CN101267167A - Boost High Frequency Link Inverter - Google Patents
Boost High Frequency Link Inverter Download PDFInfo
- Publication number
- CN101267167A CN101267167A CNA2008100704292A CN200810070429A CN101267167A CN 101267167 A CN101267167 A CN 101267167A CN A2008100704292 A CNA2008100704292 A CN A2008100704292A CN 200810070429 A CN200810070429 A CN 200810070429A CN 101267167 A CN101267167 A CN 101267167A
- Authority
- CN
- China
- Prior art keywords
- frequency
- boost
- output
- input
- inverter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004146 energy storage Methods 0.000 claims abstract description 17
- 238000002955 isolation Methods 0.000 claims abstract description 15
- 230000005284 excitation Effects 0.000 claims 2
- 238000006243 chemical reaction Methods 0.000 abstract description 15
- 238000005516 engineering process Methods 0.000 abstract description 5
- 230000002457 bidirectional effect Effects 0.000 abstract description 3
- 230000003068 static effect Effects 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 11
- 238000004804 winding Methods 0.000 description 5
- UXUFTKZYJYGMGO-CMCWBKRRSA-N (2s,3s,4r,5r)-5-[6-amino-2-[2-[4-[3-(2-aminoethylamino)-3-oxopropyl]phenyl]ethylamino]purin-9-yl]-n-ethyl-3,4-dihydroxyoxolane-2-carboxamide Chemical compound O[C@@H]1[C@H](O)[C@@H](C(=O)NCC)O[C@H]1N1C2=NC(NCCC=3C=CC(CCC(=O)NCCN)=CC=3)=NC(N)=C2N=C1 UXUFTKZYJYGMGO-CMCWBKRRSA-N 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000005415 magnetization Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000010349 pulsation Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
Images
Landscapes
- Dc-Dc Converters (AREA)
- Inverter Devices (AREA)
Abstract
本发明涉及一种升压型高频链逆变器,其电路结构由输入滤波电路、储能电感、高频逆变器、高频变压器、周波变换器、输出滤波电路依序级联而成,并且在输出负载与输入直流电源之间联接有由周波变换器、高频储能式变压器、整流器依序级联构成的高频电气隔离反激式变换器能量回馈电路,能够将一种不稳定的直流电压变换成所需要的稳定的优质正弦交流电压,具有高频电气隔离、输出与输入电压匹配能力强、双向功率流、变换效率高、体积小、重量轻、输入电流纹波小、负载适应能力强、音频噪音低、负载短路时可靠性高、成本低、输出容量大、应用前景广泛等优点,为新型大容量逆变电源和静止变流器奠定了关键技术。
The invention relates to a step-up high-frequency chain inverter, the circuit structure of which is sequentially cascaded by an input filter circuit, an energy storage inductor, a high-frequency inverter, a high-frequency transformer, a cycle converter, and an output filter circuit, and Between the output load and the input DC power supply is connected a high-frequency electrical isolation flyback converter energy feedback circuit composed of a cycle converter, a high-frequency energy storage transformer, and a rectifier cascaded in sequence, which can convert an unstable The DC voltage is converted into the required stable high-quality sinusoidal AC voltage, with high-frequency electrical isolation, strong output and input voltage matching ability, bidirectional power flow, high conversion efficiency, small size, light weight, small input current ripple, and load adaptability The advantages of strong capability, low audio noise, high reliability when the load is short-circuited, low cost, large output capacity, and wide application prospects have laid the key technology for new large-capacity inverter power supplies and static converters.
Description
技术领域 technical field
本发明所涉及的升压(Boost)型高频链逆变器,属电力电子变换技术。The boost type high-frequency chain inverter involved in the present invention belongs to the power electronic conversion technology.
背景技术 Background technique
Buck(Forward)、Boost(单端Boost)和Buck-Boost(Flyback)是三种最基本和最常用的变换器类型,其性能如表1所示。表1充分表明:Buck(Forward)变换器虽然能够输出的容量大,但存在输入电流纹波大、负载短路时变换器可靠性低等缺陷;Buck-Boost(Flyback)变换器虽然在负载短路时变换器可靠性高,但存在输入电流纹波大、输出容量小等缺陷;Boost(单端Boost)变换器具有输入电流纹波小、负载短路时可靠性高、能够输出的容量大等优点。Buck(Forward)、Buck-Boost(Flyback)变换器的输入电流脉动大,其高次谐波电流不但会以传导和辐射的方式干扰周围电子设备,而且会产生畸变功率、降低变换效率;而Boost(单端Boost)变换器的储能电感位于输入侧,输入电流的脉动小、对电源产生的EMI小,输入侧的电流易于控制。Buck (Forward), Boost (single-ended Boost) and Buck-Boost (Flyback) are the three most basic and commonly used converter types, and their performance is shown in Table 1. Table 1 fully shows that although the Buck (Forward) converter has a large output capacity, it has defects such as large input current ripple and low reliability of the converter when the load is short-circuited; although the Buck-Boost (Flyback) converter has The converter has high reliability, but has defects such as large input current ripple and small output capacity; Boost (single-ended Boost) converter has the advantages of small input current ripple, high reliability when the load is short-circuited, and large output capacity. Buck (Forward) and Buck-Boost (Flyback) converters have large input current fluctuations, and their high-order harmonic currents will not only interfere with surrounding electronic equipment in the form of conduction and radiation, but also generate distorted power and reduce conversion efficiency; while Boost (Single-ended Boost) The energy storage inductance of the converter is located on the input side, the input current has small pulsation, the EMI to the power supply is small, and the current on the input side is easy to control.
表1Buck(Forward)、Boost(单端Boost)、Buck-Boost(Flyback)变换器的性能比较Table 1 Performance comparison of Buck (Forward), Boost (single-ended Boost), and Buck-Boost (Flyback) converters
因此,Boost(单端Boost)变换器兼有Buck(Forward)、Buck-Boost(Flyback)二者之优点,即输入电流纹波小、负载短路时可靠性高、输出容量大等,在要求输入电流纹波小、负载短路时可靠性高、大容量输出的电能变换场合具有显著的优势和重要的地位。Therefore, the Boost (single-ended Boost) converter has the advantages of both Buck (Forward) and Buck-Boost (Flyback), that is, small input current ripple, high reliability when the load is short-circuited, and large output capacity. The power conversion occasions with small current ripple, high reliability when the load is short-circuited, and large-capacity output have significant advantages and an important position.
高频链逆变技术,是指输出交流负载与输入直流电源间具有高频电气隔离(20kHz以上)的DC-AC变换技术,是实现DC-AC变换器输出电压与输入电压匹配、高功率密度、运行的安全可靠性和电磁兼容性等的有效途径。电力电子研究人员对Buck、Buck-Boost型各类变换器的研究,已取得了显著的研究成果。然而,人们对Boost型变换器的研究主要局限于DC-DC变换(如En-Sung Park等人提出的“A soft-switching active-clamp scheme for isolatedfull-bridge boost converter”,IEEE APEC,2004,pp.1067~1070.)和AC-DC变换(如Manjing Xie等人提出的“Novel current-loop feed-forward compensation for boostPFC converter”,IEEE APEC,2004,pp.750~755.),对Boost型高频链DC-AC变换技术的研究却尚未见到。High-frequency link inverter technology refers to the DC-AC conversion technology with high-frequency electrical isolation (above 20kHz) between the output AC load and the input DC power supply. An effective way to improve safety, reliability and electromagnetic compatibility. Power electronics researchers have achieved remarkable research results in the research of Buck and Buck-Boost type converters. However, people's research on Boost converters is mainly limited to DC-DC conversion (such as "A soft-switching active-clamp scheme for isolated full-bridge boost converter" proposed by En-Sung Park et al., IEEE APEC, 2004, pp .1067~1070.) and AC-DC conversion (such as "Novel current-loop feed-forward compensation for boostPFC converter" proposed by Manjing Xie et al., IEEE APEC, 2004, pp.750~755.), for Boost type high frequency chain The research on DC-AC conversion technology has not yet been seen.
以上论述表明,Boost型变换器在DC-DC、AC-DC电能变换领域已经展现出其优点并发挥着重要的作用。如何发挥Boost型变换器的优点来实现和改善DC-AC电能变换系统的性能,是一个很值得深入研究、探索的课题。因此,寻求一类具有输入电流纹波小、负载短路时可靠性高、输出容量大的新型高频链逆变器已迫在眉睫。The above discussion shows that the Boost converter has demonstrated its advantages and played an important role in the field of DC-DC and AC-DC power conversion. How to make full use of the advantages of the Boost converter to realize and improve the performance of the DC-AC power conversion system is a topic worthy of further research and exploration. Therefore, it is imminent to seek a new type of high-frequency link inverter with small input current ripple, high reliability when the load is short-circuited, and large output capacity.
发明内容 Contents of the invention
本发明目的是要提供一种具有输出交流负载与输入直流电源间高频电气隔离、输出与输入电压匹配能力强、双向功率流、体积小、重量轻、变换效率高、输入电流纹波小、音频噪音低、负载短路时可靠性高、成本低、输出容量大、应用前景广泛等显著优点的升压型高频链逆变器。The purpose of the present invention is to provide a high-frequency electrical isolation between the output AC load and the input DC power supply, strong output and input voltage matching ability, bidirectional power flow, small size, light weight, high conversion efficiency, small input current ripple, A step-up high-frequency link inverter with significant advantages such as low audio noise, high reliability when the load is short-circuited, low cost, large output capacity, and wide application prospects.
本发明的升压(Boost)型高频链逆变器是由输入滤波电路、储能电感、高频逆变器、高频变压器、周波变换器、输出滤波电路依序级联构成,并且在输出负载与输入直流电源之间联接有高频电气隔离反激式变换器能量回馈电路,所述的高频电气隔离反激式变换器能量回馈电路由周波变换器、高频储能式变压器、整流器依序级联构成,周波变换器的输入端与输出负载相连接,整流器的输出端与输入直流电源相连接。The boost (Boost) type high-frequency chain inverter of the present invention is composed of an input filter circuit, an energy storage inductor, a high-frequency inverter, a high-frequency transformer, a cycloconverter, and an output filter circuit in cascaded order, and the output load A high-frequency electrical isolation flyback converter energy feedback circuit is connected between the input DC power supply, and the high-frequency electrical isolation flyback converter energy feedback circuit is composed of a cycloconverter, a high-frequency energy storage transformer, and a rectifier according to Sequential cascaded structure, the input end of the cycloconverter is connected with the output load, and the output end of the rectifier is connected with the input DC power supply.
本发明的技术方案是充分发挥Boost型变换器的优点来实现和改善DC-AC电能变换系统的性能,首次提出了升压(Boost)型高频链逆变器新概念、电路结构与拓扑族。The technical solution of the present invention is to give full play to the advantages of the Boost converter to realize and improve the performance of the DC-AC power conversion system, and propose a new concept, circuit structure and topology family of the boost (Boost) high-frequency link inverter for the first time.
本发明的升压(Boost)型高频链逆变器,能够将一种不稳定的直流电压变换成所需电压大小、稳定的优质正弦交流电压,具有高频电气隔离、输出与输入电压匹配能力强、双向功率流、变换效率高、体积小、重量轻、输入电流纹波小、负载适应能力强、音频噪音低、负载短路时可靠性高、成本低、输出容量大、应用前景广泛等优点。升压(Boost)型高频链逆变器,充份展现了Boost型变换器的优点,实现和改善了DC-AC电能变换系统的性能。The boost (Boost) type high-frequency chain inverter of the present invention can convert an unstable DC voltage into a high-quality stable sinusoidal AC voltage with a required voltage, and has high-frequency electrical isolation and strong output and input voltage matching capabilities. , two-way power flow, high conversion efficiency, small size, light weight, small input current ripple, strong load adaptability, low audio noise, high reliability when the load is short-circuited, low cost, large output capacity, and wide application prospects. The boost (Boost) high-frequency link inverter fully demonstrates the advantages of the Boost converter, and realizes and improves the performance of the DC-AC power conversion system.
附图说明 Description of drawings
图1为本发明升压(Boost)型高频链逆变器的电路结构图。Fig. 1 is a circuit structure diagram of a boost (Boost) type high-frequency link inverter of the present invention.
图2为升压(Boost)型高频链逆变器原理波形图。Figure 2 is a schematic waveform diagram of a boost (Boost) type high-frequency link inverter.
图3为本发明升压(Boost)型高频链逆变器电路实例一——推挽全波式电路原理图。FIG. 3 is a schematic diagram of a push-pull full-wave circuit of the first example of a boost (Boost) high-frequency link inverter circuit in the present invention.
图4为本发明升压(Boost)型高频链逆变器电路实例二——推挽桥式电路原理图。Fig. 4 is a schematic diagram of a second example of a boost (Boost) high-frequency chain inverter circuit of the present invention—a push-pull bridge circuit.
图5为本发明升压(Boost)型高频链逆变器电路实例三——半桥全波式电路原理图。Fig. 5 is a circuit schematic diagram of the third example of a boost (Boost) type high-frequency chain inverter circuit of the present invention - a half-bridge full-wave circuit.
图6为本发明升压(Boost)型高频链逆变器电路实例四——半桥桥式电路原理图。FIG. 6 is a schematic diagram of a half-bridge circuit of the fourth example of a boost (Boost) high-frequency chain inverter circuit in the present invention.
图7为本发明升压(Boost)型高频链逆变器电路实例五——全桥全波式电路原理图。Fig. 7 is a circuit schematic diagram of a full-bridge full-wave circuit in Example 5 of the boost (Boost) high-frequency chain inverter circuit of the present invention.
图8为本发明升压(Boost)型高频链逆变器电路实例六——全桥桥式电路原理图。Fig. 8 is a schematic diagram of a full-bridge bridge circuit example six of the boost (Boost) high-frequency chain inverter circuit of the present invention.
图9为本发明升压(Boost)型高频链逆变器的电压瞬时值反馈控制框图。Fig. 9 is a block diagram of voltage instantaneous value feedback control of a boost (Boost) high-frequency link inverter of the present invention.
图10为电压瞬时值反馈控制原理波形图。Fig. 10 is a waveform diagram of the principle of voltage instantaneous value feedback control.
具体实施方式 Detailed ways
本发明所述升压(Boost)型高频链逆变器电路结构,由输入滤波电路、储能电感、高频逆变器、高频变压器、周波变换器、输出滤波电路依序级联构成,并且在输出负载与输入直流电源之间联接有高频电气隔离反激式变换器能量回馈电路,所述的高频电气隔离反激式变换器能量回馈电路由周波变换器、高频储能式变压器、整流器依序级联构成,周波变换器的输入端与输出负载相连接,整流器的输出端与输入直流电源相连接。所述高频链逆变器电路拓扑为推挽全波式、推挽桥式、半桥全波式、半桥桥式、全桥全波式或全桥桥式电路。The boost (Boost) type high-frequency chain inverter circuit structure of the present invention is composed of an input filter circuit, an energy storage inductor, a high-frequency inverter, a high-frequency transformer, a cycloconverter, and an output filter circuit connected in sequence, and A high-frequency electrical isolation flyback converter energy feedback circuit is connected between the output load and the input DC power supply, and the high-frequency electrical isolation flyback converter energy feedback circuit consists of a cycloconverter and a high-frequency
升压(Boost)型高频链逆变器电路结构与电路原理波形分别如图1、图2所示。在任意时刻逆变器输出的低频正弦交流电压瞬时值的绝对值|u0|与输入直流电压Ui、高频变压器匝比N2/N1、占空比D之间的关系为|u0|=UiN2/[N1(1-D)],对于不同的占空比D和高频变压器匝比N2/N1,可以获得大于、等于或小于Ui的输出电压瞬时值的绝对值|u0|。由于0<D<1,所以|u0|>UiN2/N1,也就是说在任意时刻逆变器输出的低频正弦交流电压瞬时值的绝对值|u0|总是高于输入直流电压Ui与高频变压器匝比N2/N1的乘积(UiN2/N1),故将这类逆变器称为升压(Boost)型高频链逆变器。该电路结构中的高频逆变器、周波变换器分别由二象限、四象限高频功率开关构成,且储能电感位于逆变器的输入侧。当输入直流电源向负载传递功率时,高频逆变器将储能电感的脉动直流电流调制成双极性三态的高频脉冲电流,周波变换器再将其解调成单极性三态的低频脉冲电流,经输出滤波器后得到优质的低频正弦交流电压;当负载向输入直流电源回馈能量时,周波变换器将输出低频正弦交流电压调制成双极性三态的高频脉冲电压,高频逆变器再将其解调成单极性三态的低频脉冲电压,经输入滤波器后回馈给输入直流电源。由于Boost变换器本质上是升压型变换器,在每个高频开关周期内总存在|u0|>UiN2/N1,故当输出正弦电压下降且|u0|≤UiN2/N1期间(图2所示电路原理波形中t=t1~t2、t3~t4区间)u0波形的形成,需要通过增添一个由周波变换器、高频储能式变压器、整流器依序级联构成的小功率的高频电气隔离反激式Flyback变换器能量回馈电路来实现。The circuit structure and circuit principle waveform of the boost (Boost) type high-frequency chain inverter are shown in Figure 1 and Figure 2 respectively. The relationship between the absolute value |u 0 | of the instantaneous value of the low-frequency sinusoidal AC voltage output by the inverter at any moment and the input DC voltage U i , the high-frequency transformer turn ratio N 2 /N 1 , and the duty cycle D is |u 0 |=U i N 2 /[N 1 (1-D)], for different duty cycle D and high-frequency transformer turn ratio N 2 /N 1 , the instantaneous output voltage greater than, equal to or less than U i can be obtained The absolute value of the value |u 0 |. Since 0<D<1, so |u 0 |>U i N 2 /N 1 , that is to say, at any time the absolute value of the instantaneous value of the low-frequency sinusoidal AC voltage output by the inverter |u 0 | is always higher than the input The product of the DC voltage U i and the high-frequency transformer turn ratio N 2 /N 1 (U i N 2 /N 1 ), so this type of inverter is called a boost (Boost) high-frequency link inverter. The high-frequency inverter and cycloconverter in this circuit structure are composed of two-quadrant and four-quadrant high-frequency power switches respectively, and the energy storage inductor is located at the input side of the inverter. When the input DC power supply transmits power to the load, the high-frequency inverter modulates the pulsating DC current of the energy storage inductor into a bipolar three-state high-frequency pulse current, and the cycloconverter demodulates it into a unipolar three-state The low-frequency pulse current can get high-quality low-frequency sinusoidal AC voltage through the output filter; when the load feeds back energy to the input DC power supply, the cycloconverter will output the low-frequency sinusoidal AC voltage and modulate it into a bipolar three-state high-frequency pulse voltage. The high-frequency inverter demodulates it into unipolar three-state low-frequency pulse voltage, which is fed back to the input DC power supply after passing through the input filter. Since the Boost converter is essentially a step-up converter, there is always |u 0 |>U i N 2 /N 1 in each high-frequency switching cycle, so when the output sinusoidal voltage drops and |u 0 |≤U i During the N 2 /N 1 period (t=t 1 ~ t 2 , t 3 ~ t 4 intervals in the circuit principle waveform shown in Figure 2) the formation of the u 0 waveform needs to be added by adding a cycle converter, a high-frequency energy storage type Transformers and rectifiers are sequentially cascaded to form a low-power high-frequency electrical isolation flyback Flyback converter energy feedback circuit.
由于升压(Boost)型高频链逆变器的储能电感位于输入侧,输入侧的电流易于控制,电感电流连续模式时其输入电流iL是连续的,输入电流脉动量小,对电源产生的电磁干扰(EMI)小,输入直流电流ii的纹波小。当负载短路时,由于升压(Boost)型高频链逆变器的储能电感可以起到限流作用,因而其功率开关电流的上升率不变、允许的保护电路动作时间长,故升压(Boost)型高频链逆变器在负载短路时的可靠性高。由于升压(Boost)型高频链逆变器中的电气隔离元件为高频变压器,磁芯工作在双向对称磁化状态,故升压(Boost)型高频链逆变器能够输出的功率大。因此,升压(Boost)型高频链逆变器在要求电源侧纹波小、负载短路时可靠性高的大容量电能变换场合,具有显著的优势和重要的地位。Since the energy storage inductance of the boost (Boost) type high-frequency link inverter is located on the input side, the current on the input side is easy to control. In the continuous mode of the inductor current, the input current i L is continuous, and the input current ripple is small. The electromagnetic interference (EMI) is small, and the ripple of the input direct current i i is small. When the load is short-circuited, since the energy storage inductance of the boost (Boost) high-frequency link inverter can limit the current, the rising rate of the power switch current remains unchanged, and the allowable protection circuit operates for a long time, so the boost ( Boost) type high-frequency link inverter has high reliability when the load is short-circuited. Since the electrical isolation element in the boost (Boost) high-frequency link inverter is a high-frequency transformer, and the magnetic core works in a bidirectional symmetrical magnetization state, the boost (Boost) high-frequency link inverter can output large power. Therefore, the boost (Boost) high-frequency link inverter has significant advantages and an important position in large-capacity power conversion applications that require small power supply side ripple and high reliability when the load is short-circuited.
升压(Boost)型高频链逆变器电路拓扑族的实施例,如图3、4、5、6、7、8所示。图3为推挽全波式电路,图4为推挽桥式电路,图5为半桥全波式电路,图6为半桥桥式电路,图7全桥全波式电路,图8为全桥桥式电路。该电路拓扑族适用于将一种不稳定的直流电变换成所需要的稳定的优质正弦交流电,可用来实现具有优良性能和广泛应用前景的新型大功率逆变电源(如24VDC/220V50HzAC、48VDC/220V50HzAC)和静止变流器(如27VDC/115V400HzAC、270VDC/115V400HzAC)。从输入侧高频逆变器看,推挽式、半桥式电路高频功率开关S1、S2承受的最大电压应力为折算到原边的输出交流电压幅值的两倍(2UomN1/N2),前者变压器原边绕组利用率低,而后者变压器原边绕组利用率高;全桥式电路高频功率开关S1(S1′)、S2(S2′)承受的最大电压应力为折算到原边的输出交流电压幅值(UomN1/N2),变压器原边绕组利用率高。从输出侧的周波变换器看,全波式电路高频功率开关S3、S4承受的最大电压应力为输出交流电压幅值的两倍(2Uom),变压器副边绕组利用率低;桥式电路高频功率开关S3(S3′)、S4(S4′)承受的最大电压应力为输出交流电压的幅值(Uom),变压器副边绕组利用率高。故推挽全波式、半桥全波式、全桥全波式电路适用于低压大电流、大容量输出逆变场合,推挽桥式、半桥桥式、全桥桥式电路适用于高压小电流、大容量输出逆变场合。The embodiments of the boost (Boost) type high-frequency link inverter circuit topology family are shown in FIGS. 3 , 4 , 5 , 6 , 7 , and 8 . Figure 3 is a push-pull full-wave circuit, Figure 4 is a push-pull bridge circuit, Figure 5 is a half-bridge full-wave circuit, Figure 6 is a half-bridge circuit, Figure 7 is a full-bridge full-wave circuit, and Figure 8 is Full bridge bridge circuit. This circuit topology family is suitable for converting an unstable direct current into the required stable high-quality sinusoidal alternating current, and can be used to realize a new type of high-power inverter power supply with excellent performance and wide application prospects (such as 24VDC/220V50HzAC, 48VDC/220V50HzAC ) and static converters (such as 27VDC/115V400HzAC, 270VDC/115V400HzAC). From the perspective of the high-frequency inverter on the input side, the maximum voltage stress borne by the high-frequency power switches S 1 and S 2 of the push-pull and half-bridge circuits is twice the amplitude of the output AC voltage converted to the primary side (2U om N 1 /N 2 ), the utilization rate of the primary winding of the former transformer is low, while the utilization rate of the primary winding of the latter transformer is high; the high-frequency power switches S 1 (S 1 ′) and S 2 (S 2 ′) of the full-bridge circuit bear the The maximum voltage stress is converted to the output AC voltage amplitude of the primary side (U om N 1 /N 2 ), and the utilization rate of the primary winding of the transformer is high. From the cycloconverter on the output side, the maximum voltage stress borne by the high-frequency power switches S 3 and S 4 of the full-wave circuit is twice the amplitude of the output AC voltage (2U om ), and the utilization rate of the secondary winding of the transformer is low; The maximum voltage stress of the high-frequency power switches S 3 (S 3 ′) and S 4 (S 4 ′) in the formula circuit is the amplitude of the output AC voltage (U om ), and the utilization rate of the secondary winding of the transformer is high. Therefore, the push-pull full-wave, half-bridge full-wave, and full-bridge full-wave circuits are suitable for low-voltage, high-current, and large-capacity output inverter occasions, and the push-pull bridge, half-bridge, and full-bridge bridge circuits are suitable for high-voltage Small current, large capacity output inverter occasions.
该电路拓扑族中均设置了一个小功率的高频电气隔离反激式Flyback变换器能量回馈电路,它是由一个四象限功率开关Sa、具有副边绕组中心抽头的高频储能式变压器Ta和两个单向电流功率开关(Sa1与Da1反串、Sa2与Da2反串)构成。四象限功率开关Sa将输出正弦电压下降且|u0|≤UiN2/N1期间(图2所示电路原理波形中t=t1~t2、t3~t4区间)输出过多的能量调制成高频脉动电流并储存在高频储能式变压器Ta中,当Sa截止、Sa1或Sa2导通时,储存在高频储能式变压器Ta中的能量释放到输入直流电源侧。因此,专门设置的小功率高频电气隔离反激式Flyback变换器的作用是,将输出正弦电压下降且|u0|≤UiN2/N1期间输出过多的能量回馈到输入直流电源侧,确保在输出端获得高质量的输出正弦电压波形。A low-power high-frequency electrical isolation flyback flyback converter energy feedback circuit is set in this circuit topology family, which is composed of a four-quadrant power switch S a and a high-frequency energy storage transformer with a secondary winding center tap T a and two unidirectional current power switches (S a1 and D a1 are in reverse series, S a2 and D a2 are in reverse series). The four-quadrant power switch S a will output a sinusoidal voltage drop and |u 0 |≤U i N 2 /N 1 period (t=t 1 ~ t 2 , t 3 ~ t 4 intervals in the circuit principle waveform shown in Figure 2) Excessive energy is modulated into a high-frequency pulsating current and stored in the high-frequency energy storage transformer T a . When S a is cut off and S a1 or S a2 is turned on, the energy stored in the high-frequency energy storage transformer T a Released to the input DC power side. Therefore, the function of the specially set low-power high-frequency electrical isolation flyback converter is to feed back the excessive output energy during the output sinusoidal voltage drop and |u 0 |≤U i N 2 /N 1 to the input DC power supply side to ensure a high-quality output sinusoidal voltage waveform at the output.
升压(Boost)型高频链逆变器采用电压瞬时值反馈控制原理,如图9和图10所示。该控制原理中,图9为控制框图、图10为控制原理波形。在输出正弦电压t=0~t1、t2~t3区间,逆变器功率电路处于工作状态,而能量回馈电路处于停止工作状态,控制原理可简述为:将逆变器输出正弦交流电压反馈信号uof的绝对值信号与基准正弦信号uref的绝对值信号比较,经误差放大器后得到了误差放大信号ue,该误差放大信号ue与锯齿载波信号uc比较得到了SPWM信号uk3,锯齿载波信号uc经下降沿二分频电路后得到脉冲信号uk1,uk1经非门电路得到脉冲信号uk2,SPWM信号uk3分别与脉冲信号uk1、uk2相或、再分别与变换器的选通信号usy(ue经过零比较器得到)相与、经驱动电路后得到四象限高频功率开关S1(S1′)、S2(S2′)的驱动信号,即S1(S′1)=(uk1+uk3)·usy、S2(S′2)=(uk2+uk3)·usy=(uk1+uk3)·usy,SPWM信号uk3分别与脉冲信号uk1、uk2经或门、非门电路后的信号分别作为四象限高频功率开关S4(S4′)在输出电压正、负半周时的驱动信号和四象限高频功率开关S3(S3′)在输出电压负、正半周时的驱动信号,即S4(S4′)=(uk3+uk1·uk0+uk3+uk2·uk0)·usy、S3(S3′)=(uk3+uk1·uk0+uk3+uk2·uk0)·usy;而在此区间ue>0、-ue<0、-ue与uc无交截,变换器的选通信号usy=1、usy=0,故功率开关Sa、Sa1和Sa2的驱动信号均被封锁。在输出正弦电压t=t1~t2、t3~t4区间,逆变器功率电路处于停止工作状态,而能量回馈电路处于工作状态,控制原理可简述为:由于变换器的选通信号usy=1、usy=0,故四象限高频功率开关S1(S1′)、S2(S2′)、S3(S3′)、S4(S4′)的驱动信号均被封锁;而在此区间ue<0、-ue>0,-ue与uc经比较器、驱动电路后得到了四象限功率开关Sa的驱动信号,将-ue与uc经比较器、非门后的信号与变换器的选通信号usy相与再经输出电压正、负半周选择信号uk0、uk0后得到了Sa1、Sa2的驱动信号。能量回馈电路工作期间,四象限功率开关Sa将t=t1~t2、t3~t4区间输出过多的能量调制成高频脉动电流并储存在高频储能式变压器Ta中,当Sa截止、Sa1或Sa2导通时,储存在Ta中的能量释放到输入直流电源侧,从而完成了输出过多能量的回馈。The boost (Boost) high-frequency link inverter adopts the voltage instantaneous value feedback control principle, as shown in Figure 9 and Figure 10. In this control principle, Fig. 9 is a control block diagram, and Fig. 10 is a control principle waveform. In the interval of output sinusoidal voltage t=0~t 1 , t 2 ~t 3 , the power circuit of the inverter is in the working state, while the energy feedback circuit is in the stop working state. The control principle can be briefly described as: the inverter outputs sinusoidal AC The absolute value signal of the voltage feedback signal u of is compared with the absolute value signal of the reference sinusoidal signal u ref , the error amplification signal u e is obtained after the error amplifier, and the SPWM signal is obtained by comparing the error amplification signal u e with the sawtooth carrier signal u c u k3 , the saw-tooth carrier signal u c gets the pulse signal u k1 after passing through the falling edge two frequency division circuit, u k1 gets the pulse signal u k2 through the NOT gate circuit, the SPWM signal u k3 is ORed with the pulse signals u k1 and u k2 respectively And then respectively with the gating signal u sy of the converter (u e is obtained through the zero comparator), and after the drive circuit, the four-quadrant high-frequency power switches S 1 (S 1 ′), S 2 (S 2 ′) are obtained Drive signal, that is, S 1 (S′ 1 )=(u k1 +u k3 )·u sy , S 2 (S′ 2 )=(u k2 +u k3 )·u sy =(u k1 +u k3 )· U sy , SPWM signal u k3 and pulse signal u k1 , u k2 respectively through the OR gate and NOT gate circuit are respectively used as the four-quadrant high-frequency power switch S 4 (S 4 ′) in the positive and negative half cycles of the output voltage The driving signal and the driving signal of the four-quadrant high-frequency power switch S 3 (S 3 ′) in the negative and positive half cycles of the output voltage, that is, S 4 (S 4 ′)=(u k3 +u k1 ·u k0 +u k3 + u k2 ·u k0 )·u sy 、 S 3 (S 3 ′)=(u k3 +u k1 ·u k0 +u k3 +u k2 ·u k0 )·u sy ; and in this interval u e >0, -u e <0, -u e has no intersection with uc , the gating signal usy =1, usy =0 of the converter, so the driving signals of the power switches S a , S a1 and S a2 are all blocked. In the interval of output sinusoidal voltage t=t 1 ~t 2 , t 3 ~t 4 , the power circuit of the inverter is in the stop working state, while the energy feedback circuit is in the working state. No. u sy = 1, u sy = 0, so four-quadrant high-frequency power switches S 1 (S 1 ′), S 2 (S 2 ′), S 3 (S 3 ′), S 4 (S 4 ′) The driving signals are all blocked; and in this interval u e < 0, - u e > 0, -u e and u c get the driving signal of the four-quadrant power switch S a after passing through the comparator and the driving circuit, and the -u e The signals from the comparator and the inverting gate and the strobe signal u sy of the converter are phase-ANDed with u c , and then the driving signals of S a1 and S a2 are obtained after the output voltage positive and negative half-cycle selection signals u k0 and u k0 . During the working period of the energy feedback circuit, the four-quadrant power switch S a modulates the excessive output energy in the intervals of t=t 1 ~ t 2 and t 3 ~ t 4 into a high-frequency pulsating current and stores it in the high-frequency energy storage transformer T a , when S a is cut off and S a1 or S a2 is turned on, the energy stored in T a is released to the input DC power supply side, thus completing the feedback of excessive output energy.
对于图3~图8所示推挽、半桥、全桥式电路来说,输入侧高频逆变器的二象限高频功率开关S1(S1′)与S2(S2′)的驱动信号相差180°且占空比大于0.5,在Ts/2内其共同导通时间为Tcom=(Ts/2)θ/180°(Ts为高频开关周期、0<θ<180°为共同导通时间所对应的角度),占空比D=Tcom/(Ts/2)=θ/180°。通过改变输入侧高频逆变器的共同导通角,就可调节双极性三态高频脉冲电流i1的占空比D(改变驱动信号的占空比),从而可以实现当输入电压或负载变化时升压(Boost)型高频链逆变器输出电压的稳定与调节。For the push-pull, half-bridge, and full-bridge circuits shown in Figure 3 to Figure 8, the two-quadrant high-frequency power switches S 1 (S 1 ′) and S 2 (S 2 ′) of the input-side high-frequency inverter The drive signals differ by 180° and the duty cycle is greater than 0.5, and their common conduction time within T s /2 is T com = (T s /2)θ/180° (Ts is the high-frequency switching period, 0<θ< 180° is the angle corresponding to the common conduction time), and the duty ratio D=T com /(T s /2)=θ/180°. By changing the common conduction angle of the high-frequency inverter on the input side, the duty cycle D of the bipolar tri-state high-frequency pulse current i1 can be adjusted (changing the duty cycle of the drive signal), so that when the input voltage Or the stability and regulation of the output voltage of the boost (Boost) high-frequency link inverter when the load changes.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2008100704292A CN101267167B (en) | 2008-01-09 | 2008-01-09 | Boost High Frequency Link Inverter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2008100704292A CN101267167B (en) | 2008-01-09 | 2008-01-09 | Boost High Frequency Link Inverter |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101267167A true CN101267167A (en) | 2008-09-17 |
CN101267167B CN101267167B (en) | 2010-07-21 |
Family
ID=39989365
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2008100704292A Expired - Fee Related CN101267167B (en) | 2008-01-09 | 2008-01-09 | Boost High Frequency Link Inverter |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101267167B (en) |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101702589B (en) * | 2009-11-06 | 2012-05-16 | 燕山大学 | Dual Boost inversion preceding stage high frequency link matrix type three-phase four-arm pair inversion topology |
CN101741272B (en) * | 2009-12-09 | 2012-06-13 | 燕山大学 | Regulating and controlling method of self-adaption commutation integration of high frequency chain matrix inverter |
CN103856089A (en) * | 2014-03-26 | 2014-06-11 | 南京理工大学 | High-frequency isolation-type five-level inverter |
CN103986360A (en) * | 2014-05-25 | 2014-08-13 | 南京理工大学 | High-frequency isolated step-up three-level inverter |
CN104811031A (en) * | 2014-09-11 | 2015-07-29 | 杭州硅星科技有限公司 | Power management system and energy recycle unit thereof |
CN106130352A (en) * | 2016-06-30 | 2016-11-16 | 盐城工学院 | The micro-inverter of intermediate current type double tube positive exciting and numerical control device thereof |
CN107769599A (en) * | 2017-11-20 | 2018-03-06 | 南京理工大学 | Normal shock five-electrical level inverter based on switched capacitor |
CN107994799A (en) * | 2018-01-09 | 2018-05-04 | 青岛大学 | Multiple coil at the same time/time sharing power supply current mode single-stage multi input annulus inverter in high frequency |
CN108023495A (en) * | 2018-01-09 | 2018-05-11 | 青岛大学 | The non-isolated inverter of external Parallel Time-sharing selecting switch voltage-type single-stage multi input |
CN108023497A (en) * | 2018-01-09 | 2018-05-11 | 青岛大学 | Series connection while normal shock cycle changing type single-stage multi input annulus inverter in high frequency of powering |
CN108111041A (en) * | 2018-01-09 | 2018-06-01 | 青岛大学 | Multiple coil time sharing power supply normal shock cycle changing type single-stage multi input high-frequency chain inverter |
CN108111045A (en) * | 2018-01-09 | 2018-06-01 | 青岛大学 | External Parallel Time-sharing selecting switch voltage-type single-stage multi input low frequency link inverter |
CN108111043A (en) * | 2018-01-09 | 2018-06-01 | 青岛大学 | Built-in Parallel Time-sharing selecting switch voltage-type single-stage multi input annulus inverter in high frequency |
CN108111044A (en) * | 2018-01-09 | 2018-06-01 | 青岛大学 | External Parallel Time-sharing selecting switch isolation flyback week wave mode single-stage multi input inverter |
CN108155824A (en) * | 2018-01-09 | 2018-06-12 | 青岛大学 | The series connection non-isolated inverter of simultaneous selection switching voltage type single-stage multi input |
CN108199595A (en) * | 2018-01-09 | 2018-06-22 | 青岛大学 | Flyback cycle changing type single-stage multi input inverter is isolated in Multiple coil time sharing power supply |
CN108199604A (en) * | 2018-01-09 | 2018-06-22 | 青岛大学 | Series connection is simultaneously for being electrically isolated flyback cycle changing type single-stage multi input inverter |
CN108199599A (en) * | 2018-01-09 | 2018-06-22 | 青岛大学 | External Parallel Time-sharing selecting switch voltage-type single-stage multi input annulus inverter in high frequency |
CN108199598A (en) * | 2018-01-09 | 2018-06-22 | 青岛大学 | Multiple coil time sharing power supply voltage-type single-stage multi input low frequency link inverter |
CN108199602A (en) * | 2018-01-09 | 2018-06-22 | 青岛大学 | Multiple coil time sharing power supply forward DC chopper-type single-stage multi input high-frequency chain inverter |
CN108233748A (en) * | 2018-01-09 | 2018-06-29 | 青岛大学 | Built-in Parallel Time-sharing selecting switch isolation flyback week wave mode single-stage multi input inverter |
CN110943641A (en) * | 2019-11-22 | 2020-03-31 | 燕山大学 | Pulse width modulation method of current type three-phase high-frequency link matrix inverter |
CN112019062A (en) * | 2020-09-11 | 2020-12-01 | 南京力骏新能源储能研究院有限公司 | Sine wave high-frequency chain three-level lithium battery inverter capable of realizing energy feedback |
CN112170148A (en) * | 2020-08-18 | 2021-01-05 | 华南农业大学 | Ultrasonic power direct current bias pulse excitation power supply |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI506941B (en) * | 2013-04-30 | 2015-11-01 | Darfon Electronics Corp | Inverter capable of distributing input power and operation method thereof |
TWI506928B (en) | 2013-05-08 | 2015-11-01 | Darfon Electronics Corp | Current source inverter and operation method thereof |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7187568B2 (en) * | 2002-01-16 | 2007-03-06 | Rockwell Automation Technologies, Inc. | Power converter having improved terminal structure |
CN100477470C (en) * | 2005-11-11 | 2009-04-08 | 福州大学 | Single-stage bidirectional step-up DC converter type high-frequency link inverter |
CN100490291C (en) * | 2006-01-01 | 2009-05-20 | 福州大学 | Step-up high frequency link AC-AC transducer |
-
2008
- 2008-01-09 CN CN2008100704292A patent/CN101267167B/en not_active Expired - Fee Related
Cited By (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101702589B (en) * | 2009-11-06 | 2012-05-16 | 燕山大学 | Dual Boost inversion preceding stage high frequency link matrix type three-phase four-arm pair inversion topology |
CN101741272B (en) * | 2009-12-09 | 2012-06-13 | 燕山大学 | Regulating and controlling method of self-adaption commutation integration of high frequency chain matrix inverter |
CN103856089A (en) * | 2014-03-26 | 2014-06-11 | 南京理工大学 | High-frequency isolation-type five-level inverter |
CN103986360A (en) * | 2014-05-25 | 2014-08-13 | 南京理工大学 | High-frequency isolated step-up three-level inverter |
CN103986360B (en) * | 2014-05-25 | 2016-10-05 | 南京理工大学 | High-frequency isolation type boost type three-level inverter |
CN104811031A (en) * | 2014-09-11 | 2015-07-29 | 杭州硅星科技有限公司 | Power management system and energy recycle unit thereof |
CN104811031B (en) * | 2014-09-11 | 2017-07-18 | 杭州硅星科技有限公司 | A kind of power-supply management system and its energy recovery unit |
CN106130352A (en) * | 2016-06-30 | 2016-11-16 | 盐城工学院 | The micro-inverter of intermediate current type double tube positive exciting and numerical control device thereof |
CN106130352B (en) * | 2016-06-30 | 2018-08-10 | 盐城工学院 | The micro- inverter of intermediate current type double tube positive exciting and its numerical control device |
CN107769599A (en) * | 2017-11-20 | 2018-03-06 | 南京理工大学 | Normal shock five-electrical level inverter based on switched capacitor |
CN108155824A (en) * | 2018-01-09 | 2018-06-12 | 青岛大学 | The series connection non-isolated inverter of simultaneous selection switching voltage type single-stage multi input |
CN108199602A (en) * | 2018-01-09 | 2018-06-22 | 青岛大学 | Multiple coil time sharing power supply forward DC chopper-type single-stage multi input high-frequency chain inverter |
CN108111041A (en) * | 2018-01-09 | 2018-06-01 | 青岛大学 | Multiple coil time sharing power supply normal shock cycle changing type single-stage multi input high-frequency chain inverter |
CN108111045A (en) * | 2018-01-09 | 2018-06-01 | 青岛大学 | External Parallel Time-sharing selecting switch voltage-type single-stage multi input low frequency link inverter |
CN108111043A (en) * | 2018-01-09 | 2018-06-01 | 青岛大学 | Built-in Parallel Time-sharing selecting switch voltage-type single-stage multi input annulus inverter in high frequency |
CN108111044A (en) * | 2018-01-09 | 2018-06-01 | 青岛大学 | External Parallel Time-sharing selecting switch isolation flyback week wave mode single-stage multi input inverter |
CN108023495A (en) * | 2018-01-09 | 2018-05-11 | 青岛大学 | The non-isolated inverter of external Parallel Time-sharing selecting switch voltage-type single-stage multi input |
CN108199595A (en) * | 2018-01-09 | 2018-06-22 | 青岛大学 | Flyback cycle changing type single-stage multi input inverter is isolated in Multiple coil time sharing power supply |
CN108199604A (en) * | 2018-01-09 | 2018-06-22 | 青岛大学 | Series connection is simultaneously for being electrically isolated flyback cycle changing type single-stage multi input inverter |
CN108199599A (en) * | 2018-01-09 | 2018-06-22 | 青岛大学 | External Parallel Time-sharing selecting switch voltage-type single-stage multi input annulus inverter in high frequency |
CN108199598A (en) * | 2018-01-09 | 2018-06-22 | 青岛大学 | Multiple coil time sharing power supply voltage-type single-stage multi input low frequency link inverter |
CN108023497A (en) * | 2018-01-09 | 2018-05-11 | 青岛大学 | Series connection while normal shock cycle changing type single-stage multi input annulus inverter in high frequency of powering |
CN108233748A (en) * | 2018-01-09 | 2018-06-29 | 青岛大学 | Built-in Parallel Time-sharing selecting switch isolation flyback week wave mode single-stage multi input inverter |
CN107994799A (en) * | 2018-01-09 | 2018-05-04 | 青岛大学 | Multiple coil at the same time/time sharing power supply current mode single-stage multi input annulus inverter in high frequency |
US11128236B2 (en) | 2018-01-09 | 2021-09-21 | Qingdao University | Multi-winding single-stage multi-input boost type high-frequency link's inverter with simultaneous/time-sharing power supplies |
CN108111044B (en) * | 2018-01-09 | 2020-09-29 | 青岛大学 | Isolation flyback periodic wave type single-stage multi-input inverter with external parallel time-sharing selection switch |
CN108199599B (en) * | 2018-01-09 | 2020-12-18 | 青岛大学 | External parallel time-sharing switch voltage type single-stage multi-input high-frequency link inverter |
CN110943641B (en) * | 2019-11-22 | 2021-09-07 | 燕山大学 | A pulse width modulation method of a current-mode three-phase high-frequency chain-matrix inverter |
CN110943641A (en) * | 2019-11-22 | 2020-03-31 | 燕山大学 | Pulse width modulation method of current type three-phase high-frequency link matrix inverter |
CN112170148A (en) * | 2020-08-18 | 2021-01-05 | 华南农业大学 | Ultrasonic power direct current bias pulse excitation power supply |
CN112019062A (en) * | 2020-09-11 | 2020-12-01 | 南京力骏新能源储能研究院有限公司 | Sine wave high-frequency chain three-level lithium battery inverter capable of realizing energy feedback |
CN112019062B (en) * | 2020-09-11 | 2021-08-13 | 南京力骏新能源储能研究院有限公司 | Sine wave high-frequency chain three-level lithium battery inverter capable of realizing energy feedback |
Also Published As
Publication number | Publication date |
---|---|
CN101267167B (en) | 2010-07-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101267167B (en) | Boost High Frequency Link Inverter | |
US8842450B2 (en) | Power converter using multiple phase-shifting quasi-resonant converters | |
CN1117422C (en) | High-frequency AC/AC converter with AC link | |
CN110932557A (en) | High-gain quasi-resonant DC-DC converter based on voltage doubling rectifying circuit | |
Dusmez et al. | A fully integrated three-level isolated single-stage PFC converter | |
CN108448913A (en) | A Single-Stage Isolated AC-DC Converter Based on Interleaved Parallel Bridgeless PFC Circuit and LLC Resonance | |
Chen et al. | Step-up AC voltage regulators with high-frequency link | |
CN103401461B (en) | A kind of high frequency boosting isolated inverter | |
CN101534061A (en) | A double-isolation boosting multi-input direct current convertor | |
CN109742965A (en) | A single-phase interleaved parallel three-level resonant high-frequency isolated AC-DC converter | |
CN101635530A (en) | Single-stage forward type high-frequency linked inverter | |
CN116191862B (en) | Bridgeless Buck PFC Converter Based on Buck and Flyback Converter Units | |
CN106712522A (en) | Semi-active bridge DC-DC converter PWM-phase shift composite control method | |
CN105515417A (en) | Double-output single-phase PFC convertor and combined type power conversion system and control method thereof | |
CN111478600A (en) | A control method for dual active bridge single-stage AC-DC converter | |
CN100490291C (en) | Step-up high frequency link AC-AC transducer | |
CN102158107A (en) | Single-stage single-phase current type inverter with high step-up ratio | |
TWI387187B (en) | Interleaved no - bridge power factor modifier and its control method | |
CN115566907B (en) | Improved VMC LLC resonant PFC converter control system and design method thereof | |
CN101414791B (en) | Differential decompression DC chopper type high-frequency chain inverter | |
CN117937946A (en) | A polarity-converting wide-range voltage-regulating interleaved modulation LCC circuit structure | |
CN116961400A (en) | High-efficiency bridgeless buck PFC converter without input diode | |
CN102647100A (en) | An Integrated Buck-flyback High Power Factor Converter | |
CN110429821A (en) | A kind of single-phase isolated form AC/DC converter of the no electrolytic capacitor single stage type of integrated power factor correction function | |
CN101414792A (en) | Differential decompression DC chopper type high-frequency chain inverter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20080917 Assignee: Xiamen Evada Electronics Co., Ltd. Assignor: Fuzhou University Contract record no.: 2015350000024 Denomination of invention: Voltage increase high-frequency link reverser Granted publication date: 20100721 License type: Exclusive License Record date: 20150413 |
|
LICC | Enforcement, change and cancellation of record of contracts on the licence for exploitation of a patent or utility model | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20100721 Termination date: 20170109 |
|
CF01 | Termination of patent right due to non-payment of annual fee |