CN101299617B - Multimodule modulation-demodulation self-adaption method for wireless sensing network shortwave one-way communication - Google Patents

Multimodule modulation-demodulation self-adaption method for wireless sensing network shortwave one-way communication Download PDF

Info

Publication number
CN101299617B
CN101299617B CN 200810060039 CN200810060039A CN101299617B CN 101299617 B CN101299617 B CN 101299617B CN 200810060039 CN200810060039 CN 200810060039 CN 200810060039 A CN200810060039 A CN 200810060039A CN 101299617 B CN101299617 B CN 101299617B
Authority
CN
China
Prior art keywords
demodulation
module
information
data
signal
Prior art date
Application number
CN 200810060039
Other languages
Chinese (zh)
Other versions
CN101299617A (en
Inventor
付耀先
袁晓兵
Original Assignee
中国科学院嘉兴无线传感网工程中心
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院嘉兴无线传感网工程中心 filed Critical 中国科学院嘉兴无线传感网工程中心
Priority to CN 200810060039 priority Critical patent/CN101299617B/en
Publication of CN101299617A publication Critical patent/CN101299617A/en
Application granted granted Critical
Publication of CN101299617B publication Critical patent/CN101299617B/en

Links

Abstract

The invention discloses a wireless sensing net short wave one-way communication multiple model modem self-adapting method, which presets a low speed, an intermediate speed and a high speed communication modes at the receiving terminals in the software radio mode, carries communication mode information at the sweep frequency frame head transmitted by the transmitting terminal, and executes modulation to the sweep frequency frame head in a high-reliability modulation mode, thereby the receiving terminal can simultaneously obtain subsequent data communication mode after capturing and confirming the sweep frequency frame head information, and execute demodulation to the subsequent information in corresponding communication mode after the sweep frequency head receiving is completed.

Description

无线传感网短波单向通信多模调制解调自适应方法 Wireless sensor network short way communication multimode modem adaptation method

技术领域 FIELD

[0001] 本发明涉及无线传感网短波通信和自适应通信领域,特别涉及一种无线传感网短波单向通信多模调制解调自适应方法。 [0001] The present invention relates to communication field HF communication and adaptive wireless sensor networks, wireless sensor networks and particularly to a short one-way communication multimode modem adaptation method.

背景技术 Background technique

[0002] 无线传感器网络(Wireless Sensor Network, WSN)涉及多学科高度交叉、知识高度集成的前沿热点研究领域,其综合了传感器技术、嵌人式计算技术、现代网络及无线通信技术、分布式信息处理技术等,能够通过各类集成化的微型传感器协作地实时监测、感知和采集各种环境或监测对象的信息,并将该些信息通过无线方式予以发送,同时还能以自组多跳的网络方式传送到用户终端,从而实现物理世界、计算世界以及人类社会三元世界的连通,因此,传感器网络具有十分广阔的应用前景,尤其在军事国防、工农业、城市管理、生物医疗、环境监测、抢险救灾、防恐反恐、危险区域远程控制等许多重要领域都有潜在的实用价值,已经引起了许多国家学术界和工业界的高度重视,被认为是对21世纪产生巨大影响力的技术之一。 [0002] Wireless sensor networks (Wireless Sensor Network, WSN) highly multidisciplinary cross the frontiers of knowledge highly integrated hot research, which combines sensor technology, embedded computing technology, modern network and wireless communication technology, distributed information processing technology, real-time monitoring through various integrated micro-sensors cooperatively, perception and collect all kinds of information environment or monitoring objects, and will be sending some of the information wirelessly, while in a multi-hop ad hoc way transmission network to the user terminal, in order to achieve the physical world, connecting the world and human society calculate three yuan of the world, therefore, the sensor network has a very broad application prospects, especially in the military and national defense, industry and agriculture, urban management, biomedical, environmental monitoring , disaster relief, counter-terrorism anti-terrorism, many important areas such as remote control hazardous area has potential practical value, has caused many countries attach great importance to academia and industry, it is considered to have an enormous influence on the technology of the 21st century One.

[0003] 无线传感器网络系统通常包括传感器节点、汇聚节点(Sink node)两大类。 [0003] The wireless sensor network system typically includes a sensor node, sink node (Sink node) two categories. 大量具有无线传输能力的传感节点由电池供电,随机部署在监测区域内,通过自组织方式构成网络。 A large number of sensor nodes having wireless transmission capability is powered by a battery, randomly deployed in the monitoring area is formed by self-organization network. 传感节点将兴趣事件通过节点间多跳方式上传至Sink,在上传过程中传感数据可能与其他节点进行协同或融合处理,从而达到提高上传信息熵和降低网络负载的目的。 Sensor nodes will be interested in events through the inter-node multi-hop uploaded to Sink, sensor data may be synergistic or fusion with other nodes in the upload process, so as to improve upload information entropy and the purpose of reducing network load. Sink 在收集目标区域的信息后通过互联网络或卫星发送至终端用户或网络数据库。 Sink sent to an end user or network database via the Internet or satellite information collected in the target area. 现有无线传感器网络典型的应用示意图如图1所示。 A typical wireless sensor network prior application is shown in Fig.1.

[0004] 从应用层面来讲,无线传感器网络作为人类的神经末梢网络,是人与物理世界之间沟通的网络媒介,具有网络长期无人值守和泛在化的特点。 [0004] From the application level is concerned, wireless sensor networks as a human network of nerve endings, is communication between man and the physical world of network media, the network has a long-term unattended and ubiquitous technology features. 其需求领域极为广泛,且应用环境和网络业务具有多样化特性,如节点的布设密度、间距、通信环境、传感器种类、目标事件发生概率、数据流量大小、QoS服务保障等均存在巨大的差异性。 It needs an extremely broad field, and the application environment and network services with diverse properties, such as density layout nodes, spacing, communication environment, sensor type, the probability of the target event, the size of data traffic, QoS Service Assurance etc there is a huge difference . 因此,各类无线传感器网络的应用开发必然具有阶梯式发展的特点,由典型应用到泛在网络逐步建立和完善。 Therefore, the application development of all types of wireless sensor networks must have the characteristics of the development ladder, the typical application to ubiquitous networks gradually established and improved.

[0005] 无线传感网的信息传递,大多数情况下为信息的上传,节点以短距多跳形式向sink节点上传信息,但对双向通信的传感网而言,用户或sink节点处对节点下发命令或进行其他调度时,即信息下传时,若采用与信息上传相同的机制,节点间仍需要进行多跳的信息交互,将导致各个节点收到命令的时间不一致,延缓了命令下达速度,且在信息的传递过程中耗费了传感网节点大量的能量,影响了网络的生命周期。 [0005] The information of the wireless sensor network is transmitted as upload information in most cases, nodes in a multi-hop short form upload information to the sink node, but for two-way communication of the sensor network, or a user at a sink node pair when issued command node or other scheduling, that is when the next transfer information, if the information is uploaded using the same mechanism, inter-node information still needs to interact multi-hop, will lead each time a node receives commands inconsistent, delayed command Release rate, and cost a lot of energy in the sensor network node information transfer process, affecting the life cycle of the network. 本专利的系统背景中,由于指控中心和传感探测节点相距较远,且下达命令信息较短,下行信息传递时,采用短波通信方式,通过大范围的电波覆盖达到命令的直接传输。 The system context of the present patent, since the command center and sensor nodes far away from the probe, and the short message orders, downlink information transmission, short-wave communication, to achieve the direct transmission of commands by a wide range of radio coverage. 本系统中,传感节点由于能量的限制,无法通过短波进行信息的上传,从而该系统为单向通信系统。 In this system, the sense node due to the limitation of energy, be able to upload information through a short, so that the system is a one-way communication system.

[0006] 短波通信是指利用波长为10(Tl0m(频率为3〜30MHz)的电磁波进行的无线电通信。短波通信可以利用地波或低电离层反射进行几十公里到几百公里的中近距离通信,也可以利用中高电离层反射进行数千乃至上万公里的远距离通信,借助于中继站,短波通信甚至可以进行环球通信。短波电台既可以是大型固定台,也可以是车载、舰载、机载或背负式移动台,短波通信设备简单,造价低廉,灵活机动,且信道不易摧毁,因而短波通信多年来被广泛地用于政府、军事、外交、气象、商业等部门,用来传送语言、文字、图像、数据等信息。 [0006] HF communication means 10 with the wavelength (radio communication Tl0m (frequency 3~30MHz) of the electromagnetic wave. Shortwave communication may be using a low ionospheric reflection wave or tens of kilometers to hundreds of kilometers in close communication, may also be used for high ionospheric telecommunication thousands or tens of thousands of kilometers, by means of a relay station, the communication may even be short-global communication can be either large shortwave radio fixed station may be car, ship, airborne or knapsack mobile, short-wave communications equipment is simple, low cost, flexibility, and the channel is not easy to destroy, so shortwave communication for many years been widely used in government, military, diplomatic, weather, business and other departments, used to transmit language , text, images, data and other information.

[0007] 短波传输信道是一个复杂多变的较为恶劣的通信信道,多径效应、衰落、相位起伏等诸多因素的影响,对短波通信的调制方式选择和信号处理提出了较高的要求。 [0007] a short transport channel is more complex and poor communication channel, multipath effects, fading, phase fluctuations and many other factors, the modulation scheme selection of HF communication and signal processing requirements made higher.

[0008] 在一般环境下,为了保证对误码率的要求,传统短波数据通信系统其传输速率一直在200b/s以下,信道误码率通常在10,10_3的数量级。 [0008] Under normal circumstances, in order to guarantee the required bit error rate, the conventional short-wave data communications system in which transmission rate has been 200b / s or less, channel error rate is typically in the order of the 10,10_3. 为了达到更高的数据传输速率, 同时误码率不高于10_4,必须采用特殊的调制技术和处理方式。 In order to achieve higher data transfer rate, while the bit error rate is not higher than 10_4, modulation techniques must be used and special handling.

[0009] TFSK是一种组合调制,它是在频移健控(FSK)和时移键控(TSK)的基础上发展起来的。 [0009] TFSK a combined modulation, it is the frequency shift Keying (FSK) and time shift keying (TSK) is developed on the basis of. 它是并行调制方式中的一种,通过将串行的高速数据转换为在不同频率上传送的低速并行数据来减少码间干扰的影响,达到高速传输的目的。 It is one kind of a parallel modulation scheme, high-speed serial data is converted to a low speed parallel data transfer impact on different frequencies to reduce intersymbol interference, achieve high-speed transmission. 由于在频率上分开,可以达到频率分集的效果,且由于针对不同码字有不同的编码方式,具有一定的纠错功能。 Since separated in frequency, you can achieve the effect of frequency diversity, and because different encoding for different code words have certain error correction. 采用频率分集和并行调制方法,具有较好的抗衰落能力,在恶劣的信道环境下也能良好通信,但传输速率较低。 Frequency diversity and parallel modulation method, having a better anti-fading ability, under poor channel environment can also good communication, but the transmission rate is low.

[0010] PSK调制方式传输速率较高,采用均衡技术后,也具有一定的抗衰落能力,但在信道环境较差的情况下传输效果较差,适合信道环境较好的情况。 [0010] PSK modulation mode higher transmission rate, the use of equalization technology, also have some anti-fading capability, but poor results in poor transmission channel environment, the channel for better environmental conditions.

[0011] 短波信道为时变信道,提供的信道质量时好时坏,同时,发射端的发送信息量大小对传输速率的要求也不完全一致,从而对数据调制方式和传输速率提出了不同的要求。 [0011] HF channel time-varying channel, the good and bad channel quality provided, at the same time, the transmission amount of information transmitting terminal requirements for the transmission rate is not exactly the same, so that the data modulation scheme and the transmission rate made different requirements .

发明内容 SUMMARY

[0012] 本发明的目的在于针对现有技术的不足,提供一种无线传感网短波单向通信多模调制解调自适应方法。 [0012] The object of the present invention is the deficiency of the prior art, provides a wireless sensor network short way communication multimode modem adaptation method.

[0013] 本发明的目的是通过以下技术方案来实现的:一种无线传感网短波单向通信多模调制解调自适应方法,包括以下步骤: [0013] The object of the present invention is achieved by the following technical solutions: A one-way communication wireless sensor network short multimode adaptive modulation and demodulation method, comprising the steps of:

[0014] (4) DSP默认加载扫频模块,上电后首先设置DSP外设和AD转换器,然后从ARM接收频表,之后进入扫频循环; [0014] (4) DSP module default load sweep, DSP peripheral first set and the AD converter after power on, then the receiving frequency table from ARM, after entering the sweep cycle;

[0015] (5)当捕获到扫频头并成功获知调制方式信息后,DSP将通知ARM扫频结果,ARM 根据扫频头包含的信息加载PSK或FTSK解调模块; [0015] (5) After the successful capture and sweep head known modulation method information, DSP sweep result notification ARM, ARM loading or FTSK PSK demodulation module according to the information contained in header sweep;

[0016] (6) DSP进入接收循环,ARM将根据解调结果判断是否继续接收,如无需继续接收, 则ARM发出指令关闭DSP,此时进入初始状态。 [0016] (6) DSP enters the receive cycle, ARM will determine whether to continue receiving a demodulation result, as no need to continue the reception, the DSP off the ARM instruction issue, this time into the initial state.

[0017] 本发明的有益效果是:本发明在接收端以软件无线电方式预置低速(FTSK调制)、 中速(BPSK调制)和高速(QPSK调制)三种通信模式,在发射端发送的扫频帧头携带通信模式信息,并以高可靠性调制方式对扫频帧头进行调制,从而使接收端在捕获确认扫频帧头信息的同时获得后续数据通信模式,在扫频头接收完毕后即以相应的通信模式对后续信息进行解调。 [0017] Advantageous effects of the present invention is: at the receiving end in a sweeping manner of software radio preset low speed (FTSK modulation), medium (BPSK modulation) and high speed (QPSK modulation) three communication modes, at the transmitting end of the transmission of the present invention after header portable communications mode frequency information, and high reliability of the swept modulation scheme header, thereby obtaining the reception side data communication mode, while the subsequent capture confirmation sweep frame header information, the head end of a received frequency sweep i.e., communication mode corresponding to demodulate the subsequent information.

附图说明 BRIEF DESCRIPTION

[0018] 图1为传感器网络示意图, [0018] FIG. 1 is a schematic view of the sensor network,

[0019] 图2为系统上下行传输示意图,[0020] 图3为发送端基带处理框图, [0019] FIG. 2 is a schematic diagram of uplink and downlink transmission system, [0020] FIG. 3 is a block diagram of a baseband transmitter,

[0021] 图4为接收机结构图, [0021] FIG. 4 is a block diagram of a receiver,

[0022] 图5为接收机基带系统总体结构框图, [0022] FIG. 5 is a block diagram showing the overall structure of a baseband receiver system,

[0023] 图6为单边带解调原理实现框图, [0023] FIG. 6 is a block diagram to realize the principle of single sideband demodulation,

[0024] 图7为FTSK解调原理实现框图, [0024] FIG. 7 is a block diagram of FTSK demodulation principle implemented,

[0025] 图8为解调原理实现框图, [0025] FIG. 8 is a block diagram showing a demodulation principle implemented,

[0026] 图9为维特比译码原理示意图, [0026] FIG. 9 is a schematic view of the principle of the Viterbi decoding,

[0027] 图10为系统软件流程图。 [0027] FIG. 10 is a flowchart of the system software.

具体实施方式 Detailed ways

[0028] 短波信道时刻处于变化中,且多径效应严重,为在恶劣的通信条件下也能较好通信,在接收端必须对信号进行一系列的处理,以期通过一定方式的对消来减少干扰和衰落、 纠正错误比特来获得较低的误码率。 [0028] HF channel time in flux, and severe multipath effects, is in bad communication conditions can better communication, the receiving side must be the signal series of processes, in order to reduce consumption by a certain way interference and fading, error correcting bits to obtain a lower bit error rate.

[0029] 系统采用多种通信模式,方式一为低速稳定发送,方式二为高速突发发送。 [0029] The system uses a variety of communication modes, a transmission mode to a low speed stability, two high-speed burst mode transmission. 低速稳定发送采用FTSK传输方式,通过降低数据速率来获得每比特信号能量的增加,同时通过并行传输方式来减小信道影响,并可获得频率和时间分集。 FTSK stable low transmission using transmission mode to increase the signal energy per bit is obtained by reducing the data rate, and to reduce the influence by the channel parallel transmission, and the frequency and time diversity can be obtained. FTSK对噪声影响不敏感,在信噪比较低的情况下仍能正确解调。 FTSK insensitive to influence of the noise can still correct demodulation at low SNR. 高速突发发送分别采用BPSK和QPSK调制方式,通过均衡处理来减小信道影响,从而获得较高的传输速率,短报文的传输将在较短时间内完成。 High-speed burst transmission respectively BPSK and QPSK modulation to reduce the influence by the channel equalization process, so as to obtain a higher transmission rate, a short message transmission will be completed in a relatively short period of time.

[0030] 系统设计中,通过软件编程实现信息处理,并动态配置系统功能。 [0030] The system design, an information processing by software programming, dynamic configuration and system functions. 短波电台中频部分对信号数字化处理,用软件编程方式灵活地实现宽带数字滤波、直接数字频率合成、数字上/下变频、调制/解调、差错编码、信道均衡、信令控制、信源编码等。 Shortwave radio IF part of the signal digitizing flexible broadband digital filter programmed with software embodiment, direct digital frequency synthesizer, digital up / down conversion, modulation / demodulation, error coding, channel equalization, signaling control, source coding .

[0031] 软件处理方式为选择更优算法提供了便利,系统中运用自适应均衡技术,根据信号接收结果自动调整设备参数,来减少干扰和衰落,同时采用信道编解码方式,通过一定的冗余来实现对错码的纠正,以达到最佳通信效果,最大限度地降低误码率。 [0031] The software approach for the selection algorithm provides better facilitate the use of adaptive equalization system, automatically adjust the equipment parameters to reduce interference and fading according to the signal reception result, while using the channel codec, some redundancy by correcting wrong code is implemented to achieve the best communication results, minimizing the bit error rate.

[0032] 1、信息发送 [0032] 1, information transmission

[0033] 信息发送端需实现多种调制方式,分别用于满足突发和低速稳定发送两种形式要求。 [0033] The information transmitting end to be achieved by a variety of modulation, are used to meet the low and stable transmission burst in two forms requirements. 突发模式适用于信道条件较好的情况,在这种情况下,接收到的信号幅度强,满足高速传输要求,此时采用重复突发的模式,从多个重复发送的信号中选取传输正确的信号,可以减小信道幅度起伏变化对接收的影响,保证接收端对信息的正确接收。 Burst mode is suitable for a better channel conditions, in this case, the amplitude of the received signal strength to meet the requirements of high-speed transmission, the burst repetition pattern used at this time, select signals transmitted from a plurality of repeating transmitted correctly signal, the amplitude fluctuation can be reduced channel change on the received, the receiving end to ensure correct reception of the information. 低速稳定发送模式适用于信道条件较差的情况,在这种情况下,接收到的信号幅度较弱,需要将能量集中方能保证接收端的正确解调。 The low-speed transmission mode is applicable to the case of steady poor channel conditions, in this case, the amplitude of the received signal is weak, it is necessary to ensure that the energy is concentrated in order to correctly demodulate the receiving end. 突发模式采用PSK调制(解调)方式,低速稳定发送模式采用FTSK 调制(解调)方式。 Burst mode uses PSK modulation (demodulation) mode, a stable low-speed transmission mode using FTSK modulation (demodulation) mode.

[0034] 信息发送端具有信道编码能力。 [0034] The information transmitting side having a channel coding capacity. 对原始数据进行信道编码,可为系统提供一定的纠错能力,保证系统在错误不多的情况下能正确解算出原始信号。 Raw data channel coding, error correction capability must be provided for the system to ensure that the system can correctly be calculated by the original signal in the case of small error condition. 这对短波信道中的信号传输尤显重要。 This is particularly important for shortwave signal transmission channel.

[0035] 信息发送端组帧后的数据经过信道编码后,可选择FTSK调制方式或PSK调制方式进行调制,控制端可选择调制方式,在输出控制端输出所选调制方式调制的信号,送入射频端。 [0035] The data frame information transmitting terminal group after channel coding, modulation scheme or alternatively FTSK PSK modulation scheme, the control terminal can select the modulation scheme, the output control terminal outputs the selected modulation signal modulated, fed radio frequency terminals.

[0036] 1)信道编码[0037] 原始信号交互: [0036] 1) channel coding [0037] original signal interaction:

[0038] 和控制分系统进行信息交互,将待传送的数据按组帧方式读入。 [0038] The control subsystem and perform information interaction, the data to be transmitted is read by way of framing. 当调制方式为FTSK时,读入8X3个字节;当调制方式为PSK时,读入30X5个字节。 When the modulation scheme is FTSK, 8X3 read bytes; when the modulation method is PSK, 30X5 bytes read. 同时读入目的ID,时间,文件是否传送完毕等信息,并和当前重复次数及在段落中的位置等信息加入作为命令帧。 At the same time into the destination ID, time, file information such as whether the transfer is complete, and current information, and location and number of repetitions in a paragraph was added as a command frame.

[0039] CRC校验及组帧1 : [0039] CRC checking and framing 1:

[0040] 对读入的信号进行16bitCRC编码,将校验结果和数据一起组成数据帧,并在前面加8比特帧头。 [0040] The signal reading is performed 16bitCRC encoding, together with the composition of the data frame and data check result, and add 8-bit header in front.

[0041] 卷积编码:采用(2,1,7)卷积编码,所用多项式如下: [0041] Convolutional coding: from (2,1,7) convolutional coding, the following polynomial:

[0042] b0 = input+x^x^x^x6 [0042] b0 = input + x ^ x ^ x ^ x6

[0043] b1 = input+x3+x4+x5+x6 [0043] b1 = input + x3 + x4 + x5 + x6

[0044] 交织编码:将编码后的数据排列成为16X32的矩阵,然后生成一个32 X 16的矩阵读出(PSK调制方式时)。 [0044] The interleaved coded: the arrangement of the encoded data becomes 16X32 matrix, and then generates a 32 X 16 matrix of reading (when the PSK modulation scheme).

[0045] 将编码后的数据排列成为8X18的矩阵,然后生成一个18X8的矩阵读出(FTSK 调制方式时)。 [0045] The coded data arrangement becomes 8X18 matrix, and then generates a 18X8 matrix readout (FTSK when the modulation scheme).

[0046]组帧 2 : [0046] Frame Group 2:

[0047] 用于捕获和均衡的帧头不参加信道编码,固前述数据帧在通过信道编码后,还需要对信号重新组帧。 Header [0047] capture and equalization does not participate in the channel coding, the data frame after the solid by channel coding, but also for signal re-framing. 当为FTSK调制时,在复帧前添加捕获帧头,捕获帧头为重复的约定ID。 When FTSK modulation is added before the multi-frame header capture, capture header repeating convention ID. 当为PSK调制时,除复帧前的捕获帧头外,还需要在每个帧前面添加64位均衡帧头。 When the PSK modulation is, in addition to capturing the front multiframe header, the equalizer 64 also need to add frame header at front of each frame.

[0048] 2) FTSK 调制 [0048] 2) FTSK modulation

[0049] 串并变换:串行数据变为两路并行数据; [0049] The serial-parallel conversion: serial data becomes two parallel data;

[0050] 编码矩阵:两路并行数据输入,以输入数据的四倍速率产生NCO频率控制信号,选择不同的组合方式。 [0050] The coding matrix: two parallel data input to the input quadruple rate data generated in different combinations NCO frequency control signal selected.

[0051] 表格1 :4FTSK调制方式下信号与频率对应关系 [0051] Table 1: 4FTSK signal corresponding to the frequency modulation relationship

[0052] [0052]

Figure CN101299617BD00061

[0053] NCO :数控振荡器,由编码矩阵选择其频率跳动方式。 [0053] NCO: Numerically Controlled Oscillator, which is selected by the encoding matrix frequency hopping mode.

[0054] 3) PSK 调制 [0054] 3) PSK modulation

[0055] 对输入的信息进行IQ两路正交调制。 [0055] for two IQ quadrature modulation of the input information.

[0056] 串并变换:将串行数据变为两路并行数据(如为BPSK,则两路数据相同,如为QPSK,则两路数据不同); [0056] The serial-parallel conversion: serial data becomes two parallel data (such as BPSK, the same two-way data, such as QPSK, the two different data);

[0057] 差分编码:对原始数据进行差分编码处理(BPSK和QPSK差分编码方式不一样);[0058] NCO :数控振荡器,产生正弦和余弦波; [0057] Differential coding: the raw data differential coding (BPSK and QPSK differential encoding is not the same); [0058] NCO: Numerically Controlled Oscillator, generating sine and cosine waves;

[0059] 成型滤波器:α = 0. 5的32阶根升余弦滤波器; [0059] The shaping filter: α = 32 the order of 0.5 root raised cosine filter;

[0060] 4)扫频头调制方式 [0060] 4) modulation sweep head

[0061 ] 由于FTSK相对PSK具有更强的抗干扰能力,因此扫频信号采用FTSK调制方式。 [0061] Since the relative PSK FTSK has stronger anti-interference ability, so FTSK sweep signal modulation scheme employed. 具体做法如下:扫频头为3个31位的Gold码,码速率为lOOchip/s,分别对应于BPSK、QPSK 和FTSK信号,如下表所列。 Specifically, the following: sweeping the first three Gold code 31, code rate lOOchip / s, corresponding to BPSK, QPSK signal and FTSK, are listed below.

[0062] 表格2 :帧头判决表 [0062] Table 2: Table header judgment

[0063]咯_ [0063] _ slightly

懒Φ蔡^ ^ 茭 Cai lazy Φ ^ ^ wild rice

賅S释铽^ & & Gai release terbium S & ^ &

1—I O TH 1-I O TH

O O ^H O O ^ H

^H O O ^ H O O

Ot-HT-H Ot-HT-H

^H O O ^ H O O

1—I O TH 1-I O TH

τ—I τ—I O τ-I τ-I O

^H O O ^ H O O

Ot-HT-H Ot-HT-H Ot-HT-H Ot-HT-H

O ^H O O ^ H O

τ—I τ—I O τ-I τ-I O

Ot-HT-H Ot-HT-H Ot-HT-H Ot-HT-H

^H O O ^ H O O

1—I O TH 1-I O TH

O O ^H O O ^ H

^H O O ^ H O O

Ot-HT-H Ot-HT-H

^H O O ^ H O O

1—I O TH 1-I O TH

τ—I τ—I O τ-I τ-I O

^H O O ^ H O O

Ot-HT-H Ot-HT-H Ot-HT-H Ot-HT-H

―^ O^O - ^ O ^ O

I^v ^ ^ ^ I ^ v ^ ^ ^

irn «N irn «N

^ 二 二 ^ Twenty-two

拟 0 H H Quasi 0 H H

—] ^-HOO -] ^ -HOO

O ^-HOO O ^ -HOO

[0064] 2、接收机结构 [0064] 2, the structure of the receiver

[0065] 接收机总体结构简图如图所示。 [0065] The overall configuration diagram of the receiver shown in FIG. 无线电波从天线进入接收机,在射频模块进行信号接收、放大、变频等处理后,经由AD变换后的数据送至DSP进行数字处理,在这里经过解调和信道解码,解算出原始数据,通过Mailbox机制将数据送至MCU进行进一步处理、显示 The radio waves from the antenna into the receiver, a signal received at the RF module, after amplification, frequency conversion and other processing, via the AD converted data to the DSP for digital processing, where after demodulation and channel decoding, de-raw data is calculated by Mailbox mechanism to the MCU for further data processing, display

8或执行相应操作。 8 or perform a corresponding operation. 控制模块和基带模块的程序均在上电时从FLASH动态加载。 The control module and baseband modules are dynamically loaded from the FLASH program at power. ARM负责射频开关、节能等的控制,而DSP则通过SPI总线负责扫频时切换射频频点。 ARM is responsible for controlling the RF switches, such as energy, while the DSP is responsible for sweeping through the SPI bus radio frequency switching point.

[0066] 如图所示为接收机基带部分结构图。 [0066] The baseband receiver shown as part of the structure of FIG. 基带处理模块对射频输出进行AD采样,采用串行AD送入DSP内。 Baseband processing module RF output sampling AD, AD serial fed into the DSP. DSP算法中采用两种解调方案,分别针对FTSK调制方式和PSK调制方式。 DSP algorithms using two demodulation scheme for each mode FTSK modulation and PSK modulation. 两种解调方案同时运行,对输出信号进行信道译码。 Two kinds of demodulation scheme to run, the output signal of the channel decoding. 基带分系统由单边带解调模块、 FTSK解调模块、扫频捕获模块、PSK解调模块及信道解码模块等组成。 SSB demodulation by the baseband subsystem module, demodulation module FTSK sweep capture module, PSK demodulation block and a channel decoding module and other components.

[0067] 输入信号经带通滤波器滤除带外干扰和噪声,然后进行单边带解调,解调后数据重新采样后首先进入扫频模块,并根据扫频结果决定是否在该频点上定频接收,并根据扫频信息中包含的通信方式信息决定调用的解调模块。 [0067] The input signal is a band pass filter to filter out interference and noise band, then SSB demodulation, the demodulated data after the re-sampling swept into the first module, and determine whether the results of the sweep in accordance with the frequency receiving on a given frequency, and demodulated information determining module calls according to the communication information contained in the frequency sweep mode. 当频点和调制方式都被确定后,扫频模块被卸载,并加载相应解调模块。 When the frequency and the modulation scheme are determined, swept module is unloaded, and loading respective demodulation modules.

[0068] FTSK解调模块中,信号首先输入到捕获模块进行FTSK同步的搜索捕获,由于捕获所使用的巴克码同时也是FTSK数据帧的同步头,因此捕获成功的同时我们也就获取了帧同步,随后跟踪器开始对数据进行同步跟踪,并输出同步信息辅助解调模块进行FTSK解调,解调后的数据直接进行解交织、Viterbi和CRC校验,最后输出原始信息。 [0068] FTSK demodulating module, the signal is first input to the capture module for capturing FTSK synchronization search, since Barker codes are used to capture the synchronization header of the data frame also FTSK, so we also successfully captured frame synchronization is acquired , then the data starts tracking synchronization tracking, synchronization information and outputs the secondary demodulation module FTSK demodulated, the demodulated data is directly deinterleaved, Viterbi and CRC check, and finally outputs the original information.

[0069] PSK解调模块可配置为BPSK和QPSK两种。 [0069] PSK demodulation module may be configured as BPSK and QPSK. 在BPSK解调模块中,输入信号首先进入BPSK锁相环进行基带解调和匹配滤波,然后进行帧同步;BPSK基带数据帧使用63位GOLD码作为帧同步头,帧同步模块在采样点级对输入信号和本地GOLD码进行相关捕获;捕获成功后,信号被重新采样并进行码元同步,根据码元同步恢复的采样点时钟对信号进行比特级采样;采样值序列均衡后进行解交织后输入软Viterbi译码器,最后进行CRC校验后输出。 In BPSK demodulation module, an input signal into the first phase-locked loop BPSK baseband demodulation and matched filtering, and frame synchronization; BPSK baseband data using frame 63 as a frame synchronization header GOLD code, frame synchronization module level of the sample point the input signal and the local GOLD code associated capture; after capturing successful, a signal is resampled and symbol synchronization, the signal bit-sampled according to the sampling point clock symbol synchronization recovery; after deinterleaving sampled value sequence equalizes Viterbi soft decoder output after the final CRC check. QPSK分为IQ两个数据支路,每个支路采用和BPSK相同的帧结构,因此QPSK解调模块和BPSK解调模块除锁相环有所不同外其他部分均相同。 IQ data is divided into two QPSK branches, each branch using the same frame structure and BPSK, QPSK demodulation module and thus BPSK demodulation modules differ inter alia phase-locked loop portions are the same.

[0070] 1)单边带解调模块 [0070] 1) single-sideband demodulation module

[0071] 从AD输入的信号首先通过带通滤波器,取信号所在频带(如为USB信号,带宽3KHz时,取12KHz〜15KHz)内的信号进行单边带解调处理。 [0071] inputted from the AD signal is first passed through a bandpass filter, where the taking-band signal (e.g., a USB signal bandwidth 3KHz, taking 12KHz~15KHz) signals in the SSB demodulation process. 在DSP内产生一本振信号(本振信号可调),和通过AD输入的原始信号相乘,相乘后的结果通过低通滤波器,一路进行Hilbert变换,另一路延时后相加(减),由此得到上边带或下边带信号。 After generating a local oscillator signal (LO signal adjustable), and multiplying the original signal inputted through the AD, the result of multiplying the low-pass filter, all the way to the Hilbert transform, the DSP in another way delay added ( Save), to thereby obtain an upper sideband or a lower sideband signal.

[0072] 2)扫频捕获模块 [0072] 2) sweep capture module

[0073] 扫频捕获模块根据由主控分系统提供的预设频率表,对每一频点的信号进行解调处理,判断能否捕获帧头。 [0073] Capture module according to a preset sweep frequency table supplied by the master subsystem, the frequency of each signal point demodulating process determines whether capture header. 如果能捕获,停在该频点接收信息,并送出捕获指示,如不能捕获,继续扫描下一频点。 If capture, stop receiving the frequency information, and sends an acquisition indicator, if not captured, continue to scan the next frequency.

[0074] 扫频时每次处理0. 64秒的中频数据,如果有信号,这段中频数据必定含有一个完整的GOLD码序列,对这段信号进行FTSK解调处理,在解调符号中进行GOLD码搜索,根据搜索到的码序列确定发射端所发信号的调制方式。 [0074] The intermediate data processing each 0.64 seconds sweep time, if there is a signal, this intermediate data must contain a complete GOLD code sequence of this signal FTSK demodulation processing in demodulation symbol GOLD code search, the transmitter modulation signal is searched according to the code sequence determined.

[0075] 幻FTSK解调模块 [0075] The demodulation module phantom FTSK

[0076] 单边带解调后的数据分别送入四个带通滤波器,带通滤波器中心频率点分别位于Π,f2,f3,f4上,对四个滤波器输出的信号分别进行包络检波,可以判决该频率输出点上是否有信号输出。 Data [0076] into four demodulate SSB band pass filter, a band pass filter center frequencies are located Π, f2, f3, the f4, the signal output by the four filters each packet envelope detector, can decide whether the signal output frequency output points. 根据包络检波的结果校准同步时钟,并根据同步时钟采样,对采样结果进行矩阵译码,分别计算各种组合发生的概率和结果,根据概率判决最终的报文数据。 The result of the calibration clock synchronous envelope detection, and the synchronization clock sampling, the sampling result matrix decoding probabilities were calculated and the results of various combinations occur, the final decision based on the probability of message data.

[0077] 4) PSK解调模块[0078] 单边带解调后数据,和本地本振相乘后通过低通滤波器,获得IQ两路基带信号, 对信号进行降速处理后,送入均衡器进行均衡处理。 [0077] 4) PSK demodulation module [0078] SSB demodulated data, and multiplied by the local oscillator of the present low pass filter, to obtain two IQ baseband signal, the signal after the deceleration processing into The equalizer equalized. 均衡器中首先进行均衡数据捕获,和本地均衡理想数据建立一一映射关系,用于产生均衡器系数。 First equalizer to equalize data capture, establish one mapping and local data equalization ideal for generating equalizer coefficients. 待均衡器收敛后,对紧随其后的原始数据进行均衡处理。 After the equalizer converges on the original data followed by equalization processing. 同时判定均衡是否有效,如果有效,输出均衡后数据,如果无效,输出未均衡的数据。 At the same time it is determined whether the effective equalization, if valid, output the equalized data, if valid, is not the output equalized data. 对该数据进行同步解调,可获得原始数据。 Synchronous demodulation of the data, the original data can be obtained.

[0079] 5)信道解码模块 [0079] 5) channel decoding module

[0080] 解交织的过程为查找到帧头后,将数据按交织顺序的反顺序原样读出。 [0080] The deinterleaving process is found after the header, the data in the reverse order as the interleaver sequentially read out.

[0081] 维特比译码:对应发射端的卷积编码,下图为维特比译码的原理框图。 [0081] Viterbi decoding: schematic block diagram of the transmitting end corresponding to the convolutional coding, the Viterbi decoding graph.

[0082] 输入与同步单元:为译码器提供正确的支路同步,每次正确的输出属于一条支路的η个比特。 [0082] The synchronization unit input: provide the correct synchronization for the decoder branch, each belonging to a correct output branch η bits.

[0083] 支路量度计算:每当收到一条新支路的一条η个量度值,支路量度计算单元就对网格图中每一条不同的支路确定一新的量度值。 [0083] The branch metric computing: whenever a received a new one η branch metric values, the branch metric calculation unit determines a new metric value for each of the trellis diagram of different branches.

[0084] 路径量度的存储与更新:在此单元中,支路量度与以前所存储的路径量度相加, 然后对汇聚道同一节点处的支路进行路径量度比较,选择一条路径量度最小的路径保留下来。 [0084] The path metrics storing update: In this unit, the branch metric path metric is added to the previously stored, and then slip convergence channel is performed at the same node path metrics, selects a path with the lowest path metric Keep it.

[0085] 信息序列的存储与更新:对于R = 1/η卷积码而言,每接收一组新的支路信息,在2Ν-1个状态的路径存储器中存入经“加-比-选”电路选出的以为假想信息比特同时将最先存入路径存储器的一位比特输出给判决单元。 Update store [0085] information sequence: For R = 1 / η convolutional code, the receipt of each new branch information stored in the path memory 2Ν-1 states by the "plus - than - selected from the "virtual circuit information bits selected that while one of the first bits stored in the path memory output to the decision unit. 因此,每接收到一条新支路,2Ν-1个路径存储器就更新一次它所存储的假想信息序列。 Thus, each received a new branch, 2Ν-1 paths virtual memory are updated once its stored sequence information. 路径存储器长度即为译码深度。 Path memory length is the decoding depth.

[0086] 判决与输出单元:在R= 1/η卷积码最佳译码时,应选择具有最小路径量度的假想信息序列中最早存入的一个比特作译码输出。 [0086] and the output unit decision: the R = 1 / η when decoding a convolutional code optimization, the sequence should be selected virtual information with the minimum path metric of a bit stored in the first decoded and output.

[0087] 在Rayleigh信道中,当= 16dB时,采用QPSK/BPSK和FSK调制方式和0, 1,7)的卷积编码能基本满足误码率低于10_4,考虑实际系统设计中的误差,在&/〜=ISdB 时,能基本满足误码率低于10_4。 [0087] In the Rayleigh channel, when = 16dB, using QPSK / BPSK and FSK modulation and 0, 1, 7) convolutional coding can basically meet the error rate is less than 10_4, consideration of an error in the actual system design, when & / ~ = ISdB, can basically meet the error rate is less than 10_4. 但如果采用其他信道校正手段,可以大大降低对EbAitl的要求。 However, if other means for correcting the channel, can greatly reduce the requirement for EbAitl. 然而,短波信道中可能存在突发错误,对系统的纠错能力提出了更高的要求。 However, there may be a short channel burst error, error correction capability of the system a higher requirement. 交织深度和短波信道特性相匹配的时候,能纠正大多的突发错误,降低误码率。 Interleaving depth and short channel characteristics when matched, can correct many of burst errors, reducing the error rate.

[0088] 最后,将解算出的原始信号进行CRC校验,如果信息正确,则将信息传送至控制分系统,由控制分系统负责存储显示。 [0088] Finally, the solution of the original signal calculated by the CRC check, if the information is correct, then the information is transmitted to the control subsystem, the control subsystem is responsible for storing display.

[0089] 3、基带系统的DSP实现 [0089] 3, DSP baseband system implemented

[0090] 1)系统软件流程 [0090] 1) of the system software

[0091] 图9是系统的软件流程图,图中各模块的实现已在前文中阐述。 [0091] FIG. 9 is a flowchart of the software system to achieve each module drawing in the foregoing have been described. 如图,DSP默认加载扫频模块,软件上电后首先设置DSP外设和AD转换器,然后从ARM接收频表,之后进入扫频循环。 As shown, the default loading sweep DSP module, the first set DSP peripheral software and the AD converter is powered on, then the receiving frequency table from ARM, after entering the sweep cycle. 当捕获到扫频头并成功获知调制方式信息后,DSP将通知ARM扫频结果,ARM根据扫频头包含的信息加载PSK或FTSK解调模块。 After the successful capture and sweep head known modulation scheme information, DSP sweep result notification ARM, ARM loading or FTSK PSK demodulation module header according to the information contained in the sweep. 此后,DSP进入接收循环,ARM将根据解调结果判断是否继续接收,如无需继续接收,则ARM发出指令关闭DSP,此时软件进入初始状态。 Thereafter, the DSP enters the receive cycle, the ARM is determined whether to continue receiving a demodulation result, as no need to continue the reception, the ARM instructs the DSP to close, at this time the software enters the initial state.

[0092] 2)硬件处理能力分析 [0092] 2) Analysis of the hardware processing capability

[0093] 设输入信号采样速率设为96kHz。 [0093] provided to the input signal sampling rate of 96kHz.

[0094] a)单边带解调时 When [0094] a) single sideband demodulator

[0095] 带通滤波器(64阶),需要约96kHz X 64 = 6. 144MIPs的乘加运算。 [0095] The band-pass filter (step 64), takes about 96kHz X 64 = 6. 144MIPs of multiply-add operation.

10[0096] 下变频产生96kHz正余弦信号,需要约200kHz的查表运算。 Frequency 96kHz cosine signal is generated 10 [0096], it is necessary to look-up table operation to about 200kHz.

[0097] 通过低通滤波器,需要约96kHz X 13 = 1. 248MIPs的乘加运算。 [0097] The low-pass filter, it takes about 96kHz X 13 = 1. 248MIPs of multiply-add operation.

[0098] 降速采样后,数据速率将为12kHz左右。 After the [0098] deceleration sample, the data rate would be about 12kHz.

[0099] 通过Hilbert变换,需要约12kHz X64 = 1. 248MIPs的乘加运算。 [0099] By the Hilbert transform, multiply-add operations require about 12kHz X64 = 1. 248MIPs of.

[0100] b) FTSK解调和译码时 [0100] b) FTSK demodulation and the decoding

[0101] 信号通过四个带通滤波器(64阶),需要约4.992MIPS的乘加运算。 [0101] four signal through a bandpass filter (step 64), multiply-add operations require approximately the 4.992MIPS.

[0102] 包络检波,需要约12kHz X64 = 1. 248MIPs的比较运算。 [0102] envelope detection requires about 12kHz X64 = 1. 248MIPs comparison operation.

[0103] 同步运算,需要约12kHz X 10 = 0. 120MIPs的加减运算。 [0103] Synchronous operation takes about 12kHz X 10 = 0. 120MIPs addition and subtraction.

[0104] 译码矩阵,需要约400Hz X 20 = 0. 06MIPs的加减运算。 [0104] coding matrix requires about 400Hz X 20 = 0. 06MIPs addition and subtraction.

[0105] 解交织,需要约IOObps的存储运算。 [0105] deinterleaving, requires about a storage operation IOObps.

[0106] 维特比译码,需要约100bps X 160 = 0. 1667MIPs的运算量。 [0106] Viterbi decoding, the amount of computation required about 100bps X 160 = 0. 1667MIPs of.

[0107] c) PSK解调和译码时 [0107] c) PSK demodulation and the decoding

[0108] 通过低通滤波器,需要约12kHz X 13 = 0. 156MIPs的乘加运算。 [0108] low-pass filter, it takes about 12kHz X 13 = 0. 156MIPs of multiply-add operation.

[0109] 均衡器:需要约IIHz X 64 = 1. 248MIPs的乘加运算。 [0109] Equalizer: it takes about IIHz X 64 = 1. 248MIPs of multiply-add operation.

[0110] 均衡器系数调整,需要约12KHzX64 = 1. 248MIPs的乘加运算。 [0110] adjustment of the equalizer coefficients takes about 12KHzX64 = 1. 248MIPs multiply-add operation.

[0111] 解交织,需要约1000bps的存储运算。 [0111] deinterleaving necessary to store the operation approximately 1000bps.

[0112] 维特比译码,需要约1000bps X 160 = 1. 667MIPs的运算量。 [0112] Viterbi decoding, the amount of computation required approximately 1000bps X 160 = 1. 667MIPs of.

[0113] 综上所述,上述运算量估计在20ΜΙΙ^量级,只要DSP运算速率大于20ΜΙΙ^,即可满足运算要求。 [0113] In summary, the calculation order of estimated in 20ΜΙΙ ^, as long as the rate is greater than 20ΜΙΙ ^ DSP operations, to meet operational requirements.

Claims (1)

1. 一种无线传感网短波单向通信多模调制解调自适应方法,其特征在于,包括以下步骤:(1) DSP默认加载扫频模块,上电后首先设置DSP外设和AD转换器,然后从ARM接收频表,之后进入扫频循环;其中扫频循环具体包括:设置频点;数字带通处理;单边带解调处理;根据预设频率表,对每一频点的信号进行解调处理,判断能否捕获帧头,如果能捕获, 停在该频点接收信息,并送出捕获指示,如不能捕获,继续扫描下一频点;(2)当捕获到扫频头并成功获知调制方式信息后,DSP将通知ARM扫频结果,ARM根据扫频头包含的信息加载PSK或FTSK解调模块;若加载了FTSK解调模块,信号首先输入到捕获模块进行FTi5K同步的搜索捕获,由于捕获所使用的巴克码同时也是FTSK数据帧的同步头,因此捕获成功的同时我们也就获取了帧同步,随后跟踪器开始对数据进行同步跟踪, A wireless sensor network short multimode modem adaptive way communication method, characterized by comprising the steps of: (1) DSP module default load sweep, DSP peripheral first set and the AD conversion after power and then receives from the ARM frequency table, after entering the sweep cycle; wherein the sweep cycle comprises: setting frequency point; digital band pass processing; SSB demodulation processing; default frequency table, for each frequency point demodulates the signal processing, it is determined whether the capture header, if captured, stop receiving the frequency information, and sends an acquisition indicator, if not captured, continue to scan the next frequency; (2) to sweep captured when the head after the success information and the modulation scheme is known, the DSP notifies the result of sweeping ARM, ARM loading or FTSK PSK demodulation module according to the information contained in header sweep; FTSK demodulation module loaded if the signal is first input to the capture module for synchronizing FTi5K search acquisition, due to the capture Barker code used while simultaneously head is FTSK data frame, and therefore capture success and we will get the frame sync, and then starts tracking data synchronization tracking, 输出同步信息辅助解调模块进行FTSK解调,解调后的数据直接进行解交织、Viterbi和CRC校验,最后输出原始信息;若加载了PSK解调模块,其中PSK解调模块可配置为BPSK和QPSK两种,在BPSK解调模块中,输入信号首先进入BPSK锁相环进行基带解调和匹配滤波,然后进行帧同步;BPSK基带数据帧使用63位GOLD码作为帧同步头,帧同步模块在采样点级对输入信号和本地GOLD 码进行相关捕获;捕获成功后,信号被重新采样并进行码元同步,根据码元同步恢复的采样点时钟对信号进行比特级采样;采样值序列均衡后进行解交织后输入软Viterbi译码器, 最后进行CRC校验后输出;QPSK分为IQ两个数据支路,每个支路采用和BPSK相同的帧结构,因此QPSK解调模块和BPSK解调模块除锁相环有所不同外其他部分均相同;(3)DSP进入接收循环,ARM将根据解调结果判断是否继续接收,如无需继续 An auxiliary information output synchronization demodulation module FTSK demodulated, the demodulated data is directly deinterleaved, Viterbi and CRC check, and finally outputs the original information; if loaded PSK demodulator module, wherein the PSK demodulator module may be configured to BPSK and QPSK, BPSK demodulation in the module, the input signal into the first phase-locked loop BPSK baseband demodulation and matched filtering, and frame synchronization; BPSK baseband data using frame 63 as a frame synchronization header GOLD code, frame synchronization module at the sample point level of the input signal and the local GOLD code associated capture; sampled value sequence equilibrium; after capturing successful, a signal is resampled and symbol synchronization, the signal bit-sampled according to the sampling point clock symbol synchronization recovery after deinterleaved soft input Viterbi decoder, outputs the final CRC check; QPSK data into IQ two branches, each branch using the same frame structure and BPSK, QPSK demodulation module and thus BPSK demodulation inter PLL module has different outer portions are the same as the other; (3) DSP enters the receive cycle, the ARM will determine whether to continue receiving a demodulation result, as no need to continue 接收,则ARM发出指令关闭DSP,此时进入初始状态。 Received, then the ARM instructs the DSP off, this time into the initial state.
CN 200810060039 2008-03-05 2008-03-05 Multimodule modulation-demodulation self-adaption method for wireless sensing network shortwave one-way communication CN101299617B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200810060039 CN101299617B (en) 2008-03-05 2008-03-05 Multimodule modulation-demodulation self-adaption method for wireless sensing network shortwave one-way communication

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200810060039 CN101299617B (en) 2008-03-05 2008-03-05 Multimodule modulation-demodulation self-adaption method for wireless sensing network shortwave one-way communication

Publications (2)

Publication Number Publication Date
CN101299617A CN101299617A (en) 2008-11-05
CN101299617B true CN101299617B (en) 2012-05-30

Family

ID=40079323

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200810060039 CN101299617B (en) 2008-03-05 2008-03-05 Multimodule modulation-demodulation self-adaption method for wireless sensing network shortwave one-way communication

Country Status (1)

Country Link
CN (1) CN101299617B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103634814A (en) * 2012-09-10 2014-03-12 哈尔滨安天科技股份有限公司 Wireless probe circuit device, wireless probe equipment and wireless datagram processing method
CN104079515A (en) * 2013-03-29 2014-10-01 华为技术有限公司 Adjustment method of modulation mode and modems

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1161120A (en) 1995-06-30 1997-10-01 菲利浦电子有限公司 Communication system with sliding frequency, and transceiver for the system
US6456822B1 (en) 1996-11-26 2002-09-24 Netline Communications Technologies (Nct), Ltd. Electronic device and method for blocking cellular communication
CN101034944A (en) 2007-04-03 2007-09-12 深圳市嵘兴实业发展有限公司 Multi-task and multi-user radio monitoring receiver and monitoring system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1161120A (en) 1995-06-30 1997-10-01 菲利浦电子有限公司 Communication system with sliding frequency, and transceiver for the system
US6456822B1 (en) 1996-11-26 2002-09-24 Netline Communications Technologies (Nct), Ltd. Electronic device and method for blocking cellular communication
CN101034944A (en) 2007-04-03 2007-09-12 深圳市嵘兴实业发展有限公司 Multi-task and multi-user radio monitoring receiver and monitoring system

Also Published As

Publication number Publication date
CN101299617A (en) 2008-11-05

Similar Documents

Publication Publication Date Title
JP4307553B2 (en) High data rate cdma wireless communication system
JP4616338B2 (en) Apparatus for controlling a transmission mode in a mobile communication system using multiple transmit and receive antennas, the system and method
US5193102A (en) Method and apparatus for improving detection of data bits in a slow frequency hopping communication system
CN1253049C (en) Method and apparatus for paging wireless terminal in wireless telecommunications system
EP0864241B1 (en) Detecting messages transmitted over a communications channel such as a paging channel
EP2184864A2 (en) Method and apparatus for data transmission using multiple transmit antennas
EP0944201A2 (en) System and method for measuring channel quality in a communication system
EP1349313A1 (en) Apparatus and method for receiving control information over a packet data control channel in a mobile communication system
US5729557A (en) Cellular communication system with multiple code rates
ES2299907T3 (en) Advanced multi-sensor processing.
JP3898192B2 (en) Wireless communication method and wireless communication apparatus using the adaptive modulation scheme
JP3441379B2 (en) System and method for measuring channel quality information
CN101588214B (en) System and apparatus for performing broadcast and localcast communications
US5710797A (en) Method and apparatus for digital communication in the presence of closely spaced adjacent channels
TW527801B (en) Method and apparatus for detecting zero rate frames in a communications system
JP5070368B2 (en) How to enable simultaneous transmission from two or more users over-use frequency
JP5209792B2 (en) Apparatus and method for interference adaptive communication
EP0852853B1 (en) Cellular communication system and method with multiple code rates
CN101843008B (en) Network encoding method and network encoding apparatus
Jamieson et al. PPR: Partial packet recovery for wireless networks
CN1435014A (en) Method and arrangement for iteratively improving a channel estimate
JPH06188803A (en) Call sending quality monitoring method and device for mobile radio telephone system
CN1377526A (en) System and method for accurately predicting signal to interference and noise ratio to improve communications system performance
KR101212472B1 (en) Acknowledgment message modification in communication networks
US20100150053A1 (en) Start of frame correlation for physical layer header synchronization

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C41 Transfer of patent application or patent right or utility model
ASS Succession or assignment of patent right

Owner name: CAS JIAXING WIRELESS SENSOR NETWORK ENGINEERING CE

Free format text: FORMER OWNER: CAS JIAXING CENTER MICROSYSTEMS INTITUTE BRANCH CENTER

Effective date: 20100122

C14 Grant of patent or utility model
CF01