辊经过这些小袋时,它们受到辊的物理挤压而使得顶部密封,CO 2的分压高于在所述膜底侧的水中的分压,并发生快速跨膜扩散进入液体中。 Then, when the roller passes these pouches, they are subjected to physical pressing roller so that the top seal, CO 2 partial pressure is higher than the partial pressure of water at the bottom side of the membrane, and the diffusion membrane occurs quickly into the liquid. 在该结构中,顶部片材看起来稍微有点象气泡位于顶部的泡罩包装(bubblewrap),并且充满了氢氧化钠混合物,顶部和底部均包括CO 2通透膜。 In this configuration, the top sheet looks somewhat like a bubble located at the top of the blister pack (bubblewrap), and filled with a mixture of sodium hydroxide, the top and bottom includes CO 2 permeable membrane. 在用于直接获得CO 2的其他实施方式中,所述生物反应器的顶面由作为加固成分的开孔织物和充满了CO 2通透性和吸收性物质的小孔的组合体制成。 In a direct access to CO 2 in the other embodiments, the bioreactor from the top surface of the fabric as a reinforcing component openings and filled with CO 2 permeability and an absorbent substance apertures made into compositions. 这可以是氢氧化钠的聚苯乙烯微胶囊。 This may be sodium polystyrene microcapsules. 在运行中,所述胶囊从空气中吸收CO 2 ,然后在每次辊扫过挤压所述胶囊时,通过被动扩散或通过加压扩散将CO 2直接释放进入液体中。 When in operation, the capsule CO 2 absorption from the air, and then pressing each roller sweeps the capsule, by passive diffusion or by diffusion pressurized CO 2 is released directly into the liquid.

[0093]漩涡装置的示例性模型显示在图13中。 [0093] An exemplary model of the whirlpool device 13 shown in FIG. 水进入小室,例如第一控制箱,遭遇加速斜坡,所述斜坡能加快水的速度并将水移动至位于液体总深度中部的平板顶部。 Rate of water entering the chamber, a first control box, for example, suffered acceleration ramp, the ramp and the water can accelerate the movement of water to the top plate is located in the middle of the total depth of the liquid. 所述水进一步经过加速锥的加速并向下流过驻留管,自然形成漩涡。 The water is further accelerated through the acceleration cone and down the tube resides, natural swirl. 流出驻留管底部的水进入位于中心平板之下的小室,并在离开所述控制箱之前通过斜向上方的减速斜坡向外流出。 Water flows into the bottom of the tube resides in the center of the chamber below the plate, and flow outwardly through the top of the oblique deceleration ramp before exiting the control box. 所述斜坡的作用是逐渐改变水流的速度以防止当其在中心平板顶部流动,或者从下方流出时引起破坏漩涡的紊流。 The effect of the ramp is gradually changed to prevent the speed of the water when it flows in the center of the top plate, or causes destruction of vortex turbulence when flowing from below. 驻留管和加速锥的细节在图14中描述。 Details dwell tube and accelerating cone 14 described in FIG. 如上所述,经收缩向下流至较低水平的水自然形成漩涡,非常象正在冲水的马桶。 As described above, the contraction flows down to a lower level of natural water swirl, much like being flush toilet. 以下讨论的驻留管、加速椎和定子鳍片经设计有助于漩涡在驻留管的中心形成和稳定。 Dwell tube discussed below, fin accelerate vertebral and stator are designed in the center of the vortex helps to dwell tube formation and stabilization. 所述驻留管的长度经设计可增加液体悬浮液在离心力下的驻留时间,实现不同密度的成分诸如充满较轻或较重产品的藻类与水培养液之间的最大程度分离。 The maximum degree of separation between the water and the algae culture solution designed length of the tube resides in the liquid suspension may increase the residency time of the centrifugal force, to achieve different density components such as filled with lighter or heavier products. 围绕所述驻留管的定子鳍片提供了稳定漩涡于驻留管中心位置的中心力。 Providing stable vortex in the center of force dwell tube stator surrounding the center position of the fin tube resides. 这是重要的,因为所述吸泵装置需要精确地位于漩涡内以汲取1/8″厚的快速流动水层。所述稳定定子鳍片用作围绕漩涡的紊流过滤器。由于其角度,控制箱中的来回晃动得到缓解以避免扰乱漩涡位置,同时不断进入的水的螺旋运动未受阻碍。在试验条件下,在图13~14中显示的模型漩涡装置形成稳定的漩涡。 This is important, because the pump suction means needs to be precisely positioned within the turbulent vortex to draw filter 1/8 "thick rapid flow of the aqueous layer. The stabilizing fin is used as a stator surrounding the vortex due to its angle, shake the control box have been alleviated to avoid disturbing the position of the vortex, while continuously into the spiral movement of water unobstructed. under the experimental conditions, a stable vortex formed in the vortex apparatus model shown in FIGS. 13 to 14.

[0094]所述漩涡装置的水力学描述在图15A中。 [0094] The hydrodynamic swirl means described in FIG. 15A. 流入小室的水遇到加速斜坡和锥体,集中于能使液体降低至更低水平的小孔。 Water flowing into the chamber experiencing acceleration ramp and a funnel, the liquid can be reduced to focus on the lower level of the hole. 这将形成漩涡。 This will form a vortex. 由漩涡中心定子鳍片将漩涡稳定在合适位置。 A stator fin to the center of the vortex swirl stabilized in place. 液体由漩涡底部流出并在离开小室前遭遇减速斜坡,形成相对恒定的进出小室的入流速度和出流速度。 Liquid flows from the bottom of the swirl chamber and before leaving the deceleration ramp face is formed out of relatively constant velocity inflow chamber and the flow velocity. 在某些实施方式中(图15B),吸泵管和泵可用于移除低密度成分(例如充满油的藻类)或高密度成分(例如充满糖的藻类)。 In some embodiments (FIG. 15B), the pump suction pipe and a pump may be used to remove low density components (e.g., oil-laden algae) or high density component (e.g. full sugar algae). 虽然利用单向水流对示例性漩涡装置进行描述,在替代性的实施方式中,可以调节加速斜坡和减速斜坡的位置使得水流从任意方向进入都可形成漩涡,诸如在双向辊系统中。 Although the one-way flow of the exemplary vortex apparatus described, in an alternative embodiment, the adjustable acceleration and deceleration ramps so that the position of the water flow into the vortex can be formed from any direction, such as in a two-way roller system.

[0095]加速斜坡和锥体的目的是在液体加速进入漩涡的时候将紊流降至最小,在漩涡中进一步加速其螺旋运动以提供离心力。 [0095] The object of the acceleration ramp and the cone is accelerated when the liquid enters the vortex to minimize turbulence, which further accelerate the vortex spiral motion to provide a centrifugal force. 据估测,图13~15中所显示的装置在能通过漩涡输送90加仑/秒的全尺寸系统中仅仅从紊流中消耗50瓦特的能量。 It is estimated that, in FIGS. 13 to apparatus 15 shown in swirl by the transport 90 gallons / sec full-scale system only consumes 50 watts of energy from turbulence. 如上所述存在各种替代性方法以从培养液中分离藻类,并且可以采用任何已知的方法。 There are various alternative methods as described above to separate the algae from the culture solution, and any known method can be employed.

实施例6.CO 2吸收 Example absorption embodiment 6.CO 2

[0096]在某些实施方式中,富含CO 2的废气可用于支持光合作用碳固定,同时净化废气中的CO 2含量以防止温室气体的进一步累积。 [0096] In certain embodiments, the waste gas rich in CO 2 may be used to support photosynthesis carbon fixation, while purifying the CO 2 content in the exhaust gas to prevent further accumulation of greenhouse gases. 以此方式,例如大量的电厂废气成为CO 2 “宝库”,所得气体管道输送至藻类养殖场。 In this manner, for example, be a large number of exhaust gas power plant CO 2 "treasure", the resulting gas pipeline to the algal farms.

[0097]图12描述了用于CO 2溶解的装置的示例性实施方式。 [0097] FIG. 12 depicts an exemplary embodiment of the apparatus for dissolving of CO 2. 该图显示了位于水柱底部的气泡发生器,例如刺有大量小孔的氯丁二烯膜。 The figure shows at the bottom of the water column bubble generators, for example, a large number of thorns chloroprene membrane pores. 所述气泡发生器产生大量具有非常小的直径的气泡以促进CO 2在培养液中的溶解。 The bubble generator generates a large number of very small bubbles having a diameter to facilitate dissolution of CO 2 in the culture solution. 所述气泡由于其浮密度而向上移动,水柱由于被辊或其他流体运输装置所诱导的定向流动而向下移动。 The floating bubble density due to its upward movement, induced by the roller because of water or other fluid transport means moves downward directed flow. 逆流延长了气泡在培养液中的驻留时间并使气体溶解最大化。 Countercurrent extended residence time of the bubbles in the culture liquid and the gas dissolved maximized. 可增加所述水柱的长度以进一步促进气体溶解。 Increased length of the water column in order to further facilitate gas dissolution. 在示例性双向流动系统中,如下所讨论,液体以相反方向交替流动,可采用位于中心区域任一侧的两个气体起泡器使得逆流机械可在任意方向的流体运动中被应用(图12A、图12B)。 In an exemplary bi-directional flow system, as discussed below, the liquid flows alternately in opposite directions, can be used in a central area two to either side of the gas bubblers may be applied such that mechanical backflow of fluid movement in either direction (FIG. 12A , FIG. 12B). 在该结构中,含有CO 2的废气可经过管道由数英里之外的电厂输送至生物反应器养殖场。 In this configuration, the exhaust gas containing CO 2 may be delivered by the plant via line a few miles away to the bioreactor farms. 该过程的数学模型指出将CO 2管道输送至生物反应器并从生物反应器中的废气里除掉CO 2将是充分的节能方法。 Mathematical model of the process indicates that the delivery conduit to the CO 2 removed from the bioreactor and bioreactor CO 2 in the exhaust gas will be sufficient power saving method.

[0098]当采用长软管时,最理想的是在所述管子的两侧都提供补充CO 2注入装置。 [0098] When using long hose, ideally provide supplemental CO 2 at both sides of the tube implantation apparatus. 据估算,以0.25米/秒流动的水生生物大约每7分钟(105米)需要补充CO 2 It is estimated to aquatic organisms 0.25 m / sec flow about every 7 minutes (105 m) need to add CO 2. 补充的CO 2可以以各种形式提供,诸如气泡、用CO 2预饱和的水、加入固体形式的CO 2 (例如NaHCO 3 、Na 2 CO 3等)。 Supplemental CO 2 may be provided in various forms, such as a bubble, with CO 2 pre-saturated water was added solid CO 2 (e.g. NaHCO 3, Na 2 CO 3, etc.).

实施例7.辊驱动 Example 7. The drive roller embodiment

[0099]图24显示优选的辊驱动系统。 [0099] FIG. 24 shows a preferred roller drive system. 所述辊可以例如是纤细的轻质玻璃纤维管和纤维结构管。 The rollers may for example be thin and lightweight fiberglass pipe tube fibrous structure. 作为另外一种选择,所述辊可以是不锈钢管或其他重质圆筒。 Alternatively, the rollers may be steel or other heavy cylindrical tube. 在任一情况下,它们必须足够重以补偿其下它们所替代的水的体积。 In either case, they must be heavy enough to compensate they replace the volume of water. 在大多数情况下这可以通过制造纤细轻质圆筒而实现,所述纤细轻质圆筒可以廉价地制造和运输,然后注入足量的水、沙或其他材料使之在安装后具有合适的重量。 This can be achieved in most cases by making a lightweight slim cylindrical, the cylindrical thin lightweight transport and can be inexpensively manufactured, and then a sufficient amount of injection water, sand or other suitable material so as to have after installation weight. 所述辊可在两套支撑辊组合间包括固体轴。 The roller shaft may include a solid composition between the two support rollers. 在优选式样中,所述辊可以在各自一侧独立驱动,或者由其间的驱动差速器驱动。 In a preferred pattern, the rollers may be driven independently on each side, or driven by a drive differential therebetween. 这是因为垂直于驱动方向的辊对于防止袋组装体的聚束或起皱是至关重要的。 This is because the perpendicular to the driving direction of the roller to prevent bunching or wrinkling of the bag assembly is critical. 传感器可以检测何时辊的一侧位于另一侧之前,或者何时交叉轨道在所述袋子上,并调整驱动定相由一侧转移至另一侧,因此所述辊可在袋子上顺利移动而不导致破坏或者招致过分的摩擦。 Sensor may detect when one side of the roller before the other side, or when said cross-track on the bag, and adjusts the drive phase shift from side to side so that said rollers may smoothly move on the bag without causing damage or lead to excessive friction. 在图25中的辊车架系统的动力学设计使之能补偿大的未校准(misalignment)和温度变化。 Dynamic Design roller carriage system in FIG. 25 so that it can compensate for large uncalibrated (misalignment) and temperature changes.

[0100]十至二十英尺长的辊必须被准确地驱动,耐受反射波背景、未校准、温度差异和不停变动的摩擦力以避免辊的相位差和管子的对角起皱。 [0100] ten to twenty feet in length must be accurately driven roller, the reflected wave background tolerance, uncalibrated, temperature differences and to avoid changes in the frictional force constant phase difference and the tube roll diagonal wrinkling. 在某些实施方式中,所述辊可重达数千磅并沿300英尺或者更长的轨道移动。 In certain embodiments, the roll can weigh thousands of pounds and moves along the track 300 feet or longer. 如图25所示的示例性系统采用钢制驱动缆绳系统,其成本低并且具有较低的动力传动系统惯性,这是因为缆绳通过抗拉强度(tensile strength)传递力,这是非常有效的。 The exemplary system shown in FIG. 25 with steel cable drive system, is low in cost and has a lower driveline inertia through the cable because the tensile strength (tensile strength) transmitting a force, which is very effective. 在该实施方式中,巢状、高带宽速率伺服系统用于驱动驱动皮带轮并保持所述辊不出现相位差。 In this embodiment, the nested, the high bandwidth rate servo system for driving the drive pulley and said roller holding phase does not occur.

[0101]通过确定所述辊的实际位置和其应当处于的位置之间的差异,由控制器发出所述顶部主动伺服系统的速度指令。 [0101] determined by a difference between the actual position of the roller and should be in the position thereof, the top speed command issuing active servo system by the controller. 通过限定所得速度指令的一阶和二阶导数,充满水的不稳定生物反应器袋受到最小程度的晃动。 A first and second derivative of the velocity command obtained by defining, unstable water-filled bioreactor bag by minimal shaking. 由于动力传动系统的顺应性(compliance)所致任何来源的波动振动未被放大并且不诱发相外回馈信号,这是因为直接与驱动发动机相连的速度反馈传感器与顺应性部件隔离。 Since the driveline compliance (Compliance) fluctuation caused by the vibration is not amplified from any source and feedback signal does not induce phase out, because the speed of the drive motor is directly coupled to the feedback sensor compliant isolation member. 底部伺服系统是从动的以匹配与顶部伺服系统相同的速度但由于其指令中的dV/dt引导前馈网络而具有增强的速度跟随。 The bottom of the servo system is driven to match the same with the top of the servo system speed feedforward network but because the instruction in dV / dt guide having enhanced speed following. 所述从动速度指令经概括并由对运动车架系统的斜张力传感器输出所补偿。 The instructions are summarized by the driven speed of the helical tension sensor output motion compensated frame system. 这主动地驱动所述辊参考校准轨实现精确的角度对准。 This actively driving the roller track reference calibration precise angular alignment. 准确的歪斜角度可以通过控制器调整从而对辊定向单一作用进行补偿或者缓解检测到的生物反应器中的褶皱形成。 Accurate skew angle may be oriented so that a single roll or alleviate the effect of compensating the detected bioreactor formed of folds adjusted by the controller. 所述控制器也可以采用由膜(生物反应器管子)水平传感器所感知的辊前后静水力学压力差来控制辊速以保持特定的压力头。 The controller may also control the roll speed to maintain a certain pressure head using a film (bioreactor tubes) Mechanical level sensors perceived differential pressure before and after the hydrostatic roller. 具有RF遥感输出的用电池或者太阳能的歪斜和水平传感器不需要与所述辊连接的电源线。 A solar battery or the skew and having a level sensor sensing RF output need not be connected to the power supply line of the roller. 所述车架系统是经过运动学设计的。 After the frame kinematic system is designed. 这使得由于膨胀导致的所述辊轨道之间的宽度变化或辊长度的变化不会制约所述车架系统。 This is because such width variation or varying length between said roller track rollers do not restrict the expansion of the lead frame system. 这也意味着所述辊的垂直性仅仅受到一侧车架末端的限制,并且因此能被位于该末端的传感器精确地测量,而所得结果用于差动控制每一端的驱动系统速度以抵消累计的歪斜。 This also means that the perpendicularity of the roller is limited only by the end of the side frame, and thus can accurately measure the end of the sensor, while the results obtained for differentially controlling the speed of each end of the drive system to offset accumulated the skewed.

实施例8.管子涂层 Example 8. The coated pipe embodiment

[0102]用于防止或延缓内部塑料层由于藻类附着而导致的生物污损的技术是重要的。 [0102] for preventing or delaying the art biofouling inner plastic layer due to the adhesion caused by algae is important. 这是因为如果袋子需要过于频繁的替换,则对于运行而言变为经济耗费。 This is because if the bags need too frequent replacement, for the purposes of running into an economic cost. 在世界范围内有大量方法用于防止生物污损,在纳米尺度上非常尖利的纳米质地疏水表面是一种可能。 There are numerous methods for preventing biofouling in the world, a very sharp at the nanoscale nano hydrophobic surface texture is possible. (参见www.awi-bremerhaven.de/TT/antifouling/index-e.html)。 (See www.awi-bremerhaven.de/TT/antifouling/index-e.html). 一种以极低成本制造用于生物反应器的非污损内表面的方法是采用植绒技术将大约直径1~2微米、长度10~20微米的聚乙烯纤维的末端以静电方式植入刚离开吹制膜环状喷口的柔软的、正在冷却的聚乙烯塑料吹制膜“泡”。 A kind of inner surface of the non-offset extremely low cost of manufacturing a bioreactor using flocking technology will be from about 1 to 2 micrometers in diameter, the tip length 10 to 20 m polyethylene fibers are electrostatically implanted just leaving a soft, polyethylene plastic is cooled blown film annular orifice blown film "bubble." (参见例如www.bpf.co.uk/bpfindustry/process_plastics_blown_film.cfm以了解所述吹制薄膜过程。参见例如www.swicofil.com/flock.html了解植绒的细节。)植绒类基材的非限制性实例在图5中描述。 (See, e.g. www.bpf.co.uk/bpfindustry/process_plastics_blown_film.cfm for the blown film process. Www.swicofil.com/flock.html for details see flocked example) flocking a non-base limiting examples are described in FIG. 5. 作为另外一种选择,在纤维植绒和接触氟气之前也可将粘的或可固化粘附涂层涂覆在管子的内侧或者用于构建管子的塑料膜片材的一侧。 Alternatively, prior to contacting the fiber flock and fluorine gas can also be tacky or curable adhesive coating coated on the inner tube or the side of a plastic film material used to construct the tube.

[0103]通过用氟气(胜于空气)对泡的内部施压从而使位于泡内部的内侧植绒表面疏水,所述氟气与聚乙烯反应从而在所述植绒纤维表面的两侧以及所述纤维基底之间的塑料膜上形成疏水性聚氟乙烯(类似于聚四氟乙烯)薄层。 [0103] by treatment with fluorine gas (rather than air) pressure inside of the bubble so that the inner surface of the flocked hydrophobic internal bubble, the fluorine gas react with polyethylene on both sides so that the fiber surface and the flocking the plastic film substrate is formed between the fibers of hydrophobic polyvinyl fluoride (polytetrafluoroethylene like) sheet.

[0104]在某些实施方式中,在双袋系统的至少一侧所述袋子可制造为全黑。 [0104] In certain embodiments, the at least one side of the bag may be manufactured as a black twin bag system. 当藻类进入暗处时将消耗氧气,而当处于光照下将产生氧气。 When the algae will consume oxygen entering the dark, and when the light generated in the oxygen gas. 这可能具有油生产的优势,即甚至是在白天,让藻类混合物在一些选定的工作循环中交替经过光照和黑暗从而消耗溶解在液体中的一些氧气,刺激能量转换光合作用反应。 This may have the advantages of oil production, i.e. even during the day, so that the algae mixture passes alternately in selected duty cycle light and dark thereby consuming some of the dissolved oxygen in the liquid, stimulation energy conversion reactions of photosynthesis.

[0105]在各种实施方式中,管子的顶面可设计为在冬季月份里最大可能的吸收用于光合作用的光线,尤其是在高维度。 [0105] In various embodiments, the top surface of the tube may be designed to light in the winter months the maximum possible absorption for photosynthesis, particularly in high-dimensional. 示例性的Frenel图案显示在图29中,其描述了管子顶面的横截面,以及沿东西方向排列、其倾斜面(angled face)指向赤道的Frenel光线收集棱镜。 Exemplary Frenel pattern shown in Figure 29, which depicts a cross-section of the top surface of the tube, and arranged in the east-west direction, which inclined surface (angled face) directed Frenel light collecting prism equator. 总厚度为0.025英寸,所述Frenel图案是在塑料吹制过程中或者后期辊轧过程中形成的。 The total thickness of 0.025 inch, or the late Frenel pattern is formed in the rolling process of the plastic blow molding process.

[0106]进入生物反应器的所有东西均优选为无菌,除了所需要的微生物种子培养物。 [0106] all things into the bioreactor are preferably sterile, in addition to a microorganism required for the seed culture. 为了廉价地以工业规模实现,我们可采用连续流动式高压灭菌器(图6)。 In order to achieve low cost on an industrial scale, we can use a continuous flow autoclaves (FIG. 6). 这不仅仅可用于营养物也可用于任何返回生物反应器的液体。 This not only can be used in the nutritional composition may be used to return any liquid bioreactor. 进入所述生物反应器的气体诸如空气可经过HEPA过滤,而烟囱气可断定为已经过电厂热的灭菌。 Gas into the bioreactor, such as a HEPA-filtered air may, while the stack gas can be judged to have been heat sterilized plant. 用UV光照技术可以对光学透明的回收液体进行消毒。 It can be sterilized recovering liquid transparent to UV light using an optical technique.

实施例9.油提取 Example 9 Oil extract embodiment

[0107]用于油提取和/或离心的示例性方法和装置描述在图7中。 [0107] An exemplary method and apparatus described oil extraction and / or centrifugation in FIG. 不需要复杂的化学处理即可抽取藻类并移除其油产品。 No complicated chemical process to extract algae and remove its oil products. 用于大型藻类的最简单方法是将藻类压碎并将所述成分离心分离为油,压碎的藻体用于饲料或营养物,以及富含营养物的水。 The easiest method for algae macroalgae is crushed and the oil component centrifugation, crushed or algae feed for nutrients and nutrient-rich water. 然而,藻类湿滑并难以用标准方法压碎。 However, algae slippery and difficult to crush by standard methods. 图7显示藻类压碎和油提取的非限制性实例。 Figure 7 shows a non-limiting example crushed and algae oil extraction. 两个辊可由不同材料制成。 Two rollers may be made of different materials. 一个可以是类似于印刷辊的光滑硬质金属圆筒。 A printing roll may be smooth like a hard metal cylinder. 另一个可以是具有约0.25mm厚度的顺式橡胶化涂层的精确金属圆筒。 Another may be a metal cylinder having a accurately cis rubberized coating thickness of about 0.25mm. 所述涂层弥补了辊表面的小缺陷(imprefections),允许小砂粒通过,从而提供足够的局部压力以破坏藻体。 The coating makes up for small defects of roll surface (imprefections), allowing small sand thus providing a partial pressure sufficient to break algae. 替代性的收获方法可采用不同版本的旋转和振动筛选技术以除去最大的生物体。 Harvesting alternative method may employ different versions of rotating and vibrating screening techniques to remove the maximum organism. 在肥料处理工业中有许多机器用于该目的,通过小型化使其可适用并且经济化,从而使每个生物反应器都能配备一个。 Many machines used for this purpose, it may be applied by miniaturization and economization of treatment in the fertilizer industry, so that each can be equipped with a bioreactor. 这是有用的,因为浸入一个生物反应器里的任何东西都不应当浸入另一个以避免潜在的扩散感染。 This is useful because immersed in a bioreactor anything you should not immersed another to avoid potential spread of infection. 理想的是,由于通过相连于每个独立反应器的装置收获藻类,所得水可以过滤掉残留的有机物质,然后直接倒入相同的反应器而不需要重新灭菌。 Ideally, since the algae are harvested by means connected to each individual reactor, the resulting water can filter out residual organic matter, and then poured directly into the same reactor without the need for re-sterilization.

实施例10.远程传感 Example 10. Remote Sensing

[0108]用于条件优化和藻类品种选择的远程传感生物反应器显示在图8中。 [0108] Remote Sensing bioreactor and conditions for optimizing algae species selected is shown in FIG. 该系统采用位于远程假反应器上的传感器,所述远程假反应器可操作地对应于生物反应器可能安装的各种地理位置的当地环境条件。 The system uses sensors on the reactor at a remote false, the false remote reactor operably local environmental conditions corresponding to various geographic locations bioreactor may be installed. 所述假反应器是小型的类似生物反应器的装置,其中装有具有与致密藻类养殖物相类似的IR吸收和光吸收能力的惰性液体。 The reactor is a compact false similar bioreactor apparatus, wherein with an inert liquid phase and the dense algae culture similar to IR light absorption and absorptive capacity. 所述传感器检测假反应器能稳定达到的温度以及落在其上的光合作用光照。 The sensor detects false stable reactor temperatures reached and the light falls on the photosynthesis. 远程传感站可用于驱动生物技术实验室中的小型试验反应器的温度和光照条件,因此远程环境可在实验室中得到复制以方便藻类品种的选择。 Remote station may sensing temperature and light conditions for driving small test reactor biotechnology laboratory, so the remote environment may be replicated in the laboratory in order to facilitate selection of algae species. 远程环境试验装置经设计为模拟原位置的生物反应器的响应。 Remote environmental test device is designed to mimic the response of the bioreactor home position. 这比单纯传感器系统要更加精确,因为所述环境试验装置暴露于所有可影响生物反应器功能的环境变量因素,而对于所述假环境生物反应器,输入条件减少至等价曝光和液体温度。 This is more accurate than simply to a sensor system, since the test device is exposed to the ambient environment variables for all factors may affect the biological function of the reactor, and for the false bioreactor environment, to reduce the input conditions equivalent to exposure and liquid temperature.

[0109]在另一示例性的仅基于传感器的实施方式中,可设立一个或多个环境监测站以监测环境条件,诸如温度、地面热传导率、地面热容量、湿度、降水、太阳光照、风速等。 [0109] In another exemplary embodiment of a sensor-based merely embodiment, may establish one or more environmental monitoring stations to monitor environmental conditions, such as temperature, ground thermal conductivity, heat capacity of the ground, humidity, precipitation, solar illumination, wind speed, etc. . 所检测到的条件可传送至基于实验室的测试用生物反应器装置,其中所述测试地点的环境条件可在受控设置中进行复制。 The detected conditions may be transmitted to the test lab-based bioreactor apparatus, wherein the environmental conditions of the test site may be replicated in a controlled setting.

[0110]在任一种实施方式中,各种水生生物(例如藻类)品种可接种到所述测试用生物反应器装置中并监测其生长和生产率。 [0110] In either embodiment, the various aquatic organisms (such as algae) species can be seeded into the bioreactor testing apparatus and monitor its growth and productivity. 可以以最小花费和最大效率确定能被选作在任何所希望的生产地点进行最佳生长和/或具有最佳生产率的藻类品种。 It may be determined to be the maximum efficiency and minimum cost for the optimal growth and / or algae species having the best productivity at any desired production site selection.

实施例11.模型生物反应器系统中的藻类养殖 Example 11. The model algae culture bioreactor system of embodiment

[0111]如图18所示,构建1/5规模的模型封闭系统生物反应器。 [0111] 18, constructed of 1/5 scale model of a closed system bioreactor. 为简洁起见没有显示柔软的生物反应器管,但其位于两组护卫轨道之间并具有相同的高度。 For brevity not shown flexible tube bioreactor, but which is located between the two sets of guard rails and have the same height. 左下方是CO 2注入箱,右上方是收获箱。 CO 2 is injected into the tank bottom left, top right harvest tank. 所述软管如图24上方两张图片所显示,由两层0.01英寸厚的聚乙烯与插入其中的0.5英寸厚的聚乙烯阻热组合层构成(Air Corp.,Elmwood Park,NJ封制)。 The hose 24 shown above the two images constituting (Air Corp., Elmwood Park, NJ seal Ltd.) composed of two layers of polyethylene with a thickness of 0.01 inches 0.5 inches thick inserted therein a polyethylene composition layer of the thermal barrier . 所述三层通过热脉冲结合,利用短加热棒并施加机械压力密着在一起。 The three combined by heat pulse, with a short heating rod and applying mechanical pressure adhesion together. 然而,熟练的技术人员应该注意也可以采用其他替代性方法热封接塑料片材,诸如热空气密封。 However, the skilled artisan may also be employed should be noted that other alternative methods of heat sealing plastic sheet, such as hot air sealing. 为避免收缩,可将稳定性纤维植入所述塑料片材中或者与所述塑料片材相连,从而使得管子外形不会因为热空气密封而变形。 To avoid shrinkage, can be implanted in the stability of the fiber, or plastic sheet and the plastic sheet is connected, so that the tube shape does not deform because of the hot air sealing. 未在图24中示出,如上所述,将轴向涡旋叶轮放置在阻热层上方和下方从而构造所述管子。 Not shown in FIG. 24, as described above, the axial scroll wheel is configured such that the tube is placed in the thermal barrier above and below. 完成的管子每个为4.1英尺宽和60英尺长,并充满水至12英寸深。 Each finished tube 4.1 feet wide and 60 feet long, and filled with water to 12 inches deep. 所述生长培养液是Guillard f/2培养液的改进版本(Guillard,1960,J.Protozool.7:262-68;Guillard,1975,InSmith and Chanley,Eds. Culture of Marine Invertegrate Animals ,PlenumPress,New York;Guillard and Ryther,1962,Can.J.Microbiol.8:229-39),含有22g/L NaCl、16g/L水箱合成海盐(速溶海洋水箱盐,AquariumSystems Inc.,Mentor,OH)、420mg/L NaNO 3 、20mg/L NaH 2 PO 4 ·H 2 O、4.36mg/L Na 2 EDTA、3.15mg/L FeCl 3 ·6H 2 O、180μg/L MnCl 2 ·4H 2 O、22μg/L ZnSO 4 ·7H 2 O、10μg/L CuSO 4 ·5H 2 O、10μg/L CoCl 2 ·6H 2 O、6.310μg/L Na 2 MoO 4 ·2H 2 O、100μg/L硫胺-HCl、0.5μg/L生物素和0.5μg/L维生素B12。 The growth medium is a modified version of Guillard f / 2 culture medium (Guillard, 1960, J.Protozool.7: 262-68 ; Guillard, 1975, InSmith and Chanley, Eds Culture of Marine Invertegrate Animals, PlenumPress, New York. ; Guillard and Ryther, 1962, Can.J.Microbiol.8: 229-39), containing 22g / L NaCl, 16g / L sea salt synthesis tank (instant ocean salt water tank, AquariumSystems Inc., Mentor, OH), 420mg / L NaNO 3, 20mg / L NaH 2 PO 4 · H 2 O, 4.36mg / L Na 2 EDTA, 3.15mg / L FeCl 3 · 6H 2 O, 180μg / L MnCl 2 · 4H 2 O, 22μg / L ZnSO 4 · 7H 2 O, 10μg / L CuSO 4 · 5H 2 O, 10μg / L CoCl 2 · 6H 2 O, 6.310μg / L Na 2 MoO 4 · 2H 2 O, 100μg / L thiamine -HCl, 0.5μg / L biological hormone and 0.5μg / L vitamin B12. 将海洋微藻(Dunaliella tertiolecta)(获得自University ofTexas,Dr.Jerry Brand)接种到所述培养液中,并使藻类在环境光照和温度下进行生长和繁殖。 The marine micro algae (Dunaliella tertiolecta) (obtained from University ofTexas, Dr.Jerry Brand) was inoculated into the culture medium, and algae to grow and reproduce at ambient light and temperature.

[0112]图18描述了封闭系统生物反应器的示例性实施方式。 [0112] FIG. 18 depicts an exemplary embodiment of a closed system bioreactor. 在该情况下,所述系统包括两个袋子,分别具有独立的辊。 In this case, the system comprises two bags, each having independent rollers. 在图18的右上方的小室装有漩涡设备,而左下方的小室装有CO 2鼓泡器。 In the upper right chamber 18 with vortex device, the lower left chamber bubbler with CO 2. 每个辊在单独的三层软管(袋子)中来回滚动,在管子的末端反向。 Each roller is rolled back and forth three separate hose (bags) in reverse at the end of the tube. 因此,水在所述封闭系统中周期性地调换方向。 Thus, the water in the closed system is periodically exchanged direction.

[0113]图19显示所述辊车架和支撑系统的更多细节。 [0113] Figure 19 shows in more detail the frame and the support system of the roller. 所述辊,在本实施方式中为厚规格的塑料圆筒,安放于在辊侧壁轨道上滚动的滚动车架之间(参见图26),所述辊侧壁轨道用于支撑车架和辊以将其保持在沿整个管子长度方向的地面水平线以上的恒定高度。 The roller, in the present embodiment as heavy gauge plastic cylinder, is placed between the sidewall of the roller rolling on a rolling track frame (see FIG. 26), for supporting the track roller frame and the side wall roll to hold it in the direction along the entire tube length a constant height above ground level. 所述侧壁辊轨道也提供了对软管侧壁的支撑,否则在其向外鼓出时倾向于受到过分张力。 The sidewall also provides a support roller track side walls of the hose, or when it tends to bulge outwardly by excessive tension. 它们还能含有绝热物以将所述软管与外侧隔开。 They can also contain heat insulating material spaced from the hose to the outside. 所述支撑物由以3英寸×2英寸折叠的12英寸高的三角形折叠金属片材制成,均位于袋子边缘以下并埋入地中。 Said support is made from 12 inches high triangular folded sheet metal × 2 inch to 3 inches folded, are located below the edge of the bag and buried in the ground. 在另一全尺寸生物反应器的示例性实施方式中,混凝土侧壁有36英寸高、4英寸宽,为了tripping stability将20英寸的壁面埋入地下,令2条预应力钢筋或钢缆沿整个长度位于顶部25英寸处,使之能在辊通过时具有动态负荷承受能力。 In another exemplary embodiment of the full size of the bioreactor, the concrete side wall 36 inches high, 4 inches wide, 20 inches for tripping stability to the wall buried in the ground, so that two or prestressed cable along the entire located at the top of the length of 25 inches, so that it can have a dynamic load bearing capacity when rollers.

[0114]所述示例性封闭生物反应器装置的更多细节在图20中进行描述,其中显示了位于管子末端的小室,其中装有安放在中部平板上的方形孔中的漩涡设备。 [0114] Further details of the bioreactor exemplary closure device will be described in FIG. 20, which shows the end of the pipe is located in the chamber, wherein the apparatus is provided with swirl plates placed on the central square hole. 图20也显示了所述管子通过法兰和衬垫系统与末端小室相连的位置,以下进行详细讨论。 Figure 20 also shows location of the tube by a flange and gasket system connected with the end chamber, discussed below in detail. 装有漩涡系统的小室也装有用于将液体分流至阻热层上方或下方的促动器,以下进行更为详细的讨论。 With swirl chamber is also provided with the system for the liquid to bypass the thermal barrier above or below the actuator, are discussed below in more detail. 制动的挡板阀包括加速斜板和减速斜板,其末端还连接有促动器以在液体运动方向反向时重新调整位置。 The flapper valve comprises a brake swash plate acceleration and deceleration of the swash plate, which end is also connected to the actuator in the reverse direction of movement of the liquid to re-adjust the position. (在相反构造中,所述加速斜板变成减速斜板,反之亦然。) (In the reverse configuration, the acceleration into the deceleration swash plate of the swash plate, and vice versa.)

[0115]构建的示例性封闭系统生物反应器采用如图21所描述的辊设计。 [0115] Construction of an exemplary closed system bioreactor using FIG 21 rolls on the design described. 该实施方式允许倒转辊的方向而不需要用于将辊提升至管子末端的盒子之上的机械。 This embodiment allows reverse direction without the need for mechanical roll over the roller to lift the box end of the pipe. 所述辊被支撑在侧壁辊轨道的恒定高度上,如上所述。 The rollers are supported at a constant height of the sidewalls of the roller track, as described above. 虽然对于几乎整个轨道长度而言,地面或者其他表面是平坦和水平的,在紧挨着小室的两端有沿轨道宽度的小沟渠(trenched dip)。 Although for almost the entire length of the track, the floor or other surface is flat and horizontal, (trenched dip) in small ditch next to both ends of the chamber along the track width. 该沟渠镶衬有“中凸式平底盘”(图22),其与用以确定所述沟渠形状并防止土壤进入旁路区域的金属。 The trenches are lined with "in the belly pan" (FIG. 22), which is determined to prevent soil and the trench shape into the metal bypassed region. 所述沟渠和中凸式平底盘被设计为使得管中的液体培养液能在辊的平面下流动。 The trench and belly pan is designed such that the liquid medium can flow tube at the roll plane. 由于水静压,所述软管与地平面和中凸式平底盘表面相吻合。 Due to hydrostatic pressure, the hose and the ground plane and belly pan surface coincide. 当辊到达轨道末端时,驱动系统使辊运动停止。 When the roller reaches the end of the track, the drive system to stop movement of the roller. 液体培养液可以从辊的下方流进小室而不受辊的阻碍,所述辊升高至液体流之上。 Broth may flow into the chamber without obstruction from the lower roll of the roller, the roller is raised to above the liquid stream. 该连续流动可能是由于惯性动量或者由于相对辊的运动所致。 The continuous flow may be due to the moment of inertia or due to the relative movement of the roller caused. 由于对阻热层、管子的侧面和小室部件的摩擦力,液体速度减慢并最终停止。 Because of the thermal barrier, the side of the tube and the small chamber of the friction member, the liquid slows down and eventually stops. 当液流达到足够慢的速度时,辊驱动器(roller drive)再次启动且辊沿相反方向移动。 When the flow reaches the speed slow enough, the drive roller (roller drive) starts again and the roller moves in the opposite direction. 当第一辊停止于沟渠上方时,第二辊再次驱动管中液体,并沿相反方向推动该液体,使整个系统里的藻类的流动反向。 When the first roller is stopped at the top of the trench, the second roller is driven again in the liquid pipe, and pushes the fluid in the opposite direction, reversing the flow of the entire system of the algae.

[0116]图21还显示了使水转向阻热层以上或者以下的促动器。 [0116] FIG 21 also shows divert water above or below thermal barrier actuator. 如图所示,所述阻热层的末端形成与一对促动器连接的坚固隔膜。 As shown, the end of the thermal barrier layer to form a strong connection with the pair of the diaphragm actuator. 当所述促动器处于上行位置时,所述隔膜将水导向阻热层以下而该阻热层漂浮在管子的顶部。 When the actuator is in the up position, the diaphragm water guide of the thermal barrier and the thermal barrier float to the top of the tube. 当所述促动器处于下行位置时,液体被导向阻热层以上,而该阻热层处于管子的底部。 When the actuator is in the down position, the liquid is directed over the thermal barrier, and thermal barrier at the bottom of the tube.

实施例12.漩涡装置(device)和膨胀式密封(inflatable seal) 12. The vortex means (device) and Example inflatable seal (inflatable seal)

[0117]图23显示了位于软管一端的小室或箱子里的漩涡装置的其他细节。 [0117] Figure 23 shows a detail of the hose the other end of the chamber box or whirlpool apparatus. 水穿过将所述管子与所述小室相连的袋密封件(bag seal)从该图的右侧进入。 Water passing through the seal bag (bag seal) coupled to said tube and said chamber enters from the right side of the figure. 阻热层隔膜和相连的促动器也显示在右侧,为清楚起见所述隔膜处于中间位置。 And a thermal barrier coupled to the diaphragm actuator is also shown on the right, for clarity of the diaphragm in an intermediate position. 在实际运行中,所述隔膜通常完全向上或者向下。 In actual operation, the diaphragm is typically fully up or down. 在所述袋密封件和隔膜促动器的左侧,进入小室的水遇到加速斜坡,所述加速斜坡与分离促动器相连。 On the left side of the bag and a diaphragm seal member actuator, the water entering the chamber experiencing acceleration ramp, the acceleration ramp actuator connected to the separator. 该促动器可交替地使所相连的斜坡向上或者向下。 The actuator may be alternately connected to the ramp of the up or down. 当所述斜坡向下时,从右侧进入的水遇到该斜坡。 When the ramp down, the water entering from the right face of the ramp. 水在一侧受到所述小室侧壁的侧向挤压,而另一侧受到将加速斜坡和减速斜坡分开的中心区域的侧向挤压。 Water is subjected to lateral side walls of the extrusion chamber on one side and the other side being the side extrusion separate acceleration and deceleration ramps of the central region. 水以恒定速度进入,该速度由辊式管(roller tube)的运动确定。 Water enters at a constant speed, which is determined by the speed of movement of the roll tube (roller tube) of. 当其遇到加速斜坡时,水柱的高度由大约12英寸减至较低水平,其由所述斜坡的角度和水速确定。 When it encounters the acceleration ramp, the water column height is reduced to approximately 12 inches from the lower level, which is determined by the angle of the ramp and the water velocity. 由于水柱的宽度保持不变而高度减小,当水流沿斜坡向上运动时必须增加其速度,以维持每单位时间里的恒定水流。 Since the width and height of the water column is maintained is reduced, when the water moves upward along the ramp must increase its speed to maintain constant per unit time in the water. 加速后的水遇到漩涡装置,所述漩涡装置通常形成为如图13~15所示的那样。 The accelerated whirlpool apparatus encounters water, said vortex device is generally formed as shown in FIGS. 13 to 15. 穿过所述漩涡装置中心孔流下的水形成漩涡,使充满油脂的藻类浓缩在漩涡的中心,而悬浮液的较重成分则被分离至漩涡外侧。 Through the device flows down a central bore vortex swirl water, so that grease filled in the center of the vortex algae concentrated, and the heavier components were separated from the suspension to the outside of the vortex. 然而,一些藻类组合物可以使得藻类比液体更重,在如此情况下藻类将从环绕驻留管外围的孔移除,如图15(B)所示。 However, some algae Algae such compositions may be heavier than the liquid, in such a case will be removed from the algae dwell tube surrounding the periphery of the hole, FIG. 15 (B) shown in FIG. 向下流过中心孔的水遇到减速斜坡,该减速斜坡位于与加速斜坡相对的所述小室的另外一侧。 Met deceleration ramp down through the center hole of the water, the other side of the deceleration ramp is located opposite to the acceleration ramp of said chamber. 水减速,进入第二软管并流出所述小室。 Water reducer, and out of the tube into the second chamber.

[0118]图24显示示例性袋组件(bag assembly)和密封机械。 [0118] FIG. 24 shows an exemplary bag assembly (bag assembly), and seal machine. 所述袋子(管子)例如可以由薄的、高强度的基本透明的塑料材料,诸如0.01英寸厚的聚乙烯的顶层和底层构成。 The bag (tube) may be a thin, substantially transparent plastic material having a high strength such as polyethylene top and bottom layers constituted 0.01 inches thick. 所述阻热层可以是0.5英寸或1.0英寸厚的低密度泡沫塑料(例如发泡聚乙烯),在该实例中,具有薄(例如0.0035英寸)护面以减少藻类附着在所述阻热层上。 The thermal barrier layer may be a low density foam 0.5 inches or 1.0 inches thick (e.g., foamed polyethylene), in this example, a thin (e.g. 0.0035 inches) to reduce algae visor attached to said thermal barrier on. 所述阻热层可以与更薄的侧边带相连,其可以通过热粘合小珠或通过塑料焊接连接。 The thermal barrier may be connected with a thinner side, which can be bonded by heat or beads connected by plastic welding. 所述三层的侧面经热结合形成管子。 The three sides to form a tube by thermal bonding.

[0119]如图24所示,所述袋子(管子)可被拉伸以覆盖插入所述袋子边缘的坚硬密封插入框架。 [0119] As shown in FIG 24, said bag (tube) may be inserted into the frame stretched hard sealed to cover the edge of the bag is inserted. 在全尺寸系统中,所述框架可以为约20英尺宽12英寸高轴向约6英寸深,并沿其20英尺的宽度可由间隔的垂直支杆加固。 In the full-size system, the frame may be about 20 feet wide by 12 inches high axial depth of about 6 inches, vertical struts and reinforced along its width by 20 feet intervals. 在所述框架中可以加入加固组合体或耐腐蚀金属隔片及其对齐和平移机械。 In the frame reinforcement may be added in combination or corrosion-resistant metal and the spacers are aligned and translation machinery. 所述框架以及延展覆盖所述框架的管子的末端插入环形加压密封件中,所述密封件装嵌在所述小室中的12英寸×20英尺的孔的内部。 End of the frame and extending to cover the frame of the tubing into the annular pressure seal, the inner seal hole 12 inches × 20 foot member set into the small chamber. 一旦所述框架和袋子插入小室中,所述密封件被充气,其内部顶在所述密封框架的四周,并将所述袋子和框架安全地固定在小室上。 Once the frame and bag inserted into a chamber, the sealing member is inflated, the interior of the seal around the top frame, and the frame and the bag securely in the chamber. 所述加压密封件可具有重复的扩压密封管,各管均由独立的空气压缩机和压力泄露警报传感器维持。 The pressurizing member may have a repeating diffuser sealed tube, each tube by separate air compressor and a pressure sensor to maintain the leak alarm. 隔膜棒可以与所述隔膜相连并随之与促动器相连。 Diaphragm rod connected to said diaphragm and can be subsequently connected to the actuator. 已安装好的隔膜可由4-棒联动装置所驱动向上或向下,所述4-棒联动装置由经导线与系统控制器相连的双位置回馈电动水压促动器所驱动。 Good separator may be installed as a drive rod linkage 4- driven upward or downward, said 4-bar linkage reserved electric hydraulic actuator by a two-position controller via a wire connected to the system. 许多其他的促动器系统包括普通气动型(pnuematic)线性促动器,诸如在实施例1的示例性模型中使用的促动器适用于上下移动所述隔膜。 Many other common actuator comprises a pneumatic system (pnuematic) linear actuator, such as the model used in the exemplary embodiment 1 of the actuator is suitable for the vertical movement of the diaphragm.

实施例13.由藻类生产生物柴油 Example 13. Production of biodiesel by the algae

[0120]根据实施例11使藻类生长成熟并收获其油性内容物。 [0120] According to Example 11 the algae grown to maturity and harvested their oily content. 如实施例12所描述的漩涡装置用于从培养液中部分分离藻类。 Vortex apparatus as described in embodiment 12 for separating the algae from the culture solution portion. 通过流经高剪切力机械装置将所述藻类的细胞壁破坏掉。 By passing through a high shear mechanical device to destroy the cell wall of the algae. 通过在商业规模的离心机里的离心将油与其他藻类成分分离。 The oil is separated from the other components of the algae on a commercial scale by centrifugation in a centrifuge. 根据Connemann法通过碱催化的酯转移将油转化为生物柴油。 The method Connemann by base-catalyzed transesterification of the oil into biodiesel. 由一台安装有两个20英尺×300英尺的生物反应器管的生物反应器生产的生物柴油量为每年2,800加仑。 Bio diesel installed by an amount of the bioreactor has two 20 ft × 300 ft tube bioreactor produced 2,800 gallons per year.

实施例14.生物反应器控制器 Example 14. Bioreactor embodiment controller

[0121]在一些实施方式中,生物反应器功能的所有方面可由中央处理单元所控制,例如计算机控制器。 [0121] In some embodiments, the functions of all aspects of the bioreactor may be controlled by a central processing unit, such as a computer controller. 所述控制器可以可操作地与所述生物反应器上的各种传感器和促动器相连。 The controller may be operatively associated with various sensors and actuators on the bioreactor. 计算机可以集成生物反应器运行的全部功能,诸如辊的移动和校准、液体流动、漩涡运作、藻类收获、进入设备的营养武和液体、气体移除和CO 2注入。 The computer may be integrated all functions of the bioreactor runs, and movement calibration, the flow of liquid such as roll, swirl operation, harvesting the algae, nutrients Wu entering the device and a liquid, gas removal and CO 2 injection. 计算机可以运行传感和控制程序诸如由National Instruments Corporation编写的LabView,并且可以使用本领域内已知的介面卡和电路与所述生物反应器系统的传感器和促动器相连。 Sensing and control computer can run programs written in LabView by National Instruments Corporation, such as known in the art and may be used in the circuit and the interface cards and bioreactor system sensors and actuators are connected.

[0122]示例性运行循环描述在图27中。 [0122] Exemplary operating cycle described in FIG. 27. 为清楚起见参考指南针方向进行讨论,然而熟练技术人员将意识到实际使用的设备可以对准各个方向,这取决于当地地理、太阳倾角、温度等。 For clarity discussed with reference to a compass direction, however, the skilled artisan will appreciate that the actual use of the device may be aligned in various directions, depending on the local geography, sun angle, temperature and the like. 如图27所描述,辊H和I最初位于管子末端的中凸式平底盘上。 27 as described roller H and I initially located in the belly pan upper end of the pipe. 挡板阀J位于向上的位置因此向南的水来自漩涡装置的底板,而挡板阀K处于向下的位置因此向北的水向上流动通过所述漩涡装置的顶板。 J flapper valve located at a position upward from the bottom plate so the south water vortex device, the top plate and the flapper valve is in the down position K to the north of the water thus flow upwardly through said vortex device. 所述循环如图28A所示,以辊H由控制器引导以1英尺/秒的恒定速度向南移动而开始。 The cycle shown in FIG. 28A, guided by the controller to roll H moves at a constant speed of 1 ft / sec is started south. 当其移动时,压力在辊H前的管R中增大而藻类生长培养液(水)开始向南移动,向西经过CO 2箱B,然后向北经过管S,从固定辊I下流过中凸式平底盘通道。 When it moves, the pressure increases in the tube before the roll R and H in the algae growth medium (water) starts to move south and west through the CO 2 tank B, then north through tube S, downflow through the fixed roll I in belly pan passage. 当水向上流过位于顶板A上的挡板阀K时,其开始旋转通过漩涡N至底板并扩流通过挡板阀J从而在辊H之后开始回填。 When the water flows upward through the flapper valve positioned on the top plate K A, which starts to rotate by the vortex to the bottom plate and N flapper valve J through the diffuser to begin after backfilling roller H.

[0123]图28B显示辊H已经完全横穿通过管R并停留在漩涡箱处。 [0123] Figure 28B shows the roll has been completely traversed by the tube H and R stays in the swirl tank. 由于两个辊均位于中凸式平底盘上,液体利用惯性按所示方向继续移动。 Since the two rollers are located on the belly pan, the liquid inertia continues to move in the direction shown. 没有任何延迟,控制器引导辊I开始向北移动,如图28C所示。 Without any delay, the controller starts moving the guide roller north I, as shown in FIG. 28C. 这使所述液体继续顺时针流动穿过漩涡,并且当其通过由中凸式平底盘形成的通道从辊H下流过时经CO2箱返回。 This causes the liquid continues to flow through the swirl clockwise, and when the channel formed by the Central belly pan from the roll by CO2 H obsolete downstream return tank. 当辊I最终抵达漩涡箱时,所有运动停止除了液体培养液由于存储的动量持续顺时针移动直至摩擦力减缓水的移动至接近零。 I finally reached when the roll swirl box, all motion is stopped due to the liquid medium in addition to the stored momentum continued clockwise movement of the moving water until a frictional force slows to almost zero.

[0124]此时,液体的循环方向反向。 [0124] In this case, the liquid circulation direction is reversed. 第一挡板J放在向下的位置因此逆时针水流首先导向顶板,而挡板K位于向上的位置,因此流出下层板的水扩展进入生物反应器管的全部高度。 A first flap placed in the down position so J counterclockwise flow guide first top plate, shutter and K is an upward position, water flows into the lower plate extend the full height of the bioreactor tube. 辊I在计算机的控制下开始向南移动,推动其前方的水开始进行逆时针液体移动。 I starts moving south roller under computer control, to promote the start of a water front counterclockwise movement of the liquid. 当其停止在管S的末端时,辊H立即开始向北移动,以维持对漩涡的压力头和充分的流动。 When it stops at the end of the pipe S, the roller moves H immediately northward to maintain a pressure head and swirl adequate flow. 在辊H停止在管R的末端的短暂时间后,液体在其动量下继续移动直至摩擦力使其减缓直至接近于零速度。 After a short time the roll is stopped at the end of H R of the pipe, the liquid continues to move under its momentum until friction slows until it is close to zero speed. 一旦完成,所述控制器下指令使图28中所示的顺时针移动序列以固定的往复运动方式再次开始。 Upon completion, the instructions cause the controller moving clockwise sequence shown in FIG 28 to fix the reciprocating motion started again. 该运动还具有能廉价实现的优点,这是因为不需要在转换时将笨重的辊举出水面,并且因为流动反向该运动不太可能在藻类停留的生物反应器中形成未被扰动的位点。 This movement also has the advantage of being able to achieve low cost, since no conversion when the rollers include heavy water, and less likely to form bits undisturbed in the algae bioreactor residence since the flow of the reverse motion point.

[0125]所述CO 2注入器可被控制使得仅有反向水流经过的气泡注入器被驱动从而利用延长的气泡驻留时间和同时增大的CO 2吸收(参见图12)。 [0125] The CO 2 injection may be controlled so that only the CO 2 absorber reverse flow through the injector is driven to bubble using the bubble residence time and extend while increasing (see FIG. 12). 注入的CO 2量没有限制并可以预计CO 2注入是间断性的,由培养液的pH和其他指示所确定。 CO 2 injection amount is not limited and can be expected is intermittent injection CO 2, and is determined by the pH of the culture broth and other indications.

[0126]用于管S的隔膜阀是E和F。 [0126] S is a diaphragm valve tube E and F. 用于管R的隔膜阀是C和D。 Diaphragm valve for pipe R is C and D. 每个管子隔膜可独立于其他管子隔膜而控制,但必须与其辊运动相协调。 Each tube may be independent of other membrane separator and to control the tube, but the roller motion must be coordinated therewith.

[0127]在任一辊离开其停止位置前,所述控制器必须确定其相关的隔膜是否应当处于向上或者向下的位置。 Before [0127] in any of its rest position away from a roll, the controller must determine whether it should be in a membrane associated up or down position. 如果所述隔膜经确定处于向上的位置,处于辊起始位置的隔膜阀必须处于向上的位置使得水在辊移动时在所述隔膜下流出。 If the diaphragm is determined in the up position, the diaphragm valve is in the initial position of the roller must be in the up position such that water flowing in the roller moves when the diaphragm. 在管子远端的隔膜阀可以在辊移动时处于任何位置,只要隔膜阀密封方法能使水从管子内部流出而不用考虑位置。 Diaphragm valve distal end of the tube may be in any position when the roller moves, as long as the method enables the diaphragm valve sealing water outflow from the interior of the pipe irrespective of the position. 然而,当辊停止时,位于远端的隔膜阀门必须固定在较高的位置。 However, when the roller is stopped, at the distal end of the diaphragm valve must be fixed at a higher position.

[0128]当所述隔膜需要处于向下的位置时,位于辊起始位置的隔膜阀必须处于向上的位置使得水在辊移动时从所述隔膜之上流出。 [0128] When the diaphragm required in the down position, the starting position of the roller diaphragm valve must be in the up position such that water flows from the top of the separator roller when moving. 在管子远端的隔膜阀可以在辊移动时处于任何位置,只要其被设计为能使得水由管式小室的顶部或底部未受阻碍地流出。 Diaphragm valve distal end of the tube may be in any position when the roller moves, as long as it is designed to be unprotected so that water flow from the top or bottom of the tubular chamber obstructed. 然而,当辊停止时,所述隔膜必须固定在向下的位置从而不允许水从所述隔膜下渗出,否则将使所述隔膜漂浮至顶部。 However, when the roller is stopped, the diaphragm must be fixed in the down position thereby not allowing the water leaking from the diaphragm, the diaphragm will otherwise float to the top.

[0129]“O”是与计算机连接的液体温度传感器,其将所监测到的温度与一套藻类理想温度点进行比较。 [0129] "O" is the liquid temperature sensor connected to the computer, to which the monitored temperature is compared with the desired temperature set point algae. 根据气候和时间等条件,计算机确定将所述热隔膜放置在向上或者向下的位置,由此使隔膜阀的动作与辊的移动协调。 The time and weather conditions, the computer determines the heated membrane is placed in a position upward or downward, thereby moving the cooperative operation with the roller diaphragm valve. 在一些情况下,可构造传感器以确定液体是否从温度和辐射环境中获得热量或者失去热量。 In some cases, the sensor may be configured to determine whether the liquid temperature and the radiation heat from the atmosphere or loss of heat. 这样的传感器可如下构造,即让少量液体(大约每分钟0.1加仑)流过3平方英寸×3英寸深的塑料袋,所述塑料袋放在地面上并与主要生物反应器放置其上的地面的温度基本相同。 Such a sensor may be configured as follows, i.e., so that a small amount of liquid (about 0.1 gallons per minute) flow through three square inches × 3 inch deep plastic bag, the bag on the ground and with which the main bioreactor is placed on the ground substantially the same temperature. 具有0.02华氏度分辨率的差示温度传感器测量进出所述传感器袋的温度。 Having a resolution of 0.02 degrees Fahrenheit differential temperature sensor and out of the bag temperature sensors. 如果液体流过袋时温度计算为升高,则袋里的液体过冷时计算机调整所述隔膜的位置使液体与环境接触,或者液体过热时使袋子与环境隔离。 If the calculated temperature of the liquid flowing through the bag is increased when the liquid subcooling pocket computer to adjust the position of the diaphragm in contact with the liquid environment, or the bag from the environment when liquid overheating. 如果所述传感器袋指示暴露于环境将冷却液体则应用相反的逻辑。 If the sensor is exposed to the environment will be indicative of the bag opposite to the logic of the cooling liquid is applied.

[0130]“P”是pH传感器并与计算机连接。 [0130] "P" and is a pH sensor connected to the computer. 液体的pH值与理想的pH设定点相比较,所述理想的pH设定点是支持最优化的生长或收获的溶解在水中的CO 2的适宜浓度的指示。 The pH of the liquid is compared with the setpoint desired pH, preferably the pH set point is indicative of supporting growth or dissolution optimized harvested in water of suitable concentration of CO 2. 当所述的pH过高时,计算机打开适当的CO 2鼓泡器阀门以使纯CO 2或含有CO 2的废气鼓泡进入水中,通过碳酸的形成使水更酸性并降低所述pH。 When said pH is too high, the computer opens the appropriate valve to CO 2 bubbler of pure CO 2 or exhaust gas containing CO 2 was bubbled into the water, the water formed by the more acidic carbonic acid and reducing the pH.

*** ***

[0131]在此公开并对其要求权利的组合物、设备、系统和方法不需要过多的根据本公开的试验即可实施和执行。 [0131] In this disclosure and without undue its composition, devices, systems and methods claimed and tests can be implemented according to the implementation of the present disclosure. 所述组合物和方法已根据优选实施方式进行描述,对于本领域技术人员显而易见的是可对所述组合物、设备、系统和方法做出改动,以及在此处所描述的方法的步骤中或者步骤序列中做出改动而不背离本发明的概念、精神和范围。 The compositions and methods have been described according to preferred embodiments, the skilled person may be made apparent changes to the composition, apparatus, systems and methods, as well as the steps of the methods described herein or in the steps sequence changes made without departing from the concept, spirit and scope of the invention. 更具体而言,某些化学上和物理上均相关的试剂可取代此处描述的试剂而实现相同或相似的结果。 More specifically, certain chemically and physically associated reagent may be substituted for the agents described herein to achieve the same or similar results. 所有这些对本领域技术人员显而易见的相似取代和修改被认为包含在如所附权利要求所限定的本发明的精神、范围和概念之中。 All such apparent to those skilled similar substitutes and modifications are considered to be included within the spirit of the invention as defined by the appended claims, scope and concept.

Claims (56)

1.一个封闭体系生物反应器设备,其包括: 1. A closed system bioreactor apparatus, comprising:
a)一个或多个能盛放水性培养液的软管; a) capable of accommodating one or more hoses of the aqueous medium;
b)一个或多个与所述管子可操作地相连的蠕动辊,所述辊用于使所述培养液在所述管子内循环流动并除去光合作用产生的氧气;以及 b) one or more peristaltic roller operatively connected to said tube, said roller for causing the culture fluid circulation and remove oxygen produced by photosynthesis in said tube; and
c)在所述的一个或多个管子内的阻热层,所述阻热层用以调节所述培养液的温度,其中所述培养液交替地被导向所述阻热层以上或以下从而加热或冷却所述培养液。 c) thermal barrier in said one or more tubes of a thermal barrier for adjusting the temperature of the culture broth, wherein the broth is guided alternately above the heat barrier layer or less so heating or cooling the broth.
2.权利要求1的设备,所述设备进一步包括多个垂直配置在所述管子内的轴向涡旋叶轮以提供所述水性培养液的旋转混合。 2. The apparatus as claimed in claim 1, said apparatus further comprising a plurality of vertically disposed axially within the tube to provide a scroll wheel rotating mixing of the aqueous medium.
3.权利要求2的设备,其中相邻的轴向涡旋叶轮以相对的顺时针和逆时针扭曲(twist)配置。 3. The apparatus as claimed in claim 2, wherein axially adjacent vortex impeller opposing clockwise and counterclockwise twist (Twist) configuration.
4.权利要求1的设备,其中所述管子沿地面水平放置。 4. The apparatus of claim 1, wherein the tube is placed in the ground level.
5.权利要求1的设备,所述设备进一步包括两个软管和两个蠕动辊,每个管子可操作地与单一蠕动辊相连。 5. The apparatus as claimed in claim 1, said apparatus further comprises two peristaltic hose and two rollers, each operatively connected to a single tube peristaltic roller.
6.权利要求5的设备,所述设备进一步包括可操作地与所述的两个管子的末端相连的第一和第二控制箱以形成生物封闭系统。 Device, the device 5 further comprises a first and a second control box is operatively associated with the ends of the two tubes connected to claim 1 to form a closed biological systems.
7.权利要求6的设备,所述设备进一步包括在所述第一控制箱里的漩涡装置以浓缩藻类或者其他水生生物或者用以移除粘液或泡沫。 7. The apparatus as claimed in claim 6, said apparatus further comprising first swirl control box in the apparatus to concentrate the algae or other aquatic organisms or to remove mucus or foam.
8.权利要求7的设备,所述设备进一步包括一个或多个可操作地与所述漩涡装置相连的吸泵管以从所述设备中移除浓缩藻类或其他产品。 8. The apparatus as claimed in claim 7, said apparatus further comprising one or more suction pump operatively connected to said vortex tube apparatus was concentrated to remove algae or other product from the apparatus.
9.权利要求6的设备,所述设备进一步包括在所述第二控制箱中的鼓泡器以向所述水性培养液提供CO 2 9. The apparatus as claimed in claim 6, said apparatus further comprising a second bubbler in the control box to provide a CO 2 to said aqueous medium.
10.权利要求5的设备,其中所述蠕动辊沿所述管子的移动从所述培养液中除去氧气或其他溶解的气体。 10. The apparatus as claimed in claim 5, wherein the peristaltic from the broth to remove oxygen or other dissolved gases roller moving along the tube.
11.一种封闭系统生物反应器设备,所述设备包括: 11. A closed system bioreactor apparatus, the apparatus comprising:
a)两个能盛有水性培养液的软管; a) two hose can be filled with the aqueous medium;
b)两个与所述管子可操作地相连的蠕动辊,所述辊用于使所述培养液在所述管子内循环并从所述管子里除去气泡; b) two peristaltic roller operatively associated with said tube, said roller for causing the culture fluid to circulate inside the tube and remove the air bubbles from the pipe;
c)多个垂直放置在所述管子内的轴向涡旋叶轮,所述叶轮用于使所述水性培养液轮流接触目光;以及 c) a plurality of vertically disposed within the tube axial vortex impeller for causing rotation of said aqueous medium eye contact; and
d)与所述管子的末端可操作地相连的第一和第二控制箱从而形成封闭系统。 d) a first and a second control box and the end of the tube in operative association to form a closed system.
12.权利要求11的设备,所述设备进一步在所述的一个或多个管子里包括阻热层以调节所述培养液的温度,其中所述培养液被交替地导向所述阻热层的上方或下方以使所述培养液与其热环境相接触或相隔离。 12. The apparatus as claimed in claim 11, said device further in said one or more of the pipe comprises a thermal barrier to regulate the temperature of the broth, wherein the culture medium is alternately guided to the thermal barrier layer above or below so that the culture fluid in thermal contact with or isolated from the environment.
13.权利要求12的设备,所述设备进一步在所述第一控制箱里包括将所述培养液导向所述阻热层上方或下方的机械。 13. The apparatus as claimed in claim 12, said apparatus further comprising mechanical guiding the culture liquid above or below the thermal barrier layer in the first control box.
14.权利要求13的设备,其中所述机械包括至少一个与至少一个促动器相连的坚固隔膜,所述促动器决定所述隔膜的位置从而将所述培养液导向阻热层热障的上方或下方。 14. The apparatus of claim 13, wherein said machine comprises at least one of the at least one actuator coupled to the rigid diaphragm actuator, the actuator determines the position of the diaphragm so as to guide the culture liquid thermal barrier thermal barrier above or below.
15.权利要求11的设备,所述设备进一步包括在所述第一控制箱里的漩涡装置以浓缩所述藻类。 15. The apparatus as claimed in claim 11, said apparatus further comprising first swirl control box in the apparatus to concentrate the algae.
16.权利要求15的设备,所述设备进一步包括一个或多个可操作地与所述漩涡装置相连的吸泵管子以从所述设备中除去浓缩藻类。 16. The apparatus as claimed in claim 15, said apparatus further comprises one or more suction pump operatively connected to the tube to remove the device from algae concentrate in the vortex device.
17.权利要求11的设备,所述设备进一步包括在所述第二控制箱中的鼓泡器以向所述水性培养液提供CO 2 17. The apparatus as claimed in claim 11, said apparatus further comprising a second bubbler in the control box to provide a CO 2 to said aqueous medium.
18.权利要求17的设备,其中所述鼓泡器包括多孔氯丁二烯膜,气泡通过所述膜鼓泡。 18. The apparatus of claim 17, wherein said chloroprene bubbler comprising a porous membrane, bubbles bubbling through the membrane.
19.权利要求18的设备,其中气泡由水柱的底部导入,所述水朝向下的方向移动而所述气泡朝向上的方向移动。 19. The apparatus of claim 18, wherein the gas bubbles introduced from the bottom of the water column, under the direction of the movement of water toward the direction moving toward the bubble.
20.一种藻类养殖方法,所述方法包括: 20. A method of cultivation of algae, the method comprising:
a)将水性培养液中的藻类导入权利要求1~18中任一项的封闭系统生物反应器; a) mixing an aqueous algae broth of claims 1 to 18 introduced into the closed system bioreactor according to any one of;
b)将所述藻类暴露于阳光下; b) exposing the algae to sunlight;
c)通过控制所述培养液在阻热层上下的分布来调节所述培养液的温度;以及 c) the distribution of the culture liquid thermal barrier vertically adjusted by controlling the temperature of the culture broth; and
d)在允许藻类繁殖和生长的条件下养殖所述藻类。 d) algae cultured under conditions that allow the reproduction and growth of algae.
21.权利要求20的方法,所述方法进一步包括从所述培养液中分离藻类。 21. The method of claim 20, the method further comprises separating the algae from the culture solution.
22.权利要求21的方法,所述方法进一步包括从所述藻类中移取油。 22. The method of claim 21, the method further comprising pipetted oil from the algae.
23.权利要求22的方法,所述方法进一步包括由所述油生产生物柴油。 23. The method of claim 22, the method further comprises the production of biodiesel oil.
24.权利要求23的方法,其中所述生物柴油通过酯转移制造。 24. The method of claim 23, wherein said bio-diesel is produced by transesterification.
25.权利要求20的方法,所述方法进一步包括利用蠕动辊使所述藻类在所述生物反应器内循环。 25. The method of claim 20, the method further comprises using a peristaltic roller circulating the algae within the bioreactor.
26.权利要求25的方法,其中利用所述管子里的轴向涡旋叶轮使所述管子里的藻类转动循环。 26. The method of claim 25, wherein the pipe axial direction by using the scroll wheel of said rotation cycle the pipe algae.
27.权利要求20的方法,所述方法进一步包括利用一个或多个CO 2鼓泡器将CO 2气体导入所述培养液。 27. The method of claim 20, the method further comprises using one or more of CO 2 to the CO 2 gas is bubbled into said liquid culture.
28.权利要求21的方法,其中利用漩涡装置将藻类从所述培养液中部分分离。 28. The method of claim 21, wherein the use of a whirlpool means algae partially separated from the culture broth.
29.权利要求22的方法,所述方法进一步包括从所述藻类中分离非油产品。 29. The method of claim 22, the method further comprises separating the algae from non-oil product.
30.权利要求29的方法,其中所述非油产品包括糖。 30. The method of claim 29, wherein said non-oil product comprises sugars.
31.权利要求30的方法,其中所述糖类转化为氢气、甲烷气和/或乙醇。 31. The method of claim 30, wherein the carbohydrates into hydrogen, methane and / or ethanol.
32.权利要求20的方法,所述方法进一步包括收获所述藻类用于动物或人类食物。 32. The method of claim 20, the method further comprises harvesting the algae for animal or human food.
33.权利要求32的方法,其中所述藻类是螺旋藻、杜氏藻或扁藻。 33. The method of claim 32, wherein said alga is Spirulina, Dunaliella sp, or flat.
34.权利要求20的方法,所述方法进一步包括使用所述藻类作为食用藻类的水生生物的食物。 34. The method of claim 20, the method further comprises the use of algae as edible algae aquatic food.
35.权利要求34的方法,其中所述水生生物是对虾。 35. The method of claim 34, wherein the aquatic organism is shrimp.
36.一种由藻类生产生物柴油的系统,所述系统包括: 36. A biodiesel produced by algae, the system comprising:
a)根据权利要求1~18中任一项的封闭生物反应器,所述生物反应器盛有水性培养液中的藻类悬浮液; a) according to claims 1 to 18 enclosed bioreactor according to any one of the biological reactor filled with the aqueous medium a suspension of algae;
b)用于从所述培养液中收获所述藻类的机械; b) for mechanically harvested from the culture broth of the algae;
c)用于从所述藻类中分离油的装置; c) means for separating oil from the algae;
d)用于将所述油转化为生物柴油的设备。 d) for the oil into biodiesel apparatus.
37.权利要求36的系统,其中所述的用于收获藻类的机械包括漩涡装置和一个或多个吸泵管。 37. The system of claim 36, wherein said machine for harvesting algae swirl means includes a suction pump and one or more tubes.
38.权利要求37的系统,其中所述的用于收获的机械包括至少一个离心机。 38. The system of claim 37, wherein the harvesting machine comprises at least for a centrifuge.
39.权利要求36的系统,其中所述的用于将油转化为生物柴油的设备采用酯转移过程。 39. The system of claim 36, wherein said used oil into biodiesel transesterification process equipment used.
40.权利要求36的系统,其中所述封闭生物反应器包括一个或多个在一条或多条轨道上的辊,所述辊设置为沿所述软管的长度方向滚动以使所述水性悬浮液沿所述管子移动。 40. The system of claim 36, wherein said closure comprises a bioreactor or one or more of the tracks on the rollers, the rolling rollers disposed along the longitudinal direction of the hose so that the aqueous suspension liquid moves along the tube.
41.权利要求40的系统,其中与所述管子相接触的辊经设置以使它们挤压所述管子至未被挤压的管子的高度的约85%。 41. The system of claim 40, wherein the roller is arranged in contact with the tube so that they are pressed to about 85% of the height of the tube to the tube is not pressed.
42.权利要求41的系统,其中所述水性悬浮液沿所述管子的移动在所述管子的一端形成漩涡流体运动。 42. The system of claim 41, wherein said aqueous suspension movement along the tube to swirl fluid motion at one end of the tube.
43.权利要求42的系统,其中所述漩涡流体运动导致含油藻类从所述水性培养液中部分分离。 43. The system of claim 42, wherein the fluid vortex motion causes the algae oil is separated from the aqueous broth portion.
44.权利要求36的系统,其中所述管子包括设置所述管子里的基本与地表面平行的阻热层,以调节所述管子里水性悬浮液的温度。 44. The system of claim 36, wherein said tube comprises setting the pipe and substantially parallel to the surface of the thermal barrier layer to regulate the temperature of the aqueous suspension of the pipe.
45.权利要求44的系统,其中所述阻热层在底面上的高度可经过调节以控制所述水性悬浮液的温度。 45. The system of claim 44, wherein said thermal barrier height may be adjusted to the bottom surface to control the temperature of the aqueous suspension.
46.权利要求45的系统,其中在日间小时里所述水性悬浮液流被导向所述阻热层的下方以保持所述悬浮液的温度为地面温度,而导向所述阻热层的上方以加热所述悬浮液。 46. ​​The system of claim 45, wherein the aqueous suspension flow is guided to the thermal layer beneath the barrier to keep the temperature of the suspension is ground temperature during the day hours and the guide over the thermal barrier layer heating said suspension.
47.权利要求45的系统,其中在夜间小时里所述水性悬浮液流被导向所述阻热层的上方以冷却所述悬浮液,而导向所述阻热层的下方以保持所述悬浮液的温度为地面温度。 47. The system of claim 45, wherein the aqueous suspension flow is directed over the thermal barrier layer in the night hours for cooling the suspension, and the guide below the thermal barrier layer to hold the suspension the temperature ground temperature.
48.权利要求36的系统,其中所述管子的外表面由塑料构成。 48. The system as claimed in claim 36, wherein an outer surface of the tube is made of plastic.
49.权利要求48的系统,其中所述塑料选自由聚乙烯、聚丙烯、聚亚胺酯、聚碳酸酯、聚乙烯吡咯烷酮、聚氯乙烯、聚苯乙烯、聚(对苯二甲酸乙二酯)、聚(萘二甲酸乙二酯)、聚(1,4-环己烷对苯二甲酸二亚甲酯)、聚烯烃、聚丁二烯、聚丙烯酸酯和聚偏二氯乙烯组成的组。 49. The system of claim 48, wherein the plastic is selected from the group consisting of polyethylene, polypropylene, polyurethane, polycarbonate, polyvinyl pyrrolidone, polyvinyl chloride, polystyrene, poly (ethylene terephthalate ), poly (ethylene naphthalate), poly (1,4-cyclohexane dimethylene terephthalate), polyolefin, polybutadiene, polyacrylates and polyvinylidene chloride composition group.
50.权利要求48的系统,其中所述管子的外表面由0.01英寸厚的聚乙烯构成。 50. The system of claim 48, wherein an outer surface of the tube is made of 0.01 inches thick polyethylene.
51.权利要求42的系统,其中所述阻热层由1.0英寸厚的聚乙烯泡沫或其他充满空气的单元结构(cell construction)构成。 51. The system of claim 42, wherein the thermal barrier constituted by 1.0 inches thick polyethylene foam or other air-filled cell structure (cell construction).
52.权利要求51的系统,其中所述阻热层的上表面包括由砂、半透明陶瓷或塑料、硅酸盐或玻璃构成的一层。 52. The system of claim 51, wherein an upper surface of said thermal barrier layer comprises a layer consisting of sand, ceramic or translucent plastic, or a silicate glass.
53.权利要求52的系统,其中所述阻热层的上表面表现出接近于1.0的红外辐射性。 53. The system of claim 52, wherein an upper surface of the thermal barrier exhibits infrared radiation close to 1.0.
54.权利要求40的系统,其中所述辊的移动从所述培养液中收集氧气或其他气体以将其从所述系统中除去。 54. The system as claimed in claim 40, wherein said roller is moved to remove it from the system from the collected liquid oxygen or other gases to the culture.
55.权利要求48的系统,其中所述塑料外层印刻有线性Frenel图案以从较低的Snell's law角度采集阳光并将其引入所述藻类生长培养液。 55. The system of claim 48, wherein said plastic outer layer imprinted with a pattern of linear Frenel to collect sunlight from a lower angle and Snell's law introduced into the algae culture solution.
56.权利要求55的方法,其中在温和气候的冬季月份中使所述管子与位于低角度南方的太阳垂直放置。 56. The method of claim 55, wherein the angle is placed in the low and south solar manipulation in the vertical tube mild climate winter months.
CNA2006800398900A 2005-08-25 2006-08-24 Method, apparatus and system for biodiesel production from algae CN101341243A (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
US71131605P true 2005-08-25 2005-08-25
US60/711,316 2005-08-25
US73356905P true 2005-11-04 2005-11-04
US60/733,569 2005-11-04
US74085505P true 2005-11-30 2005-11-30
US60/740,855 2005-11-30
US75758706P true 2006-01-10 2006-01-10
US60/757,587 2006-01-10
US81810206P true 2006-06-30 2006-06-30
US60/818,102 2006-06-30

Publications (1)

Publication Number Publication Date
CN101341243A true CN101341243A (en) 2009-01-07

Family

ID=37772438

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2006800398900A CN101341243A (en) 2005-08-25 2006-08-24 Method, apparatus and system for biodiesel production from algae

Country Status (8)

Country Link
US (2) US20070048848A1 (en)
EP (1) EP1928994A2 (en)
JP (1) JP2009505660A (en)
CN (1) CN101341243A (en)
AU (1) AU2006282946A1 (en)
BR (1) BRPI0615085A2 (en)
MX (1) MX2008002633A (en)
WO (1) WO2007025145A2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102348794A (en) * 2009-03-09 2012-02-08 东洋制罐株式会社 Cell culture method, cell culture device, method for counting subject matters to be counted in container and device for counting
CN102459526A (en) * 2009-05-21 2012-05-16 亚申公司 Integrated coal-to-liquids process
CN102482634A (en) * 2009-09-15 2012-05-30 拜尔材料科学有限公司 Photobioreactor for algae growth
CN102703299A (en) * 2012-04-28 2012-10-03 上海理工大学 Outdoor heat-insulating incubator
CN103283582A (en) * 2012-02-23 2013-09-11 朴胜敏 Photo biological algae cultivator for maximizing carbon dioxide reduction rate, and method for producing algae by using the same
US8684592B2 (en) 2011-02-25 2014-04-01 Algenol Biofuels Inc. Magnetically coupled system for mixing
CN102361967B (en) * 2009-01-22 2014-08-13 阿克马法国公司 Use of a transparent composition for photobioreactors
CN104429899A (en) * 2014-05-15 2015-03-25 浙江海洋学院 Sea plant production frame with dispersing function
TWI503075B (en) * 2013-09-24 2015-10-11 Univ Tajen A microalgae culture system
CN106772693A (en) * 2016-11-18 2017-05-31 广西大学 Temperature prompt system

Families Citing this family (225)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050239182A1 (en) * 2002-05-13 2005-10-27 Isaac Berzin Synthetic and biologically-derived products produced using biomass produced by photobioreactors configured for mitigation of pollutants in flue gases
US20050260553A1 (en) * 2002-05-13 2005-11-24 Isaac Berzin Photobioreactor and process for biomass production and mitigation of pollutants in flue gases
US20050064577A1 (en) * 2002-05-13 2005-03-24 Isaac Berzin Hydrogen production with photosynthetic organisms and from biomass derived therefrom
US8507253B2 (en) * 2002-05-13 2013-08-13 Algae Systems, LLC Photobioreactor cell culture systems, methods for preconditioning photosynthetic organisms, and cultures of photosynthetic organisms produced thereby
BRPI0615085A2 (en) * 2005-08-25 2011-06-28 Solix Biofuels Inc method, apparatus and system for the production of biodiesel from algae
ES2308893B2 (en) * 2006-06-09 2010-04-21 Cristian Gomis Catala Procedure for obtaining energetic compounds through electromagnetic energy.
US8415142B2 (en) * 2006-06-14 2013-04-09 Malcolm Glen Kertz Method and apparatus for CO2 sequestration
US8372632B2 (en) * 2006-06-14 2013-02-12 Malcolm Glen Kertz Method and apparatus for CO2 sequestration
US8110395B2 (en) 2006-07-10 2012-02-07 Algae Systems, LLC Photobioreactor systems and methods for treating CO2-enriched gas and producing biomass
AU2007285785A1 (en) 2006-08-17 2008-02-21 Algepower, Llc Hydroponic growing enclosure and method for growing, harvesting, processing and distributing algae, related microorganisms and their by products
US7985267B2 (en) * 2006-08-30 2011-07-26 Michael Markels Jr. Revocable Trust Method of production of biofuel from the surface of the open ocean
ES2326296B1 (en) * 2006-10-02 2010-07-15 Bio Fuel Systems, S.L. Submersible vertical photobreactor for obtaining biofuels.
US7763457B2 (en) * 2006-10-13 2010-07-27 General Atomics High photoefficiency microalgae bioreactors
US8262776B2 (en) * 2006-10-13 2012-09-11 General Atomics Photosynthetic carbon dioxide sequestration and pollution abatement
WO2008076998A1 (en) * 2006-12-15 2008-06-26 A2Be Carbon Capture Llc Closed system bioreactor
US8404004B2 (en) * 2006-12-29 2013-03-26 Genifuel Corporation Process of producing oil from algae using biological rupturing
WO2008086495A1 (en) * 2007-01-10 2008-07-17 Washington State University Direct method and reagent kits for fatty acid ester synthesis
US7950181B2 (en) * 2007-01-17 2011-05-31 Mip, Llc Apparatus and methods for production of biodiesel
US8148120B2 (en) * 2007-03-28 2012-04-03 Clemson University Research Foundation Concentration and separation of lipids from renewable resources
WO2008136371A1 (en) * 2007-04-27 2008-11-13 Toyo Seikan Kaisha, Ltd. Cell culture apparatus, cell culture system and cell culture method
EP2152848A2 (en) 2007-04-27 2010-02-17 Greenfuel Technologies Corporation Photobioreactor systems positioned on bodies of water
US20080311649A1 (en) * 2007-05-31 2008-12-18 Xl Renewables, Inc. Pressurized flexible tubing system for producing Algae
US20090215155A1 (en) * 2007-05-31 2009-08-27 Xl Renewables, Inc. Algae Producing Trough System
CA2692893C (en) 2007-06-01 2015-06-23 The Scripps Research Institute High throughput screening of genetically modified photosynthetic organisms
US8790914B2 (en) * 2007-06-01 2014-07-29 Solazyme, Inc. Use of cellulosic materials for cultivation of microorganisms
MX2009013735A (en) * 2007-06-14 2010-03-10 Nickolaos Mitropoulos Algae growth for biofuels.
EP2009092A1 (en) * 2007-06-25 2008-12-31 BIOeCON International Holding N.V. Method for producing aquatic biomass
US20100233767A1 (en) * 2007-06-28 2010-09-16 Mcmurran David Process for the recovery of magnesium from a solution and pretreatment
US20090023199A1 (en) * 2007-07-19 2009-01-22 New England Clean Fuels, Inc. Micro-organism production system and method
US20100120134A1 (en) * 2007-07-19 2010-05-13 Texas Clean Fuels, Inc. Micro-organism production apparatus and system
ES2334478B1 (en) * 2007-07-20 2011-02-11 Biofuel Systems, S.L. Solar and co2 radiation caption system for continuous chemical energy conversion.
US8076122B2 (en) * 2007-07-25 2011-12-13 Chevron U.S.A. Inc. Process for integrating conversion of hydrocarbonaceous assets and photobiofuels production using an absorption tower
US8076121B2 (en) * 2007-07-25 2011-12-13 Chevron U.S.A. Inc. Integrated process for conversion of hydrocarbonaceous assets and photobiofuels production
US7838272B2 (en) * 2007-07-25 2010-11-23 Chevron U.S.A. Inc. Increased yield in gas-to-liquids processing via conversion of carbon dioxide to diesel via microalgae
US20090071064A1 (en) * 2007-07-27 2009-03-19 Machacek Mark T Continuous algal biodiesel production facility
US8097168B2 (en) * 2007-08-14 2012-01-17 Earth Renaissance Technologies, Llc Wastewater photo biomass/algae treatment method
WO2009036087A1 (en) * 2007-09-11 2009-03-19 Sapphire Energy, Inc. Methods of producing organic products with photosynthetic organisms and products and compositions thereof
NZ583701A (en) * 2007-09-11 2012-03-30 Sapphire Energy Inc Molecule production by photosynthetic organisms
TW200923086A (en) * 2007-09-18 2009-06-01 New American Energy Inc Dba Mighty Algae Biofuels Photobioreactor systems and methods for growing organisms
US20090077864A1 (en) * 2007-09-20 2009-03-26 Marker Terry L Integrated Process of Algae Cultivation and Production of Diesel Fuel from Biorenewable Feedstocks
US20100050301A1 (en) * 2007-10-05 2010-02-25 Sapphire Energy, Inc. System for capturing and modifying large pieces of genomic dna and constructing vascular plants with synthetic chloroplast genomes
US8314222B2 (en) * 2007-10-05 2012-11-20 Sapphire Energy, Inc. System for capturing and modifying large pieces of genomic DNA and constructing organisms with chloroplasts
US7905049B2 (en) * 2007-11-01 2011-03-15 Independence Bio-Products, Inc. Algae production
US20130323801A1 (en) * 2007-11-01 2013-12-05 Wake Forest University School Of Medicine Compositions, Methods, and Kits for Polyunsaturated Fatty Acids from Microalgae
US7662617B2 (en) * 2007-11-03 2010-02-16 Rush Stephen L Systems and processes for cellulosic ethanol production
US7514247B2 (en) 2007-11-03 2009-04-07 Wise Landfill Recycling Mining, Inc. Systems and processes for cellulosic ethanol production
DE102007053661A1 (en) * 2007-11-08 2009-05-14 Rent-A-Scientist Gmbh Maritime unit arranged in the area of sea surface for producing energy source, comprises maritime biomass cultivating area, biomass harvesting device, device for converting the biomass into the energy source, and storage for liquefied gas
US20090119980A1 (en) * 2007-11-08 2009-05-14 Howard Walker Abandoned mine discharge algae clean up
US7984613B2 (en) * 2007-11-08 2011-07-26 Mine-Rg, Inc. Geothermal power generation system and method for adapting to mine shafts
US20090119979A1 (en) * 2007-11-08 2009-05-14 Imperial Petroleum, Inc. Catalysts for production of biodiesel fuel and glycerol
WO2009063296A2 (en) * 2007-11-13 2009-05-22 Tantillus Synergy, Ltd. Systems and methods for production of biofuel
US20090134091A1 (en) * 2007-11-24 2009-05-28 Green Vision Energy Corporation Method for removing undesirable components from water while containing, cultivating, and harvesting photosynthetic marine microorganisms within water
US20090137025A1 (en) * 2007-11-24 2009-05-28 Green Vision Energy Corporation Apparatus for containing, cultivating, and harvesting photosynthetic marine microorganisms within water
US20090181438A1 (en) * 2007-12-04 2009-07-16 The Ohio State University Research Foundation Optimization of biofuel production
US20090148927A1 (en) * 2007-12-05 2009-06-11 Sequest, Llc Mass Production Of Aquatic Plants
ITMI20072343A1 (en) 2007-12-14 2009-06-15 Eni Spa Process for the production of algal biomass with a high lipid content
AU2008343290A1 (en) * 2007-12-21 2009-07-09 Old Dominion University Research Foundation Direct conversion of biomass to biodiesel fuel
US7927491B2 (en) * 2007-12-21 2011-04-19 Highmark Renewables Research Limited Partnership Integrated bio-digestion facility
US20100297714A1 (en) * 2008-01-04 2010-11-25 University Of Akron Multi-Step Method for Producing Algae Products
WO2009087625A1 (en) * 2008-01-08 2009-07-16 Danuba Marketing Consulting And Management Ltd. Method of biosynthetically producing hydrocarbons from algae
CN105238675A (en) * 2008-01-18 2016-01-13 埃维斯通-格列弗有限公司 Photobioreactor
WO2009094440A1 (en) * 2008-01-25 2009-07-30 Aquatic Energy Llc Algal culture production, harvesting, and processing
US20090209015A1 (en) * 2008-02-15 2009-08-20 Ramesha Chakkodabylu S Compositions and methods for production of biofuels
US8043496B1 (en) * 2008-03-18 2011-10-25 Peter Allen Schuh System for extracting oil from algae
WO2009120366A2 (en) * 2008-03-26 2009-10-01 National Research Council Of Canada Algal glycerol-3 phosphate acyltransferase
EP2105495A1 (en) * 2008-03-28 2009-09-30 Friesland Brands B.V. System for biowaste usage and production of energy and food/feed
WO2009126843A2 (en) * 2008-04-09 2009-10-15 Solazyme, Inc. Direct chemical modification of microbial biomass and microbial oils
GB0807619D0 (en) 2008-04-28 2008-06-04 Whitton Peter A Production of bio fuels from plant tissue culture sources
AU2013201607B2 (en) * 2008-04-28 2015-03-12 Naturally Scientific Technologies Limited Production of biofuel from tissue culture sources
ITCO20080020A1 (en) * 2008-05-09 2009-11-10 Austep Austeam Environmental Protection Srl Process and plant for the production of energy from a renewable source
US20110014100A1 (en) * 2008-05-21 2011-01-20 Bara Jason E Carbon Sequestration Using Ionic Liquids
WO2009152175A1 (en) * 2008-06-09 2009-12-17 Solix Biofuels, Inc. Permeable membranes in film photobioreactors
MX2008007914A (en) * 2008-06-18 2009-12-18 Alternativas Bioenergeticas S Process and apparatus for extracting biodiesel from algae.
EP2135939A1 (en) 2008-06-20 2009-12-23 Stroïazzo-Mougin, Bernard A. J. Process for obtaining a high nutritional value product and/or for transforming it into energy resources
ES2653848T3 (en) 2008-06-20 2018-02-09 Stroiazzo-Mougin, Bernard A. J. Continuous procedure for the generation of a product of high nutritional value and energy resources
AU2009266304B2 (en) * 2008-07-02 2014-11-27 Ciris Energy, Inc. Method for optimizing in-situ bioconversion of carbon-bearing formations
US20100003717A1 (en) * 2008-07-03 2010-01-07 Oyler James R Closed-Loop System for Growth of Algae or Cyanobacteria and Gasification of the Wet Biomass
US20100173375A1 (en) * 2008-07-03 2010-07-08 Oyler James R Closed-loop system for growth of aquatic biomass and gasification thereof
US20110306101A1 (en) * 2008-07-11 2011-12-15 De Crecy Eudes method of producing fatty acids for biofuel, biodiesel, and other valuable chemicals
US8510985B2 (en) * 2008-07-22 2013-08-20 Eliezer Halachmi Katchanov Energy production from algae in photo bioreactors enriched with carbon dioxide
US20100018214A1 (en) * 2008-07-22 2010-01-28 Eliezer Halachmi Katchanov Energy Production from Algae in Photo Bioreactors Enriched with Carbon Dioxide
WO2010011320A1 (en) * 2008-07-23 2010-01-28 Global Energies, Llc Bioreactor system for mass production of biomass
US8435790B2 (en) * 2008-07-25 2013-05-07 The Regents Of The University Of California Methods of modulating lipid concentrations in eukaryotic cells
WO2010031090A1 (en) * 2008-07-28 2010-03-25 Manuela Branka Process for fixing carbon and for energy generation
WO2010017243A1 (en) * 2008-08-04 2010-02-11 Kai Bioenergy Continuous cultivation, harvesting, and oil extraction of photosynthetic cultures
US20110020240A1 (en) * 2008-08-06 2011-01-27 Cirillo Jeffrey D Use of bacterial beta-lactamase for in vitro diagnostics and in vivo imaging, diagnostics and therapeutics
US20100034050A1 (en) * 2008-08-11 2010-02-11 Gary Erb Apparatus and Method for Cultivating Algae
US8586352B2 (en) 2008-08-11 2013-11-19 Community Synergies, Llc Reactor system and method for processing a process fluid
US20100050502A1 (en) * 2008-08-21 2010-03-04 LiveFuels, Inc. Systems and methods for hydrothermal conversion of algae into biofuel
WO2010027455A1 (en) * 2008-09-04 2010-03-11 Ciris Energy, Inc. Solubilization of algae and algal materials
WO2010030823A1 (en) * 2008-09-10 2010-03-18 Phycosystems Inc. Mixed microorganism communities for the production of biomass
US9051539B2 (en) * 2008-09-12 2015-06-09 Kenneth Matthew Snyder Algaculture system for biofuel production and methods of production thereof
JP2012503476A (en) * 2008-09-23 2012-02-09 ライブフュエルズ, インコーポレイテッドLivefuels, Inc. System and method for producing biofuel from algae
US20100236137A1 (en) * 2008-09-23 2010-09-23 LiveFuels, Inc. Systems and methods for producing eicosapentaenoic acid and docosahexaenoic acid from algae
US20100077654A1 (en) * 2008-09-23 2010-04-01 LiveFuels, Inc. Systems and methods for producing biofuels from algae
US20110275118A1 (en) * 2008-10-09 2011-11-10 De Crecy Eudes Method of producing fatty acids for biofuel, biodiesel, and other valuable chemicals
US20110195473A1 (en) * 2008-10-09 2011-08-11 Maria Rogmans Method and device for photosynthesis-supported exhaust gas disposal, particularly co2
US20110258915A1 (en) * 2008-10-17 2011-10-27 Stc.Unm Method and Unit for Large-Scale Algal Biomass Production
US8389064B2 (en) * 2008-10-18 2013-03-05 Combined Power, Llc System and method for protecting enclosure from solar radiation
US8809037B2 (en) 2008-10-24 2014-08-19 Bioprocessh20 Llc Systems, apparatuses and methods for treating wastewater
US8709750B2 (en) * 2008-12-15 2014-04-29 Cavitation Technologies, Inc. Method for processing an algae medium containing algae microorganisms to produce algal oil and by-products
ES2319376B1 (en) * 2008-11-10 2010-05-14 Jacinto Fernand Mena Mas "photobior reactor".
KR101526034B1 (en) * 2008-11-11 2015-06-04 다이니폰 인사츠 가부시키가이샤 Optical sheet
US20110239318A1 (en) * 2008-11-18 2011-09-29 LiveFuels, Inc. Methods for producing fish with high lipid content
WO2010059801A2 (en) * 2008-11-21 2010-05-27 Earthrenew, Inc. System and method for processing algae
US9802862B2 (en) * 2008-11-27 2017-10-31 Kolja Kuse CO2 emission-free construction material made of CO2
US7935515B2 (en) 2008-11-28 2011-05-03 Solazyme, Inc. Recombinant microalgae cells producing novel oils
WO2010077638A1 (en) * 2008-12-08 2010-07-08 Sapphire Energy, Inc Light transport in a bioreactor system
US8304209B2 (en) * 2008-12-11 2012-11-06 Joule Unlimited Technologies, Inc. Solar biofactory, photobioreactors, passive thermal regulation systems and methods for producing products
CA2746879C (en) * 2008-12-16 2014-07-22 Cetane Energy, Llc Systems and methods of generating renewable diesel
CN101748053B (en) 2008-12-17 2013-08-21 新奥科技发展有限公司 Reaction system for cultivating microalgae and preparing bioenergy
CN101760249B (en) * 2008-12-19 2015-04-15 新奥科技发展有限公司 Underground gasification coal derived energy chemical product poly-generation system and method
CN101760248B (en) * 2008-12-19 2015-04-15 新奥科技发展有限公司 Coal-based energy chemical product poly-generation system and method
US20100184197A1 (en) * 2009-01-22 2010-07-22 Longying Dong Methods For Harvesting Biological Materials Using Membrane Filters
US20110281295A1 (en) * 2009-01-27 2011-11-17 Photofuel Sas Method and device for culturing algae
US8551769B2 (en) 2009-01-30 2013-10-08 Zero Discharge Pty Ltd. Method and apparatus for cultivation of algae and cyanobacteria
CN102378811B (en) * 2009-01-30 2015-04-01 零排放有限公司 Apparatus
JP5608688B2 (en) 2009-03-09 2014-10-15 ユニヴェンチャー・インコーポレーテッド Method and apparatus for separating particles from a liquid
ES2351566B1 (en) * 2009-03-09 2012-06-14 Repsol Ypf, S.A Method of crop of microorganisms and photobior reactor employed in such method.
EP2408294A4 (en) * 2009-03-20 2012-06-20 Algal Scient Corp System and method for treating wastewater via phototactic heterotrophic microorganism growth
US9376656B2 (en) * 2009-03-30 2016-06-28 Brad W. Bartilson Photobioreactor system and method for the growth of algae for biofuels and related products
US8753851B2 (en) 2009-04-17 2014-06-17 LiveFuels, Inc. Systems and methods for culturing algae with bivalves
US10405506B2 (en) 2009-04-20 2019-09-10 Parabel Ltd. Apparatus for fluid conveyance in a continuous loop
MX365256B (en) * 2009-04-20 2019-05-28 Parabel Ltd Cultivation, harvesting and processing of floating aquatic species with high growth rates.
EP2424982A4 (en) * 2009-04-29 2013-01-09 Crecy Eudes De Adapting microorganisms for agricultural products
DE102009019347A1 (en) * 2009-05-01 2010-11-11 Eads Deutschland Gmbh Fuel distribution system
WO2010138571A1 (en) * 2009-05-28 2010-12-02 Coastal Biomarine, Llc Photobioreactor and method for culturing and harvesting microorganisms
DE102009029792A1 (en) * 2009-06-18 2010-12-30 Schott Ag Container useful as component of photobioreactors for storing or transferring aqueous solutions or suspensions, where inner wall of the container is provided with coating, which prevents adhesion of biologically reproducible substances
US20100330653A1 (en) * 2009-06-24 2010-12-30 Hazlebeck David A Method for Nutrient Pre-Loading of Microbial Cells
FI122957B (en) 2009-06-24 2012-09-14 Neste Oil Oyj A process for producing fat
US8772004B2 (en) * 2009-06-25 2014-07-08 Old Dominion University Research Foundation System and method for high-voltage pulse assisted aggregation of algae
EA022616B1 (en) 2009-07-28 2016-02-29 Джул Анлимитед Технолоджис, Инк. Photobioreactors, solar energy gathering systems, and thermal control methods
DE102009028338A1 (en) 2009-08-07 2011-02-10 Wacker Chemie Ag Bioreactor with silicone coating
DE102009028339A1 (en) 2009-08-07 2011-02-24 Wacker Chemie Ag Bioreactor made of silicone materials
US20110053257A1 (en) * 2009-08-21 2011-03-03 Ian Lane Ragsdale Photo-bioreactor with Particle Separation and Water Recovery System
JP2013507126A (en) * 2009-10-07 2013-03-04 エイチ アール ディー コーポレーション Algae processing
DE102009045853A1 (en) 2009-10-20 2011-04-21 Wacker Chemie Ag Multi-chamber photobioreactor
US20120252104A1 (en) * 2009-10-26 2012-10-04 Elemen Cleantech, Inc. Energy efficient temperature control of enclosed microalgae cultivator
CA2777567C (en) * 2009-10-27 2019-03-19 Art Deane An apparatus and method for algae growth
WO2011055229A2 (en) 2009-11-04 2011-05-12 Gne Global Natural Energy Ltd. Apparatus and method for cultivating protosythetic microorganisms and cells
WO2011066419A2 (en) * 2009-11-25 2011-06-03 Kuehnle Agrosystems, Inc. Enrichment of process feedstock
US8518132B2 (en) * 2009-12-11 2013-08-27 Albert C. Rettenmaier Methods of algae harvesting utilizing a filtering substance and uses therefor
WO2011072699A1 (en) * 2009-12-15 2011-06-23 Petrotech-Ffn Recycling of carbon dioxid by cultivating algae
CN102822346A (en) * 2009-12-18 2012-12-12 西里斯能源公司 Biogasification of coal to methane and other useful products
GB201000593D0 (en) 2010-01-14 2010-03-03 Morris Peter J Photo-bioreactor and method for cultivating biomass by photosynthesis
US20110177564A1 (en) * 2010-01-15 2011-07-21 Massachusetts Institute Of Technology Bioprocess and microbe engineering for total carbon utilization in biofuel production
US8450111B2 (en) 2010-03-02 2013-05-28 Streamline Automation, Llc Lipid extraction from microalgae using a single ionic liquid
AU2011226608B2 (en) * 2010-03-12 2015-10-29 Colorado State University Research Foundation Systems and methods for positioning flexible floating photobioreactors
US8394900B2 (en) 2010-03-18 2013-03-12 Syntroleum Corporation Profitable method for carbon capture and storage
WO2011116639A1 (en) * 2010-03-23 2011-09-29 Lan Wong Multistory bioreaction system for enhancing photosynthesis
US8222025B2 (en) 2010-03-23 2012-07-17 Lan Wong Multistory bioreaction system for enhancing photosynthesis
JP2011200177A (en) * 2010-03-26 2011-10-13 Mitsui Eng & Shipbuild Co Ltd Culturing device and culturing method
JP5359971B2 (en) 2010-04-01 2013-12-04 トヨタ自動車株式会社 Aggregation and separation method of algae
US8552160B2 (en) * 2010-04-06 2013-10-08 Heliae Development, Llc Selective extraction of proteins from freshwater or saltwater algae
US8889400B2 (en) 2010-05-20 2014-11-18 Pond Biofuels Inc. Diluting exhaust gas being supplied to bioreactor
US8940520B2 (en) 2010-05-20 2015-01-27 Pond Biofuels Inc. Process for growing biomass by modulating inputs to reaction zone based on changes to exhaust supply
US8969067B2 (en) 2010-05-20 2015-03-03 Pond Biofuels Inc. Process for growing biomass by modulating supply of gas to reaction zone
WO2011150410A2 (en) 2010-05-28 2011-12-01 Solazyme, Inc. Tailored oils produced from recombinant heterotrophic microorganisms
NL2004832C2 (en) * 2010-06-07 2011-12-08 Evodos B V Separating biomass from an aqueous medium.
US8458952B1 (en) 2010-06-11 2013-06-11 Independence Bio-Products, Inc. Method and system for harvesting micro organisms
US10123495B2 (en) 2010-06-16 2018-11-13 General Atomics Controlled system for supporting algae growth with adsorbed carbon dioxide
US20110308144A1 (en) * 2010-06-16 2011-12-22 Hazlebeck David A Algae Biofuel Carbon Dioxide Distribution System
US20110308149A1 (en) * 2010-06-16 2011-12-22 Hazlebeck David A System for Supporting Algae Growth with Adsorbed Carbon Dioxide
US8303818B2 (en) * 2010-06-24 2012-11-06 Streamline Automation, Llc Method and apparatus using an active ionic liquid for algae biofuel harvest and extraction
KR101194545B1 (en) * 2010-08-12 2012-10-24 경북대학교 산학협력단 Systemic equipments to produce bioenergy using microalgae and biodiesel produced by the same
FR2964666B1 (en) 2010-09-13 2014-11-21 Univ Nantes Device for controlling the temperature of a direct lighting solar photobioreactor
US8563759B2 (en) 2010-10-02 2013-10-22 Cal Poly Corporation Process for extracting lipids from microalgae
EP3521408A1 (en) 2010-11-03 2019-08-07 Corbion Biotech, Inc. Genetically-engineered chlorella or prototheca microbe and oil produced therefrom
IT1402640B1 (en) * 2010-11-04 2013-09-13 Poli De "Method and corresponding apparatus for growing photosynthetic microorganisms"
CN102002381B (en) * 2010-11-05 2013-06-12 合肥工业大学 Method for preparing biological oil from algae biomass through direct catalytic liquefaction method
US8871062B2 (en) 2010-11-23 2014-10-28 Charles David Gilliam Falling film evaporator
JP5768365B2 (en) * 2010-12-03 2015-08-26 株式会社Ihi Method of stirring culture medium in cell culture device
US20120144887A1 (en) 2010-12-13 2012-06-14 Accelergy Corporation Integrated Coal To Liquids Process And System With Co2 Mitigation Using Algal Biomass
CN102533521B (en) * 2010-12-22 2015-01-14 新奥科技发展有限公司 Photo-bioreactor device
WO2012103513A2 (en) * 2011-01-28 2012-08-02 Mccutchen Co. Radial counterflow reactor with applied radiant energy
SG192594A1 (en) 2011-02-02 2013-09-30 Solazyme Inc Tailored oils produced from recombinant oleaginous microorganisms
US8834605B2 (en) * 2011-02-18 2014-09-16 Lawrence Livermore National Security, Llc. Separation of a target substance from a fluid or mixture using encapsulated sorbents
US9487716B2 (en) 2011-05-06 2016-11-08 LiveFuels, Inc. Sourcing phosphorus and other nutrients from the ocean via ocean thermal energy conversion systems
KR20140033378A (en) 2011-05-06 2014-03-18 솔라짐, 인코포레이티드 Genetically engineered microorganisms that metabolize xylose
FI126965B (en) 2011-05-18 2017-08-31 Fortum Oyj Method and equipment for generating energy by recycling materials during the fuel combustion process
US20140099685A1 (en) 2011-05-27 2014-04-10 Joule Unlimited Technologies, In. Bioreactors apparatus, system and method
KR101110068B1 (en) 2011-05-27 2012-02-15 한국해양연구원 Method for manufacturing microalgae biofuel
EP2718420A4 (en) * 2011-06-13 2015-04-22 Al G Technologies Inc Method using immobilized algae for production and harvest of algal biomass and products
CN103998932B (en) 2011-06-29 2017-06-06 中央研究院 Capture, purifying and release using face coat to biological substance
GB2484562A (en) * 2011-06-29 2012-04-18 Peter Anthony Miller A combination of technologies to mitigate the effects of climate change via photosynthetic processes
ITVR20110134A1 (en) * 2011-06-30 2012-12-31 Algain Energy S R L Photobioreactor.
US8541225B2 (en) 2011-07-25 2013-09-24 General Atomics System and method for using a pulse flow circulation for algae cultivation
US9234139B2 (en) 2011-11-01 2016-01-12 Accelergy Corporation Diesel fuel production process employing direct and indirect coal liquefaction
US20140322807A1 (en) * 2011-12-06 2014-10-30 Innovative Bios L.L.C. Method for extracting nutrients from organic materials
US9375654B1 (en) * 2011-12-15 2016-06-28 Charles David Gilliam Algae growth
CN103355155B (en) * 2012-03-31 2016-01-20 莫塔赫德·索赫尔 Integrated pond-bioreactor
US9719114B2 (en) 2012-04-18 2017-08-01 Terravia Holdings, Inc. Tailored oils
WO2013158938A1 (en) 2012-04-18 2013-10-24 Solazyme, Inc. Tailored oils
US8673154B2 (en) 2012-07-12 2014-03-18 Heliae Development, Llc Tunable electrical field for aggregating microorganisms
US8709258B2 (en) 2012-07-12 2014-04-29 Heliae Development, Llc Patterned electrical pulse microorganism aggregation
US8702991B2 (en) 2012-07-12 2014-04-22 Heliae Development, Llc Electrical microorganism aggregation methods
US8668827B2 (en) 2012-07-12 2014-03-11 Heliae Development, Llc Rectangular channel electro-acoustic aggregation device
US8709250B2 (en) 2012-07-12 2014-04-29 Heliae Development, Llc Tubular electro-acoustic aggregation device
US9067202B1 (en) * 2012-09-25 2015-06-30 The United States Of America, As Represented By The Secretary Of Agriculture Semi-rigid culture vessel
ES2451579B1 (en) * 2012-09-26 2015-03-11 Fcc Aqualia S A Carbonation system for microalgae culture in open reactors
US9534261B2 (en) 2012-10-24 2017-01-03 Pond Biofuels Inc. Recovering off-gas from photobioreactor
ES2464416B1 (en) 2012-10-30 2015-03-31 Biosinkco2 Tech Lda Process for the production of biomass and products derived from it by cultivating unicellular algae in aqueous medium fed with a stream of CO2, and plant designed for this purpose
WO2014074772A1 (en) 2012-11-09 2014-05-15 Heliae Development, Llc Mixotrophic, phototrophic, and heterotrophic combination methods and systems
WO2014074770A2 (en) 2012-11-09 2014-05-15 Heliae Development, Llc Balanced mixotrophy methods
WO2014122331A1 (en) * 2013-02-06 2014-08-14 Algaenergy, S.A. Method for the valorisation of photosynthetic microorganisms for integral use of biomass
WO2014159439A1 (en) * 2013-03-13 2014-10-02 Oney Stephen K Systems and methods for cultivating and harvesting blue water bioalgae and aquaculture
US20160215224A1 (en) * 2013-08-28 2016-07-28 Hitachi, Ltd. Chemical Substance Production System and Chemical Substance Production Method
IN2013MU02829A (en) * 2013-08-29 2015-07-03 Syed Gazanfar Abbas Safvi
CN105829521A (en) 2013-10-04 2016-08-03 索拉兹米公司 Tailored oils
US9499846B2 (en) * 2013-12-10 2016-11-22 Mark Randall Method for recycling flue gas
US9345208B2 (en) 2013-12-10 2016-05-24 Mark Randall System for recycling flue gas
US9458407B2 (en) 2013-12-10 2016-10-04 T2e Energy Holdings, LLC Algal oil based bio-lubricants
CA2973565A1 (en) * 2014-01-12 2015-07-16 Kevin Friesth Automated hybrid aquaponics and bioreactor system including product processing and storage facilities with integrated robotics, control system, and renewable energy system
CN104030518B (en) 2014-02-28 2016-03-02 天下光捕(武汉)生态科技有限公司 A kind of ultra-large light of Water warfare catches bio-reactor and operation method
EP3126814B1 (en) 2014-04-01 2019-06-12 Academia Sinica Methods and systems for cancer diagnosis and prognosis
EP3167053B1 (en) 2014-07-10 2019-10-09 Corbion Biotech, Inc. Novel ketoacyl acp synthase genes and uses thereof
EP2998026A3 (en) 2014-08-26 2016-07-13 Academia Sinica Collector architecture layout design
US20160097073A1 (en) * 2014-10-06 2016-04-07 Therapeutic Proteins International, LLC Purification and separation treatment assembly (pasta) for biological products
US20160174476A1 (en) * 2014-12-17 2016-06-23 Marsh Allen Algae growth using peristaltic pump
US9718247B2 (en) * 2015-04-02 2017-08-01 Pei-Ti Lin Method for fabricating bubbler
JP6619155B2 (en) * 2015-05-19 2019-12-11 矢崎総業株式会社 Vehicle fuel synthesis system
US9862910B2 (en) * 2015-08-20 2018-01-09 H R D Corporation System and process for recovering algal oil
US10107726B2 (en) 2016-03-16 2018-10-23 Cellmax, Ltd. Collection of suspended cells using a transferable membrane
US10501721B2 (en) * 2016-05-09 2019-12-10 Global Algae Technologies, Llc Biological and algae harvesting and cultivation systems and methods
WO2018019659A1 (en) * 2016-07-29 2018-02-01 Algowinn Facility for culturing photosynthetic microorganisms, in particular microalgae, in a pond

Family Cites Families (111)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2732663A (en) * 1956-01-31 System for photosynthesis
US395318A (en) * 1889-01-01 Casing-spear for wells
US3981803A (en) * 1971-11-11 1976-09-21 Coulthard J L Method and apparatus for anaerobic fermentation
US3955318A (en) * 1973-03-19 1976-05-11 Bio-Kinetics Inc. Waste purification system
US3961803A (en) * 1973-10-15 1976-06-08 Henry Fleischer Baby holding device
GB1495709A (en) * 1974-01-28 1977-12-21 British Petroleum Co Method and apparatus for growing plant cells
US4149589A (en) * 1977-11-25 1979-04-17 Fred Hopman Self-insulating water wall
US4201525A (en) * 1978-07-05 1980-05-06 Baxter Travenol Laboratories, Inc. Peristaltic pump
US4241724A (en) * 1978-10-23 1980-12-30 Iowa State University Research Foundation, Inc. Method and means of preventing heat convection in a solar pond
US4320594A (en) * 1978-12-28 1982-03-23 Battelle Memorial Institute Mass algal culture system
US4253271A (en) * 1978-12-28 1981-03-03 Battelle Memorial Institute Mass algal culture system
US4290242A (en) * 1979-03-23 1981-09-22 Gregory Jr William T Greenhouse tubular insulation barrier
US4324068A (en) * 1980-03-03 1982-04-13 Sax Zzyzx, Ltd. Production of algae
US4368056A (en) * 1981-05-20 1983-01-11 Pierce Sammy M Diesel fuel by fermentation of wastes
US4473970A (en) * 1982-07-21 1984-10-02 Hills Christopher B Method for growing a biomass in a closed tubular system
FR2577569B1 (en) * 1985-02-15 1987-03-20 Inst Francais Du Petrole Process for manufacturing a composition of suitable fatty acid esters such as gas oil substitute fuel with alcohol hydrate and ethyl ester composition thus forms
US4910912A (en) * 1985-12-24 1990-03-27 Lowrey Iii O Preston Aquaculture in nonconvective solar ponds
DE3784359D1 (en) * 1986-03-19 1993-04-08 Biotechna Ltd Production of biomass.
JPH0240314B2 (en) * 1986-07-03 1990-09-11 Takashi Mori
US4744349A (en) * 1986-07-28 1988-05-17 Sorensen Jens Ole Suppression of heat convection in aqueous insulation layer of solar pond
US4950601A (en) * 1987-03-17 1990-08-21 Kimberly-Clark Corporation Immobilied blue-green algae in sheet form
US4921803A (en) * 1987-03-17 1990-05-01 Kimberly-Clark Corporation Immobilized blue-green algae
US4879232A (en) * 1987-03-17 1989-11-07 Kimberly-Clark Corporation Multilayered structure containing immobilized blud-green algae
US4952511A (en) * 1987-06-11 1990-08-28 Martek Corporation Photobioreactor
US4958460A (en) * 1988-05-09 1990-09-25 Algae Farms Method of growing and harvesting microorganisms
CA1307225C (en) * 1988-07-19 1992-09-08 David W. Armstrong Cell culture bioreactor
US4954055A (en) * 1989-06-22 1990-09-04 Baxter International, Inc. Variable roller pump tubing
US5151347A (en) * 1989-11-27 1992-09-29 Martek Corporation Closed photobioreactor and method of use
US4997347A (en) * 1990-01-12 1991-03-05 Autotrol Corporation Peristaltic motor
US5614378A (en) * 1990-06-28 1997-03-25 The Regents Of The University Of Michigan Photobioreactors and closed ecological life support systems and artifificial lungs containing the same
US5270175A (en) * 1991-07-12 1993-12-14 Dna Plant Technology Corporation Methods and compositions for producing metabolic products for algae
DE4209779C1 (en) * 1992-03-26 1993-07-15 Oelmuehle Leer Connemann Gmbh & Co., 2950 Leer, De
US5573669A (en) * 1992-06-02 1996-11-12 Jensen; Kyle R. Method and system for water purification by culturing and harvesting attached algal communities
US5591341A (en) * 1992-06-02 1997-01-07 Jensen; Kyle R. Method and system for water bioremediation utilizing a conical attached algal culture system
US5250427A (en) * 1992-06-25 1993-10-05 Midwest Research Institute Photoconversion of gasified organic materials into biologically-degradable plastics
US5661017A (en) * 1993-09-14 1997-08-26 Dunahay; Terri Goodman Method to transform algae, materials therefor, and products produced thereby
US5338471A (en) * 1993-10-15 1994-08-16 The Lubrizol Corporation Pour point depressants for industrial lubricants containing mixtures of fatty acid esters and vegetable oils
US5958761A (en) * 1994-01-12 1999-09-28 Yeda Research And Developement Co. Ltd. Bioreactor and system for improved productivity of photosynthetic algae
IL108321A (en) * 1994-01-12 1998-10-30 Yeda Res & Dev Bioreactor and system for improved productivity of photosynthetic algae
US5525505A (en) * 1994-01-31 1996-06-11 Clemson University Plant propagation system and method
US5536398A (en) * 1994-05-18 1996-07-16 Reinke; Mark A. Algal filter for water treatment
US5851398A (en) * 1994-11-08 1998-12-22 Aquatic Bioenhancement Systems, Inc. Algal turf water purification method
AUPN060095A0 (en) * 1995-01-13 1995-02-09 Enviro Research Pty Ltd Apparatus for biomass production
US5545016A (en) * 1995-01-31 1996-08-13 Standard-Keil Industries, Inc. Plural chamber pneumatic pump having a motive fluid exhaust valve
JP3180603B2 (en) * 1995-02-07 2001-06-25 信越化学工業株式会社 Metal nitride for producing a fluidized bed reactor
DE69520052D1 (en) * 1995-08-10 2001-03-08 Mitsubishi Rayon Co Thermosetting coating composition
JP2743316B2 (en) * 1995-10-27 1998-04-22 財団法人地球環境産業技術研究機構 Tubular-type photobioreactor
US5645726A (en) * 1996-03-14 1997-07-08 Deep Shaft Technology Inc. Treatment of waste liquor in a vertical shaft bioreactor
US5659977A (en) * 1996-04-29 1997-08-26 Cyanotech Corporation Integrated microalgae production and electricity cogeneration
US5925246A (en) * 1996-10-31 1999-07-20 Matrix Pharmaceutical, Inc. Apparatus for aseptic vortex flow concentration
US5778823A (en) * 1996-10-31 1998-07-14 Aquatic Bioenhancement Systems Method of raising fish by use of algal turf
CZ326696A3 (en) * 1996-11-06 1998-05-13 Mikrobiologický Ústav Av Čr Process of external thin-layer cultivation of algae and blue-green algae and a bioreactor for making the same
US5910254A (en) * 1996-12-20 1999-06-08 Eastman Chemical Company Method for dewatering microalgae with a bubble column
US5778826A (en) * 1997-01-30 1998-07-14 Dillon; William W. Bird and animal blindfolding apparatus
US5730029A (en) * 1997-02-26 1998-03-24 The Lubrizol Corporation Esters derived from vegetable oils used as additives for fuels
US6107085A (en) * 1997-07-11 2000-08-22 Corning Incorporated Self contained cell growth system
GB9719965D0 (en) * 1997-09-19 1997-11-19 Biotechna Environmental Intern Modified bioreactor
GB2330589B (en) * 1997-10-22 2002-03-06 Lee Fisher Robinson Apparatus and method for culture of photosensitive organisms
US6015440A (en) * 1997-10-31 2000-01-18 Board Of Regents Of The University Of Nebraska Process for producing biodiesel fuel with reduced viscosity and a cloud point below thirty-two (32) degrees fahrenheit
JPH11226351A (en) * 1998-02-12 1999-08-24 Spirulina Kenkyusho:Kk Production of cleaned air and apparatus for cleaning air
US6192833B1 (en) * 1998-03-16 2001-02-27 Clemson University Partitioned aquaculture system
AU749885B2 (en) * 1998-03-31 2002-07-04 Bioreal, Inc. Fine algae culture device
AU4957699A (en) * 1998-06-24 2000-01-10 Chen & Chen, Llc Fluid sample testing system
US20020034817A1 (en) * 1998-06-26 2002-03-21 Henry Eric C. Process and apparatus for isolating and continuosly cultivating, harvesting, and processing of a substantially pure form of a desired species of algae
AU2462300A (en) * 1999-07-06 2001-01-22 Yoshiharu Miura Microbial process for producing hydrogen
US6416993B1 (en) * 1998-12-11 2002-07-09 Biotechna Environmental International, Ltd. Method for treating a waste stream using photosynthetic microorganisms
GB9905312D0 (en) * 1999-03-09 1999-04-28 Rodgers Christopher R Mixing method and apparatus
DE19916597A1 (en) * 1999-04-13 2000-10-19 Fraunhofer Ges Forschung Photobioreactor with improved light entry through surface enlargement, wavelength shifter or light transport
DK1180215T5 (en) * 1999-05-12 2009-09-07 Dia Medical As Peristaltic v scapula
DE19925871A1 (en) * 1999-06-07 2000-12-21 At Agrar Technik Gmbh A process for preparing Fettsäureestern monovalent alkyl alcohols and their use
US6712867B1 (en) * 1999-08-18 2004-03-30 Biox Corporation Process for production of fatty acid methyl esters from fatty acid triglycerides
WO2001023519A1 (en) * 1999-09-29 2001-04-05 Micro Gaia Co., Ltd. Method of culturing algae capable of producing phototrophic pigments, highly unsaturated fatty acids, or polysaccharides at high concentration
AT282306T (en) * 1999-10-11 2004-12-15 Michael Connolly Aquaculture
US6667171B2 (en) * 2000-07-18 2003-12-23 Ohio University Enhanced practical photosynthetic CO2 mitigation
AU2879201A (en) * 2000-08-31 2002-03-13 Council Scient Ind Res An improved process for cultivation of algae
US6524486B2 (en) * 2000-12-27 2003-02-25 Sepal Technologies Ltd. Microalgae separator apparatus and method
DE60237592D1 (en) * 2001-03-30 2010-10-21 Revo Internat Inc Process for preparing fatty acidal cylinders
US20030059932A1 (en) * 2001-07-23 2003-03-27 National Research Council Of Canada Photobioreactor
DE10147765C1 (en) * 2001-09-27 2002-10-24 Bsh Bosch Siemens Hausgeraete Gas-heated dishwashing machine uses gas burner located in motor space at base of dishwashing machine housing
CA2359417A1 (en) * 2001-10-17 2003-04-17 Co2 Solution Inc. Photobioreactor with internal artificial lighting
US20050064577A1 (en) * 2002-05-13 2005-03-24 Isaac Berzin Hydrogen production with photosynthetic organisms and from biomass derived therefrom
US8507253B2 (en) * 2002-05-13 2013-08-13 Algae Systems, LLC Photobioreactor cell culture systems, methods for preconditioning photosynthetic organisms, and cultures of photosynthetic organisms produced thereby
US20050239182A1 (en) * 2002-05-13 2005-10-27 Isaac Berzin Synthetic and biologically-derived products produced using biomass produced by photobioreactors configured for mitigation of pollutants in flue gases
US20050260553A1 (en) * 2002-05-13 2005-11-24 Isaac Berzin Photobioreactor and process for biomass production and mitigation of pollutants in flue gases
DE10230342C1 (en) * 2002-07-05 2003-10-30 Daimler Chrysler Ag Membrane module used in fuel cell system comprises planar membrane packets lying freely over each other and enclosed by a rotationally symmetrical pressure sleeve, and a supporting structure lying between the membrane groups
CA2411383A1 (en) * 2002-11-07 2004-05-07 Real Fournier Method and apparatus for concentrating an aqueous suspension of microalgae
US6986323B2 (en) * 2002-11-25 2006-01-17 Algal Technologies, Inc. Inland aquaculture of marine life using water from a saline aquifer
US7392615B2 (en) * 2002-12-24 2008-07-01 Lee L Courtland Process to produce a commercial soil additive by extracting waste heat, exhaust gas, and other combustion by-products from a coal power generator
AU2003303551A1 (en) * 2002-12-31 2004-07-29 Truelove And Maclean, Incorporated Process for coating drawn metal parts
US7854897B2 (en) * 2003-05-12 2010-12-21 Yokogawa Electric Corporation Chemical reaction cartridge, its fabrication method, and a chemical reaction cartridge drive system
US6768015B1 (en) * 2003-05-16 2004-07-27 Stepan Company Method of making alkyl esters using pressure
US7112229B2 (en) * 2003-07-18 2006-09-26 Petroleo Brasileiro S.A. -Petrobras Process for producing biodiesel fuel using triglyceride-rich oleagineous seed directly in a transesterification reaction in the presence of an alkaline alkoxide catalyst
US6822105B1 (en) * 2003-08-12 2004-11-23 Stepan Company Method of making alkyl esters using glycerin
TWI273137B (en) * 2003-08-14 2007-02-11 Far East Microalgae Ind Co Ltd Method for culturing organic blue-green algae
US7377686B2 (en) * 2003-09-04 2008-05-27 Millipore Corporation Disposable mixing system
WO2005033020A1 (en) * 2003-09-19 2005-04-14 Clemson University Controlled eutrophication system and process
KR100490641B1 (en) * 2003-12-16 2005-05-11 인하대학교 산학협력단 Multiple layer photobioreactors and method for culturing photosynthetic microorganisms using them
US7875448B2 (en) * 2004-01-12 2011-01-25 Single Use Brx, Llc Bioreactor systems and disposable bioreactor
US7351576B1 (en) * 2004-03-26 2008-04-01 Michael T. Harmon Compost tea machine
WO2005111193A1 (en) * 2004-05-18 2005-11-24 Australian Nuclear Science & Technology Organisation Membrane bioreactor
US7528272B2 (en) * 2004-09-24 2009-05-05 Artisan Industries, Inc. Biodiesel process
US7056725B1 (en) * 2004-12-23 2006-06-06 Chao-Hui Lu Vegetable alga and microbe photosynthetic reaction system and method for the same
US20070042487A1 (en) * 2005-08-19 2007-02-22 Imi Norgren, Inc. Bioreactor valve island
BRPI0615085A2 (en) * 2005-08-25 2011-06-28 Solix Biofuels Inc method, apparatus and system for the production of biodiesel from algae
GB2433266A (en) * 2005-12-16 2007-06-20 Kevin Andrew Auton Cell culture vessel
US7135308B1 (en) * 2006-02-28 2006-11-14 Propulsion Logic, Llc Process for the production of ethanol from algae
JP4882469B2 (en) * 2006-04-13 2012-02-22 富士通株式会社 Weather prediction program, weather prediction device, and weather prediction method
US20080131960A1 (en) * 2006-11-15 2008-06-05 Millipore Corporation Self standing bioreactor construction
US9637714B2 (en) * 2006-12-28 2017-05-02 Colorado State University Research Foundation Diffuse light extended surface area water-supported photobioreactor
US7943792B2 (en) * 2007-04-02 2011-05-17 Inventure Chemical Inc. Production of biodiesel, cellulosic sugars, and peptides from the simultaneous esterification and alcoholysis/hydrolysis of materials with oil-containing substituents including phospholipids and peptidic content
US8212062B2 (en) * 2007-04-02 2012-07-03 Inventure Chemical, Inc. Production of biodiesel, cellulosic sugars, and peptides from the simultaneous esterification and alcoholysis/hydrolysis of oil-containing materials with cellulosic and peptidic content

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102361967B (en) * 2009-01-22 2014-08-13 阿克马法国公司 Use of a transparent composition for photobioreactors
CN102348794B (en) * 2009-03-09 2014-09-03 东洋制罐株式会社 Cell culture method, cell culture device, method for counting subject matters to be counted in container and device for counting
CN102348794A (en) * 2009-03-09 2012-02-08 东洋制罐株式会社 Cell culture method, cell culture device, method for counting subject matters to be counted in container and device for counting
CN102459526A (en) * 2009-05-21 2012-05-16 亚申公司 Integrated coal-to-liquids process
CN102482634A (en) * 2009-09-15 2012-05-30 拜尔材料科学有限公司 Photobioreactor for algae growth
US8684592B2 (en) 2011-02-25 2014-04-01 Algenol Biofuels Inc. Magnetically coupled system for mixing
US9139805B2 (en) 2011-02-25 2015-09-22 Algenol Biotech LLC Magnetically coupled system for mixing
CN103283582A (en) * 2012-02-23 2013-09-11 朴胜敏 Photo biological algae cultivator for maximizing carbon dioxide reduction rate, and method for producing algae by using the same
CN103283582B (en) * 2012-02-23 2015-08-12 朴胜敏 Make carbonic acid gas clearance maximized photo-biological algae culture device
CN102703299A (en) * 2012-04-28 2012-10-03 上海理工大学 Outdoor heat-insulating incubator
CN102703299B (en) * 2012-04-28 2014-06-04 上海理工大学 Outdoor heat-insulating incubator
TWI503075B (en) * 2013-09-24 2015-10-11 Univ Tajen A microalgae culture system
CN104429899A (en) * 2014-05-15 2015-03-25 浙江海洋学院 Sea plant production frame with dispersing function
CN104429899B (en) * 2014-05-15 2016-07-06 浙江海洋学院 One can discrete thalassophyte production frame
CN106772693A (en) * 2016-11-18 2017-05-31 广西大学 Temperature prompt system

Also Published As

Publication number Publication date
US20070048859A1 (en) 2007-03-01
WO2007025145A2 (en) 2007-03-01
WO2007025145A3 (en) 2007-06-21
BRPI0615085A2 (en) 2011-06-28
MX2008002633A (en) 2008-09-26
EP1928994A2 (en) 2008-06-11
JP2009505660A (en) 2009-02-12
US20070048848A1 (en) 2007-03-01
AU2006282946A1 (en) 2007-03-01

Similar Documents

Publication Publication Date Title
Cheah et al. Biosequestration of atmospheric CO2 and flue gas-containing CO2 by microalgae
Tredici Mass production of microalgae: photobioreactors
Tredici et al. From open ponds to vertical alveolar panels: the Italian experience in the development of reactors for the mass cultivation of phototrophic microorganisms
US7056725B1 (en) Vegetable alga and microbe photosynthetic reaction system and method for the same
Lee Enclosed bioreactors for the mass cultivation of photosynthetic microorganisms: the future trend
AU658509B2 (en) Microorganism growth apparatus
AU2004256839B8 (en) Multi-layered photobioreactor and method of culturing photosynthetic microorganisms using the same
US8715980B2 (en) System for cultivation and processing of microorganisms, processing of products therefrom, and processing in drillhole reactors
US20090148931A1 (en) Illumination systems, devices, and methods for biomass production
Acién et al. Photobioreactors for the production of microalgae
US20070092962A1 (en) Carbon Neutralization System (CNS) for CO2 sequestering
US8372632B2 (en) Method and apparatus for CO2 sequestration
AU2014202766B2 (en) Photobioreactor systems positioned on bodies of water
US8241895B2 (en) Methods of algal growth in photobioreactors
US20100311157A1 (en) Systems and methods for production of biofuel
US20100151558A1 (en) Tubular Microbial Growth System
US8415142B2 (en) Method and apparatus for CO2 sequestration
De Vree et al. Comparison of four outdoor pilot-scale photobioreactors
US9894856B2 (en) Cultivation, harvesting and processing of floating aquatic species with high growth rates
AU2008353032B2 (en) Photo bioreactor with light distributor and method for the production of a photosynthetic culture
US20110201063A1 (en) Algae growth for biofuels
BRPI0718293A2 (en) Closed photo-reactor system for production, separation, collection and removal in situ, daily continued, ethanol from genetically optimized photosythetic organisms
US20110070632A1 (en) Photo bioreactor and cultivation system for improved productivity of photoautotrophic cell cultures
CN101356261A (en) System, devices, and methods for biomass production
JP2010530757A (en) Bioreactor

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
C02 Deemed withdrawal of patent application after publication (patent law 2001)