CN101231642A - Space-time database administration method and system - Google Patents

Space-time database administration method and system Download PDF

Info

Publication number
CN101231642A
CN101231642A CN 200710147561 CN200710147561A CN101231642A CN 101231642 A CN101231642 A CN 101231642A CN 200710147561 CN200710147561 CN 200710147561 CN 200710147561 A CN200710147561 A CN 200710147561A CN 101231642 A CN101231642 A CN 101231642A
Authority
CN
China
Prior art keywords
data
temporal
entity
time
Prior art date
Application number
CN 200710147561
Other languages
Chinese (zh)
Inventor
史绍雨
唐新明
汪汇兵
Original Assignee
中国测绘科学研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国测绘科学研究院 filed Critical 中国测绘科学研究院
Priority to CN 200710147561 priority Critical patent/CN101231642A/en
Publication of CN101231642A publication Critical patent/CN101231642A/en

Links

Abstract

The invention discloses a spatiotemporal database management method, as well as a management system and a program product thereof. The spatiotemporal database management system comprises a data collection part, a spatiotemporal data association part and a spatiotemporal data management part, wherein, the data collection part is used to collect or receive the spatial information and the timing information about a geographical entity from external systems, and the produced and existed object timing information of the data are arranged; the spatiotemporal data association part is used to associate various data obtained from the data collection part with the object timing information, and store the association into a corresponding spatiotemporal data file, so as to express the evolution history of the geographical entity and predict the change of the geographical entity; the spatiotemporal data management part is used to respectively store the spatiotemporal data file produced by the spatiotemporal data association part according to the temporal information recorded by the timing information of the geographical entity and the evolution trend recorded by the spatial information of the geographical entity, so as to compose a spatiotemporal database.

Description

时空数据库管理方法及其系统技术领域本发明涉及时空数据库管理方法及其使用该方法的时空数据库管理系统。 Temporal database management method TECHNICAL FIELD The present invention relates to a temporal database management method and the method using space-time database management system. 更确切地说,本发明涉及地理实体对象的空间信息与时间信息有机结合在一起来对地理实体对象进行管理和应用的时空数据库管理系统。 More particularly, the present invention relates to a spatial information and time information of object geographic entities combine together geographic entity object space-time database management systems and application management. 背景技术曰新月异的空间技术、信息技术,促进了全球社会的信息化。 BACKGROUND said crescent space technology and information technology-specific, and promote the global information society. 信息社会的发展, 一方面对地理信息的现势性提出了强烈需求;另一方面有力地推动着国家基础地理信息的不断更新,产生大量的地理历史数据。 Development of information society, on the one hand, the potential of geographic information now made a strong demand; on the other hand a strong impetus to the continuous updating of the national fundamental geographic information, a large amount of historical data geography. 各发达国家不仅强调维护地理信息的现势性,而且注重保存历史数据。 Developed countries not only emphasizes the current trend to maintain geographic information, but also pay attention to the preservation of historical data. 我国各级比例尺的基础地理信息数据库不断进行更新,满足了国民经济和社会发展对地理信息现势性的需求。 Basic geographic information database scale in our country at all levels continue to be updated to meet the economic and social development of the geographic information current trend of demand. 在更新过程中,产生了大量的历史数据,由于历史数据的使用频率比现势数据小得多,很容易被人们忽略。 During the update process, resulting in a large amount of historical data, the frequency of the use of historical data is much smaller than the current potential of the data can easily be overlooked. 但历史数据有着广泛的应用,它们是预测预报和决策分析的重要依据。 However, historical data has been widely used, they are forecasting an important basis for analysis and decision-making. 在地籍信息系统中历史数据是土地估价、土地交易等的不可或缺的数据。 In the cadastral information system is an integral part of the historical data data land valuation, land transactions and the like. 在国家基础地理信息系统中,历史数据是研究地理变迁的基础。 At the national basic geographic information systems, historical data is the basis for study geography changes. 随着信息时代的到来,数据随时间的累积呈爆炸式增长。 With the advent of the information age, data is exploding with an accumulated time. 时间的加入大大丰富了数据库的内容,同时也增加了数据库管理的复杂程度。 Joined greatly enriched the content of the database, also increases the complexity of database management. 如何有效地管理不同时间获得的数据是时空数据库需要解决的关键问题。 How to effectively manage data at different times to obtain spatio-temporal database is a key problem to be solved. 需要一种通用的时空数据系统(General Spatio-temporal Database System ),使其不仅能够支持多类型、海量的时空数据存储、管理与分析,而且能够满足历史状态的保存和恢复、变化的跟踪和预测等要求,对于加强对海量数据处理的能力、 提高地学分析的深度、开拓地学决策分析的技术手段具有重要意义。 We need a universal space-time data system (General Spatio-temporal Database System), so not only can support multiple types of space-time massive data storage, management and analysis, and can meet the state historical preservation and restoration, change tracking and forecasting etc., to strengthen the capacity for mass data processing and improve the depth of the analysis, pioneering the science of decision analysis techniques is important. 如何解决多版本数据间(历史数据和现势数据)的有效整合,实现时空数据的一体化存储管理,向全社会提供更好更全面的地理信息服务是一个非常紧迫而重要的任务,是解决海量基础地理数据存储复杂的重要途径,是满足基础地理数据高效管理的重要手段,是挖掘基础地理信息应用潜力的重要基础。 How to solve the effective integration of (existing historical data and trend data) between multiple versions of data, integration of data storage management time and space, the whole society to provide better and more comprehensive geographic information service is a very urgent and important task is to solve the massive an important way to store complex basic geographic data, geographic data is an important means of efficient management of the foundation meet, is an important foundation excavation basic geographic information application potential. 目前,时空数据关联、时空索引、动态可视化和时空数据管理等时空数据库的关键技术领域方面还存在着一些不足,具体如下:在时空数据关联技术方面,时空数据关联技术用于确定实体亲缘关系、 实体变化类型,提取时空数据,以实现历史数据和现势数据之间的一体化管理。 Currently, the key technical fields spatiotemporal data correlation, spatiotemporal index, Dynamic Visualization and temporal data management temporal database there are still some problems, as follows: in the spatiotemporal data correlation techniques, data associated with spatial and temporal technique for determining physical relationship, changes in the type of entity, extract spatio-temporal data, in order to achieve integrated management between historical and current trend data. 目前,现有时空数据关联方法的研究还不够深入,还有待于进一步研究, 时空变化类型需要进一步进行划分目前用于区分各种时空过程的时空变化类型尚没有形成共识,多种划分方法已被提出,如Christophe Claramimt给出了几种时空过程建模的设计类型,为新变化类型的定义提供可扩展的体系结构。 At present, the existing spatio-temporal data associated method is not deep enough, needs further study, temporal changes need to be further divided type currently used to distinguish between temporal and spatial variation of various types of space-time processes is still no consensus, various methods have been divided proposed, such as temporal Christophe Claramimt shows several types of process modeling design, providing a scalable architecture for the new changes in the type definition. K. Hornsby和M. Egenhofer深入研究了时空变化的语义,提出了9种时空变化类型。 K. Hornsby and M. Egenhofer depth study of the spatial and temporal changes in semantics, temporal changes proposed nine types. 但这些变化类型对于时空过程尚未形成一个完整和系统地描述。 However, these types of changes to the temporal process is not a complete system and described. 在时空索引方面,目前现有的时空索引可以分成3种类型。 In terms of space-time index, spatiotemporal index currently available can be divided into three types. (1)4巴时间信息加入索引结构的结点,在每个结点中使时间间隔与空间范围结合,如TR-Tree、 Multi-VersionB-Trees(MVB-trees)。 (1) 4 bar, the time information added to the node of the index structure, spatial range and time interval incorporated in each node manipulation, such as TR-Tree, Multi-VersionB-Trees (MVB-trees). 其索引存储结构通常为〈S, T, P>, S存储的是实体的空间信息(MBR), T存储的是实体的时间信息。 Index storage structure which is generally <S, T, P>, S is the spatial information storage entity (MBR), T is the time information storage entity. P是指向子结点的指针。 P is a pointer pointing to child nodes. 这种时空索引类型需要较多的存储空间,在查询现势库时具有高效的查询效率,但是在进行时间窗口查询时,有可能遍历整个树结构, 这将影响查询效率。 This spatiotemporal index type requires more storage space, with efficient query efficiency potential in the current query libraries, but when the time window during the inquiry, it is possible to traverse the entire tree structure, which will affect query efficiency. (2)用重叠索引结构表达不同时刻的数据库状态,如Historical R-trees(HR-trees)。 (2) expressing the state of the database at different times, such as Historical R-trees (HR-trees) to overlap with the index structure. 这种索引方式节省空间,但当存在大量的移动对象时,索引将会退化到R-Tree。 When such an index space saving manner, but there are a lot of moving objects, the index will be degraded to the R-Tree. (3)把时间作为实体的另一维,利用2个R-Tree 索引, 一个索引实体的空间信息,另外一个索引实体的时间信息(如3D R-trees)。 (3) the time dimension as another entity utilizing two R-Tree index, a physical index of spatial information, the time information of the other entity (e.g., 3D R-trees) index. 其优点是能对多维数据进行处理,但对移动对象的处理会消耗大量的空间,对时空数据进行索引时,需要访问两个R-Tree,这将影响查询效率。 The advantage is capable of multidimensional data processing, but the processing of moving objects can consume a lot of space, time and space when data is indexed, you need access to two R-Tree, which will affect query efficiency. 目前各种时空索引方式,均不能在时间点查询、短时间区查询以及长时间区查询等时空查询方式上同时具有很好的查询效率。 Currently a variety of space-time indexing, query can not point at the time, but also has good query efficiency on short-term and long area district query query query time and space. 在动态可视化方面,动态可视化应用于动态地理信息表达可以对地理现象进行过程推演、过程再现、实时跟踪以及运动^^拟,^v而表现地理现象的内在本质和发生规律。 The inherent nature of the dynamic visualization, dynamic visualization of geographic information used in dynamic expression may be geographical phenomenon deduction process, the process of reproduction, the proposed real-time tracking and motion ^^, ^ v geographical phenomena and manifestations and Occurrence. 为了实现时空过程的动态可视化,主要有两种方法被提出:(l)连续快照法,采用一系列状态对应的地图来表现时空变化的状态, 即在系列静态地图上,而是通过一系列的一定的时间片段的单幅地图(或影像图)的描述来实现了在视觉上的动态效果。 Space-time process for dynamic visualization, two main methods have been proposed: (l) consecutive snapshots method, using a series of states corresponding to the map to show temporal changes of the state, i.e., the series of static in the map, but through a series of map a certain single time segments (or video image) to achieve the described effect in the visual dynamic. 这种动态视觉建立在缺乏分析与计算的基础上,并且实现连续快照法需要较大的存储空间,要完成多幅地图或影像的连续快照,对存储这些地理数据的数据库提出了很高的要求。 This dynamic vision based on the lack of analysis and calculation, and the need to achieve greater storage space continuous snapshot approach, to complete a continuous snapshot pages of maps or images, these databases for storing geographic data presented a very high demand . (2) 动态符号法(动态地图法),动态符号法是在时空数据库管理系统的基础上, 首先,根据现实时间和系统表示时间的映射,综合出合理的时间粒度,再根据时空数据库中存贮的多时态和多版本地理数据的关联结果,按照时间发展的顺序或逆序,采用动态地图符号表达动态地理现象,形成动态地图,并在一定的介质上(如电子屏幕)来表达时空变化的过程。 (2) dynamic symbol method (dynamic map method), dynamic symbol method is based on the spatio-temporal database management system, firstly, a map showing the time based on real time systems, integrated a reasonable time granularity, and then kept under spatio-temporal database the reservoir is large state and the associated result of multiple versions of geographical data, in time of development or reverse order, dynamic map symbols in the expression of geographic phenomena, form a dynamic map, and in a certain medium (electronic screen) to express the temporal change process. 动态符号的设计和应用涉及计算机图形学、计算机动画、图形显示技术等多种理论与技术。 Design and application of dynamic symbol involving computer graphics, a variety of theories and techniques of computer animation, graphics display technology. 上述两种方法中,后一种方法可以较好地实现时空过程的表达,但是其还处于试验研究的水平上,需要对基于动态符号的时空可视化方法进一步开发,以能够进行时空回溯等时空分析功能。 Temporal analysis of these two methods, the latter method can achieve better spatial and temporal expression of the process, but it is still in the experimental research level, we need to further develop visualization methods based on temporal dynamic symbols, and the like to enable temporal backtracking Features. 在时空数据管理方面,时空数据库模型对于提高时空数据存储和管理的效率起着关键的作用。 In the spatio-temporal data management, spatio-temporal database model to improve the efficiency of space-time data storage and management plays a key role. 目前,为了实现时间信息和空间信息的一致性处理,各种数据模型被提出,但都存在各种各样的问题。 Currently, in order to achieve consistent processing time information and spatial information, various data models have been proposed, but there are a variety of problems. 例如:时间立方体模型在随着数据量的增加时,对立方体的操作会变得越来越复杂,以至于最终变得无法处理;序列快照模型的存储则存在大量的数据的冗余;基态修正模型可以大大地节约计算机的存储空间,但难于处理给定时刻的时空对象间的空间关系。 For example: Time cube model when the amount of data increases, the operation of the cube will become more complex, so that eventually becomes unable to process; snapshot model stored sequence redundancy large amount of data is present; ground state correction model can greatly save the memory space of the computer, but difficult to handle temporal spatial relationship between the object at a given moment. 时空复合模型在地理实体历史状态检索和全局状态重构的效率较低; 面向对象的模型支持时空复杂对象建模,但理论基础和实现技术上还没有达成共识,实现较为困难。 Time Complex model of geographical entities in state history to retrieve and low global state reconstruction efficiency; support for complex object modeling spatio-temporal object model, but the theoretical basis and technical realization has not yet reached a consensus more difficult to achieve. 现有的模型大多只侧重于时间域和空间域的一个方面,而且是逻辑层面(概念模型)上研究的较多,不适于进行时空数据库设计实现,难以实现多类型、海量的时空数据存储、管理与分析。 Most existing models focus on only one aspect of time and spatial domain, but more research is the logical level (conceptual model), not suitable for spatio-temporal database design and implementation, it is difficult to achieve multi-type, mass data storage of time and space, management and analysis. 发明内容因此,根据本发明的优选实施方式,提供能够整合地理信息系统中的历史数据和现势数据,有效支持要素级的历史回溯和时空查询,实现地理信息要素的动态管理的时空数据库管理系统。 Accordingly, according to a preferred embodiment of the present invention, there is provided to integrate the historical data and the current potential of the data geographic information system, effectively support the historical review and temporal feature level query, dynamically managing geographic information element of the spatiotemporal database management systems. 根据本发明的一个方面,提供时空数据库管理系统,包括:数据采集部分,用于从外部系统采集或接收关于地理实体的空间信息和时间信息,并对这些数据设置关于其产生和存在的事物时间信息;时空数据关联部分,用于将由数据采集部分所获得的各数据以及事物时间信息进行关联,并保存成相应的时空数据文件,以表达该地理实体之间的演变历史并预测地理实体的变化;以及时空数据管理部分,用于按照地理实体的时间信息所记载的时态以及地理实体的空间信息所记载的演变关系,将时空数据关联部分所产生的时空数据文件分别进行保存以构成时空数据库。 According to one aspect of the present invention, a temporal database management system, comprising: a data acquisition part for acquiring or receiving time information and spatial information about geographic entity from an external system, and data settings things on time and which generates a presence information; spatio-temporal data associated with part data for each part obtained by the data acquisition and the time information associated with things, and save the file to the appropriate spatial and temporal data to express the evolution of history between the geographical entity and predict changes in the geographical entity ; and temporal data management section, in accordance with the evolution of the relationship for the temporal and spatial information of the time information of geographical entities described geographic entity described, the temporal data associated temporal data generation section configured files are saved to a database temporal . 根据本发明的一个方面,该时空数据库管理系统还包括时空数据管理更新部分,用于在之前已经构造了关于该地理实体的时空数据库的情况下,根据时空数据关联部分所产生的时空数据,以增量方式更新时空数据库。 According to one aspect of the present invention, the database management system further comprises a temporal spatiotemporal data management section updates for previously constructed on the case where the geographic database temporal entity, in accordance with temporal data associated temporal data generation section to incrementally update the spatio-temporal database. 根据本发明的一个方面,该时空数据库管理系统的空间信息包括地理实体的空间信息、属性信息、地理实体之间的亲缘关联类型信息,而该时空数据库管理系统的时间信息包括地理实体的时间信息和历史数据信息。 According to one aspect of the invention, the spatial temporal information management system database includes information on the geographical spatial entity, attribute information, type information of affinity association between the geographic entities, and the time information of the temporal database management system time information comprises geographic entity historical data and information. 根据本发明的一个方面,该时空数据库管理系统的时空数据包括时间字段、空间字段和属性字段,分别用于存储该时空数据的时间信息、空间状态信息和属性信息。 According to one aspect of the present invention, the space-time database management system includes a time data field temporal, spatial and property fields, respectively, the time information for temporal data, spatial state information and attribute information storage. 根据本发明的一个方面,该时空数据库管理系统的时空数据的时间字段所记录的时间信息包括地理实体存在于现实世界中的时间信息以及事物时间信息,该事物时间信息为时空数据存在于数据库的时间信息。 According to one aspect of the invention, the time information time field spatio-temporal data of the spatio-temporal database management systems that are logged include geographical entities exist in the time information as well as things temporal information in the real world, the things time information spatio-temporal data exists in the database time information. 根据本发明的一个方面,该时空数据库管理系统的时空数据关联部分根据地理实体的特征部分的属性及几何形态之间的关系,确定时空数据的变化类型作为关联类型,并利用所确定的变换类型将时空数据有选择地进行手动或自动关联。 According to one aspect of the present invention, the data portion of the associated temporal database management system according to the temporal relationship between the attributes and geometric characteristics of the portion of the geographic entity, the data is determined as the temporal change type association type, and using the determined transform type the temporal data is selectively associated manually or automatically. 根据本发明的一个方面,该时空数据库管理系统的关联类型包括下列关联类型之一或它们的一部分或全部的组合:没有变化、 一般变化、新增、消失、拆分、合并、扩张、收缩,其中没有变化表示地理实体的几何形状没有发生变化; 一般变化表示地理实体的几何形状发生了不规则变化;新增表示新时态中的地理实体是新增的;消失表示旧时态中的地理实体是消失的;拆分表示旧时态中的一个地理实体分解成为新时态中的两个或两个以上的地理实体,旧时态中的一个地理实体的长度或面积等于新时态中地理实体的长度态中的一个地理实体,旧时态中地理实体的长度或面积之和等于新时态中一个地理实体的长度或面积;扩张表示旧时态中的一个地理实体面积扩大,且旧时态的地理实体包含于新时态中的地理实体;以及收缩表示旧时态中的一个地理实 According to one aspect of the present invention, the temporal association type of database management system or an associated type comprising one of the following combinations of all or a portion thereof: no change, in general change, add, disappear, split, merge, expand, shrink, which represents no change in the geometry of the geographic entity is not changed; general geometry change indicates a geographic entity occurs irregular changes; represents a new state in the new time is added geographic entity; represents geographic entity disappearance of the old state It is disappeared; represents a split state in the old geographic entity decomposed into two or more new states when the geographic entity, a length or area of ​​the geographical entity state is equal to the new old temporal geographical entity the length of the states of a geographic entity, the length or area of ​​the old states of geographical entities and equal length or area when the new state in a geographic entity; expansion represents a geographic entity area of ​​the old state of expansion, and the old state geographic entity contained in the new state when the geographical entity; and represents a contraction state of the old geographic solid 面积缩小,且旧时态的地理实体包含新时态中的地理实体。 Area reduction, and the old state geographic entity comprises a geographical entity of a new temporal. 根据本发明的一个方面,该地理实体的特征部分包括地理实体中具有重要信息的点、线或面。 According to one aspect of the present invention, wherein portions of the geographic entity comprises an entity having geographical points important information, line or plane. 根据本发明的一个方面,该时空数据库管理系统的数据采集部分将所获的数据进行数字化,以形成关于地理实体的数字数据。 Digitizing the data acquisition part to an aspect of the present invention, the space-time database management system of the data obtained, to form a digital data about geographic entity. 根据本发明的一个方面,该空数据库管理系统的时空数据文件包括版本几何数据文件、版本属性数据文件、投影文件、历史几何数据文件、历史属性数据文件、几何关联文件、属性关联文件、时空索引文件、事件管理文件和元数据文件中的一部分或全部,其中版本几何数据文件包含版本数据的空间信息和时间信息;版本属性数据文件包含版本数据的属性信息;投影文件包含投影方式、大地基准、坐标单位;历史几何数据文件包含发生了变化的实体的几何信息、时间信息;历史属性数据文件包含发生了变化的实体的属性信息;几何关联文件包含实体变化的亲缘关系;属性关联文件包含实体属性变化信息等信息;时空索引文件包含时空索引结构信息;以及元数据文件主要包含时空数据元数据信息。 According to one aspect of the invention, the empty database management system spatiotemporal data file includes a version geometry data file version attribute data file, the projection files, history geometric data files, history attribute data file, the geometry associated with the file, attributes associated with a file, spatiotemporal index file, part or all of the event management files and metadata files, which version of the geometric data file containing spatial and temporal information on versions of the data; the version attribute data file containing attribute information version of the data; projection file contains projection, geodetic datum, coordinate units; the history of geometry data file that contains the changes of geometry entities, the time information; historical attribute data file containing a change of attribute information of the entity; geometry associated file contains the genetic relationship entity change; attributes associated files contain entity attributes change information and other information; temporal index file contains configuration information spatiotemporal index; and mainly includes temporal metadata file metadata information. 根据本发明的一个方面,该时空数据库管理系统的时空数据管理部分按照地理实体的时间信息所记载的时态,分别将时空数据关联部分所产生的时空数据文件保存到现势库、过程库、历史库和版本库中,其中现势库存储时态为现在的现势数据,过程库存储地理实体的演变关系数据,历史库存储相对于现势数据的差量数据或发生了变化的数据,版本库存储对应于某个时间点或时间段的版本几何数据文件和版本属性数据文件。 According to one aspect of the present invention, to save time and space data file spatiotemporal data management section of the temporal database management system in accordance with the temporal time information of geographic entity described, respectively spatiotemporal data correlation generation section to the existing potential library procedure library, historical library and repository, where the time is now potential library storage state is now the current trend data, the evolution of the library storing geographic entity relational data, data historian storing difference with respect to the amount of data or change existing potential of the data, the repository stores the corresponding to release some point or time period of geometric data files and attribute data file versions. 根据本发明的一个方面,该时空数据库管理系统的过程库只存储每次更新时地理实体发生变化的关联类型。 According to one aspect of the present invention, the space-time database management system processes each type of store geographic entity associated only changed updates. 根据本发明的一个方面,在该时空数据库管理系统中,该现势、库中的现势数据和历史库中的历史数据通过过程库中的关联类型相互链接。 According to one aspect of the present invention, the space-time database management system, the current potential, the historical database and the current potential of the data by a process historian database in association with each other type of link. 根据本发明的一个方面,该时空数据库管理系统的时空数据管理部分按照版本-差量时空数据模式构造该时空数据库的索引结构,该索引结构包括两组R树, 一组R树用于索引现势数据,另一组R树用于索引历史数据,其中, 在R树的叶结点,其数据结构为{地理实体对象的标识符,地理实体对象的最小外接矩形,地理实体对象的出生时间,地理实体对象的消失时间},而在子结点的数据结构为{包含其所有子结点的最小外接矩形,指向下一级子结点的指针,地理实体对象的出生时间,地理实体对象的消失时间}。 According to one aspect of the present invention, the data management portion of the space-time database management system in accordance with the temporal version - configuration database index structure of the spatiotemporal difference spatiotemporal data pattern, the tree index structure includes two sets of R, R-tree index for a set of current potential data, the other group R-tree index for the historical data, wherein, in the R-tree leaf node, the data structure identifier {geographic entity object, the smallest circumscribed rectangle geographic entity object, time of birth geographic entity object, } geographic entity disappearance time of the object, the data structure for the child nodes {minimum bounding rectangle containing all of its child nodes, pointers to child nodes at a time of birth, geographic entity objects geographic entity object disappeared 11 years. 根据本发明的一个方面,该时空数据库管理系统的时空数据管理更新部分在每次进行数据更新时,重新建立现势数据的索引结构,并新增一个历史数据索引结构。 According to one aspect of the present invention, the space-time space-time data management section updates the database management system when the data updating each time, re-establishing the potential of the data existing index structure, and add a historical index structure. 根据本发明的一个方面,在该时空数据库管理系统中,为索引树结构中每个结点所拥有的子结点数目设立下限和上限。 According to one aspect of the present invention, the space-time database management system, the number of child nodes of the index tree structure each node have established upper and lower limits. 根据本发明的一个方面,该时空数据库管理系统中的数据表示为矢量数据。 According to one aspect of the present invention, the space-time database management system data is represented as vector data. 根据本发明的一个方面,该时空数据库管理系统还包括输入/输出部分, 用于接收用户指令,并动态地显示数据采集部分、所述时空数据关联部分和时空数据管理部分的操作过程。 According to one aspect of the present invention, the space-time database management system further includes an input / output section for receiving a user instruction, and dynamically displaying the operation data acquisition, the temporal data and temporal data associated portion of the management section. 根据本发明的一个方面,该时空数据库管理系统的时空数据关联部分还用于确定地理实体或地理实体的关联类型是否符合实际情况,并且当该实体的关联类型不符合实际情况时,重新选择要修改关联类型的地理实体,根据需要修改的地理实体的关联类型检查地理实体的关联类型的一致性,更改这些实体的关联类型。 According to one aspect of the present invention, the temporal data associated with the database management system is further configured to determine the temporal portion geographic entity associated with the type of geographic entity or whether the actual situation, and when this type of association is not realistic entity, reselect modify the associated types of geographic entities, according to the association type association type checking geographical entities need to modify the consistency of geographical entities, changes associated with these types of entities. 根据本发明的另一方面,提供时空数据库管理方法,该方法包括步骤: 从外部系统采集或接收关于地理实体的空间信息和时间信息,并对这些数据设置关于其产生和存在的事物时间信息;将由所获得的各数据以及事物时间信息进行关联,并保存成相应的时空数据文件,以表达该地理实体之间的演变历史并预测地理实体的变化;以及在第一次构造关于该地理实体的时空数据库的情况下,按照地理实体的时间信息所记载的时态以及地理实体的空间信息所记载的演变关系,将所产生的时空数据文件分别进行保存以构成时空数据库。 According to another aspect of the present invention, a temporal database management, the method comprising the steps of: collecting or receiving time information and spatial information about geographic entity from an external system, and these data are provided on its generation time information and things exist; each data object and time information obtained by the association, and save the file to the appropriate spatial and temporal data to express the evolution of history between the geographical entity and predict changes in the geographical entity; and for the first time about the structure of the geographical entity in the case of space-time database, in accordance with the temporal evolution of the relationship between the spatial information and time information of geographical entities described geographic entity described, the spatiotemporal data file generated were saved in temporal database configuration. 根据本发明的再另一方面,提供计算机产品,其上实施有实现基于时空数据库管理方法的程序,所述时空数据库管理方法包括步骤:从外部系统采集或接收关于地理实体的空间信息和时间信息,并对这些数据设置关于其产生和存在的事物时间信息;将由所获得的各数据以及事物时间信息进行关联, 并保存成相应的时空数据文件,以表达该地理实体之间的演变历史并预测地理实体的变化;以及在第一次构造关于该地理实体的时空数据库的情况下, 按照地理实体的时间信息所记载的时态以及地理实体的空间信息所记载的演变关系,将所产生的时空数据文件分别进行保存以构成时空数据库。 According to yet another aspect of the present invention, there is provided a computer product embodied thereon a program for realizing temporal based database management method, temporal database management method comprising the steps of: acquiring or receiving time information and spatial information about geographic entity from an external system , and these data generation and set its time information about the presence of things; each data will be obtained and the time information associated with things, and save the file to the appropriate spatial and temporal data to express the evolution of history between the geographical entity and predict change geographical entity; and a space-time in the case of the first configuration database on the temporal geographical entities, in accordance with the evolution of the relationship between the spatial information and temporal information on the time of geographical entities described geographic entity described, the generated data files are saved to form a spatio-temporal database. 通过本发明的时空数据库管理方法及其时空数据库管理系统,将地理实体的多时相矢量空间数据相互关联,减少了空间数据的存储,在研究时空变化过程基础上,确定地理实体的变化类型及关联类型,以及地理实体的关联类型,能够将历史数据和现势数据的有效整合起来,并在地理实体变化类型的基础上,根据动态地图符号的变化机制,通过定义及设计动态符号,将动态符号与地理实体变化类型相关联,能够很好地表达地理现象的变化,直观生动地表现地理现象的变化规律及过程,表现地理现象的内在本质和发生规律的目的。 By the present invention the space-time database management method and temporal database management system to correlate the temporal data of the vector space geographical entities, to reduce the data storage space, temporal changes in the course of research on the basis of determining a change in the type of geographical entities and associated type, and type of association geographical entity, able to effectively integrate historical data and the current trend data together, and on the basis of geographic entity change type, according to changes in the mechanism of dynamic map symbols, by defining and designing dynamic symbol, the dynamic symbols changes in geographic entity changes associated with the type, can well express geographic phenomena, intuitive vividly process variation and geographic phenomena, the performance of geographic phenomena inherent nature and purpose of the law occurred. 附图说明下面结合附图详细说明本发明的特征和优点,在附图中:图1图示了根据本发明的优选实施方式的时空数据库管理系统的结构示意图;图2图示了根据本发明的时空数据库管理方法的流程图;图3是详细描述图2所示的时空数据关联部分的操作流程的流程图;图4是图解本发明的时空数据库管理系统的用户界面的视图;图5示出根据本发明的时空数据库管理系统的时空数据关联子系统运行时的用户界面的视图;图6示出根据本发明的时空数据库管理系统的时空数据关联子系统中的人工修正实体关联类型的示意图;图7示出根据本发明的时空数据库管理系统中的时空数据关联子系统中的属性的对应关系设置过程的示意图;•图8示出根据本发明的时空数据库管理系统的时空数据关联子系统中的属性关联结果的示意图;图9示出根据本发明的时空数据库管理 BRIEF DESCRIPTION OF THE DRAWINGS detailed features and advantages of the present invention, in the drawings: FIG 1 illustrates a schematic view of a preferred embodiment of the space-time embodiment of the present invention, a database management system; Figure 2 illustrates according to the invention flowchart temporal database management method; FIG. 3 is shown in detail in FIG. 2 described flow of operation of the associated portion of the temporal data; FIG. 4 is a view of a user interface temporal database management system according to the present invention is illustrated; FIG. 5 illustrates a view of the user interface data associated with the present invention, the space-time space-time database management system according to the runtime subsystem; FIG. 6 shows a schematic diagram of manual correction data associated with an entity associated with the type of space-time space-time database management system of the present invention in accordance subsystem ; Figure 7 shows a schematic diagram of a correspondence setting process attribute data associated with the subsystem in accordance with the present invention, the space-time database management system hourly space; FIG. 8 shows • space-time space-time database management system of the present invention, the data associating subsystem a schematic view of the properties of the correlation result; FIG. 9 shows a space-time database management in accordance with the present invention. 系统的时空数据更新子系统中的数据编辑示意图;图10示出根据本发明的时空数据库管理系统的时空数据动态可视化系统中的总体功能示意图;图11和图12分别示出根据本发明的时空数据库管理系统的时空数据动态符号定义系统中的动态符号定义示意图;图13和图14分别示出根据本发明的时空数据库管理系统的时空数据动态可视化系统中的动态符号与实体关联类型相关联的示意图;图15示出根据本发明的时空数据库管理系统的动态可视化系统中的时空回溯设置示意图;图16示出根据本发明的时空数据库管理系统的时空查询系统中整体功能示意图;图17示出根据本发明的时空数据库管理系统的时空查询系统中查询变化统计方式的示意图;以及图18示出根据本发明的时空数据库管理系统的时空查询系统中按变化类型查询的示意图。 Data editing schematic temporal data updating sub-system; Figure 10 shows a general functional diagram spatiotemporal data temporal invention DBMS dynamic visualization system; Figures 11 and 12 respectively show time and space according to the present invention. dynamic symbols are as defined schematic DBMS temporal dynamic data symbol definition system; FIGS. 13 and 14 respectively show temporal data of time and space according to the present invention, a database management system dynamic visualization system dynamic symbol associated with an entity associated with the type of a schematic diagram; FIG. 15 shows a back Illustration a dynamic visualization system time and space according to the present invention, a database management system in time and space; FIG. 16 shows temporal query system time and space according to the present invention, a database management system in the overall functional diagram; Figure 17 shows spatiotemporal query system schematic of the present invention, temporal database query management system according statistically change; and FIG. 18 shows a schematic temporal temporal query system according to the present invention by a database management system in accordance with the type of query changes. 具体实施方式下面,参照附图更全面地描述本发明、示出实现本发明的各方面的优选实施方式。 DETAILED DESCRIPTION Hereinafter, described more fully with reference to the accompanying drawings of the present invention, illustrating a preferred embodiment of the present invention is implemented in various aspects. 为了更好地突出本发明的实质性特点,在以下的描述中将省略对公知常识的描述。 In order to better highlight the essential characteristics of the present invention, the description will be omitted in the following description of the common general knowledge. 首先介绍在申请中涉及的一些技术术语。 First, according to introduce some technical terms in the application. 1) 时空数据根据本发明的时空数据是同时描述地理要素的空间特征和时间特征的数据,因此,时空数据用于描述地理要素随着空间和时间的演化的动态变化过程。 1) The temporal data is temporal data of the present invention also describes the spatial and temporal feature data of geographic elements, therefore, the dynamic changes of geographic features with spatial and temporal evolution of the process used to describe the spatio-temporal data. 为了记录根据本发明的时空数据,根据本发明的每个时空数据包含时间字段、空间字段和属性字段,分别用于存储该时空数据的时间信息、空间状态信息和属性信息。 The spatio-temporal data in order to record the present invention, the present invention according to each temporal field data contains time, space and property fields, respectively, for storing data time information of the temporal, spatial state information and attribute information. 此外,根据本发明的时空数据的时间字段所记录的时间信息采用线性双时态模式,即,同时记录数据的有效时间(地理实体存在于现实世界中的时间,包括起止时间)和事务时间(时空数据存在于数据库中的时间,包括起止时间)。 Further, the time information according to time field spatiotemporal data according to the present invention, the recorded linear bitemporal mode, i.e., while the logged time data (geographical entities present in the time in the real world, including start and end times) and transaction time ( temporal time data exists in the database, including the start and end time). 2) 新(旧)时态数据根据本发明的时态数据是根据时空数据中地理实体之间时间信息的早晚而言的,将时间较早的时空数据称之为旧时态数据,将时间较晚的时空数据称之为新时态数据。 2) The new data state (old) is the time of the earlier time data is called temporal data based on the old state in terms of time between morning and evening temporal data entities in the geographic information based on temporal data of the present invention, more time Night spatiotemporal data is called new temporal data. 3) 时空数据关联根据本发明的基于特征点(指矢量地物中具有重要信息的点,比如高速公路的起始点,结束点,以及高速公路的转角)和离散化(将连续变化的量分区间考虑,在时空数据关联中将矢量地物的矢量坐标进行分区,以及将矢量地物的属性进行分区计算)相结合的时空数据关联技术,根据地理实体(包括点、线、面)的属性及几何状态之间的关系,定义了八种基本的时空数据变化类型:没有变化、 一般变化、新增、消失、拆分、合并、扩张、收缩。 3) The temporal data correlation based on the feature points (feature vector refers Important points in the present invention, such as highway starting point, end point, and highway angle), and discrete (the continuous changes in volume fraction consider interval, the data associated with the feature vectors in the vector space-time coordinates of the partition and the feature vector of attributes partitioned computing) a combination of temporal data related art, according to the geographic entity (including points, lines, surfaces) properties the relationship between the state and the geometry defined eight basic types of spatial and temporal data changes: no change, the general change, add, disappear, split, merge, expansion, contraction. 变化类型的关联规则如下:没有变化表示地理实体的几何形状没有发生变化; 一般变化表示地理实体的几何形状发生了不规则变化;新增表示新时态中的地理实体是新增的;消失表示旧时态中的地理实体是消失的;拆分表体,旧时态中的一个地理实体的长度或面积等于新时态中地理实体的长度或中的一个地理实体,旧时态中地理实体的长度或面积之和等于新时态中一个地理实体的长度或面积;扩张表示旧时态中的一个地理实体面积扩大,且旧时态的地理实体包含于新时态中的地理实体;以及收缩表示旧时态中的一个地理实体面积缩小,且旧时态的地理实体包含新时态中的地理实体。 Varying types of association rules are as follows: No change in the geometry of the geographic entity is represented by no change; general geometry change indicates a geographic entity occurs irregular changes; represents a new state in the new time is added geographic entity; represents disappear the old state is disappeared geographic entity; split table body, a length or area of ​​the geographical entity in the old state equal to the length of the new temporal or geographical entities in a geographic entity, the length of the old states or geographic entity area equals to the length or dimensions of the new tense a geographic entity; expansion represents a geographic entity area of ​​the old state of expansion, and geographic entities old state comprises the new tense geographic entity; and contraction represents the old states reduce the area of ​​a geographical entity, the old state and the geographic entity comprises a geographical entity of a new temporal. 用户还可以自定义关联规则,用户结合实体属性变化约束,确定实体变化类型,例如用户可以自定义某几类实体之间是不可能相互发生变化的。 Users can also customize the association rule, the user constraint binding entity attribute changes, changes in the type of the entity is determined, for example, the user can customize the changes likely to occur between certain types of each entity. 根据关联规则将两个时态的版本数据进行关联。 The association rule two temporal version data associating. 相同的地理实体在不同时态,由于数字化及变化等原因,其坐标点的个数和状态都可能不一致,因此首先设置判断变化的阈值,对点状地理实体,根据两个点之间的距离是否超过阈值来判断点是否发生变化;对线状地理实体,设计基于特征点和离散化相结合的方法,采用道格拉斯-普克算法提取不同版本中的线状地理实体特征点,根据特征点的变化情况以及离散化匹配的变化情况,来判断线状地理实体是否发生变化;对面状地理实体,将面进行叠置分析,根据面重合的比率判断是否发生变化。 Same geographical entity is not the same state, and due to the digital change, and a state in which the number of coordinate points may not match, so the first determination threshold value is set change point of geographical entities, in accordance with the distance between the two points exceeds the threshold value to determine whether the change point; geographical entity of linear design and the feature point discretization method based on the combination, using Douglas - Peucker algorithm for extracting feature points in different geographic entity linear version of the feature points changes and changes in discrete matching to determine whether a change in the linear geographic entity; the planar geographic entity, the surface was overlaid, determines whether changes depending on the ratio of the surface overlap. 最后确定地理实体变化的亲缘关系,提取各类变化类型的数据, 从而形成统一的时空数据。 Finalization of kinship geographical entity change, extract all kinds of changes in the type of data to form a unified spatio-temporal data. 现在根据附图的图示来描述根据本发明的时空数据库管理系统。 A database management system will now be described according to the time and space according to the invention illustrated in the accompanying drawings. 根据本发明的优选实施方式,本发明提供建造时空数据库的时空数据库管理系统。 According to a preferred embodiment of the present invention, the present invention provides a database management system built temporal temporal database. 图1图示了根据本发明的优选实施方式的时空数据库管理系统的结构示意图。 FIG 1 illustrates a schematic structure of a preferred embodiment of the space-time embodiment of the present invention, a database management system. 根据图1的图示,该时空数据库管理系统包括数据采集部分110、时空数据关联部分120、时空数据管理部分130和时空数据管理更新部分140。 The diagram of Figure 1, the space-time database management system includes a data acquisition section 110, temporal data correlation section 120, temporal data and temporal management section 130 updates the data management section 140. 该时空数据库管理系统的数据采集部分110从外部系统采集或接收关于地理实体的、包括其空间属性信息和时间属性信息在内的信息数据,所采集或/和接收到的这些信息数据可以是旧时态数据,也可以是新时态数据。 The temporal data acquisition part of the database management system 110 or receive capture, information on the geographical entity data including spatial and temporal attribute information including the attribute information from the external system, the collected and / or the received data and the information may be old state data may be a new temporal data. 具体地说,数据采集部分110可以通过野外调绘、航空摄影测量、遥感影像等采集方法得到包括地理实体的空间信息和时间属性信息等在内的地理信息数据。 Specifically, the data acquisition portion 110 may be drawn by the field modulation, photogrammetry, and other remote sensing image acquisition method obtained geographical information includes spatial information and temporal data attribute information, including a geographic entity. 通过将采集到的地理信息数据进行数字化,生成e00(e00是美国ESRI公司所定义的一种保存地理空间信息的过渡文件格式)、shp (shp文件格式是美国ESRI公司所定义的空间信息文件格式, 一个ESRI的shape文件包括一个主文件, 一个索引文件,和一个属性文件dBASE表。主文件是存储地理实体空间信息,索引文件,记录包含对应主文件记录离主文件头开始的偏移,dBASE表包含地理实体的属性特征。Shp文件存储非拓朴关系的几何实体,它能够快速绘图和编辑)等矢量格式数据,并对这些数据设置其产生时间、消失时间等时间信息,以便进行转换生成时空数据。 By collected GIS data is digitized, generating e00 (e00 is a stored geospatial transition format U.S. ESRI, as defined), SHP (SHP file format is the spatial information of the file format U.S. ESRI, as defined , a ESRI shape file comprises a master file, an index file, and a dBASE table file attribute. geographical entity master file is stored spatial information, index files, master file record corresponding to the record contains an offset from the beginning of the main file header, dBASE non-topological relationship of geometrical entities characteristic properties .Shp file storage table contains geographic entity, it can quickly drawing and editing) vector format data and the like, and generates the data set the time, the disappearance time of the time information generated for the conversion spatio-temporal data. 数据采集部分110也可以从国家基础地理信息系统获得地理信息数据。 Data acquisition section 110 may also obtain basic geographic information data from the National Geographic Information System. 国家基础地理信息系统以形成数字地理空间信息服务为目标,通过对各种不同技术手段获取的基础地理信息进行采集、编辑处理、存贮,建成多种类型的基础地理信息数据库,并建立数据传输网络体系,为国家和省(市、自治区)各部门提供基础地理信息服务。 National fundamental geographic information systems to form a digital geo-spatial information services as the goal, through the acquisition of basic geographic information for a variety of different techniques to obtain, editing processing, storage, and built a variety of types of basic geographic information database, and the establishment of data transmission network system to provide basic geographic information services for the national and provincial authorities (municipalities and autonomous regions). 它是一个面向全社会各类用户、应用面最广的公益型地理信息系统。 It is a whole of society to all types of users, the most extensive application of surface public welfare geographic information systems. 是一个实用化的、长期稳定运行的信息系统实体。 It is a practical, long-term stable operation of information systems entities. 是我国国家空间信息基础设施(NSDI)的重要组成部分,是国家经济信息系统网络体系中的一个基础子系统。 Is an important part of the national spatial information infrastructure (NSDI), is a foundation subsystem State Economic Information System network system. 国家基础地理信息数据库存储和管理全国范围多种比例尺(1:5万、1:25 万、1:100万)、地貌、水系、居民地、交通、地名等基础地理信息,包括栅格地图数据库、矢量地形要素数据库、数字高程模式数据库、地名数据库和正射影像数据库等数据库。 National fundamental geographic information database to store and manage a variety of nationwide scale (1: 50,000, 1: 250,000 and 1: 1,000,000), topography, river systems, residential, transportation, place names and other basic geographic information, including raster map database vector terrain feature database, digital elevation model database, database names and database orthophoto database. 因此,国家基础地理信息数据库为本发明提供了丰富的数据资源。 Therefore, the national basic geographic information database of the present invention provides a wealth of data resources. 需要说明的是,由于空间信息的内容和结构可以由用户确定,因此,数据采集部分110接收到的数据可以不只是所罗列的这些,可以由用户来具体定义。 Incidentally, since the spatial information content and structure may be determined by the user, and therefore, the data acquisition part 110 receives the data may be not just those listed, may be specifically defined by the user. 再参考附图1,数据采集部分110在采集和/或接收到上述地理信息数据后,将该信息数据转发给时空数据关联部分120。 Referring again to Figure 1, the data acquisition part 110 or the post-acquisition and / or receives the geographical information, forwards the data to the temporal information associated with the data section 120. 然后,在时空数据关联部分120中,将所接收到的数据组合到一起构成时空数据。 Then, in the data portion 120 associated with time and space, the combination of the received data together constitute temporal data. 也就是说,将上迷所形成的时空数据保存为本发明的STD时空数据文件格式(Spatial Temporal Data File Format)。 That is, the temporal data stored on the fan of the present invention is formed STD temporal data file format (Spatial Temporal Data File Format). STD时空数据文件格式是由一组文件组成,其具体包括版本几何数据文件,版本属性数据文件,投影文件,历史几何数据文件,历史属性数据文件,几何关联文件,属性关联文件,时空索引文件,事件管理文件, 元数据文件。 STD temporal data file format is a set of files, which specifically includes version geometric data files, the version attribute data file, the projection files, history geometric data files, history attribute data file, the geometry associated with the file, attributes associated with a file, spatiotemporal index file, event management file, metadata file. 根据本发明的一个实施方式,版本几何数据文件主要包含版本数据的空间信,t、和时间信息等信息,每一条版本几何数据可以存储为(ObjectID、几何信息、起始时间、终止时间}格式。这里,ObjectID表示该版本几何数据所针对的地理实体的标识符,标识符可用数字代码表示,比如将京九铁路用代码l表示;几何信息表示相应地理实体的几何属性;而起始时间和终止时间分别表示相应地理实体存在于现实世界中的时间的起、止时间。 版本属性数据文件主要包含版本数据的属性信息等信息,其存储为{ObjectID, 属性A,属性B, ...}格式。这里,版本属性数据中的属性,例如,高速公路的路宽,车道数,铺设材料,承重等属性。投影文件主要包含投影方式、大地基准、坐标单位、等信息,存储格式为{Projection, Datum, units,..}(例如, MERCATOR投影方式,WGS84水准面,单位是 According to one embodiment of the present invention, the main data file version geometry version data contains spatial channels, t, and time information, etc., each version of a geometric data can be stored as (ObjectID, geometrical information, start time, end time} Format here, ObjectID indicates an identifier of the version of the geographic entity for which geometrical data, the code represents the numeric identifier, such as represented by the Kowloon Railway L codes; geometry information represents geometrical properties of the corresponding geographic entity; the start time and end time respectively indicate corresponding geographic entity exists in the real world since time and stop time data file version attribute contains attribute information of the main version of the data and other information, which is stored as {ObjectID, property a, property B, ...} format. here, the version attribute data attributes, e.g., lane highway, the number of lanes, the paving material, the load-bearing properties like projection file containing main projection, the earth reference coordinate units, and other information, is stored in the format of {projection , Datum, units, ..} (e.g., the MERCATOR projection, the WGS84 geoid, the unit is METERS )。历史几何数据文件主要包含发生了变化的实体的几何信息、时间信息等信息,存储结构为(ObjectID,历史实体的几何信息,Start-Time,End-Time}(例如,1980年1月1 日开垦一耕地,在2006年1月1日退耕还林,用数字代码1表示耕地,耕地的存储结构为U,坐标,1980丄1,2006丄1})。历史属性数据文件主要包含发生了变化的实体的属性信息等信息,存储结构为{ObjectID,属性A,属性B, ...}。几何关联文件主要包含实体变化的亲缘关系(例如, 一个实体l变化为另一实体2,其变化类型为一般变化,用1表示一般变化,其变化的亲缘关系的记录为{1, 2, 1}。属性关联文件主要包含实体属性变化信息等信息(例如,国道变为高速公路,其中属性之间的变化表现为铺设材料等属性变'化,它在属性关联文件中的变化记录为,{国道的实体码,高速公路的实体码, 铺设材料\铺设材料、 METERS). Historical geometry data file mainly contains a change of geometric information entity, time information, etc., stored in the structure (geometry ObjectID, historical entity, Start-Time, End-Time} (for example, January 1980 1, a reclamation of arable land, returning farmland to forests in 2006, January 1, with the number 1 indicates the code storage structure of arable land, arable land is U, coordinate, 1980 Shang Shang 1,2006 1}). historical attribute data file consists mainly occur attribute information of the entity of the change in other information storage structure is {ObjectID, property a, property B, ...}. geometry associated files mainly containing genetic relationship entity changes (e.g., one entity to another entity changes l 2, Usually the change type change, the change is generally represented by 1, the recording of the change of the genetic relationship of {1, 2, 1}. the main properties file associated entity attribute change information contains information (e.g., a national road becomes highway, wherein attribute variation between laying performance attribute change material 'of which changes in the properties associated with the file is recorded, the code entity {national road, highway code entity, the paving material \ paving material, 标码\国标码})。时空索引文件主要包含时空索引结构信息,其存储结构为{ObjectID, MBR, Start-Time, End-Time} (ObjectID 是实体的标识码,MBR是实体的外接矩形,Start-Time是实体的产生时间, End-Time是实体的结束时间,例如,实体1的索引记录为{实体1的ID,实体l的最小x坐标,最小y坐标,最大x坐标,最大y坐标,实体l的产生时间,实体i的结束时间}。元数据文件主要包含时空数据元数据信息(数据采集时间,数据更新时间,数据更新人,数据更新单位,数据来源等元数据信息)。 Standard code \ GB code}). Spatiotemporal index file comprising predominantly temporal index structure information, which storage structure is {ObjectID, MBR, Start-Time, End-Time} (ObjectID a code entity, the MBR is circumscribed rectangle entities, Start-time is the generation time of the entity, end-time is the end time of the entity, e.g., the physical index recorded 1 to ID {entity 1, the minimum x coordinate entities l, the minimum y coordinate, the maximum x coordinate, the maximum y-coordinate , l entity generation time, the end time of entity i} mainly includes temporal metadata file metadata information (data acquisition time, update time data, the data update person data update unit, the data source information and other metadata). 因此,根据本发明的时空数据同时包含地理实体的空间信息、属性信息、时间信息、历史数据信息以及实体之间的亲缘关联类型等信息,能够表达地理实体之间的演变情况,跟踪地理实体的变化、对地理实体进行预测。 Thus, according to the present invention spatiotemporal data contains spatial information of geographical entities, attribute information, time information, historical information, and data type of association between the genetic information entities, capable of expressing the evolution between geographical entities, to track geographical entities changes to geographic entities predict. 对于一个地理实体来说,它的时空数据包括描述地理实体的版本几何数据、版本属性数据、投影信息、历史几何数据、历史属性数据、几何关联信息、属性关联信息、时空索引信息、事件管理信息、元数据等。 For a geographical entity, its spatial and temporal data includes a description of geometric version geographical entity data, the version attribute data and projection information, history, geometry data, historical attribute data associated with geometric information, property-related information, time and space index information, event management information , metadata and the like. 接下来,如果在之前没有构造过关于该地理实体的时空数据库,则由时空数据管理部分130基于"版本-差量,,通用时空数据模式,将时空数据关联部分120产生的时空数据按照"四库一体"存储模式存入时空数据库中的四个逻辑库,即现势库(现在时态)、过程库、历史库(过去时态)和版本库。现势库存储时态为现在的现势数据。过程库存储实体演变的关系即实体之间的亲缘关系。时空数据的变化往往需要经历一个过程,在这个过程中,须确定实体之间的关联类型,将过程演变存入过程库中,只存储每次更新时变化的要素标识码ID以及变化类型信息(关联类型),不存储任何要素的几何信息。 历史库存储历史数据,即相对于现势数据的差量数据或发生了变化的数据。 历史库中存储了发生变化的数据,没有重复存储未发生变化的数据,因此节约了存储 Next, if there is no over-temporal structure of the database of geographical entities before, by spatiotemporal data management section 130 based on the "Version - temporal difference ,, common data model, the data associated with the spatio-temporal data 120 generated according to the temporal portion of the" four library-one "storage mode into four logical libraries spatio-temporal database that now potential library (present tense), procedure library, the historical library (past tense) and in the repository. when the current potential of the library storage state is now the current trend data. relational storage entity that is the evolution of the process library genetic relationship between entities. spatio-temporal data changes tend to go through a process, in this process, shall determine the association between the type of entity, the process of the evolution process into a library, store only each update changes the feature change code and the ID type information (association type), does not store any geometric feature information history store history data, i.e., data with respect to the difference data or the current potential of the data changes. history repository data is stored is changed, there is no duplication of data is not stored in the change occurs, thus saving storage 间。版本库存储的是在时间轴上某一时刻的快照,用户可以产生任何一个时间点的版本数据,并将版本数据存入版本库中。现势库中的现势数据和历史库中的历史数据通过过程库中的关联类型相互链接,便于地理要素的历史追踪和过程再现。现势库对应的时空数据文件主要是版本几何数据文件,版本属性数据文件等。过程库对应的时空数据文件主要是几何关联文件,属性关联文件,事件管理文件等。历史库对应的时空数据文件主要是历史几何数据文件,历史属性数据文件等。版本库对应的是有某个时间点或时间段的版本数据,对应的是版本几何数据文件,版本属性数据文件。如果在之前已经构造了关于该地理实体的时空数据库,则由时空数据管理更新部分140根据上述时空数据文件分析基础地理信息的动态变化特征, 将上述时空数据文件基于"版本- Between. The storage repository is a snapshot of a moment, the user can generate a version of the data any time point in the timeline, and the version of the data stored in the repository. Repository of history and the current trend data history library now potential数据通过过程库中的关联类型相互链接,便于地理要素的历史追踪和过程再现。现势库对应的时空数据文件主要是版本几何数据文件,版本属性数据文件等。过程库对应的时空数据文件主要是几何关联文件,属性关联文件,事件管理文件等。历史库对应的时空数据文件主要是历史几何数据文件,历史属性数据文件等。版本库对应的是有某个时间点或时间段的版本数据,对应的是版本几何数据文件,版本属性数据文件。如果在之前已经构造了关于该地理实体的时空数据库,则由时空数据管理更新部分140根据上述时空数据文件分析基础地理信息的动态变化特征, 将上述时空数据文件基于"版本-差量"时空数据模式存入时空数据库中。这里,"版本-差量"时空数据模式以现势数据作为基态版本数据,各时相的历史数据采取相对于基态的变化量的差量存储方式,有效降低数据冗余。每个对象只需储存一次,每变化一次,只有相对较少的数据量需记录,是为差量; 同时,只有在对象发生变化时才存入系统中,时态分辨率刻度值与事件发生的时刻完全对应,通过时空数据关联建立对象变更的亲缘继承关系,不仅能够支持多类型、海量的时空数据存储、管理与分析,而且能够满足历史数据的保存和恢复、变化的跟踪和预测等要求。该模式提供了时空数据和时空变化的统一表示和操作,可以完备地表示各种时空变化和进行快速的时空查询和时空分析。根据该模式,在时空数据存储管理上,设计了"四库一体"存储方案,即现势库(现在时态)、过程库( 行时态)、历史库(过去时态)和版本库,建立了时空一体化存储管理模式,现势库存储现势数据。过程库存储实体演变的关系即实体之间的亲缘关系,时空数据的变化往往需要经历一个过程,在这个过程中,须确定实体之间的关联类型,将过程演变存入过程库中,只存储每次更新时变化的要素标识码ID以及变化类型信息,不存储任何要素的几何信息。历史库存储历史数据,即相对于现势数据的差量数据或发生了变化的数据,历史库中存储了发生变化的数据,没有重复存储未发生变化的数据,因此节约了存储空间。版本库存储的是在时间轴上某一时刻的快照,用户可以产生任何一个时间点的版本数据,并将版本数据存入版本库中。现势库中的现势数据和历史库中的历史数据通过过程库中的关联类型相互链接,便于地理要素的历史追踪和过程再现。从而构造成时空数据库150。对于这样构成的实空数据库,为了快速提取时空数据库中时空数据,针对基于"版本-差量"时空数据存储模式本发明设计了CHR-Trees(Current Historical R-Trees,现势历史R树)时空索引技术。基于"版本-差量"时空数据模式的CHR-Trees,将实体的空间信息和时间信息一起存入时空索引结点中, 其结构形式为:当索引结构为叶结点时,其存储结构为(ObjectID, MBR, birth-time, end-time}, MBR是实体的最小外接矩形,ObjectID为实体对象的标识,当索引结构为子结点时,子结点的结构形式为(MBR, child-pointer, birth-time, end-time},在这里的MBR包含其所有子结点的最小外接矩形, child-pointer指向下一级子结点。birth-time是实体的出生时间,end-time是实体的消失时间。CHR-Trees索引由两组RTree组成, 一组RTree索引现势数据,另一组RTree索引历史数据,每次进行数据更新时,重新建立现势数据的索引,以及新增一个历史数据索引。现势数据是操作最频繁的数据,为其单独建立索引有利于静态的空间查询以及对现势数据的时空查询。为了避免时空索引树结构过高而导致查询的效 降低,为每个结点所拥有的子结点数目设立下限,设定每个节点最少包含2个子节点,保证索引结构不会过于分散,避免时空索引树结构结点所包含的子结点过多,影响查询的效率,为索引树结构中结点所包含的子节点的数目设立上限,设定每个节点最多包含6 个子节点,提高查询效率。子结点的数目小于下限的结点将被删除,该结点的子结点将被分配到其它的结点中,如果某个结点中的子结点的个数大于上限,那么该结点就要被分割,也叫结点溢出。结点的所有子结点将被重新分配到其它结点或新的结点中。基于"版本-差量"时空数据模式的CHR-Trees, 能够处理实体的实际时间(valid-time),能够支持动态数据的查询,它有最少的索引层叠,而且不涉及版本复制,它能有效地对时间点和小范围的时间窗口进行查询。以下结合图2来描述根据本发明的时空数据库管理方法的操作流程。图2图示了根据本发明的时空数据库管理方法的流程图。参考图2,在步骤S 210, 由时空数据库管理系统的数据采集部分110从外部系统采集或接收包括空间信息和时间信息在内的数据,这些数据可以是旧时态数据,也可以是新时态数据。接下来,在步骤S215,判断由数据采集部分110所采集和/或接收到的地理信息数据是否需要进行编辑。如果所述地理信息数据需要进行编辑,则处理前进到步骤S220,在其中将所述数据进行编辑,并在编辑了地理信息数据后,将处理转移到步骤S225。如果在步骤S215中判断所述地理信息数据不需要进行编辑,则将处理直接转移到步骤S225。在步骤S225中,由时空数据关联部分120确定时空数据的关联规则以及时空数据的变化类型,以便于在后续处理中,对时空数据进行关联。接下来,在步骤S230中,确定关联类型是否自动关联。如果确定为自动关联,则处理转移到步骤S235,在其中进行地理实体的时空数据的自动关联。而如果在步骤S230中确定为手动关联,则处理转移到步骤S240,在其中进行地理实体的时空数据的手动关联。然后,在步骤S245中,将经过关联的时空数据进行统计等处理,确定时空数据所发生的变化的类型,并且根据所确定的变化类型将处理转移到不同的处理步骤。在根据本发明的优选实施方式中,例如,当在步骤S245中确定时空数据所发生的变化的类型为属性变化类型时,处理转移到步骤S255,在其中进行针对属性发生变化的处理。而当在步骤S245中确定时空数据所发生的变化的类型为几何状态变化类型时,处理转移到步骤S250,在其中进行针对几何状态发生变化的处理。接下来,由时空数据管理部分130或时空数据管理更新部分140根据上述时空数据文件分析基础地理信息的动态变化特征,将上述时空数据文件基于"版本-差量"时空数据模式存入时空数据库中。从而完成时空数据库150的构造或更新。现在结合图3来描述时空数据关联部分120的操作流程。图3是详细描述时空数据关联部分120的操作流程的示意图。在图3中,在步骤S310,时空数据关联部分120首先根据时空数据(点、线、面)的属性之间及几何状态之间的关系,及用户所定义的关联规则,进行时空数据关联,发现时空数据之间的变化,对空间信息各要素(点、线、面)类型进行关联,并将这些变化进行分类(按照前述关联类型分类),对发生各种变化的地理实体个数进行统计。时空数据关联部分120还可以根据分析结果对空间信息进行编辑。这里,所说的编辑操作包括选择一个地理实体的相应结点,移动、删除被选择的结点,也可在两结点之间通过输入实体的坐标来添加一个结点。所说的编辑操作还包括选线,选面,捕获端点,捕获中点,捕获垂足,捕获交点,捕获切点,捕获最近点,捕获圓心,画点,画线,画面,画级^殳,画椭圓,画矩形,画圓,移动,删除,复制,缩放等操作。根据本发明的另一种实施方式,在步骤S310,时空数据关联部分120根据新时态的影像数据旧时态的矢量数据的变化来编辑数据,以生成新时态的矢量数据。此外,根据本发明的再另一种实施方式,在步骤S310,时空数据关联部分120通过改变符号的形状、尺寸、方向、明度、密度、结构、颜色和状态等变量中的一个或多个变量设计动态符号,将动态符号保存到动态符号库中。然后,在步骤S320,将对发生的各种变化类型的地理实体就各种变化类型进行统计,以便通过这些统计信息分析发生变化的实体在所有实体中所占的比率。接下来,在步骤S330,确定实体或实体的关联类型是否符合实际情况, 例如,旧时态点状实体、旧时态线状实体、旧时态面状实体、新时态点状实体、新时态线状实体或新时态面状实体的关联类型是否符合实际情况。如果确定某个实体或某些实体的关联类型不符合实际情况,则在步骤S340,选择要修改关联类型的实体,根据需要修改的实体关联类型检查实体关联类型的一致性(实体的变化类型是不能相互矛盾的,用户更改实体关联类型的过程, 可能使得实体关联类型发生矛盾,根据关联规则来消除这些矛盾,也称为实体关联类型的一致性检查),更改这些实体的关联类型,并对修改后的实体变化数据进行步骤S330的操作。如果在步骤S330中确定实体或实体的关联类型符合实际情况,则在步骤S350,将实体的关联类型保存到时空数据库的过程库,将发生了变化的历史数据存入到历史数据库,并将新时态的空间信息存入到现势库中。根据本发明的一个实施方式,定义了八种基本的时空数据的变化类型: 没有变化、 一般变化、新增、消失、拆分、合并、扩张、收缩。没有变化表示地理实体没有发生变化; 一般变化表示地理实体发生了规则变化;新增表示新时态中的地理实体新产生的;消失表示旧时态中的地理实体消失;拆分表示旧时态中的一个地理实体分解成为新时态中的两个或两个以上的地理实个地理实体;扩张表示旧时态中的一个地理实体面积扩大,且旧时态的地理实体包含于新时态中的地理实体;收缩表示旧时态中的一个地理实体面积缩小,且旧时态的地理实体包含新时态中的地理实体。在上述实施方式中,本发明的时空数据库管理系统包括显示系统,在产生和更新时空数据库的过程中,所述显示系统提供四种动态可视化显示模式, 它们分别称为快照模式、差量模式、插值模式和动态符'号模式。这里,快照模式是同时显示事件前后两个时态的空间信息的显示模式。差量模式利用动画过程,以没有发生变化的空间信息为背景,动态显示变化的空间实体集合。插值模式也利用动画过程,以没有变化的空间信息为背景,通过插值的方式, 动态显示变化的空间实体集合。而动态符号利用计算机动画、计算机高级显示技术,把时空数据库中存贝i的各种变化类型的时空数据同各种动态符号进行关联,最后按照时间发展的顺序或者逆序,以动态的方式在显示系统上进行动态呈现。通过采用动态符号和动态地图,生动直观地表示地理实体的变化过程,揭示地理现象变化的规律。图4是图解本发明的时空数据库管理系统的用户界面的视图;图5示出根据本发明的时空数据库管理系统的时空数据关联子系统运行时的用户界面的视图;图6示出根据本发明的时空数据库管理系统的时空数据关联子系统中的人工修正实体关联类型的示意图;图7示出根据本发明的时空数据库管理系统中的时空数据关联子系统中的属性的对应关系设置过程的示意图;图8示出根据本发明的时空数据库管理系统的时空数据关联子系统中的属性关联结果的示意图;图9示出根据本发明的时空数据库管理系统的时空数据更新子系统中的数据编辑示意图;图IO示出根据本发明的时空数据库管理系统的时空数据动态可视化系统中的总体功能示意图;图11和图12分別示出根据本发明的时空数据库管理系统的时空数据动态符号定义系统中的动态符号定义示意图;以及图13和 14分别示出根据本发明的时空数据库管理系统的时空数据动态可视化系统中的动态符号与实体关联类型相关联的示意图。参考图4到图14来描述对输入数据进行关联的过程。为了将输入数据进行关联,本发明的时空数据库管理系统的操作步骤如下。 1)首先,通过该界面上的"文件"菜单将多时态的空间信息加载到时空数据库管理系统中;2 )然后通过该界面上的"关联"菜单中的"关联外部数据"项进入多时态空间信息关联子系统,时空数据库管理系统将多时态的空间信息叠加显示;3) 在根据本发明的"关联"菜单中,用户为时空数据关联设定一个阈值来定义关联规则,例如,为了对几何属性进行关联,可以选择"关联,,菜单中的"几何数据关联"子菜单,然后根据用户所定义的关联规则及(点、线、面)的属性及几何状态之间的关系;4) 接下来,通过点击"关联"菜单中的"开始关联操作"项来开始多时态数据关联会话。从而,发现空间信息之间的变化,对空间信息各要素类型进行关联,并将这些变化进行分类,对发生各种变化类型的个数进行统计;5) 为了查看某个实体的关联类型,用户通过点击功能按键415, 后在关联子系统的主界面的地理实体点击鼠标左键查看某个实体的关联类型,并高亮显示这对地理实体,因此用户能直观地检查实体的变化情况。用户也可以通过点击功能按键425,查看某一类变化类型的地理实体, 并将发生这一变化的两个不同时态的地理实体高亮显示,便于用户检查地理实体关联类型的正确性。此外,在功能区426,关联子系统对发生的各种变化类型的地理实体进行了统计。用户能通过这些统计信息分析发生变化的实体的比率。如用户认为某个实体或某些实体的关联类型不符合现实情况,通过功能键417选取需要更改的旧时态点状实体,功能键418选取需要更改的旧时态线状实体,功能键419选取需要更改的旧时态面状实体,功能键420选取需要更改的新时态点状实体,功能键421选取需要更改的新时态线状实体,功能键422选取需要更改的新 态面状实体。当选错了实体的时候,可通过功能键416,清除所选择的实体,重新再选择。当选择完要修改关联类型的实体,点击鼠标右键,出现图5的功能区501,用户,点击在图5的功能区501 根据需要修改的实体关联类型来点击相应的功能键,向时空数据库管理系统关联子系统发送修改命令,时空数据库管理系统关联子系统检查实体关联类型的一致性,时空数据库管理系统关联子系统将更改这些实体的关联类型。当用户认为所修改的实体关联类型,与实体变化的现实情况不相符时, 用户可通过鼠标左键点击图4的功能键423,来撤消所修改的实体关联类型。 如果用户操作失误,将修改正确的实体关联类型进行了撤消操作,此时用户可通过鼠标左键点击图4的功能键424,来重做所修改的实体关联类型。单击图4的功能键409进入到图6所示窗口,并在图6的功能区601 (点要素属性)、602 (线要素属性)、603 (面要素属性)中设置空间信息的属性之间的对应关系,图6的功能键604来对多时态空间信息的属性之间变化发现。多时态空间信息关联子系统将对空间信息的属性进行统计。并将属性之间的关联类型显示在图7的功能区701中。当用户认为实体关联类型符合实际情况。点击图4 .的功能按键412,向关联子系统发送命令,保存实体的关联类型到过程库,将发生变化的历史数据存入到历史数据库,将新时态的空间信息存入到现势库中。本发明的时空数据库管理系统定义了八种基本的时空数据变化类型:没有变化、 一般变化、新增、消失、拆分、合并、扩张、收缩。没有变化表示地理实体没有发生变化; 一般变化表示地理实体发生了规则变化;新增表示新时态中的地理实体新产生的;消失表示旧时态中的地理实体消失;拆分表个地理实体;扩张表示旧时态中的一个地理实体面积扩大,且旧时态的地理实体包含于新时态中的地理实体;收缩表示旧时态中的一个地理实体面积缩小,且旧时态的地理实体包含新时态中的地理实体。用户根据新时态的影像数据和旧时态的矢量数据叠加显示,用户进入时空数据库管理系统的编辑更新子系统,通过叠加图的效果来跟踪变化。在图8所示的操作界面上,通过下列步骤来实现时空数据库的管理操作。 1) 首先开始编辑更新会话,此时图8中的功能区801、功能区802、功能区803的编辑功能开始生效;2) 根据新时态的影像数据旧时态的矢量数据叠加显示的变化来编辑数据,生成新时态的矢量数据;3) 用户通过点击功能键区801的实体选择功能按键,来选择一个地理实体,此时这个被选中的地理实体被高亮显示,点击功能键区803的结点捕捉功能键来选择实体的相应的结点,移动、删除被选择的结点,也可在两结点之间添加一个结点;4 )用户通过点击功能键区802的新增实体功能键,选择新增某一种实体, 在编辑更新的界面上,通过鼠标左^t点击,输入实体的坐标,输入完实体的坐标,点击鼠标的右键完成本次新增的实体;5) 功能区803包括选点,选线,选面,捕获端点,捕获中点,捕获垂足, 捕获交点,捕获切点,捕获最近点,捕获圓心,画点,画线,画面 画弧段, 画椭圓,画矩形,画圓,移动,删除,复制,缩;故;6) 编辑完所有变化的实体,产生新时态数据;以及7) 点击图6中的功能键403,进入多时态空间信息关联子系统,如上一优选实施方式所述,关联子系统将进行时空数据关联,生成时空数据。鼠标左键点击功能键904进入本发明的动态符号定义子系统如图10,对动态符号进行设置制作,通过改变符号的形状、尺寸、方向、明度、密度、 结构、颜色和状态七个变量中的一个或多个变量设计动态符号,将动态符号保存到动态符号库中。鼠标左键点击图10的功能键1002,新定义一种动态符号,进入图11。点击图11的功能键1101,选择动态符号的变化方式,点击功能键1104,更改动态符号的名称,点击功能键1105,更改设置动态符号的变化的帧数,点击功能键1106,更改设置动态符号的变化的速率,点击功能《tl102,更改设置动态符号的起始状态,点击功能4建1103,更改设置动态符号的结束状态。设置动态符号的变化特征,点击功能键1107,对设置的动态符号进行预览。如设置无误,则保存此动态符号的设置,否则重新进行设置。编辑已有的动态符号步骤:鼠标左键点击图10的功能键1001,选择一种缺省的动态符号, 点击功能键1003,开始编辑和设置动态符号,将动态符号保存到动态符号库中。在本发明的优选实施方式中,本发明的时空数据库管理系统提供四种动态可视化模式,快照模式:同时显示事件前后两个时态的空间信息。差量模式:动画过程中,以没有发生变化的空间信息为背景,动态显示变化的空间实体集合。插值模式:动画过程中,以没有变化的空间信息为背景,通过插值的方式,动态显示变化的空间实体集合。动态符号:利用计算机动画、计算机高级显示技术,把时空数据库中存贮的各种变化类型的时空数据同各种动态符号进行关联,最后按照时间发展的顺序或者逆序,以动态的方式在一定的媒介(如电子屏幕)进行动态呈现。通过采用动态符号和动态地图,生动直观地表示地理实体的变化过程,揭示地理现象变化的规律。然后,按照下列步骤进行操作。 1) 点击图9的功能按键905,以动态符号的方式进行动态可视化,将进入关联子系统产生的时空数据和动态符号定义系统所定义的动态符号进行关联,如图12按功能键1201开始动态符号和变化类型进行关联,在动态符号和变化类型关联的子系统中(图13),按功能键1301,选择要进行符号关联的要素类型,针对这一要素类型,开始为所选择的要素类型设置动态符号,在功能键1302选择这类要素类型的所发生的变化类型和进行符号关联的动态符号,点击功能键1305,保存这些关联设置,进7v动态可视化子系统,动态可视化子系统以动态符号的方式演示地理实体的变化。 2) 点击图9的功能按键卯1,以快照模式进行动态显示地理实体的变化: 同时显示事件前后两个时态的空间信息。 3) 点击图9的功能按键902,以差量模式进行动态显示地理实体的变化: 动画过程中,以没有发生变化的空间信息为背景,动态显示变化的空间实体4) 点击图9的功能按键903,以插值模式进行动态显示地理实体的变化: 动画过程中,以没有变化的空间信息为背景,通过插值的方式,动态显示变化的空间实体集合。 5) 点击图9的功能按键907,以时空回溯的方式显示地理实体的变化进入图14,点击图14的功能按键1401,选择进行时空回溯的起始时间,点击功能按键1402,选择进行时空回溯的结束时间,点击功能按键1403,选择进行时空回溯的速率。保存时空回溯设置,进行时空回溯。图15示出根据本发明的时空数据库管理系统的动态可视化系统中的时空回溯设置示意图;图16示出根据本发明的时空数据库管理系统的时空查询系统中整体功能示意图;图17示出根据本发明的时空数据库管理系统的时空查询系统中查询变化统计方式的示意图;以及图18示出根据本发明的时空数据库管理系统的时空查询系统中按变化类型查询的示意图。参考图15到图18,按照下列步骤进行操作、以统计图的方式查看各种变化类型的比率。 1) 点击图15中的功能按键1502,进入图16的功能界面。在图16的功能区1601设置实体发生变化的开始时间和结束时间,在图16的功能区1602 缺省以直方图的方式显示各种变化类型的变化的比率,便于观察某个区域发生变化的程度。在功能区1603可以设置等2D条状图、2D线状图、2D饼状图、3D柱状图、3D线状图、XY散点图等表达方式。 2) 点击图15中的功能按键1511,进入按变化类型进行查询显示地理实体会话(如图17),点击图17中的功能按键1701,选择需要查看变化的一个事件名称。点击图17的功能按键1702,选择需要查看一种变化类型。保存设置,在图17中的主界面区将动态显示所查看的发生这类变化类型地理实体, 以及在图17的功能区1703中列出发生这类变化的地理实体的属性。在本发明的另一优选实施方式中,是图解本发明的时空数据库管理系统的另一个实施方式。本发明时空数据库管理系统的时空查询系统,查询单个实体的变化情况。点击功能按键,开始单个实体变化查询会话。在时空数据库管理系统主界面上点击某个实体,在图18的功能区1801列出了查询实体在各个时间点的标识号,图18的功能区1802列出了查询实体的最新状态的属性信息,并在时空数据库管理系统的主界面上高亮显示这一实体。在功能区1801点击鼠标左键单击某个历史时刻的实体标识,同时在功能区1802列出这个时刻的实体的属性信息,在时空数据库管理系统上高亮显示这个历史时间点的图18的几何实体的状态。本领域技术人员将理解,该方法可以实现为记录在计算机可读记录介质上的计算机可读代码。该计算机可读记录介质是可以存储可由计算机系统读取的数据的任何数据存储设备。计算机可读记录介质的示例包括只读存储器(ROM)、随机存取存储器(RAM) 、 CD-ROM、磁带、软盘、光数据存储装置和载波(诸如通过因特网的数据发送)。计算机可读记录介质还可以分布在联网的计算机系统中,以便以分布的方式存储并执行计算机可读代码。尽管上述是参照示例性实施方式来描述本发明,但本领域技术人员将理解,在不背离由所附权利要求书限定的本发明宗旨和范围的前提下,可以对本发明进行各种形式和细节上的修改。优选实施方式应该仅认为是说明性的, 而不是限制性的。因此,本发明的详细描述不限定本发明的范围,本发明的范围应该由所附权利要求限定,并且本发明的范围内的所有区别技术特征应理解为包含在本发明中。

Claims (33)

1. 一种时空数据库管理系统,包括: 数据采集部分,用于从外部系统采集或接收关于地理实体的空间信息和时间信息,并对这些数据设置关于其产生和存在的事物时间信息; 时空数据关联部分,用于将由所述数据采集部分所获得的各数据以及事物时间信息进行关联,并保存成相应的时空数据文件,以表达该地理实体之间的演变历史并预测地理实体的变化;以及时空数据管理部分,用于按照地理实体的时间信息所记载的时态以及地理实体的空间信息所记载的演变关系,将所述时空数据关联部分所产生的时空数据文件分别进行保存以构成时空数据库。 A space-time database management system, comprising: a data acquisition part for acquiring or receiving time information and spatial information about geographic entity from an external system, and these data are provided on and things that generates time information exists; temporal data association section for each of the data by the data acquisition part, and the obtained time information related things, and stored into the corresponding spatiotemporal data file to express the history of the evolution of the geographic entity between the predicted change and the geographic entity; and spatiotemporal data management section, in accordance with the evolution of the relationship for the temporal and spatial information of the time information of geographical entities described geographic entity described, the temporal data associated portion of the temporal data files are generated to save time and space configuration database .
7、 根据权利要求6所述的时空数据库管理系统,其中,所述关联类型包括下列关联类型之一或它们的一部分或全部的组合:没有变化、 一般变化、 新增、消失、拆分、合并、扩张、收缩,其中没有变化表示地理实体的几何形状没有发生变化; 一般变化表示地理实体的几何形状发生了不规则变化; 新增表示新时态中的地理实体是新增的;消失表示旧时态中的地理实体是消失的;拆分表示旧时态中的一个地理实体分解成为新时态中的两个或两个以上的地理实体,旧时态中的一个地理实体的长度或面积等于新时态中地理实成为新时态中的一个地理实体,旧时态中地理实体的长度或面积之和等于新时态中一个地理实体的长度或面积;扩张表示旧时态中的一个地理实体面积扩大,且旧时态的地理实体包含于新时态中的地理实体;以及收缩表示旧时态中的一 7, temporal database management system as claimed in claim 6, wherein the associated type comprising one of the following types of association or a combination of all or a portion thereof: no change, in general change, add, disappear, split, merged , expansion, contraction, which represents no change in the geometry of the geographic entity is not changed; general geometry change indicates a geographic entity occurs irregular changes; represents a new state in the new time is added geographic entity; old disappearance represents states of geographical entities disappeared; old split state represents one geographic entity breaks down into two or more new states when the geographic entity, a length or area of ​​the geographical entity is equal to the old state when new state geographic solid as a new temporal in a geographic entity, the length or area of ​​the old states of geographical entities and equal length or area when the new state in a geographic entity; expansion represents a geographic entity area of ​​the old state of expansion, and the old geographic entity comprises the new state of temporal geographic entity; and represents a contraction of the old state 个地理实体面积缩小,且旧时态的地理实体包含新时态中的'地理实体。 Narrow geographical area entities, and the old geographic entity comprises the new state of tense 'geographic entity.
8、 根据权利要求6所述的时空数据库管理系统,所述地理实体的所述特征部分包括所述地理实体中具有重要信息的点、线或面。 8, temporal database management system as claimed in claim 6, wherein the portion of the geographic entity comprises a point, line, or area of ​​the geographical entity has important information.
9、 根据权利要求1或2所述的时空数据库管理系统,其中,所述数据采集部分将所获的数据进行数字化,以形成关于地理实体的数字数据。 9, temporal database management system according to claim 1 or claim 2, wherein said data acquisition The resulting digitized data, to form digital data about geographic entity.
10、 根据权利要求1或2所述的时空数据库管理系统,其中,所述时空数据文件包括版本几何数据文件、版本属性数据文件、投影文件、历史几何数据文件、历史属性数据文件、几何关联文件、属性关联文件、时空索引文件、事件管理文件和元数据文件中的一部分或全部,其中版本几何数据文件包含版本数据的空间信息和时间信息;版本属性数据文件包含版本数据的属性信息;投影文件包含投影方式、大地基准、坐标单位;历史几何数据文件包含发生了变化的实体的几何信息、时间信息;历史属性数据文件包含发生了变化的实体的属性信息;几何关联文件包含实体变化的亲缘关系;属性关联文件包含实体属性变化信息等信息;时空索引文件包含时空索引结构信息; 以及元数据文件主要包含时空数据元数据信息。 10, temporal database management system according to claim 1 or claim 2, wherein the data file includes a version spatiotemporal geometry data file, a file version attribute data, projection file, history file geometry data, historical data file attributes, file geometry associated associated attributes file, temporal index file, event management file and metadata file part or all of which version of the geometric data file contains spatial information and time information of versions of the data; version attribute data file containing the attribute information of the version data; projection file includes projection, geodetic datum, coordinate units; the history of geometry data file that contains the changes of geometry entities, the time information; historical attribute data file contains happened attribute information of the entity changes; geometry associated files contain entity changes kinship ; association file contains attribute change information entity attribute information; temporal index file contains configuration information spatiotemporal index; and mainly includes temporal metadata file metadata information.
11、 根据权利要求IO所述的时空数据库管理系统,其中,所述时空数据管理部分按照地理实体的时间信息所记载的时态,分别将所述时空lt据关联部分所产生的时空数据文件保存到现势库、过程库、历史库和版本库中,其中现势库存储时态为现在的现势数据,过程库存储地理实体的演变关系数据, 历史库存储相对于现势数据的差量数据或发生了变化的数据,版本库存储对应于某个时间点或时间段的版本几何数据文件和版本属性数据文件。 11, according to claim IO temporal database management system, wherein the space-time data file according to the spatiotemporal data management section Temporal time information described in geographic entity, respectively, according to the temporal association lt stored generation section the current potential library process library, the historical library and repository, where the time is now potential library storage state is now the current trend data, the evolution of the library storing geographic entity relational data, historical database storage relative to the current potential of the data of the difference between the amount of data or the occurrence of changes in the data, corresponding to the version stored in the repository geometric data files and data file version attributes a point in time or time period.
12、 根据权利要求11所述的时空数据库管理系统,其中,所述过程库只 12, according to the space-time database management system as claimed in claim 11, wherein only the procedure library
13、根据权利要求11所述的时空数据库管理系统,其中,所述现势库中的现势数据和所述历史库中的历史数据通过所述过程库中的关联类型相互链接。 13, temporal database management system according to claim according to claim 11, wherein said historical data are now current potential of the data repository and the potential history library linked to each other by the procedure library association type.
14、 根据权利要求1或2所述的时空数据库管理系统,其中,所述时空数据管理部分按照版本-差量时空数据模式构造该时空数据库的索引结构,该索引结构包括两组R树, 一组R树用于索引现势数据,另一组R树用于索引历史数据,其中,在R树的叶结点,其数据结构为(地理实体对象的标识符, 地理实体对象的最小外接矩形,地理实体对象的出生时间,地理实体对象的消失时间},而在子结点的数据结构为{包含其所有子结点的最小外接矩形, 指向下一级子结点的指针,地理实体对象的出生时间,地理实体对象的消失时间}。 14, temporal database management system according to claim 1 or claim 2, wherein, in accordance with the temporal version portion of the data management - configuration database index structure of the spatiotemporal difference spatiotemporal data mode, the R-tree index structure includes two sets of a group R-tree index for the current potential of the data, another set of historical data for indexing tree R, wherein R in the leaf nodes of the tree, which is a data structure (geographic entity object identifier, the smallest circumscribed rectangle geographic entity object, birth time geographic entity object disappearing time} geographic entity object, and the child node data structure is {minimum bounding rectangle containing all of its child nodes, pointers to child nodes under a geographical entity object time of birth, time disappears geographical entity object}.
15、 根据权利要求14所述的时空数据库管理系统,其中,所述时空数据管理更新部分在每次进行数据更新时,重新建立现势数据的索引结构,并新增一个历史数据索引结构。 15, according to claim temporal database management system according to claim 14, wherein said updated temporal data management section updates the data each time, re-establishing the potential of the data existing index structure, and add a historical index structure.
16、 根据权利要求14所述的时空数据库管理系统,其中,为索引树结构中每个结点所拥有的子结点数目设立下限和上限。 16, temporal database management system according to claim claim 14, wherein the number of sub-nodes in the index tree structure each node have established upper and lower limits.
17、 根据权利要求1或2所迷的时空数据库管理系统,其中,所述数据为矢量数据。 17, according to claim 1 or 2 fans temporal database management system as claimed in claim, wherein said data is a vector data.
18、 根据权利要求1或2所述的时空数据库管理系统,还包括输入/输出部分,用于接收用户指令,并动态地显示所述数据采集部分、所述时空数据关联部分和所述时空数据管理部分的操作过程。 18, temporal database management system according to claim 1 or claim 2, further comprising an input / output section for receiving a user instruction, and dynamically displaying the data acquisition part, the spatiotemporal data correlation portion and said temporal data management operation section.
19、 根据权利要求1或2所述的时空数据库管理系统,其中,所述时空数据关联部分还用于确定地理实体或地理实体的关联类型是否符合实际情况,并且当该实体的关联类型不符合实际情况时,重新选择要修改关联类型的地理实体,根据需要修改的地理实体的关联类型检查地理实体的关联类型的一致性,更改地理实体的关联类型。 19, temporal database management system according to claim 1 or claim 2, wherein said further spatiotemporal data correlation section for determining a type associated geographic entity or geographic entity whether the actual situation, and when the type of the associated entity does not comply when practicable, re-select the type of association you want to modify the geographical entity, according to the association type association type checking geographical entities need to modify the consistency of geographical entities, changes associated with the type of geographic entity.
20、 一种时空数据库管理方法,包括步骤:1 )从外部系统采集或接收关于地理实体的空间信息和时间信息,并对这些数据设置关于其产生和存在的事物时间信息;2)将由所获得的各数据以及事物时间信息进行关联,并保存成相应的时空数据文件,以表达该地理实体之间的演变历史并预测地理实体的变化;以及3 )在第一次构造关于该地理实体的时空数据库的情况下,按照地理实体的时间信息所记载的时态以及地理实体的空间信息所记载的演变关系,将所产生的时空数据文件分别进行保存以构成时空数据库。 20, a space-time database management method, comprising the steps of: 1) collecting or receiving spatial information and time information about the geographical entity from the external system, and these data are provided and generates the time information about the existence of things; 2) obtained by each time the data and information related things, and save the file to the appropriate spatial and temporal data to express the evolution of history between the geographical entity and predict changes in the geographical entity; and 3) in the first space-time structure on the geographical entity in the case of the database, according to the evolution of the relationship between the spatial information and temporal information on the time of geographical entities described geographic entity described, the spatiotemporal data file generated were saved in temporal database configuration.
21、 根据权利要求20所述的时空数据库管理方法,还包括步骤:4)在之前已经构造了关于该地理实体的时空数据库的情况下,根据所产生的时空数据,以增量方式更新所述时空数据库。 21, temporal database management method according to claim according to claim 20, further comprising the step of: 4) has been previously constructed on the case where the geographic database temporal entity, according to the generated spatio-temporal data, to incrementally update the spatio-temporal database.
22、 根据权利要求20或21所述的时空数据库管理方法,其中,所述空间信息包括所述地理实体的空间信息、属性信息、所述地理实体之间的亲缘关联类型信息,而所述时间信息包括地理实体的时间信息和历史数据信息。 22, temporal database management method according to claim 20 or claim 21, wherein the spatial information includes spatial information of the geographical entity, the attribute information, type information of the genetic association between geographical entities, and the time information including time information and historical information on the geographical entity.
23、 根据权利要求20或21所述的时空数据库管理方法,其中,所述时空数据包括时间字段、空间字段和属性字段,分别用于存储该时空数据的时间信息、空间状态信息和属性信息。 23, temporal database management method according to claim 20 or claim 21, wherein said data comprises a time field temporal, spatial and property fields, each time the information for temporal data storage, the attribute information and the spatial state information.
24、 根据权利要求23所述的时空数据库管理方法,其中,所述时间字段所记录的时间信息包括所述地理实体存在于现实世界中的时间信息以及事物时间信息,所述事物时间信息为所述时空数据存在于数据库的时间信息。 24, temporal database management method according to claim according to claim 23, wherein the time information includes a time field records the geographic entity is present in the real world time information and the time information of things, the time information of the object temporal data exists in said time information database.
25、 根据权利要求20或21所述的时空数据库管理方法,其中,所述步骤2)根据地理实体的特征部分的属性及几何形态之间的关系,确定所述时空数据的变化类型作为关联类型,并利用所确定的变换类型将所述时空数据有选择地进行手动或自动关联。 25, temporal database management method according to claim 20 or claim 21, wherein said step 2) the relationship between the attributes and geometric characteristics of the portion of the geographical entity, determining the temporal variation of the data type associated with the type as and using the determined transform type the spatiotemporal data selectively associated manually or automatically.
26、 根据权利要求25所述的时空数据库管理方法,其中,所述关联类型包括下列关联类型之一或它们的一部分或全部的组合:没有变化、 一般变化、 新增、消失、拆分、合并、扩张、收缩,其中没有变化表示地理实体的几何形状没有发生变化; 一般变化表示地理实体的几何形状发生了不规则变化; 新增表示新时态中的地理实体是新增的;消失表示旧时态中的地理实体是消失的;拆分表示旧时态中的一个地理实体分解成为新时态中的两个或两个以上的地理实体,旧时态中的"-个地理实体的长度或面积等于新时态中地理实体的长度或面积之和;合并表示旧时态中的两个或两个以上的地理实体合成成为新时态中的一个地理实体,旧时态中地理实体的长度或面积之和等于新时态中一个地理实体的长度或面积;扩张表示旧时态中的一个地理实体面积扩大, 26, temporal database management method according to claim according to claim 25, wherein the associated type comprising one of the following types of association or a combination of all or a portion thereof: no change, in general change, add, disappear, split, merged , expansion, contraction, which represents no change in the geometry of the geographic entity is not changed; general geometry change indicates a geographic entity occurs irregular changes; represents a new state in the new time is added geographic entity; old disappearance represents states of geographical entities disappeared; old split state represents one geographic entity breaks down into two or more new states when the geographical entity, the old state "- the length or area of ​​the geographical entity equal to when the length or area of ​​the new states and geographical entities; old states combined represent two or more geographic entity as a new temporal synthesis of a geographic entity, the length or area of ​​the old state and the geographical entities equal length or area in a new temporal geographic entity; represents a geographic entity expansion area to expand the old states, 旧时态的地理实体包含于新时态中的地理实体;以及收缩表示旧时态中的一个地理实体面积缩小,且旧时态的地理实体包含新时态中的地理实体。 Old geographic entity comprises state of the new temporal geographic entity; and a geographic entity represents a contraction area is reduced in the old state, the old state and the geographic entity comprises a geographical entity of a new temporal.
27、 根据权利要求25所述的时空数据库管理方法,所述地理实体的所述特征部分包括所述地理实体中具有重要信息的点、线或面。 27, temporal database management method according to claim according to claim 25, wherein said portion of the geographic entity comprises an entity having geographical points of the important information, line or plane.
28、 根据权利要求20或21所述的时空数据库管理方法,其中,所述步骤1 )包括子步骤: •将所获的数据进行数字化,以形成关于地理实体的数字数据;以及有选择地对所获的数据进行编辑处理。 28, temporal database management method according to claim 20 or claim 21, wherein said step a) comprises the sub-steps: • The resulting digitized data, to form digital data on the geographical entity; and optionally of the obtained data editing process.
29、 根据权利要求20或21所述的时空数据库管理方法,其中,所述时空数据文件包括版本几何数据文件、版本属性数据文件、投影文件、历史几何数据文件、历史属性数据文件、几何关联文件、属性关联文件、时空索引文件、事件管理文件和元数据文件中的一部分或全部,其中版本几何数据文件包含版本数据的空间信息和时间信息;版本属性数据文件包含版本数据的属性信息;投影文件包含投影方式、大地基准、坐标单位;历史几何数据文件包含发生了变化的实体的几何信息、时间信息;历史属性数据文件包含发生了变化的实体的属性信息;几何关联文件包含实体变化的亲缘关系;属性关联文件包含实体属性变化信息等信息;时空索引文件包含时空索引结构信息;以及元数据文件主要包含时空数据元数据信息。 29, temporal database management method according to claim 20 or claim 21, wherein the data file includes a version spatiotemporal geometry data file, a file version attribute data, projection file, history file geometry data, historical data file attributes, file geometry associated associated attributes file, temporal index file, event management file and metadata file part or all of which version of the geometric data file contains spatial information and time information of versions of the data; version attribute data file containing the attribute information of the version data; projection file includes projection, geodetic datum, coordinate units; the history of geometry data file that contains the changes of geometry entities, the time information; historical attribute data file contains happened attribute information of the entity changes; geometry associated files contain entity changes kinship ; association file contains attribute change information entity attribute information; temporal index file contains configuration information spatiotemporal index; and mainly includes temporal metadata file metadata information.
30、 根据权利要求29所述的时空数据库管理方法,其中,所述步骤3) 包括子步骤:按照地理实体的时间信息所记载的时态,分别将所迷时空数据关联部分所产生的时空数据文件保存到现势库、过程库、历史库和版本库中, 其中现势库存储时态为现在的现势数据,过程库存储地理实体的演变关系数据,历史库存储相对于现势数据的差量数据或发生了变化的数据,版本库存储对应于某个时间点或时间段的版本几何数据文件和版本属性数据文件。 30, temporal database management method according to claim according to claim 29, wherein said step 3) comprises the substeps of: time information according to temporal geographic entity described, respectively, the temporal data associated temporal data portion generated by the fans save the file to the current potential of the library process library, the historical library and repository, which state is now the current trend data are now potential store, the evolution of the library storing geographic entity relational data, historical database storage phase difference data for the current potential of the data or change data corresponds to the version stored in the repository at some point or time period of geometric data files and attribute data file versions.
31、 根据权利要求30所述的时空数据库管理方法,其中,所述过程库只存储每次更新时地理实体发生变化的关联类型。 31, temporal database management method according to claim according to claim 30, wherein the store stores only process each type of geographic entity associated with changes updating.
32、 根据权利要求30所述的时空数据库管理方法,其中,所述现势库中的现势数据和所述历史库中的历史数据通过所述过程库中的关联类型相互链接。 32, temporal database management method according to claim according to claim 30, wherein said active current potential of the data potential and the database history data of the history database of the process of linking to each other by association type library.
33、 根据权利要求20或21所述的时空数据库管理方法,其中,所述步骤3)包括子步骤:按照版本-差量时空数据模式构造该时空数据库的索引结构,该索引结构包括两组R树, 一组R树用于索引现势数据,另一组R树用于索引历史数据, 其中,在R树的叶结点,其数据结构为{地理实体对象的标识符,地理实体对象的最小外接矩形,地理实体对象的出生时间,地理实体对象的消失时间}, 而在子结点的数据结构为{包含其所有子结点的最小外接矩形,指向下一级子结点的指针,地理实体对象的出生时间,地理实体对象的消失时间}。 33, temporal database management method according to claim 20 or claim 21, wherein said step 3) comprises the substeps of: in accordance with the version - configuration database index structure of the spatiotemporal difference spatiotemporal pattern data, the index structure includes two sets of R tree, a set of R-tree index for current potential of the data, another set of historical data for indexing tree R, wherein R in the leaf nodes of the tree, which is a data structure identifier {geographic entity object, smallest geographic entity object circumscribed rectangle, time of birth geographic entity object disappearing time} geographic entity object, and the child node data structure is {minimum bounding rectangle containing all of its child nodes, pointers to child nodes under a geographical time disappearance time of birth, geographic entity object entity object}.
34、 根据权利要求33所述的时空数据库管理方法,其中,所述步骤3) 还包括子步骤:在每次进行数据更新时,重新建立现势数据的索引结构,并新增一个历史数据索引结构。 34, temporal database management method according to claim according to claim 33, wherein said step 3) further comprises the sub-steps of: each time data updating, re-indexing current potential of the data structure, and add a historical index structure .
35、 根据权利要求33所述的时空数据库管理方法,其中,为索引树结构中每个结点所拥有的子结点数目设立下限和上限。 35, according to the temporal database management method according to claim 33, wherein the number of sub-nodes in the index tree structure each node have established upper and lower limits.
36、 根据权利要求20或21所述的时空数据库管理方法,其中,所述步骤2)包括子步骤:确定地理实体或地理实体的关联类型是否符合实际情况; 如果确定该实体的关联类型不符合实际情况,则重新选择要修改关联类型的地理实体,并根据需要修改的地理实体的关联类型检查地理实体的关联类型的一致性,更改地理实体的关联类型。 36, temporal database management method according to claim 20 or claim 21, wherein said step 2) comprises the sub-steps of: determining a geographic entity or geographic entity type is associated with the actual situation; if it is determined that the entity associated with the type does not comply the actual situation, then re-select the type of association you want to modify the geographical entity, and according to the type of association of the association type checking geographical entities need to modify the consistency of geographical entities, changes associated with the type of geographic entity.
37、 根据权利要求20或21所述的时空数据库管理方法,其中,所述数据为矢量数据。 37, according to claim 20 or space-time database management method according to claim 21, wherein said data is a vector data.
38、 一种计算^l产品,其上实施有实现基于时空数据库管理方法的程序, 所述时空数据库管理方法包括步骤:从外部系统采集或接收关于地理实体的空间信息和时间信息,并对这些数据设置关于其产生和存在的事物时间信息;将由所获得的各数据以及事物时间信息进行关联,并保存成相应的时空数据文件,以表达该地理实体之间的演变历史并预测地理实体的变化;以及在第一次构造关于该地理实体的时空数据库的情况下,按照地理实体的时间信息所记载的时态以及地理实体的空间信息所记载的演变关系,将所产生的时空数据文件分别进行保存以构成时空数据库。 38, a computing ^ l product, which embodiment based on a program for realizing temporal database management method, temporal database management method comprising the steps of: acquiring or receiving time information and spatial information about geographic entity from an external system, and these data set and the time information generated on its existing things; each data will be obtained and the time information associated with things, and save the file to the appropriate spatial and temporal data to express the evolution of history between the geographical entity and predict changes in the geographical entity ; and in the case of the first configuration database with respect to the temporal geographic entity, according to the evolution of the relationship between the spatial information and temporal information on the time of geographical entities described geographic entity described, the spatiotemporal data files were generated save time and space to form a database.
CN 200710147561 2007-08-27 2007-08-27 Space-time database administration method and system CN101231642A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200710147561 CN101231642A (en) 2007-08-27 2007-08-27 Space-time database administration method and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200710147561 CN101231642A (en) 2007-08-27 2007-08-27 Space-time database administration method and system

Publications (1)

Publication Number Publication Date
CN101231642A true CN101231642A (en) 2008-07-30

Family

ID=39898126

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200710147561 CN101231642A (en) 2007-08-27 2007-08-27 Space-time database administration method and system

Country Status (1)

Country Link
CN (1) CN101231642A (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101477548B (en) 2009-01-20 2011-12-28 中国测绘科学研究院 Based on the rule of the spatial data quality checking art method
CN102495854A (en) * 2011-11-18 2012-06-13 中国测绘科学研究院 Method for realizing dynamic label placement based on basic state modification
CN102521333A (en) * 2011-12-07 2012-06-27 华南师范大学 Field perception temporal information management method and system based on internet of services
CN102999548A (en) * 2012-09-21 2013-03-27 香港中文大学深圳研究院 Expansion method and expansion device of place-name data in electronic map
CN101763356B (en) 2008-10-08 2013-05-01 新奥特(北京)视频技术有限公司 Acquisition and organization method of topographic data in virtual map
CN103294790A (en) * 2013-05-22 2013-09-11 西北工业大学 Spatiotemporal semantic meaning indexing and retrieving method aiming at GPS (global positioning system) trajectory data
CN103425789A (en) * 2013-08-28 2013-12-04 深圳信息职业技术学院 Spatio-temporal data query method and device
CN103425790A (en) * 2013-08-28 2013-12-04 深圳信息职业技术学院 Method and device for establishing inverse time-space four-dimensional data model
CN103440319A (en) * 2013-08-29 2013-12-11 国家测绘地理信息局卫星测绘应用中心 Historical information dynamic display method and system
CN103544157A (en) * 2012-07-11 2014-01-29 阿里巴巴集团控股有限公司 Data storage method and device
CN103593361A (en) * 2012-08-14 2014-02-19 中国科学院沈阳自动化研究所 Movement space-time trajectory analysis method in sense network environment
CN104063490A (en) * 2014-07-04 2014-09-24 浙江大学 High-efficiency spatio-temporal data retrieval method based on ground state modified model
CN104850680A (en) * 2015-04-03 2015-08-19 中铁第四勘察设计院集团有限公司 Railway track design method based on multi-temporal-state coexistence
CN105900117A (en) * 2014-01-06 2016-08-24 思科技术公司 Method and system for acquisition, normalization, matching, and enrichment of data
CN105913475A (en) * 2016-06-12 2016-08-31 浙江大学 Dynamic visualized method of space-time change process
CN106250389A (en) * 2016-07-15 2016-12-21 西安测绘研究所 Dynamic incremental updating-oriented geographic spatial data version management method
CN103870548B (en) * 2014-02-26 2017-01-04 浙江大学 Spatial Database access control method
CN106294887A (en) * 2016-10-24 2017-01-04 北京亚控科技发展有限公司 Four-dimensional space-based description method for object and event existing in objective world
CN106354891A (en) * 2016-11-28 2017-01-25 全国组织机构代码管理中心 Geographic information service inquiring method based on TGIS (temporal geographic information system)
CN106407468A (en) * 2016-10-24 2017-02-15 北京亚控科技发展有限公司 Method for describing space attributes of things and carrying out search based on description
CN106407469A (en) * 2016-10-24 2017-02-15 北京亚控科技发展有限公司 Method for describing time attributes of things and carrying out search based on description
CN106446278A (en) * 2016-10-24 2017-02-22 北京亚控科技发展有限公司 Method for searching data target on basis of spatial-temporal database
CN106649668A (en) * 2016-12-14 2017-05-10 华南师范大学 Vector model-based massive spatiotemporal data retrieval method and system
CN106649867A (en) * 2016-12-30 2017-05-10 北京亚控科技发展有限公司 Object data organization method
CN107766401A (en) * 2017-05-26 2018-03-06 温州市勘察测绘研究院 Pavement illegal parking analysis method and system based on big data

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101763356B (en) 2008-10-08 2013-05-01 新奥特(北京)视频技术有限公司 Acquisition and organization method of topographic data in virtual map
CN101477548B (en) 2009-01-20 2011-12-28 中国测绘科学研究院 Based on the rule of the spatial data quality checking art method
CN102495854A (en) * 2011-11-18 2012-06-13 中国测绘科学研究院 Method for realizing dynamic label placement based on basic state modification
CN102521333B (en) 2011-12-07 2014-04-16 华南师范大学 Field perception temporal information management method based on internet of services
CN102521333A (en) * 2011-12-07 2012-06-27 华南师范大学 Field perception temporal information management method and system based on internet of services
CN103544157A (en) * 2012-07-11 2014-01-29 阿里巴巴集团控股有限公司 Data storage method and device
CN103544157B (en) * 2012-07-11 2017-08-15 阿里巴巴集团控股有限公司 A data storage method and apparatus of
CN103593361A (en) * 2012-08-14 2014-02-19 中国科学院沈阳自动化研究所 Movement space-time trajectory analysis method in sense network environment
CN102999548B (en) * 2012-09-21 2015-11-25 香港中文大学深圳研究院 Electronic map data expansion method and device names
CN102999548A (en) * 2012-09-21 2013-03-27 香港中文大学深圳研究院 Expansion method and expansion device of place-name data in electronic map
CN103294790A (en) * 2013-05-22 2013-09-11 西北工业大学 Spatiotemporal semantic meaning indexing and retrieving method aiming at GPS (global positioning system) trajectory data
CN103425789B (en) * 2013-08-28 2016-12-07 深圳信息职业技术学院 A method of spatio-temporal query data and means
CN103425790A (en) * 2013-08-28 2013-12-04 深圳信息职业技术学院 Method and device for establishing inverse time-space four-dimensional data model
CN103425789A (en) * 2013-08-28 2013-12-04 深圳信息职业技术学院 Spatio-temporal data query method and device
CN103440319B (en) * 2013-08-29 2017-02-08 国家测绘地理信息局卫星测绘应用中心 Historical information system and method for dynamic display
CN103440319A (en) * 2013-08-29 2013-12-11 国家测绘地理信息局卫星测绘应用中心 Historical information dynamic display method and system
CN105900117A (en) * 2014-01-06 2016-08-24 思科技术公司 Method and system for acquisition, normalization, matching, and enrichment of data
US10223410B2 (en) 2014-01-06 2019-03-05 Cisco Technology, Inc. Method and system for acquisition, normalization, matching, and enrichment of data
CN103870548B (en) * 2014-02-26 2017-01-04 浙江大学 Spatial Database access control method
CN104063490B (en) * 2014-07-04 2017-06-23 浙江大学 Efficient correction model base state data retrieval method based on
CN104063490A (en) * 2014-07-04 2014-09-24 浙江大学 High-efficiency spatio-temporal data retrieval method based on ground state modified model
CN104850680B (en) * 2015-04-03 2017-12-15 中铁第四勘察设计院集团有限公司 Based on long railway tracks in the coexistence state management method and system
CN104850680A (en) * 2015-04-03 2015-08-19 中铁第四勘察设计院集团有限公司 Railway track design method based on multi-temporal-state coexistence
CN105913475B (en) * 2016-06-12 2019-01-25 浙江大学 A kind of change in time and space process dynamics method for visualizing
CN105913475A (en) * 2016-06-12 2016-08-31 浙江大学 Dynamic visualized method of space-time change process
CN106250389A (en) * 2016-07-15 2016-12-21 西安测绘研究所 Dynamic incremental updating-oriented geographic spatial data version management method
CN106446278B (en) * 2016-10-24 2018-07-20 北京亚控科技发展有限公司 Species retrieval method based on a data object database spatiotemporal
CN106446278A (en) * 2016-10-24 2017-02-22 北京亚控科技发展有限公司 Method for searching data target on basis of spatial-temporal database
CN106407469A (en) * 2016-10-24 2017-02-15 北京亚控科技发展有限公司 Method for describing time attributes of things and carrying out search based on description
CN106407468A (en) * 2016-10-24 2017-02-15 北京亚控科技发展有限公司 Method for describing space attributes of things and carrying out search based on description
CN106407468B (en) * 2016-10-24 2018-08-28 北京亚控科技发展有限公司 Method described object based on the spatial attributes and the description to find
CN106294887A (en) * 2016-10-24 2017-01-04 北京亚控科技发展有限公司 Four-dimensional space-based description method for object and event existing in objective world
CN106354891A (en) * 2016-11-28 2017-01-25 全国组织机构代码管理中心 Geographic information service inquiring method based on TGIS (temporal geographic information system)
CN106649668A (en) * 2016-12-14 2017-05-10 华南师范大学 Vector model-based massive spatiotemporal data retrieval method and system
CN106649867A (en) * 2016-12-30 2017-05-10 北京亚控科技发展有限公司 Object data organization method
CN107766401A (en) * 2017-05-26 2018-03-06 温州市勘察测绘研究院 Pavement illegal parking analysis method and system based on big data
CN107766401B (en) * 2017-05-26 2019-02-01 温州市勘察测绘研究院 Pavement based on big data, which is disobeyed, stops analysis method and system

Similar Documents

Publication Publication Date Title
Bertolotto et al. Progressive transmission of vector map data over the world wide web
Armstrong et al. Database organization strategies for spatial decision support systems
Parent et al. Conceptual modeling for traditional and spatio-temporal applications: The MADS approach
Güting et al. Moving objects databases
Miller What about people in geographic information science
US7672779B2 (en) System and method for using universal location referencing objects to provide geographic item information
US7197500B1 (en) System and method for use and storage of geographic data on physical media
Kolbe Representing and exchanging 3D city models with CityGML
Pfoser et al. Indexing of network constrained moving objects
US6892204B2 (en) Spatially integrated relational database model with dynamic segmentation (SIR-DBMS)
Erwig et al. Spatio-temporal data types: An approach to modeling and querying moving objects in databases
CN101438231B (en) System and method for providing a virtual environment and generates a digital map database information
Martin Optimizing census geography: the separation of collection and output geographies
Peuquet Time in GIS and geographical databases
EP1385102A2 (en) Method and system for updating geographic databases
Abraham et al. Survey of spatio-temporal databases
Rigaux et al. Spatial databases: with application to GIS
Pfoser et al. Requirements, definitions, and notations for spatiotemporal application environments
Worboys Computation with imprecise geospatial data
Armstrong Temporality in spatial databases
Shekhar et al. Encyclopedia of GIS
Kucera Time in geographic information systems
Peuquet et al. An event-based spatiotemporal data model (ESTDM) for temporal analysis of geographical data
Hadzilacos et al. An extended entity-relationship model for geographic applications
Van Oosterom Variable-scale topological data structures suitable for progressive data transfer: The GAP-face tree and GAP-edge forest

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
C12 Rejection of an application for a patent