CN101262286B - A novel ultra-wideband (UWB) energy detection circuit - Google Patents

A novel ultra-wideband (UWB) energy detection circuit Download PDF

Info

Publication number
CN101262286B
CN101262286B CN 200810073544 CN200810073544A CN101262286B CN 101262286 B CN101262286 B CN 101262286B CN 200810073544 CN200810073544 CN 200810073544 CN 200810073544 A CN200810073544 A CN 200810073544A CN 101262286 B CN101262286 B CN 101262286B
Authority
CN
China
Prior art keywords
circuit
uwb
energy
q2
module
Prior art date
Application number
CN 200810073544
Other languages
Chinese (zh)
Other versions
CN101262286A (en
Inventor
李晓记
林基明
赵家宾
Original Assignee
桂林电子科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 桂林电子科技大学 filed Critical 桂林电子科技大学
Priority to CN 200810073544 priority Critical patent/CN101262286B/en
Publication of CN101262286A publication Critical patent/CN101262286A/en
Application granted granted Critical
Publication of CN101262286B publication Critical patent/CN101262286B/en

Links

Abstract

本发明提供了一种新型的超宽带(UWB)能量检测电路,它主要由双管差分电路和串接在集电极的共模电容组成,本电路中的共模电模电容就是积分电容,晶体管偏置在靠近截止区的非线性区,在每个信号周期内,在同步选通清零脉冲所提供的时间窗口控制下对簇脉冲波形进行积分累积能量,积分电容周期性地充电积分、放电清零,实现平方器和积分器的功能,即∫s2(t)dt。 The present invention provides a novel ultra wideband (UWB) energy detection circuit, which mainly consists of a double pipe, and difference circuit is connected in series to the collector of the common-mode capacitors, this circuit is the common-mode mode capacitance integrating capacitor, transistor offset in the nonlinear region near the cut-off region of the signal in each cycle, the time window in the burst gate pulse is provided to clear the cluster control points accumulated energy pulse waveform, the integrating capacitor charged periodically integrating the discharge cleared the square and integrators realize the function, namely ∫s2 (t) dt. 本电路的优点是:简单、高效、易集成、成本低、且能抑制噪声,是比较实用的非相干能量积分检测电路。 Advantage of this circuit is: simple, efficient, and easy integration, low cost, and can suppress noise, it is more practical non-coherent energy integration detection circuit.

Description

一种新型的超宽带(UWB)能量检测电路 A novel ultra-wideband (UWB) energy detection circuit

技术领域: FIELD:

[0001] 本发明涉及脉冲超宽带通信接收机中超宽带信号的检测,特别是一种射频超宽带信号的非相干能量检测电路。 [0001] The present invention relates to the detection pulse UWB receiver super wideband signal, in particular a radio frequency signal incoherent ultra-wideband energy detection circuit.

背景技术: Background technique:

[0002] 超宽带(Ultra Wideband, UffB)通信有低功耗、低成本、低截获概率与低复杂性等特点,可广泛应用于短距高速数据传输,受到业界越来越多的关注。 [0002] Ultra-wideband (Ultra Wideband, UffB) communication and low power, low cost, low complexity and low probability of intercept and other characteristics, can be widely used short-range high-speed data transmission, more and more industry attention. 美国FCC专门开放了3. IGHz〜10. 6GHz频段供UWB通信使用。 US FCC opened up specially 3. IGHz~10. 6GHz frequency bands for UWB communication use.

[0003] 超宽带通信主要有两类实现方式——脉冲(Impulse Radio, IR)超宽带和多载波(Multi-carrier, MC)超宽带。 [0003] UWB implementations are mainly two types - Pulse (Impulse Radio, IR) and ultra-wideband multicarrier (Multi-carrier, MC) ultra-wideband. IR-UWB主要有两种实现方法,一是基带脉冲超宽带,直接用极窄脉冲承载数据信息进行传输;另一种方法是频带脉冲方式,在3. IGHz〜10. 6GHz频段产生带宽超过500MHz的射频脉冲信号来作为数据信息载体。 IR-UWB There are two methods, one UWB baseband, directly transmitting very narrow pulse carries data information; Another approach is to band pulse, generated 3. IGHz~10 6GHz band than the bandwidth of 500MHz RF pulse signal as the data carrier. 无论哪种实现方式,IR-UffB的辐射信号均是宽度为纳秒(ns)或亚纳秒级的超宽带脉冲信号。 Either implementation, IR-UffB radiation signals are a width of nanoseconds (ns) or sub-nanosecond UWB signal pulse.

[0004] 在IR-UWB系统中,宽度为ns或亚纳秒级的超宽带脉冲信号经实际信道传输后脉冲波形会产生严重畸变,同时,在其典型的室内密集多径信道应用环境下,接收脉冲信号由于多径可分辨特点而呈现出射频簇脉冲波形特征。 UWB pulse signal [0004] In the IR-UWB system, the width of ns or sub-nanosecond by the pulse waveform of the actual channel transmission will produce serious distortion, while, in its typical indoor dense multipath channel environments, receives the pulse signal due to multipath resolvable features presented RF pulse waveform feature clusters. 对这种波形的理论最佳检测方式是相干检测,但是由于接收端无法提供准确的本地模板波形,实现的技术难度大。 The best way to detect such a waveform is coherent detection theory, but because the receiving end can not provide accurate local template waveform, achieved great technical difficulty. 一般都是采用次优的非相干能量检测方式,即通过限定的时间窗口对接收簇脉冲波形进行积分累积能量, 以积分最大值超过门限来作检测判决。 Are generally used non-coherent energy suboptimal detection method, i.e., a time window defined by the cumulative energy of the received pulse waveform by integrating the cluster, the integral exceeds the maximum threshold to make detection decisions. 因此,简单高效的射频积分电路成为UWB脉冲检测的关键技术。 Thus, a simple and efficient radio frequency integrating circuit become the key technology of the UWB pulse detection. 本电路无需模板,充分收集多径能量,提高能量检测效率。 This circuit without a template, the full collection of multi-path energy, improve the efficiency of energy detection. 满足了这种简单、 高效射频检测的需求。 Satisfies this simple and efficient radio frequency detection needs.

发明内容: SUMMARY:

[0005] 本发明的目的在于为IR-UWB提供一种成本低、易集成、高速、高效、实用的非相干能量检测电路。 [0005] The object of the present invention is to provide IR-UWB low-cost, easy integration, high-speed, efficient and practical non-coherent energy detection circuit.

[0006] 本发明的UWB信号接收机电路包括低噪声放大器(LNA)、能量检测器、基带处理、 同步选通清零等模块,能量检测模块由平方积分和判决及电平转换电路组成,其特征是:平方积分由双管差分电路和串接在集电极的共模电容组成,其在接收机中前与LNA电路模块相接,后与判决及电平转换电路模块相连,并受同步选通清零模块提供积分时间窗口宽度来控制。 [0006] UWB signal receiver circuit of the present invention comprises a low noise amplifier (the LNA), an energy detector, the baseband processing modules burst gate is cleared, the energy detection module and a square integration and level conversion decision circuit which characterized in that: a double integral of the square tubes and the difference circuit is connected in series to the collector of the common mode capacitor, whose contact with the LNA circuit block in the receiver before and after the decision and is connected to the level conversion circuit modules and synchronization is selected by clearing module through the integration time window width control.

[0007] 所述的双管差分电路由差分对管组成,差分对管不仅发射极接在一起,集电极也连在一起。 The [0007] difference circuit by the double tube composed of differential pair transistors, only the emitter differential pair connected together, the collector also connected together.

[0008] 所述的共模电容接在差分对管集电极和电源之间,对差分对管来讲,共模电容即积分电容,晶体管偏置在靠近截止区的非线性区。 The common mode capacitance of the [0008] connection between the differential pair and the collector of the power, in terms of the differential pair, i.e. the integrating capacitor common mode capacitor, the transistor is biased in the linear region near the cut-off region.

[0009] 在输入差模信号作用下,在集电极产生单向差值增量电流,并对积分电容C充电积分,在集电极输出积分检测信号。 [0009] In the differential mode input signal is applied, generating a unidirectional incremental difference in the collector current, and integrating the integrating capacitor C is charged, the collector of the output detection signal integration. 每个信号周期内,在同步选通清零脉冲所提供的时间窗口控制下,对簇脉冲波形进行积分累积能量。 Per cycle, at the time window synchronization strobe pulses provided by the clear control of the pulse waveform is integrated cluster accumulated energy. 积分电容周期性的充电积分、放电清零,实现平方器和积分器的功能,即/ s2(t)dt。 Periodically charging the integrating capacitor integrator, the discharge is cleared, and integrators to achieve the square function, i.e. / s2 (t) dt.

[0010] 对于模块化或单片集成来讲,可以用电流源偏置,改变偏置电阻,调整非线性工作状态。 [0010] For modular or monolithic integration is concerned, the bias current source can be used to change the bias resistor, a nonlinear adjustment of the operating state. 还可以设置积分电容引脚,增加改变电容大小的灵活性。 You can also set the integrating capacitor pin, to increase the flexibility of changing the size of the capacitor.

[0011] 本电路的优点:简单、高速、高效率、易集成、成本低、且能抑制噪声,是比较实用的非相干能量积分检测电路。 [0011] The advantages of the circuit: a simple, high speed, high efficiency, easy integration, low cost, and can suppress noise, it is more practical non-coherent energy integration detection circuit.

附图说明: BRIEF DESCRIPTION OF:

[0012] 图1为UWB接收机电路模块连接框图; [0012] FIG. 1 is a block diagram of a UWB receiver circuit module is connected;

[0013] 图加为UWB能量积分检测电路示意图; [0013] FIG. Add UWB energy detection integrator circuit schematic;

[0014] 图2b为UWB能量积分检测电路电流波形示意图; [0014] FIG 2b is a UWB energy detection circuit integrating the current waveform diagram;

[0015] 图3为本发明实施例UWB能量积分检测、判决和电平转换电路示意图。 [0015] FIG. 3 is a schematic diagram UWB energy detection integration, and decision level conversion circuit according to the present invention.

[0016] 图加中:Vid、-Vid为输入射频窄脉冲差模信号氓〜R4为分压式偏置电阻,将差分对管0^¾)偏置在靠近截止区的非线性工作状态;c为积分电容K1和C2为输入隔直电容,Rl为积分器负载;Q3为清零管;VK为同步选通清零信号•'N0为积分器输出信号。 [0016] FIG. Canada: Vid, -Vid narrow RF pulse input differential mode signal is a rogue ~R4 formula dividing bias resistors, the differential pair transistors 0 ^ ¾) offset in the nonlinear operating state near the cut-off region; c is an integrating capacitor C2 K1 and the input blocking capacitor, Rl load integrator; Q3 is a clear tube; VK synchronous strobe signal is cleared • 'N0 is the integrator output signal.

具体实施方式: Detailed ways:

[0017] 下面结合附图和实施例对本发明内容作进一步的描述: [0017] The following embodiments in conjunction with the drawings and embodiments of the present invention is further described:

[0018] 本发明采用双管差分电路,在信号周期内,射频簇脉冲对共模电容充电实现积分言旨量累积。 [0018] The present invention employs a double-tube differential circuit, within the signal period, the RF pulse clusters to achieve a common mode capacitor charge amount cumulative integrator made purpose.

[0019] 参照图1、图2能量积分电路模块在接收机中前接LNA,后连基带处理模块,并受同步选通清零模块的控制。 [0019] Referring to FIGS. 1 and 2 in the energy integration circuit module connected to the receiver before the LNA, even after the baseband processing module, and is cleared by the burst gate control module.

[0020] 能量积分电路的工作过程是: [0020] The processes and energy integration circuit comprises:

[0021] 如果晶体管Qp Q2工作在线性工作状态,贝Ijk1 + ic2 = Icq1 + Zcq2,其中Icqi和Iai2为晶体管的静态工作电流。 [0021] If the transistor Qp Q2 operates in a linear operating state, shellfish Ijk1 + ic2 = Icq1 + Zcq2, and wherein Icqi Iai2 static operational current of the transistor. 对C充电的电流中,没有反映信号的电流分量,对信号没有积分检测作用。 C charging current, no current component reflected signal, there is no effect on the integrating detector signal. 但是,当Qi、Q2偏置在靠近截止的非线性工作状态时,电路中电流波形如图2b所示。 However, when Qi, Q2 biased when working close to the nonlinear off state, the current waveform in the circuit shown in Figure 2b. 在差模信号作用下,当兑输入信号Vid为正,Q2输入信号-Vid为负时, i-Cl + ic2 = IcQi + Icq2 + Aic, — |Δ“|,其中交流分量» |Δ'|,对积分电容C 充电 In the differential mode signal is applied, when the input signal Vid against positive, Q2 -Vid input signal is negative, i-Cl + ic2 = IcQi + Icq2 + Aic, - | Δ "|, wherein the alternating current component» | Δ '| , the integrating capacitor C is charged

的电流Aic : Ai0l 一|AiC2| > O。 The current Aic: Ai0l a | AiC2 |> O. 相反,当A输入信号Vid为负,Q2输入信号-Vid为正时, In contrast, when the input signal Vid A is negative, Q2 -Vid input signal is positive,

iCl + ic2 二ICQ1 + ICQ2 + ^ic2 — |,其中交流分量> |Δ、|,对积分电容C充电 iCl + ic2 two ICQ1 + ICQ2 + ^ ic2 - |, wherein the alternating current component> | Δ, |, the integrating capacitor C is charged

的电流Δ。 The current Δ. 二Aic2 - |Δ仏I > Oc因此,每个半周都有反映信号的单向差值电流Aie对积分电容C充电积分。 Two Aic2 - | Δ Fo I> Oc Thus, each half cycle of the signal are reflected unidirectional Aie difference current integrator integrating capacitor C is charged. 完成了图1中/ S2(t)dt功能,即对信号平方积分功能。 In the completed / S2 (t) dt 1 function, i.e. the integral function of the square of the signal.

[0022] 由于信号可以分解为差模分量和共模分量,在差分非线性电路中形成了较强的全波单向电流,对积分电容C充电积分,输出较强的积分检测信号电压。 [0022] Since the signal can be decomposed into a differential mode component and a common-mode component, the nonlinear differential circuit formed in a full-wave rectifying strong, integral integrating capacitor C is charged, the output voltage detection signal stronger integration. 噪声没有差模分量、 共模分量的特性,对积分电容C产生的噪声积分电压很小。 No differential mode noise components, common mode characteristic component, small noise integrated voltage of the integrating capacitor C generated. 因此,本电路对噪声有较好的抑制作用。 Thus, this circuit has a good restraining noise.

[0023] 图3是UWB能量积分检测、判决和电平转换电路。 [0023] FIG. 3 is integral UWB energy detection, and decision level conversion circuit. 利用本电路对中心频率3. 5GHz, 脉冲宽度4ns,速率IOOMbps的信号作积分检测,仿真实验效果良好。 With the present center frequency circuit 3. 5GHz, 4ns pulse width, the rate for integral detection signal IOOMbps good simulation results. [0024] 能量积分电路105和图加相同,完成/ s2(t)dt功能。 [0024] The integrating circuit 105 and the energy plus the same, complete / s2 (t) dt function. Vtl为判决器的输入信号, 即能量积分检测器的输出信号,波形如图中301所示,幅度一般达到几百mV。 Vtl decision as an input signal, i.e., the integrator output signal energy detector 301 shown in FIG waveform, the amplitude is generally several hundred mV. 判决器由比较器302和基准电源303组成,比较电平的调节由电位器&完成。 Determinator 302 and a comparator 303. The reference power supply, the comparison is done by electric adjusting level & potentiometer. 晶体管Q及R7、&和&完成电平转换功能。 Transistor Q and R7, & and & completion level conversion function. 负载&是基带处理电路的输入电阻。 Load & is the input resistance of the baseband processing circuit. Vb为输出到基带处理单元的信号, 波形如图中304所示,幅度约为2V。 Vb is the output signal to the baseband processing unit, as shown in the waveform 304, by about 2V.

[0025] 积分器与判决器之间、比较器与电平转换电路之间均采用直接耦合电路。 [0025] between the integrator and the decider, both direct coupling between the comparator circuit and the level converting circuit.

[0026] 本电路实测效果好,且工作稳定可靠。 [0026] This circuit is found effective, and stable and reliable.

Claims (1)

1. 一种新型的超宽带(UWB)能量检测电路,包括脉冲超宽带接收机中的低噪声放大器LNA(IOl)、能量积分检测器(102)、基带处理(103)、同步选通清零(104)模块,能量积分检测模块(10¾由平方积分(105)、判决及电平转换电路(106)组成,其特征是:平方积分(105)由双管差分电路和串接在集电极的共模电容C组成,其在UWB接收机中前与低噪声超宽带放大器LNA(IOl)电路模块相连接,后与判决及电平转换电路模块(106)相连接,并受同步选通清零模块(104)提供的积分时间窗口宽度来控制,所述的双管差分电路由Ql、Q2 差分对管组成,QU Q2差分对管不仅发射极连接在一起,集电极也连接在一起;所述的共模电容C连接在Q1、Q2差分对管集电极和电源之间,对Q1、Q2差分对管来讲,共模电容C即积分电容,Q1、Q2差分对管偏置在靠近截止区的非线性区。 1. A novel ultra-wideband (UWB) energy detection circuit, including UWB receiver low noise amplifier LNA (IOl), energy integration detector (102), a baseband processor (103), burst gate is cleared (104) module, the energy integral detection module (10¾ by the integral of the square (105), and the decision level conversion circuit (106) composition, characterized in that: integral of the square (105) by a double-tube differential circuit and the collector of the series common-mode capacitance C form, which is connected to the UWB receiver front and ultra-wideband low-noise amplifier LNA (IOl) circuit module, and the level conversion circuit and the decision module (106) is connected to, and is cleared by the burst gate the integration time window width module (104) provided to control the differential circuit by the double tube Ql, Q2 differential pair tubes, QU Q2 emitter differential pair are connected together only, the collector also connected together; the the common mode capacitor C is connected in Q1, Q2 and the collector of a difference between power of Q1, Q2 differential pair concerned, i.e. common-mode capacitance integrating capacitor C, Q1, Q2 differential pair biased close to cut-off region the nonlinear region.
CN 200810073544 2008-04-19 2008-04-19 A novel ultra-wideband (UWB) energy detection circuit CN101262286B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200810073544 CN101262286B (en) 2008-04-19 2008-04-19 A novel ultra-wideband (UWB) energy detection circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200810073544 CN101262286B (en) 2008-04-19 2008-04-19 A novel ultra-wideband (UWB) energy detection circuit

Publications (2)

Publication Number Publication Date
CN101262286A CN101262286A (en) 2008-09-10
CN101262286B true CN101262286B (en) 2011-11-30

Family

ID=39962527

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200810073544 CN101262286B (en) 2008-04-19 2008-04-19 A novel ultra-wideband (UWB) energy detection circuit

Country Status (1)

Country Link
CN (1) CN101262286B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101425810B (en) 2008-12-05 2012-10-03 清华大学深圳研究生院 Pulse ultra wideband receiver
CN101834627B (en) * 2010-03-31 2013-09-18 清华大学深圳研究生院 High speed wireless communication receiving method based on ultra wide band wireless technology and receiver
CN103138582B (en) * 2011-11-24 2015-04-22 深圳市明微电子股份有限公司 Cross-mode high-low-voltage compensation circuit
CN103067043A (en) * 2012-12-21 2013-04-24 桂林电子科技大学 Modulation tracking loop demodulator and demodulation method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1992539A (en) 2005-12-31 2007-07-04 北京大学 Method and apparatus for receiving weighted non-coherent ultra-broad band
CN101083482A (en) 2007-07-12 2007-12-05 北京邮电大学 Signal receiving method for pulse ultra-broadband communication system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1992539A (en) 2005-12-31 2007-07-04 北京大学 Method and apparatus for receiving weighted non-coherent ultra-broad band
CN101083482A (en) 2007-07-12 2007-12-05 北京邮电大学 Signal receiving method for pulse ultra-broadband communication system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
马岩等.一种结构简单UWB接收机的设计与实现.《通信与计算机》.2005,

Also Published As

Publication number Publication date
CN101262286A (en) 2008-09-10

Similar Documents

Publication Publication Date Title
US7079827B2 (en) Method and apparatus for power control in an ultra wideband impulse radio system
Ho et al. A differential detector for an ultra-wideband communications system
US6937663B2 (en) Baseband signal converter for a wideband impulse radio receiver
Zhao et al. Performance of ultra-wideband communications in the presence of interference
Phan et al. Energy-efficient low-complexity CMOS pulse generator for multiband UWB impulse radio
US20030067963A1 (en) Mode controller for signal acquisition and tracking in an ultra wideband communication system
Carbonelli et al. Synchronization algorithms for UWB signals
US6912372B2 (en) Ultra wideband signals for conveying data
US7643533B2 (en) Agile clock mechanism and method for ultrawide bandwidth communications system
Qiu et al. Ultra-wideband for multiple access communications
US8620394B2 (en) Method and system for impulse radio wakeup
Dubouloz et al. Performance analysis of LDR UWB non-coherent receivers in multipath environments
Fazzi et al. A 2.75 mW wideband correlation-based transceiver for body-coupled communication
EP1269644A2 (en) Apparatus, system and method in an impulse radio communications system
EP1386410A1 (en) Method and apparatus for signal detection in ultra wide-band communications
Zheng et al. A CMOS carrier-less UWB transceiver for WPAN applications
Solda et al. A 5 Mb/s UWB-IR Transceiver Front-End for Wireless Sensor Networks in 0.13$\mu {\hbox {m}} $ CMOS
Sheng et al. On the spectral and power requirements for ultra-wideband transmission
Crepaldi et al. An ultra-wideband impulse-radio transceiver chipset using synchronized-OOK modulation
CN101946474B (en) Impulse ultra-wideband radio communication system
US20100272150A1 (en) Receiving apparatus and receiving method of impulse-radio uwb wireless system
Rabbachin et al. ML time-of-arrival estimation based on low complexity UWB energy detection
Zhang et al. Performance of ultra-wideband correlator receiver using Gaussian monocycles
US7869548B2 (en) Ultra-wideband receiver
Guo et al. Improved autocorrelation demodulation receivers based on multiple-symbol detection for UWB communications

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
C14 Granted
C17 Cessation of patent right