CN101226092A - SOI complete silicon structure silicone-oil-filling high-temperature-resistance pressure sensor - Google Patents

SOI complete silicon structure silicone-oil-filling high-temperature-resistance pressure sensor Download PDF

Info

Publication number
CN101226092A
CN101226092A CN 200810017298 CN200810017298A CN101226092A CN 101226092 A CN101226092 A CN 101226092A CN 200810017298 CN200810017298 CN 200810017298 CN 200810017298 A CN200810017298 A CN 200810017298A CN 101226092 A CN101226092 A CN 101226092A
Authority
CN
China
Prior art keywords
soi
silicon
pressure
base
pressure sensor
Prior art date
Application number
CN 200810017298
Other languages
Chinese (zh)
Other versions
CN100561156C (en
Inventor
袁展荣
赵玉龙
赵立波
Original Assignee
西安维纳信息测控有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安维纳信息测控有限公司 filed Critical 西安维纳信息测控有限公司
Priority to CN 200810017298 priority Critical patent/CN100561156C/en
Publication of CN101226092A publication Critical patent/CN101226092A/en
Application granted granted Critical
Publication of CN100561156C publication Critical patent/CN100561156C/en

Links

Abstract

The invention relates to a silicon oil high temperature resistant pressure sensor in a SOI entire silicon structure, which comprises a base 4 with cavity; a corrugated film 7 and a pressure ring 5 are arranged at the cavity of the base in sequence; an electrode 1 is fixedly connected with the base 4 through a glass insulator 2; a (100) crystal-face entire silicon SOI pressure chip 9 is also positioned at the cavity of the base 4. The entire silicon SOI pressure chip is connected and sealed with PYREX7740 glass 6 in a vacuum environment through an electrostatic bond; the cavity of the base 4 is filled with high-temperature silicon oil 13; a pressure welding block of the entire silicon SOI pressure chip 9 is connected with the electrode 1 through an ultrasonic hot-pressure welding gold wire. The silicon oil high temperature resistant pressure sensor can solve the problems of measuring a mass of measuring range in a high-temperature environment, meanwhile, the silicon oil high temperature resistant pressure sensor in a SOI entire silicon structure has the advantages of good dynamic property, high temperature resistance (is more than or equal to 200 DEG C), high accuracy, large range (60 to 150 MPa), miniaturization, safety and reliability and strong adaptability.

Description

SOI全硅结构充硅油耐高温压力传感器技术领域本发明涉及一种压力传感器,特别涉及一种SOI全硅结构充硅油、高量程、耐高温压力传感器。 Full charge SOI structure silicon pressure sensor temperature silicone Technical Field The present invention relates to a pressure sensor, and particularly relates to an SOI structure silicon charge full silicone oil, high range, high temperature pressure sensors. 背景技术目前,高量程压力传感器普遍采用压电式、应变式或压阻式结构原理。 BACKGROUND OF THE INVENTION Currently, high range pressure sensor commonly used piezoelectric, piezoresistive or strain gauge principle structure. 压电式压力传感器的输出信号为电荷变化量,因此后续的信号处理电路比较繁琐且压电式压力传感器不适合在高温环境下使用,而且不具有高过载保护的能力。 Output signals from the piezoelectric pressure sensor of a charge variation amount, subsequent signal processing circuit is cumbersome and piezoelectric pressure sensors are not suitable for use in a high temperature environment, and does not have a high overload capacity. 采用金属应变片作为敏感元件的高量程压力传感器,该种传感器存在的最大缺点就是输出信号太小,且在高温环境下,温度对金属应变片的变形影响比较大,影响传感器的输出, 不适用于高温环境。 Metal strain gauge sensitive elements as a high range pressure sensor, the biggest drawback of this type of sensor is the output signal is too small, and in a high temperature environment, the temperature of deformation of the metal strain gauge is relatively large, the influence of the output of the sensor, not applicable in high-temperature environments. 压阻式压力传感器中,最常用的传感器结构为充硅油全硅压力传感器和干式压阻式压力传感器,而充硅油全硅压阻式压力传感器,普遍采用PN节隔离技术,导致其工作温度最高达到80 'C左右,且由于全硅压力芯片结构的影响,压力量程最高在40MPa 以下;干式压阻式压力传感器,尽管采用了耐高温的一些隔离措施和技术,具有耐高温和高量程的特点,但由于受到传感器封装结构的影响,如梁膜式、膜片式等结构导致传感器在高压测量时,具有较大的线行、迟滞等静态误差。 Piezoresistive pressure sensor, a sensor structure is the most commonly used silicone full charge of dry silicon pressure sensors and piezoresistive pressure sensor, and a full charge silicone piezoresistive pressure sensor, commonly used isolation technology PN section, leading to its working temperature up to about 80 'C, and the silicon pressure due to full-chip structure, in the pressure range up to 40MPa or less; dry piezoresistive pressure sensor, and although a number of techniques and quarantine measures high temperature resistant, high temperature and high range features, but due to the impact sensor package structures, such as beams membrane, diaphragm and other structure results in high-pressure measuring sensor, row lines with a larger, static hysteresis and other errors. 发明内容本发明的目的在于克服上述现有技术的缺点,提出一种SOI全硅结构充硅油高精度、高量程的耐高温压力传感器,采用静电键合封装技术将硅隔离(SOI)硅微固态压阻芯片与PYREX7740玻璃片在真空环境下封装结合为一体作为全硅结构的压力传感器的弹性敏感单元,解决了高温环境下测量大量程压力的难题,同时采用高温充硅油技术,用波纹片和高温硅油将被测量介质隔离开来,具有动态特性好、 耐高温(>200°C)、精度高、量程大(60~150MPa)、微型化、工作安全可靠、适应性强的特点。 Object of the present invention is to overcome the above disadvantages of the prior art, to provide a complete silicon SOI structure silicon oil filling precision, high-temperature range of the pressure sensor, electrostatic bonding packaging techniques silicon spacer (SOI) silicon micro-solid PYREX7740 piezoresistive chip incorporated in the glass vacuum package integrally as an elastic pressure sensitive sensor means all-silicon structure, to solve the large range of pressure measurements under high temperature environmental problems, while the high-temperature silicon oil filling technique, with the corrugated sheets and high temperature silicone oil isolate medium to be measured, having dynamic properties, high temperature (> 200 ° C), high-precision, large-scale (60 ~ 150MPa), miniaturization, safe and reliable, adaptable characteristics. 本发明的技术方案是这样实现的:本发明包括一配置有空腔的基座4,基座4空腔上依次配置有波纹膜片7和压环5,电极l通过玻璃绝缘子2与基座4相固接,基座4空腔内还配置一(100)晶面的全硅SOI压力芯片9,全硅SOI压力芯片9在真空环境下与PYREX7740玻璃6通过静电键合封接在一起,基座4空腔中充填有高温硅油13,全硅SOI压力芯片9上的压焊块与电极1之间通过超声热压焊用金丝8连接。 Aspect of the present invention is implemented as follows: The present invention comprises a base 4 disposed cavity arranged in this order on the base film 7 and a corrugated cavity 4 pressure ring 5, l electrodes through the glass and the base insulator 2 4 fixedly attached to, the base 4 is also disposed within the cavity whole SOI silicon pressure die 9 a (100) crystal face, the whole SOI silicon pressure die 9 under a vacuum environment with 6 PYREX7740 glass bonded together by electrostatic bonding sealed, 4 the base cavity 13 is filled with silicone high temperature, the electrode pads 9 on the whole SOI silicon pressure connection between the chip using a gold wire 8 by ultrasonic thermocompression bonding. 所说的全硅SOI压力芯片9上沿着[110]晶向在应力最大处布置有电阻条R1、 R2、 R3禾PR4,电阻条Rl的一端与压焊块15连接, 电阻条Rl和R2通过一公共的压焊块16连接,电阻条R2和R3通过一公共的压焊块17连接,电阻条R3和R4通过一公共的压焊块18 连接,电阻条R4的另外一端与压焊块19连接。 Whole SOI silicon on said pressure die 9 along the [110] crystal direction is arranged at the maximum stress resistor strips R1, R2, R3 Wo PR4, one end of the resistor strips Rl pads 15 are connected, resistor strips Rl and R2 connected by a common bond pad 16, the resistor strip R2 and R3 are connected by a common pads 17, resistor strips R3 and R4 via 18 is connected to a common pads, resistor track R4 of the other end with pads 19. 压焊块l 5、 1 6、 17、 1 8或1 9采用钛-钼-金(Ti-Pt-Au)梁式引线技术,亦即与电阻条接触的金属为钛,中间的阻挡扩散金属为铂,外界梁金属为金,三者的厚度比为500: 500: 3000 (单位A)。 Pads l 5, 1 6, 17, 1 8, or 19 titanium - molybdenum - gold (Ti-Pt-Au) beam lead technology, i.e. the metal strip is in contact with the resistance of titanium, a metal diffusion barrier intermediate platinum, gold metal is outside the beam, the thickness ratio of the three is 500: 500: 3000 (unit a).

所说的S0I压阻电阻条R1、 R2、 R3或R4包括一多折结构的浮雕压敏电阻条20及与之一端相连接的梁式引线21,梁式引线21采用钛-铂-金(Ti-Pt-Au)引线技术,亦即与电阻条接触的金属为钛, 中间的阻挡扩散金属为铂,外界梁金属为金,三者的厚度比为500: 500: 3000 (单位A),实现浮雕压敏电阻条20与金丝8之间的电气连接。 S0I said piezoresistive resistor track R1, R2, R3 or R4 comprises more than one embossed strip off the varistor 20 and the configuration of beam lead connected to one end 21 of beam lead 21 titanium - platinum - gold ( Ti-Pt-Au) wire technique, i.e. in contact with the resistive strip metal is titanium, the diffusion barrier intermediate metal is platinum, gold metal is outside the beam, the thickness ratio of the three is 500: 500: 3000 (unit a), Varistor achieve relief strip 20 electrically connected between 8 and gold.

全硅SOI压力芯片9的SOI膜结构包括一硅基底26,在硅基底26上,通过高能氧离子注入工艺形成二氧化硅隔离层22,其厚度为0.375um;在二氧化硅隔离层22上有作为测量电路压阻条的SOI硅层24,其厚度为1.6um;在SOI硅层24上配有应力匹配氮化硅层25, 其厚度O.lum。 Full pressure SOI silicon chip 9 SOI film structure comprising a silicon substrate 26, on a silicon substrate 26, silicon dioxide spacer layer 22 is formed by high energy oxygen ion implantation process, a thickness of 0.375um; spacer layer 22 on the silicon dioxide a circuit serving as a measuring strip SOI piezoresistive silicon layer 24 with a thickness of 1.6um; on the SOI silicon layer 24 with matching stress silicon nitride layer 25 having a thickness O.lum. 全硅SOI压力芯片9为正方形结构,全硅SOI压力芯片9的厚度为标准硅片厚度值0.525mm,正方形芯片外形尺寸的边长设计为2mm,背腔边长尺寸设计为lmm,背腔深度加工尺寸为0.15mm。 All silicon pressure die 9 square SOI structure, the whole thickness of the silicon chip 9 pressure SOI wafer thickness values ​​for the standard 0.525 mm, a square side length of chip design dimensions of 2mm, the back side of the cavity length dimensioned lmm, the depth of the back chamber processing size is 0.15mm.

由于本发明的全硅结构电路转换元件是采用MEMS技术和SOI 技术中的SIMOX技术制作的浮雕式硅微固态压阻芯片,由SIMOX Since the all-silicon structure of the circuit device of the present invention is the conversion using SIMOX technology to produce SOI MEMS technology and art of micro-embossed solid piezoresistive silicon chip, a SIMOX

技术制作的Si02层将芯片内的测量电路层与硅基底隔离开来,解决 The Si02 layer was measured with a circuit layer within the silicon substrate isolated from the production off-chip technology, to solve

了在大于20(TC的应用环境下因采用常规pn结隔离的芯片产生漏电路的问题,因而该类芯片可用于高温环境(》200°C)。另外高量程高温压力传感器的弹性元件及敏感元件采用全硅结构正方形平膜结构, 通过对正方形硅膜结构参数即厚度和边长的设计,可设计出量程为60〜150MPa的高量程压力传感器。由于半导体硅的良好的机械特性, 同时作为传感器转换电路的压阻惠斯登测量电桥集成制造在全硅结构正方形平膜结构上,这样传感器的弹性和敏感元件与转化电路之间集成为一体,大大降低了传感器在测量过程中的迟滞、重复性误差, 从而提高传感器的测量精度,可以广泛适用与石油测井、工业自动化、 动力装备以及国防研究等领域的高温、高压下高精度压力测量的需要。 In (TC application environment of greater than 20 due to the pn junction isolation by conventional problems drain circuit of the chip, such chips can be used and thus a high temperature environment ( "200 ° C). Further the resilient element high temperature range and sensitivity of the pressure sensor all-element structure of a square flat film silicon structure, by designing the square of the silicon film thickness and edge configuration parameters i.e. length, can be designed as a high-range pressure sensor range 60~150MPa Since semiconductor silicon good mechanical properties, both as piezoresistive Wheatstone measuring sensor conversion circuit for producing an electrical integrated silicon bridge structure over the entire structure of a square flat membrane, between the elastic member and the conversion and the sensitivity of the circuit so that the sensor is integral, greatly reduces the hysteresis in the sensor measuring process , repeatability error, to improve the measuring accuracy of the sensor can be widely applied to the field of high-temperature oil well logging, industrial automation, power equipment and defense research, the pressure of high pressure to be measured with high accuracy.

附图说明 BRIEF DESCRIPTION

图1为本发明充硅油的SOI压力测量传感器结构原理图。 FIG 1 is a silicone oil filled pressure measuring sensor SOI structure diagram of the present invention. 图2为本发明未充硅油的SOI压力测量传感器结构原理图。 FIG 2 is not sufficient silicone pressure measuring sensor of SOI structure diagram of the present invention. 图3为本发明机械结构件之间的装配关系图。 FIG 3 is a relationship between the mechanical assembly structure to the invention. 图4为本发明SOI全硅敏感元件结构图。 Full SOI structure silicon sensing element 4 of the present invention FIG. 图5为本发明SOI压阻电阻结构图。 FIG 5 SOI piezoresistive resistor configuration diagram of the present invention. 图6为本发明的测量原理图。 FIG 6 is a schematic diagram of the measurement of the invention. 图7为SOI膜结构示意图。 7 is a schematic view of a film structure of SOI. 具体实施方式 Detailed ways

下面结合附图对本发明的结构原理和工作原理做详细说明。 BRIEF following detailed explanation of the working principle of the structure and principle of the present invention binds. 参照图1、图2和图3,本发明包括一配置有空腔的基座4,基座4的空腔与一销钉孔y相连通,基座4空腔上依次配置有波纹膜片7和压环5,波纹膜片7、压环5以及基座4之间通过激光焊接连接在一起,电极1通过玻璃绝缘子2与基座4相固接,基座4空腔内还配置一(100)晶面的全硅SOI压力芯片9,全硅SOI压力芯片9在真空环境下与PYREX7740玻璃6通过静电键合封接在一起,高温硅油13在真空的环境下通过销钉孔y充填于基座4空腔中,充填完硅油后,将销钉3铆入销钉孔3、实现硅油的密封,全硅SOI压力芯片9上的压焊块与电极1之间通过超声热压焊用金丝8连接。 Referring to FIGS. 1, 2 and 3, the present invention comprises a base 4 disposed cavity, the cavity base 4 with a pin hole communicating y are sequentially disposed on corrugated diaphragm base 4 cavity 7 5 and the pressure ring, corrugated diaphragm 7, the pressure ring 4 is connected between the base 5 and welded together by laser, the electrode 1 through a glass insulator 2 fixedly connected to the base 4, the base 4 is also arranged a cavity ( 100) crystal plane of the silicon SOI full pressure die 9, the whole SOI silicon pressure die 9 under a vacuum environment with 6 PYREX7740 glass bonded together by electrostatic bonding sealed, high temperature silicone oil through a pin hole 13 y in a vacuum environment in the filled-yl block cavity 4, after the completion of filling a silicone oil, the pin 3 into the rivet pin holes 3, sealing silicone oil, and the electrode pads on the chip 9 Siliceous SOI pressure by ultrasonic thermocompression bonding using a gold wire 8 between 1 connection. 另外, 电极1与基座4之间配置有绝缘套11,其作用是实现电极1与基座4 之间的电气绝缘;与传感器电极1连接并固定在基座4上配置有补偿板12,其主要功能实现传感器零位温度漂移和灵敏度温度漂移的补偿,提高传感器工作的稳定性;传感器基座4上配置有O型密封圈10,其主要是本发明的传感器芯体与其它结构连接时起密封作用;补偿电路板12间配置有引线14,其主要实现传感器与外接电路的连接。 Further, the electrode 1 and the base 4 is disposed between the insulating sleeve 11, whose role is to achieve electrical connection between the electrode 1 and the insulating base 4; 1 is connected to the sensor electrode and fixed compensation plate 12 is disposed on the base 4, when the O-ring 10 is arranged, which is primarily a sensor core according to the present invention and other structures connected to the sensor base 4; its main function the sensor zero drift and temperature drift compensating sensitivity, improve the stability of sensor operation acts as a seal; compensator circuit board 12 is disposed lead 14, to achieve its main external circuit connected to the sensor. 参照图4 ,所说的全硅SOI压力芯片9上沿着[110]晶向在应力最大处布置有电阻条R1、 R2、 R3和R4,电阻条R1的一端与压焊块15连接,电阻条R1和R2通过一公共的压焊块16连接,电阻条R2 和R3通过一公共的压焊块17连接,电阻条R3和R4通过一公共的压焊块18连接,电阻条R4的另外一端与压焊块19连接。 Referring to FIG 4, the whole of said SOI silicon pressure die 9 along the [110] crystal orientation of the resistive strip disposed R1, R2, R3 and R4, one end of the resistor track pads 15 is connected at R1 is at maximum stress, resistance Article R1 is connected and R2 via a common pads 16, resistor strips R2 and R3 are connected by a common pads 17, resistor strips R3 and R4 via 18 is connected to a common pads, the resistance bar the other end of R4 19 is connected to the pads. 压焊块的作用就是通过金丝球焊实现芯片内与芯片外的引线,为保证压焊块与电阻条之间有良好的欧姆接触和传感器芯片在高温环境下外引线的可靠性,压焊块采用钛-铂-金(Ti-Pt-Au)梁式引线技术,亦即与电阻条接触的金属为钛,中间的阻挡扩散金属为铂,外界梁金属为金, 三者的厚度比为500: 500: 3000 (单位A)。 Role pads is implemented off-chip and chip leads by gold ball bonding, to ensure the reliability of a good ohmic contact and high temperature environment of the sensor chip at the outer lead bonding between the block and the resistive strip, pressure welding block titanium - platinum - gold (Ti-Pt-Au) beam lead technology, i.e. an ohmic contact with the metal strip is titanium, the diffusion barrier intermediate metal is platinum, gold metal is outside the beam, the thickness ratio of the three 500: 500: 3000 (unit A). 由电阻条R1、 R2、 R3 和R4组成惠斯登测量电路时,压焊块17至电源恒压源5V正极或恒流源正极,压焊块15和19做完传感器零位补偿后短接一起为电桥的电源的负极,压焊块16和18为惠斯登测量电路的信号输出端。 When the article by resistors R1, R2, R3 and R4 form a Wheatstone measuring circuit pads 17 to the positive power supply 5V constant voltage source or a constant current source positive electrode pads 15 and 19 after the sensor offset compensation done shorting together with the negative electrode of the power bridge, pads 16 and 18 to a Wheatstone measuring signal output of the circuit.

所说的SOI压阻电阻条Rl、 R2、 R3和R4形状结构如图5所示, 其包括一浮雕压敏电阻条20及与之一端相连接的梁式引线21,为提高电阻条的压阻效应和提高传感器灵敏度,浮雕压敏电阻条20的结构设计成多折结构,本发明实施例中折数为5折。 SOI piezoresistive resistance of said article Rl, R2, R3 and R4 shape of the structure as shown in Fig, comprising a strip 20 and embossed varistor beam lead 21 connected to one end, in order to improve pressure resistance of strips 5 hindrance and improve sensor sensitivity, the varistor relief structure strip 20 is designed to multi-fold structure, the number of folds embodiment of the present invention is 5 fold. 梁式引线21采用钛-铂-金(Ti-Pt-Au)引线技术,亦即与电阻条接触的金属为钛,中间的阻挡扩散金属为铂,外界梁金属为金,三者的厚度比为500: 500: 3000 (单位A),实现浮雕压敏电阻条20与金丝8之间的电气连接。 Beam lead 21 titanium - platinum - gold (Ti-Pt-Au) wire technique, i.e. in contact with the resistive strip metal is titanium, the diffusion barrier intermediate metal is platinum, the metal ratio is outside the beam thickness of the gold, three 500: 500: 3000 (unit a), to achieve relief varistor 20 is connected to the electrical strip 8 between the gold.

图6为本发明的测量原理图,被测量压力作用于波纹膜片7,通过高温硅油13将压力传递给全硅SOI压力芯片9 ,全硅SOI压力芯片9的硅膜片上受到通过高温硅油13传递来的压力,压力导致硅膜片产生弹性形变,硅膜片最大应力区域在形变下产生应力,应力导致硅膜上浮雕压敏电阻条20发生变化。 FIG 6 is a schematic diagram of the invention is measured, the measured pressure is applied to the corrugated diaphragm 7, the pressure is transmitted to the whole SOI silicon chip 9 by the pressure of high-temperature silicon oil 13, by the all-silicon pressure die SOI silicon diaphragm 9 by the high-temperature silicone oil 13 is transmitted to the pressure, pressure causes the diaphragm is elastically deformed silicon, silicon diaphragm area of ​​maximum stress at strain stress is generated, resulting in a change of stress relief piezoresistive silicon film strip 20 occurs. 全硅SOI压力芯片9上硅隔离二氧化硅层22将浮雕压敏电阻条20与全硅SOI压力芯片9的基底隔离开来。 9 over the entire SOI silicon-silicon pressure die spacer bar 22 relief silica varistor layer and the substrate 20 to isolate the full pressure of the silicon chip 9 SOI. 为实现高压下全硅结构的压力测量,本发明涉及的全硅SOI 压力芯片9的结构中,全硅SOI压力芯片9的厚度为标准硅片厚度值0.525mm,正方形芯片外形尺寸的边长设计为2mm,背腔边长尺寸设计为lmm,背腔深度加工尺寸为0.15mm。 To achieve the full pressure measurement silicon structure under high pressure, the present invention relates to the structure of the whole SOI silicon pressure die 9, the thickness of the full pressure of the silicon chip 9 SOI wafer thickness value of 0.525 mm as a standard, the square side length of chip design dimensions It is 2mm, the back cavity side length dimensioned lmm, the depth of processing the back cavity size 0.15mm. 在真空环境下,PYREX7740 玻璃片6与全硅SOI压力芯片9通过静电键合工艺封接在一起,实现真空腔23与压力介质的隔离。 In a vacuum atmosphere, Pyrex 7740 glass 6 and the pressure of the whole SOI silicon chip 9 by an electrostatic bonding process are sealed together, the vacuum chamber 23 to achieve isolation with the pressure medium. 集成在硅膜片(100)工作晶面上惠斯登电桥的两臂电阻Ri、 R2、 R3、 R4产生变化时,其变化率AR/R的正负变化由应力差的正负变化来实现。 Integrated silicon diaphragm (100) crystal face of the working arms of Wheatstone bridge resistor Ri, R2, R3, R4 generated when a change, rate of change of positive and negative change AR / R of the positive and negative changes to the stress difference achieve. 对于R!、 R3,纵向应力〜=〜,纵向压阻系数;r,"/2^,横向压阻系数5=-1/2冗44,发生应变时,惠斯登电桥上各电阻阻值变化率分别为:<formula>formula see original document page 10</formula>其中:^,〜分别为弹性元件测量点处纵向和横向的应力。由四臂电阻构成的惠斯登电桥能灵敏地反映应力所导致的电阻变化;又能有效地消除扩散电阻本身的不均匀性及电阻温度系数的影响。惠斯登测量电桥在恒定电源激励下,输出和压力P的大小成正比的电信号,从而测得高温流体的压力值。如图7所示为加工SOI全硅压力传感器所需的膜结构,膜结构厚度525um,全硅SOI压力芯片9的SOI膜结构包括一硅基底26,在硅基底26上,通过高能氧离子注入工艺形成二氧化硅隔离层22,其厚度为0.375um;在二氧化硅隔离层22上有作为测量电路压阻条的SOI硅层24,其厚度为1.6um;在SOI硅层24上配有应力匹配 For R !, R3, ~ = ~ longitudinal stress, longitudinal piezoresistive coefficient; r, "/ 2 ^, the transverse piezoresistive coefficient 5 = -1 / 2 redundant 44, when strained, each of the resistors of the Wheatstone bridge resistance value change rates were: <formula> formula see original document page 10 </ formula> where: ^, ~ respectively longitudinal and transverse stress of the elastic member of the measuring point by the Wheatstone bridge formed of four arm resistance can sensitively. reflect the resistance change caused by stress; and can effectively eliminate the effect of non-uniformity of the diffusion resistor itself and the temperature coefficient of resistance of the Wheatstone measured at a constant excitation power output is proportional to the pressure P and the magnitude of the electrical bridge. signal, so that the measured temperature fluid pressure value required for the processing of the film structure of the whole SOI silicon pressure sensor shown in FIG. 7, the film thickness of the structure 525um, full pressure SOI structure silicon film SOI chip 9 comprises a silicon substrate 26, on a silicon substrate 26, the oxygen ion implantation process by high energy silicon dioxide isolation layer 22 is formed with a thickness of 0.375um; measuring circuit serving as an SOI piezoresistive strips silicon layer 24 on the silicon dioxide spacer layer 22 having a thickness of 1.6um; on the SOI silicon layer 24 with matching stress 化硅层25,其厚度0.1um。本发明提供以下一个实施例:硅应变固态压阻芯片外形尺寸:2.0mmx2.0mmxl.0mm; 充硅油压力传感器结构:(t)13和d)19 压力量程:lOOMPa; 灵敏度:>0.6mV/ps; 应变极限:》3000^is;电源:5VDC;工作温度:-40〜350°C; 疲劳寿命:>107次。 19 pressure range (t) 13, and D):;: solid state silicon piezoresistive strain chip size: silicon layer 25 having a thickness of 0.1um present invention provides the following embodiment a silicone oil filled pressure sensor structure embodiment 2.0mmx2.0mmxl.0mm : Loompa; sensitivity:> 0.6mV / ps; strain limit: "3000 ^ is; power: 5VDC; Operating temperature: -40~350 ° C; fatigue life:> 107 times.

Claims (6)

1、SOI全硅结构充硅油耐高温压力传感器,包括一配置有空腔的基座(4),其特征是,基座(4)空腔上依次配置有波纹膜片(7)和压环(5),电极(1)通过玻璃绝缘子(2)与基座(4)相固接,基座(4)空腔内还配置一(100)晶面的全硅SOI压力芯片(9),全硅SOI压力芯片(9)在真空环境下与PYREX7740玻璃(6)通过静电键合封接在一起,基座(4)空腔中充填有高温硅油(13),全硅SOI压力芯片(9)上的压焊块与电极(1)之间通过超声热压焊用金丝(8)连接。 1, SOI structure silicon full charge high temperature silicone pressure sensor, comprising a cavity disposed in the base (4), characterized in that the base (4) are sequentially disposed on corrugated diaphragm chamber (7) and the pressure ring (5), the electrode (1) by a glass insulator (2) and the base (4) fixedly connected, (4) is further configured to base the whole cavity pressure SOI silicon chip a (100) plane (9), full SOI silicon pressure die (9) in a vacuum environment and PYREX7740 glass (6) by electrostatic bonding sealed together, the base (4) is filled with a high temperature silicone oil cavity (13), the whole SOI silicon pressure die (9 and the electrode pads on) between (1) is connected by gold wire (8) by ultrasonic thermocompression bonding.
2 、根据权利要求1所说的压力传感器,其特征是,所说的全硅SOI压力芯片(9)上沿着[110]晶向在应力最大处布置有电阻条(R1)、(R2)、 (R3)和(R4),电阻条(Rl)的一端与压焊块(15)连接, 电阻条(Rl)和(R2)通过一公共的压焊块(16)连接,电阻条(R2) 和(R3)通过一公共的压焊块(17)连接,电阻条(R3)和(R4) 通过一公共的压焊块(18)连接,电阻条(R4)的另外一端与压焊块(19)连接。 2, said pressure sensor according to claim 1, wherein said pressure whole SOI silicon chip (9) along the [110] crystal direction is arranged resistive strip (R1), (R2) at the maximum stress , (R3) and (R4), the resistive strip (Rl) of the end of the bond pads (15) connected to the resistive strip (Rl) and (R2) are connected by a common bond pads (16), resistive strip (R2 ) and (R3) are connected by a common bond pads (17), resistive strip (R3) and (R4) are connected by a common bond pads (18), resistive strip (R4) of the other end with pads (19).
3 、根据权利要求1或2所说的压力传感器,其特征是,所说的压焊块(15)、 (16)、 (17)、 (18)或(19)采用钛-钼-金(Ti-Pt-Au)梁式引线技术,亦即与电阻条接触的金属为钛,中间的阻挡扩散金属为钼, 外界梁金属为金,三者的厚度比为500: 500: 3000 (单位A)。 3, according to claim 2 or a pressure sensor 1, characterized in that said pads (15), (16), (17), (18) or (19) titanium - molybdenum - gold ( Ti-Pt-Au) beam lead technology, i.e. in contact with the resistive strip metal is titanium, the diffusion barrier intermediate metal is molybdenum, gold metal is outside the beam, the three thickness ratio of 500: 500: 3000 (unit a ).
4、根据权利要求1或2所说的压力传感器,其特征是,所说的所说的SOI压阻电阻条(R1)、 (R2)、 (R3)或(R4)包括一多折结构的浮雕压敏电阻条(20)及与之一端相连接的梁式引线(21),梁式引线(21) 采用钛-钼-金(Ti-Pt-Au)引线技术,亦即与电阻条接触的金属为钛, 中间的阻挡扩散金属为铂,外界梁金属为金,三者的厚度比为500: 500: 3000 (单位A),实现浮雕压敏电阻条(20)与金丝(8)之间的电气连接。 4, according to claim 1 or 2, said pressure sensor, characterized in that said strip of said SOI piezoresistive resistor (R1), (R2), (R3) or (R4) comprising a multi-folded structure Varistor relief strip (20) and the beam leads (21) connected to one end of beam lead (21) titanium - molybdenum - gold (Ti-Pt-Au) wire technique, i.e. in contact with the resistive strip the metal is titanium, the diffusion barrier intermediate metal is platinum, gold metal is outside the beam, the three thickness ratio of 500: 500: 3000 (unit a), the varistor achieve relief strip (20) and gold (8) electrical connection between the.
5 、根据权利要求1所说的压力传感器,其特征是,所说的全硅SOI压力芯片(9 )的SOI膜结构包括一硅基底(26),在硅基底(26)上, 通过高能氧离子注入工艺形成二氧化硅隔离层(22),其厚度为0.375um;在二氧化硅隔离层(22)上有作为测量电路压阻条的SOI硅层(24),其厚度为1.6um;在SOI硅层(24)上配有应力匹配氮化硅层(25),其厚度O.lum。 5, said pressure sensor as claimed in claim 1, characterized in that said film structure of the whole SOI SOI silicon pressure die (9) includes a silicon substrate (26), on a silicon substrate (26), by high energy oxygen ion implantation process of forming silicon dioxide spacer layer (22) having a thickness of 0.375um; measuring circuit serving as an SOI piezoresistive silicon layer article (24) having a thickness of 1.6um silica on the spacer layer (22); on the SOI silicon layer (24) matching with the stress silicon nitride layer (25) having a thickness O.lum.
6、根据权利要求1或5所说的压力传感器,其特征是,所说的全硅SOI压力芯片(9)为正方形结构,全硅SOI压力芯片(9)的厚度为标准硅片厚度值0.525mm,正方形芯片外形尺寸的边长设计为2mm, 背腔边长尺寸设计为lmm,背腔深度加工尺寸为0.15mm。 6, according to claim 1 or 5, said pressure sensor, characterized in that said whole SOI silicon pressure die (9) is a square structure, the whole thickness of the SOI silicon pressure die (9) is a standard wafer thickness value 0.525 mm, a square side length of chip design dimensions of 2mm, the back side of the cavity length dimensioned lmm, the depth of processing the back cavity size 0.15mm.
CN 200810017298 2008-01-16 2008-01-16 SOI complete silicon structure silicone-oil-filling high-temperature-resistance pressure sensor CN100561156C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200810017298 CN100561156C (en) 2008-01-16 2008-01-16 SOI complete silicon structure silicone-oil-filling high-temperature-resistance pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200810017298 CN100561156C (en) 2008-01-16 2008-01-16 SOI complete silicon structure silicone-oil-filling high-temperature-resistance pressure sensor

Publications (2)

Publication Number Publication Date
CN101226092A true CN101226092A (en) 2008-07-23
CN100561156C CN100561156C (en) 2009-11-18

Family

ID=39858213

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200810017298 CN100561156C (en) 2008-01-16 2008-01-16 SOI complete silicon structure silicone-oil-filling high-temperature-resistance pressure sensor

Country Status (1)

Country Link
CN (1) CN100561156C (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101799343A (en) * 2010-03-09 2010-08-11 昆山诺金传感技术有限公司;威海诺金传感技术有限公司;北京鑫诺金传感技术有限公司;北京鑫诺金电子科技发展有限公司;北京德思源电子科技发展有限公司 Automobile manifold absolute pressure sensor
CN101975637A (en) * 2010-07-28 2011-02-16 杭州博翔传感器有限公司 Compact-type automobile pressure transformer and manufacturing process thereof
CN102539063A (en) * 2011-12-16 2012-07-04 西安交通大学 High-pressure sensor chip with SOI (silicon on insulator) rectangular film structure
CN102620866A (en) * 2012-03-30 2012-08-01 山东昌润科技有限公司 Digital-type temperature pressure oil-filled core
CN103344374A (en) * 2013-06-26 2013-10-09 夏云 Hidden-type MEMS pressure sensor sensitive chip and manufacturing method thereof
CN103376182A (en) * 2012-04-28 2013-10-30 浙江三花股份有限公司 Heat exchange device and pressure sensor thereof
WO2013159583A1 (en) * 2012-04-28 2013-10-31 浙江三花股份有限公司 Heat exchange device and pressure sensor thereof
CN104122026A (en) * 2013-04-25 2014-10-29 浙江三花股份有限公司 Pressure transducer and pressure system
CN104501878A (en) * 2015-01-26 2015-04-08 中国电子科技集团公司第四十九研究所 Filling ceramic structure of complex sensor sensitive core and installation method
CN104535253A (en) * 2015-01-19 2015-04-22 北京大学 High temperature pressure sensor and process method thereof
CN105136379A (en) * 2015-07-17 2015-12-09 中国电子科技集团公司第四十九研究所 Dynamic pressure sensor chip
CN105236343A (en) * 2015-09-07 2016-01-13 苏州敏芯微电子技术有限公司 Dielectric isolation type pressure sensor encapsulating structure
CN106124117A (en) * 2016-06-14 2016-11-16 中国科学院地质与地球物理研究所 A kind of double cavity pressure meter chip and manufacturing process thereof
CN106289634A (en) * 2016-08-23 2017-01-04 太仓市威士达电子有限公司 A kind of metal shell for pressure sensor package combines
CN106546363A (en) * 2016-09-29 2017-03-29 中国电子科技集团公司第四十八研究所 A kind of diaphragm pressure sensor and its method for packing
CN106768592A (en) * 2017-02-24 2017-05-31 中国电子科技集团公司第三十八研究所 A kind of pressure transmitter oil filling core body of band signal processing function
CN108106777A (en) * 2011-05-30 2018-06-01 埃普科斯股份有限公司 Pressure sensor and the method for manufacturing pressure sensor
CN108593195A (en) * 2018-05-04 2018-09-28 中北大学 High temperature hydraulic pressure sensor-packaging structure
CN105466626B (en) * 2015-12-11 2019-01-11 中国电子科技集团公司第四十八研究所 Diaphragm pressure sensor and its manufacturing method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102435378A (en) * 2011-10-28 2012-05-02 山东昌润科技有限公司 Compound type temperature pressure sensor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1119639C (en) 1999-12-10 2003-08-27 中国科学院上海冶金研究所 Technology for making superhigh-pressure high-temp force sensor of silicon on insulator
CN2539161Y (en) 2002-05-10 2003-03-05 赵建立 Silicon piezoresistive type pressure sensor with flange structure
CN1209609C (en) 2003-07-31 2005-07-06 西安交通大学 Solid state pressure blocking type high temperature resistance pressure sensor and its preparation method
CN1244807C (en) 2003-11-12 2006-03-08 王文襄 Micro dynamic piezoresistance pressure sensor and manufacturing method thereof
CN100465599C (en) 2005-12-23 2009-03-04 昆山双桥传感器测控技术有限公司 A pressure resistance type soil stress sensor

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101799343A (en) * 2010-03-09 2010-08-11 昆山诺金传感技术有限公司;威海诺金传感技术有限公司;北京鑫诺金传感技术有限公司;北京鑫诺金电子科技发展有限公司;北京德思源电子科技发展有限公司 Automobile manifold absolute pressure sensor
CN101975637A (en) * 2010-07-28 2011-02-16 杭州博翔传感器有限公司 Compact-type automobile pressure transformer and manufacturing process thereof
CN108106777A (en) * 2011-05-30 2018-06-01 埃普科斯股份有限公司 Pressure sensor and the method for manufacturing pressure sensor
CN102539063A (en) * 2011-12-16 2012-07-04 西安交通大学 High-pressure sensor chip with SOI (silicon on insulator) rectangular film structure
CN102539063B (en) 2011-12-16 2013-10-16 西安交通大学 High-pressure sensor chip with SOI (silicon on insulator) rectangular film structure
CN102620866A (en) * 2012-03-30 2012-08-01 山东昌润科技有限公司 Digital-type temperature pressure oil-filled core
CN103376182A (en) * 2012-04-28 2013-10-30 浙江三花股份有限公司 Heat exchange device and pressure sensor thereof
WO2013159583A1 (en) * 2012-04-28 2013-10-31 浙江三花股份有限公司 Heat exchange device and pressure sensor thereof
CN104122026A (en) * 2013-04-25 2014-10-29 浙江三花股份有限公司 Pressure transducer and pressure system
CN104122026B (en) * 2013-04-25 2017-11-03 浙江三花制冷集团有限公司 A kind of pressure sensor and pressure system
CN103344374B (en) * 2013-06-26 2015-06-17 夏云 Hidden-type MEMS pressure sensor sensitive chip and manufacturing method thereof
CN103344374A (en) * 2013-06-26 2013-10-09 夏云 Hidden-type MEMS pressure sensor sensitive chip and manufacturing method thereof
CN104535253A (en) * 2015-01-19 2015-04-22 北京大学 High temperature pressure sensor and process method thereof
CN104501878A (en) * 2015-01-26 2015-04-08 中国电子科技集团公司第四十九研究所 Filling ceramic structure of complex sensor sensitive core and installation method
CN105136379A (en) * 2015-07-17 2015-12-09 中国电子科技集团公司第四十九研究所 Dynamic pressure sensor chip
CN105236343B (en) * 2015-09-07 2017-07-07 苏州敏芯微电子技术有限公司 Media-isolated pressure sensor packaging structure
CN105236343A (en) * 2015-09-07 2016-01-13 苏州敏芯微电子技术有限公司 Dielectric isolation type pressure sensor encapsulating structure
CN105466626B (en) * 2015-12-11 2019-01-11 中国电子科技集团公司第四十八研究所 Diaphragm pressure sensor and its manufacturing method
CN106124117B (en) * 2016-06-14 2019-04-23 中国科学院地质与地球物理研究所 A kind of double cavity pressure meter chips and its manufacturing process
CN106124117A (en) * 2016-06-14 2016-11-16 中国科学院地质与地球物理研究所 A kind of double cavity pressure meter chip and manufacturing process thereof
CN106289634A (en) * 2016-08-23 2017-01-04 太仓市威士达电子有限公司 A kind of metal shell for pressure sensor package combines
CN106546363A (en) * 2016-09-29 2017-03-29 中国电子科技集团公司第四十八研究所 A kind of diaphragm pressure sensor and its method for packing
CN106546363B (en) * 2016-09-29 2019-09-20 中国电子科技集团公司第四十八研究所 A kind of diaphragm pressure sensor and its packaging method
CN106768592A (en) * 2017-02-24 2017-05-31 中国电子科技集团公司第三十八研究所 A kind of pressure transmitter oil filling core body of band signal processing function
CN108593195A (en) * 2018-05-04 2018-09-28 中北大学 High temperature hydraulic pressure sensor-packaging structure

Also Published As

Publication number Publication date
CN100561156C (en) 2009-11-18

Similar Documents

Publication Publication Date Title
US7401522B2 (en) Pressure sensor using compressible sensor body
CN101578507B (en) Dual span absolute pressure sense die
US5483834A (en) Suspended diaphragm pressure sensor
CN1033469C (en) Multi-function differential pressure sensor
US5186055A (en) Hermetic mounting system for a pressure transducer
CN100454455C (en) Micro-electromechanical sensor
US5024098A (en) Pressure sensor useable in oil wells
US4565096A (en) Pressure transducer
US4586018A (en) Combustion pressure sensor
US6484585B1 (en) Pressure sensor for a pressure transmitter
US3697917A (en) Semiconductor strain gage pressure transducer
US6082199A (en) Pressure sensor cavity etched with hot POCL3 gas
US7311009B2 (en) Microelectromechanical systems contact stress sensor
CN102341685B (en) Media-compatible electrically isolated pressure sensor for high temperature applications
CN100578174C (en) Piezoresistive strain concentrator
CN102023066B (en) Universal pressure sensor of automobile
US6655216B1 (en) Load transducer-type metal diaphragm pressure sensor
US4574640A (en) Integrated dual-range pressure transducer
US6293154B1 (en) Vibration compensated pressure sensing assembly
CN101900625A (en) Design of wet/wet differential pressure sensor based on microelectronic packaging process
US7703329B2 (en) Pressure sensor
JP3365028B2 (en) Pressure detector
US8297125B2 (en) Media isolated differential pressure sensor with cap
CN101858929B (en) Capacitive micro-acceleration sensor with symmetrically combined elastic beam structure and production method thereof
He et al. A silicon directly bonded capacitive absolute pressure sensor

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C14 Grant of patent or utility model
CF01