CN101264734A - System protection control method for hybrid power automobile - Google Patents

System protection control method for hybrid power automobile Download PDF

Info

Publication number
CN101264734A
CN101264734A CNA2007103071117A CN200710307111A CN101264734A CN 101264734 A CN101264734 A CN 101264734A CN A2007103071117 A CNA2007103071117 A CN A2007103071117A CN 200710307111 A CN200710307111 A CN 200710307111A CN 101264734 A CN101264734 A CN 101264734A
Authority
CN
China
Prior art keywords
control module
torque
protection control
motor
tension battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2007103071117A
Other languages
Chinese (zh)
Other versions
CN101264734B (en
Inventor
邹海斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chery Automobile Co Ltd
Original Assignee
SAIC Chery Automobile Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SAIC Chery Automobile Co Ltd filed Critical SAIC Chery Automobile Co Ltd
Priority to CN2007103071117A priority Critical patent/CN101264734B/en
Publication of CN101264734A publication Critical patent/CN101264734A/en
Priority to PCT/CN2008/073369 priority patent/WO2009092218A1/en
Application granted granted Critical
Publication of CN101264734B publication Critical patent/CN101264734B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/02Ensuring safety in case of control system failures, e.g. by diagnosing, circumventing or fixing failures
    • B60W50/029Adapting to failures or work around with other constraints, e.g. circumvention by avoiding use of failed parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/425Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/08Electric propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/08Electric propulsion units
    • B60W2510/081Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/08Electric propulsion units
    • B60W2510/087Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/246Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/24Energy storage means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Abstract

The invention discloses a method for protecting and controlling the system of a hybrid vehicle, comprising a high voltage battery overcharge protection control module, a high voltage battery over discharge protection control module, an overheated electricity protection control module and a motor overspeed work torque protection control module. The invention is characterized in that when any of the four modules confirms that one or a plurality of motor or generator work interrupt request signal, high voltage battery work interrupt request singal and DC-DC work interrupt request signal should be activated, the corresponding work interrupt request signal is to be activated. The method for proctecting and controlling the system of a hybrid vehicle has the advantages of controlling a plurality of interrupt request signals according to high voltage battery charge condition SOC, battery SOC work area equilibrium point, generator condition, the largest charge power recommanded by a battery controller, battery temperature, motor temperature, and inverter temperature, and accordingly realizing the proctecing functions of the overcharge, over discharge and overheating of the battery and the motor overspeed torque.

Description

A kind of system protection control method of hybrid vehicle
Technical field
The invention belongs to the high-tension battery in hybrid power control policy field, the controlling schemes of electric motor protecting system.
Background technology
Conventional hybrid vehicle comprises three big constituent elementss at least: combustion engine, dynamoelectric machine, high-tension battery (perhaps energy storage component like the super capacitor).Narrated in this patent and used high-tension battery as the high-tension battery of the parallel type hybrid dynamic automobile of energy storage component, the system protection control method of dynamoelectric machine parts.
In the hybrid vehicle start-up course, electrical motor comes the quick operated start driving engine to reach the rotating speed of driving engine oil spout igniting to consume the high-tension battery energy.In the hybrid vehicle conventional operation, electrical motor can consume the method for high-tension battery energy and come auxiliary torque to improve the performance of giving it the gun of automobile.Yet in order to improve efficiency of engine, engine operation during at efficient operating point electrical motor can be used as electrical generator carries out a little to high-tension battery charging to store the unnecessary energy of driving engine.
In the stage of hybrid vehicle brake snub, electrical motor charges to high-tension battery as electrical generator and reaches the purpose that reclaims automobile kinetic energy.The control policy of above-mentioned automobile hybrid power automobile all is that hybrid controller is realized.
Hybrid controller will be protected above-mentioned high-tension battery and dynamoelectric machine according to the make a strategic decision maximum functional parameter and the work-hours of high-tension battery and dynamoelectric machine of the different situations of hybrid vehicle.The control policy of described controller comprises the overcharging of high-tension battery, overdischarge, overheated and motor hypervelocity torque protection strategy.
Summary of the invention
The invention discloses a kind of system protection control method of hybrid vehicle; comprise high-tension battery additives for overcharge protection control module, high-tension battery over control module, overheated electric protection control module and motor hypervelocity operation torque protection control module; it is characterized in that; when determining one or more should being activated in dynamoelectric machine work shutoff request signal, high-tension battery work shutoff request signal and the DC-DC work shutoff request signal in above-mentioned four arbitrary modules of protecting in the control modules, corresponding work is turn-offed request signal and just is activated.
Further, high-tension battery over control module, overheated electric protection control module and the determined electric electromechanics dynamic torque of motor hypervelocity operation torque protection control module threshold value are got minimum value, this minimum value is compared with the electronic peak torque of the determined electrical motor of electric machine operation state and is got minimum value again, and the minimum value of being got is re-used as the final electrical motor peak value operation torque of determining; Above-mentioned three kinds of protection control module electric torque minimum threshold numerical value and the continuous torque rating of the electronic maximum of the determined electrical motor of electric machine operation state are got minimum value, and this minimum value is as the maximum output torque threshold value continuously of dynamoelectric machine.
Maximum charge power, battery temperature, motor temperature and the inverter temperature that the present invention recommends according to the charge condition SOC of high-tension battery, battery SOC work area equilibrium point, electrical generator state and battery controller waits to be controlled battery charge and turn-offs that request signal, generator for electricity generation turn-off request signal, request signal and generator for electricity generation torque limited thresholding are turn-offed in DC-DC work, thereby realizes the overcharging of battery, overdischarge, overheated and motor hypervelocity torsion protection function.
Description of drawings
Fig. 1: diagram of circuit is turn-offed in the work of control dynamoelectric machine;
Fig. 2: diagram of circuit is turn-offed in control DC-DC work;
Fig. 3: diagram of circuit is turn-offed in the work of control high-tension battery.
The specific embodiment
1-3 is further detailed system protection control method of the present invention in conjunction with the accompanying drawings.
In the control of high-tension battery additives for overcharge protection,, high-tension battery charge condition SOC turn-offs request signal if will activating the high-tension battery charging when surpassing a threshold value.Turn-off that request signal is activated and high-tension battery charge condition SOC when surpassing same threshold value when high-tension battery work, generator for electricity generation is turn-offed request signal and will be activated.
In high-tension battery additives for overcharge protection control, the power generation torque limiting door limit value of electrical generator will be set to zero when high-tension battery charge condition SOC surpasses a threshold value, and that is to say no longer generates electricity the restriction electrical generator charges to high-tension battery; Otherwise when high-tension battery charge condition SOC rises above same threshold value, the power generation torque limiting door limit value of motor will be controlled according to following strategy.According to the relative value of high-tension battery charge condition SOC and its work equilibrium point and the maximum charge power of corresponding Threshold Control Method high-tension battery, calculate the moment of torsion threshold value of the electric power generation control under the current state again according to the cireular frequency of driving engine under the current state, this threshold value is a negative.
In the control of high-tension battery over, DC-DC discharge work shutoff request signal just should be activated when high-tension battery charge condition SOC is lower than a certain thresholding; High-tension battery discharge work shutoff request signal just should be activated when high-tension battery charge condition SOC is lower than a certain thresholding, DC-DC discharge work is turn-offed request signal and should be turn-offed request signal in high-tension battery discharge work and will send before sending, when high-tension battery discharge work turn-off that request signal is activated and also high-tension battery charge condition SOC when being lower than a certain thresholding electrical motor work turn-off request signal and just should be activated.
In the control of high-tension battery over, electrical motor operation torque threshold value will be set to zero when high-tension battery charge condition SOC is lower than a certain thresholding.Difference according to actual high-voltage battery charging state SOC and high-tension battery work equilibrium point is judged the maximum high-voltage battery discharge power, and when this difference during less than a certain setting value, the maximum discharge power of high-tension battery will be set to zero.Can calculate maximum motor operation torque limiting door limit value according to maximum high-voltage battery discharge power and real-time driving engine cireular frequency.
In overheated electric protection control policy, high-tension battery work shutoff request signal just should be activated when the high-tension battery body temperature surpasses a certain threshold value; Inverter work shutoff request signal just should be activated when the inverter temperature surpasses a certain threshold value; Machine operation shutoff request signal just should be activated when the motor body temperature surpasses a certain threshold value.When above-described three parts turn-off because temperature is too high the work request signal any one when being activated, motor and high-tension battery work are turn-offed request signal and all will be activated, when the above two parts work shutoff request signal all is activated, DC-DC work is turn-offed request signal and will be activated, perhaps when the high-tension battery temperature surpassed a certain threshold value, DC-DC work was turn-offed request signal and also will be activated.
In above-mentioned overheated electric protection control policy, can determine motor peak value operation torque coefficient according to the high-tension battery real time temperature; Can determine motor peak value operation torque coefficient according to the inverter real time temperature; Can determine motor peak value operation torque coefficient according to the motor body real time temperature.Above-mentioned three torque coefficients are got minimum value and can be determined electric electromechanics dynamic torque threshold value and generator for electricity generation moment of torsion threshold value by the motor peak value operation torque that the electric machine operation state module is recommended.
In hypervelocity work protection control policy, can determine electric electromechanics dynamic torque threshold value coefficient according to the driving engine cireular frequency, in the driving engine cireular frequency surpassed a certain scope, this coefficient should be set to zero.Can finally determine electric electromechanics dynamic torque threshold value size according to the machine operation peak torque that this coefficient and electric machine operation state control module are recommended.
In above four protection control policies, if when determining in any submodule that dynamoelectric machine work is turn-offed request signal and should be activated, dynamoelectric machine work is turn-offed request signal and just should be activated.
In above control policy, if when determining in any a certain submodule that high-tension battery work is turn-offed request signal and should be activated, high-tension battery work is turn-offed request signal and just should be activated.
In above control policy, if when determining in any a certain submodule that DC-DC work is turn-offed request signal and should be activated, DC-DC work is turn-offed request signal and just should be activated.
In above four protection control policies; over control module, overheated electric protection control module and the determined electric electromechanics dynamic torque of hypervelocity work protection control module threshold value are got minimum value; and this minimum value and the electronic peak torque of the determined electrical motor of electric machine operation state get minimum again, and the minimum value result who is got is exactly the final electrical motor peak value operation torque of determining.Protect control module electric torque minimum threshold numerical value and the continuous torque rating of the electronic maximum of the determined electrical motor of electric machine operation state to get minimum to above-mentioned three kinds of getting, this minimum value of getting is exactly the maximum output torque threshold value continuously of dynamoelectric machine so.
In above four protection control policies; additives for overcharge protection control module and the determined generator for electricity generation moment of torsion of overheated electric protection control module threshold value are got maxim; and the maximum continuous working moment of torsion of the motor that the electric machine operation state control module is recommended is got its opposite number; get maximum with the said two devices maxim again, this maxim is exactly the minimum moment of torsion threshold value continuously of dynamoelectric machine continuous working so.

Claims (6)

1, a kind of system protection control method of hybrid vehicle; comprise high-tension battery additives for overcharge protection control module, high-tension battery over control module, overheated electric protection control module and motor hypervelocity operation torque protection control module; it is characterized in that; when determining one or more should being activated in dynamoelectric machine work shutoff request signal, high-tension battery work shutoff request signal and the DC-DC work shutoff request signal in above-mentioned four arbitrary modules of protecting in the control modules, corresponding work is turn-offed request signal and just is activated.
2, method according to claim 1, it is characterized in that: high-tension battery over control module, overheated electric protection control module and the determined electric electromechanics dynamic torque of motor hypervelocity operation torque protection control module threshold value are got minimum value, this minimum value is compared with the electronic peak torque of the determined electrical motor of electric machine operation state and is got minimum value again, and the minimum value of being got is re-used as the final electrical motor peak value operation torque of determining; Above-mentioned three kinds of protection control module electric torque minimum threshold numerical value and the continuous torque rating of the electronic maximum of the determined electrical motor of electric machine operation state are got minimum value, and this minimum value is as the maximum output torque threshold value continuously of dynamoelectric machine.
3, method according to claim 1; it is characterized in that: high-tension battery additives for overcharge protection control module and the determined generator for electricity generation moment of torsion of overheating protection control module threshold value are got maxim; the maximum continuous working moment of torsion of the motor that the electric machine operation state control module is recommended is got its opposite number, and the two relatively gets the minimum continuously moment of torsion threshold value of maxim as the dynamoelectric machine continuous working.
4, according to claim 2 or 3 described methods, it is characterized in that: in the control of high-tension battery additives for overcharge protection, request signal is turn-offed in the high-tension battery charging and generator for electricity generation is turn-offed request signal if the high-tension battery charge condition just activated when surpassing a threshold value.
5, method according to claim 1 and 2; it is characterized in that: motor hypervelocity operation torque protection control module is determined electric electromechanics dynamic torque threshold value coefficient according to the driving engine cireular frequency; in the driving engine cireular frequency surpasses a scope; this coefficient is set to zero, finally determines electric electromechanics dynamic torque threshold value according to the machine operation peak torque that this coefficient and electric machine operation state control module are recommended.
6, method according to claim 1 and 2 is characterized in that: determine motor peak value operation torque coefficient according to the high-tension battery real time temperature; Determine motor peak value operation torque coefficient according to the inverter real time temperature; Determine motor peak value operation torque coefficient according to the motor body real time temperature; Above-mentioned three torque coefficients are got minimum value and determined electric electromechanics dynamic torque threshold value and generator for electricity generation moment of torsion threshold value by the motor peak value operation torque that the electric machine operation state module is recommended.
CN2007103071117A 2007-12-29 2007-12-29 System protection control method for hybrid power automobile Active CN101264734B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2007103071117A CN101264734B (en) 2007-12-29 2007-12-29 System protection control method for hybrid power automobile
PCT/CN2008/073369 WO2009092218A1 (en) 2007-12-29 2008-12-08 A system protection control method for the hybrid power automobiles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2007103071117A CN101264734B (en) 2007-12-29 2007-12-29 System protection control method for hybrid power automobile

Publications (2)

Publication Number Publication Date
CN101264734A true CN101264734A (en) 2008-09-17
CN101264734B CN101264734B (en) 2010-11-10

Family

ID=39987500

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007103071117A Active CN101264734B (en) 2007-12-29 2007-12-29 System protection control method for hybrid power automobile

Country Status (2)

Country Link
CN (1) CN101264734B (en)
WO (1) WO2009092218A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009092218A1 (en) * 2007-12-29 2009-07-30 Chery Automobile Co., Ltd. A system protection control method for the hybrid power automobiles
CN102350982A (en) * 2011-07-25 2012-02-15 沃尔新(北京)自动设备有限公司 Automatic cleaning control system for train in driven state
CN101966819B (en) * 2009-07-28 2013-09-11 北汽福田汽车股份有限公司 Electromobile mounted charging protection device, charging protection method and vehicle
CN103692925A (en) * 2013-12-20 2014-04-02 奇瑞汽车股份有限公司 Economical driving mode control system of electric automobile
CN104409789A (en) * 2014-11-24 2015-03-11 哈尔滨工业大学 Method for charging battery pack with temperature protection function in battery pack electric quantity unbalanced state
CN105705755A (en) * 2013-10-31 2016-06-22 标致雪铁龙集团 Method for thermal protection of an internal combustion engine of a motor vehicle and corresponding engine computer
CN105811514A (en) * 2016-04-28 2016-07-27 郑州宇通客车股份有限公司 Dynamic balance charging control method and control system for power battery of double-source trolley bus
CN106505698A (en) * 2017-01-03 2017-03-15 青岛海信移动通信技术股份有限公司 Method of supplying power to and electric supply installation
CN108725260A (en) * 2018-07-24 2018-11-02 北京车和家信息技术有限公司 Overspeed protection method and device
CN114347978A (en) * 2021-12-24 2022-04-15 奇瑞汽车股份有限公司 Battery overcurrent protection method

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10569792B2 (en) 2006-03-20 2020-02-25 General Electric Company Vehicle control system and method
US9733625B2 (en) 2006-03-20 2017-08-15 General Electric Company Trip optimization system and method for a train
US10308265B2 (en) 2006-03-20 2019-06-04 Ge Global Sourcing Llc Vehicle control system and method
US9950722B2 (en) 2003-01-06 2018-04-24 General Electric Company System and method for vehicle control
US9828010B2 (en) 2006-03-20 2017-11-28 General Electric Company System, method and computer software code for determining a mission plan for a powered system using signal aspect information
US9834237B2 (en) 2012-11-21 2017-12-05 General Electric Company Route examining system and method
ZA201303703B (en) * 2012-06-05 2015-06-24 Gen Electric Control system and method for remotely isolating powered units in a vehicle system
US9669851B2 (en) 2012-11-21 2017-06-06 General Electric Company Route examination system and method
US9139088B2 (en) 2013-08-30 2015-09-22 Ford Global Technologies, Llc System and method for hybrid vehicle control during wheel slip events to limit generator speed
CN114379535B (en) * 2022-01-24 2023-07-21 北京航空航天大学 Output control method and device for oil-electricity hybrid power system

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0746709A (en) * 1993-08-04 1995-02-14 Fuji Heavy Ind Ltd Charging and discharging controller for battery of parallel hybrid car
CN2405363Y (en) * 2000-01-06 2000-11-08 华南理工大学 Arrangement for protecting overcharing/overdischarging for lithium ion battery set for electric vehicle
JP3676336B2 (en) * 2002-10-02 2005-07-27 本田技研工業株式会社 Output control device for hybrid vehicle
CN1238213C (en) * 2003-10-17 2006-01-25 清华大学 Power output changing-over method and control system for power assembly of mixed powder car
KR100520568B1 (en) * 2003-11-17 2005-10-11 현대자동차주식회사 The preventing device of over charging for auxiliary battery of environment-friendly vehicle
DE102004002761B4 (en) * 2004-01-20 2017-01-05 Daimler Ag Method for operating a drive train of a motor vehicle
US20060061922A1 (en) * 2004-09-22 2006-03-23 Cellex Power Products, Inc. Hybrid power supply system having energy storage device protection circuit
CN1769665B (en) * 2004-11-04 2011-06-15 丰田自动车株式会社 Driving device and control method thereof, and hybrid electric vehicle
JP2006262638A (en) * 2005-03-17 2006-09-28 Fujitsu Ten Ltd Device and method for hybrid control
CN1897449A (en) * 2005-07-15 2007-01-17 中国第一汽车集团公司 Motor torsional-moment outputting management with SOC variation for mixed-dynamical vehicle
JP2007112258A (en) * 2005-10-19 2007-05-10 Nissan Motor Co Ltd Engine start controller of hybrid drive unit
CN101264734B (en) * 2007-12-29 2010-11-10 奇瑞汽车股份有限公司 System protection control method for hybrid power automobile

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009092218A1 (en) * 2007-12-29 2009-07-30 Chery Automobile Co., Ltd. A system protection control method for the hybrid power automobiles
CN101966819B (en) * 2009-07-28 2013-09-11 北汽福田汽车股份有限公司 Electromobile mounted charging protection device, charging protection method and vehicle
CN102350982A (en) * 2011-07-25 2012-02-15 沃尔新(北京)自动设备有限公司 Automatic cleaning control system for train in driven state
CN105705755A (en) * 2013-10-31 2016-06-22 标致雪铁龙集团 Method for thermal protection of an internal combustion engine of a motor vehicle and corresponding engine computer
CN105705755B (en) * 2013-10-31 2019-07-02 标致雪铁龙集团 The heat protection method of vehicle internal combustion engine and corresponding computer in the engine
CN103692925A (en) * 2013-12-20 2014-04-02 奇瑞汽车股份有限公司 Economical driving mode control system of electric automobile
CN103692925B (en) * 2013-12-20 2016-03-23 奇瑞新能源汽车技术有限公司 The economic driving model control method of a kind of electronlmobil
CN104409789B (en) * 2014-11-24 2016-08-24 哈尔滨工业大学 A kind of charging method under the battery electric quantity imbalance with temperature protection function
CN104409789A (en) * 2014-11-24 2015-03-11 哈尔滨工业大学 Method for charging battery pack with temperature protection function in battery pack electric quantity unbalanced state
CN105811514A (en) * 2016-04-28 2016-07-27 郑州宇通客车股份有限公司 Dynamic balance charging control method and control system for power battery of double-source trolley bus
CN105811514B (en) * 2016-04-28 2019-04-05 郑州宇通客车股份有限公司 Double source trolleybus power battery dynamic equilibrium charge control method and control system
CN106505698A (en) * 2017-01-03 2017-03-15 青岛海信移动通信技术股份有限公司 Method of supplying power to and electric supply installation
CN108725260A (en) * 2018-07-24 2018-11-02 北京车和家信息技术有限公司 Overspeed protection method and device
CN114347978A (en) * 2021-12-24 2022-04-15 奇瑞汽车股份有限公司 Battery overcurrent protection method

Also Published As

Publication number Publication date
CN101264734B (en) 2010-11-10
WO2009092218A1 (en) 2009-07-30

Similar Documents

Publication Publication Date Title
CN101264734B (en) System protection control method for hybrid power automobile
AU2015100502A4 (en) A compound power system for an electrical vehicle
CN102668313B (en) Power-converting apparatus for hybrid vehicles
CN101716879B (en) Method for charging and discharging super capacitor module of a hybrid power automobile
US20070068714A1 (en) Method and apparatus for power electronics and control of plug-in hybrid propulsion with fast energy storage
CN206494687U (en) A kind of fork truck energy saver
CN111479734A (en) Control method and control device for hybrid vehicle
JP6582509B2 (en) Vehicle power supply system
CN104924919A (en) Apparatus for controlling motor in electric vehicle and method for preventing overheating of traction motor
CN201559546U (en) Super-capacitor discharge device for hybrid electric vehicle
US8364332B2 (en) Control algorithm for low-voltage circuit in hybrid and conventional vehicles
CN106976397B (en) Hybrid vehicle
JP2007191088A (en) Hybrid vehicle
JP6798437B2 (en) Electric vehicle
CN106799967B (en) The control device of electric vehicle
CN102658802A (en) Automobile idle speed start-stop system and hybrid power supply
CN205565759U (en) Double cell economizer system and be equipped with vehicle of this system
CN103129551B (en) Braking control system of hybrid vehicle
KR101634930B1 (en) Mild hybrid apparatus and controlling method
CN104015603B (en) A kind of load isolation formula oil electric mixed dynamic system
CN108798963B (en) Starting system based on fuel engine and automobile
CN202574067U (en) Automotive idling stop and start system and composite power supply
KR20110073128A (en) Two direction regenerative braking control method of electric vehicle with non contact electromagnetic inductive charging
CN201516806U (en) Vehicle power generation braking device
CN205997699U (en) Oil electric mixed dynamic system intelligent controller and oil electric mixed dynamic system

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant