CN101221077A - Air-floating type multidimensional force sensor and multidimensional force measuring method - Google Patents

Air-floating type multidimensional force sensor and multidimensional force measuring method Download PDF

Info

Publication number
CN101221077A
CN101221077A CN 200810019550 CN200810019550A CN101221077A CN 101221077 A CN101221077 A CN 101221077A CN 200810019550 CN200810019550 CN 200810019550 CN 200810019550 A CN200810019550 A CN 200810019550A CN 101221077 A CN101221077 A CN 101221077A
Authority
CN
China
Prior art keywords
nozzle
floating plate
pressure
axis
floating
Prior art date
Application number
CN 200810019550
Other languages
Chinese (zh)
Other versions
CN101221077B (en
Inventor
王会生
斌 黄
英 黄
Original Assignee
合肥工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 合肥工业大学 filed Critical 合肥工业大学
Priority to CN 200810019550 priority Critical patent/CN101221077B/en
Publication of CN101221077A publication Critical patent/CN101221077A/en
Application granted granted Critical
Publication of CN101221077B publication Critical patent/CN101221077B/en

Links

Abstract

An air float multi-dimension force sensor and a multi-dimension force measuring method are characterized in that the invention is provided with a rectangle hexahedron floating plate; each surface corresponding to the floating plate is respectively provided with a nozzle; each nozzle and the surface corresponding to the floating plate form a nozzle baffle type pressure sensor; the rectangle hexahedron floating plate is led to be fully suspending and floating by the pressure air sprayed out from each nozzle; a pressure signal of a bearing cavity of each nozzle is a detecting output signal. The invention for measuring multi-dimension force has no coupling among dimensions, needs no complex decoupling procedure and can effectively improve measuring precision.

Description

气浮式多维力传感器及多维力测量方法技术领域本发明涉及一种多维力测量装置及测量方法。 Air flotation multidimensional force sensor and multi-axis force measurement TECHNICAL FIELD The present invention relates to a multi-axis force measurement method and apparatus. 背景技术用于直接测量二维以上的力大多需要采用多维力传感器,如三维力传感器、六维力传感器等。 Background for direct measurement of force or more dimensional multidimensional force sensor is often required, three-dimensional force sensor six-axis force sensor. 现有的测量多维力或力矩的传感器根据力的检测方式不同可以分为:测应变或应力的应变片式;利用压电效应的压电元件式;用位移计测量负载产生的位移的差动变压器式;电容位移式等。 Multi-axis force sensor or a current measuring moment of the force depending on the detection can be divided into: measuring the strain or stress strain gauge; piezoelectric element using a piezoelectric effect; displacement measured by the displacement generated by the load of the differential transformer; a capacitive displacement type. 但是,基于以上原理的多维力传感器由于结构设计等方面的原因不可避免地都存在维间耦合等问题,即被测量的力不仅使传感器在力的方向上有输出,rfD且使传感器在与力垂直的方向上也有输出。 However, based on the above principle multidimensional force sensor due to the structural design aspects are inevitably present between coupling-dimensional problems, i.e. not only the force measuring sensor is output in the direction of the force, the RFD and the force sensor there is also a direction perpendicular to the output. 为了提高测量精度需要消除或减少耦合对测量结果输出的影响, 即对传感器进行解耦。 In order to improve the measurement accuracy required to eliminate or reduce the effects of coupling on the output of the measurement results, i.e. decoupling of the sensor. 耦合与传感器结构设计、加工精度、装配精度、应变片的粘贴工艺以及标定方法等诸多因数有关,不仅解耦复杂,而且迄今无法实现完全的解藕,各种解耦方法都只能在一定精度上减少耦合的影响。 Coupled with the sensor design, machining accuracy, assembling accuracy, the strain gauge is attached, and the process related to the calibration method, and many other factors, not only complicated decoupling, but have been unable to achieve complete decoupling, various methods can only be decoupled to a certain accuracy reduce the effects of coupling. 耦合现象造成的误差是现有多维力传感器精度进一步提高的主要障碍,完全不存在耦合的多维力传感器至今未有相关报导。 Error coupling phenomena is a major obstacle to the existing multi-axis force sensor accuracy is further improved, the complete absence of coupled multi-axis force sensor has yet to related stories. 发明内容本发明是为避免上述现有技术所存在的不足之处,提供一种不存在维间耦合,因而无需复杂的解耦过程,能有效提高测量精度的气浮式多维力传感器及多维力测量方法。 The present invention is to avoid the shortcomings of the prior art described above present, there is provided a non-coupling exists between the dimensions, and therefore no complex decoupling process can effectively improve air flotation multidimensional force sensor and multi-axis force measurement accuracy Measurement methods. 本发明解决技术问题采用如下技术方案:本发明气浮式多维力传感器的结构特点是设置矩形六面体浮板,对应于所述浮板的每一个面,分别设置喷嘴,所述各喷嘴与浮板相对应的面构成喷嘴挡板式压力传感器,以各喷嘴喷出的压力气体使矩形六面体浮板呈全悬气浮,以所述各喷嘴承压腔的压力信号为检测输出信号。 Solution to Problem The present invention adopts the following technical solution: an air flotation structural features of the present invention is a multi-axis force sensor disposed rectangular hexahedron floating plate, each corresponding to one surface of the floating plate, nozzles are provided, each nozzle and the floating plate a surface configuration corresponding to the nozzle flapper pressure sensor for gas pressure ejected from the nozzle of each of the rectangular hexahedral full floating plates are suspended flotation, to the pressure bearing chamber of each nozzle to the detection signal of the output signal. 本发明气浮式多维力传感器的结构特点也在于:所述喷嘴按每两只为一组相对布置在浮板的上下两侧、左右两侧和前后两侧,各喷嘴的轴线与作为其挡板的浮板板面垂直,相对设置的两只喷嘴处在同一轴线位置上,以处在同一轴线位置上的两个喷嘴的气腔压力差作为差动测量的检测信号。 Structural features of the flotation-type multidimensional force sensor according to the present invention is also characterized by: the nozzle is a group for each two oppositely disposed upper and lower sides of the floating plate, left and right sides and front and back sides, the axis of each nozzle as a stop floating plate board a plane perpendicular plate, two opposite nozzles arranged at the same axial position in the air chamber to a pressure difference as a differential measurement of the detection signals of two nozzles on the same axial position. 所述各气浮喷嘴对称布置在浮板的各拐角处,上下两侧位于四个拐角位置处各有一组, 左右两侧和前后两侧位于两边各有一组。 Each of said flotation nozzles are arranged symmetrically in the corners of the floating plate, located at four corners of the upper and lower sides have a set position, the left and right sides of the front and rear sides and on each side of a group. 本发明气浮式多维力传感器的多维力测量方法的特点是以所述各喷嘴的喷出的压力气体使矩形六面体浮板完全浮起,通过测量各喷嘴承压腔的压力变化,获得作用在浮板上的沿坐标轴X、 Y、 Z方向的外力或绕坐标轴X、 Y、 Z方向的外力矩。 The method of measuring the characteristics of the multi-axis force air flotation multidimensional force sensor of the present invention is the ejection of each nozzle pressure gas to a rectangular hexahedron floating plate is completely lifted, by measuring the pressure chamber of each nozzle pressure change, acting obtained floating plate along X axis, Y, and Z directions of an external force or about the coordinate axis X, Y, Z direction external torque. 与已有技术相比,本发明的有益效果体现在:本发明多维力传感器及多维力测量方法在测量过程中,当浮板受到外力作用时将产生微小的位移,从而改变相应位置处喷嘴与浮板之间的间隙大小,引起对应喷嘴承压腔的压力变化。 Compared with the prior art, the beneficial effects of the present invention is embodied in: Ming Duowei present multidimensional force sensor and force measurement method in the measurement process, when the external force is applied to the floating plate to produce a slight displacement, thereby changing a position at the corresponding nozzle the size of the gap between the floating plate, causing a corresponding pressure change in the nozzle chamber pressure. 通过测量各喷嘴承压腔内的压力,可以计算出作用在浮板上的沿坐标轴X、 Y、 Z方向的外力和绕坐标轴X、 Y、 Z方向的外力矩。 By measuring the pressure in the chamber of each nozzle under pressure, it can be calculated along the coordinate axis X acting in the floating plate, Y, and Z directions around the external coordinate axes X, Y, Z direction external torque. 显然,与喷嘴产生的浮力垂直方向的力不会引起该喷嘴承压腔内压力的变化,即不存在维间耦合现象,因而无须复杂的解耦过程,不存在耦合现象引起的误差。 Obviously, the buoyancy force generated by the nozzle in the vertical direction does not cause the change in the pressure of the nozzle chamber pressure, i.e. the coupling phenomenon between the dimension does not exist, and therefore without complex decoupling process, errors caused by coupling phenomenon does not exist. 附图说明图1为本发明测量原理示意图。 1 shows a schematic view of the measurement principle of the present invention. 图2为本发明立面结构示意图。 FIG 2 is a schematic vertical surface structure of the present invention. 图3为本发明平面结构示意图。 3 is a schematic structural diagram of a plane invention. 图4为本发明中喷嘴档板原理示意图。 4 of the present invention, the nozzle baffle Schematic FIG. 以下通过具体实施方式,结合附图对本发明作进一歩说明。 By the following detailed description, in conjunction with the accompanying drawings of the present invention will be described into a ho. 具体实施方式图中标号:l浮板、la浮板顶面、lb浮板底面、lc浮板左面、ld浮板右面、le浮板前侧、lf浮板后侧、2a顶面喷嘴、2b底面喷嘴、2c左侧喷嘴、2d右侧喷嘴、2e前侧喷嘴、2f 后侧喷嘴、3工作台、4喷嘴支架、5进气口、 6承压腔、7测压口。 DETAILED DESCRIPTION FIG numeral: rear l kickboard, La floating plate top surface, LB floating plate bottom surface, lc floating plate left, LD floating plate right, front le floating plate, LF floating plate, 2a a top surface of the nozzle, 2b bottom surface nozzle, 2c on the left side of the nozzle, 2d on the right side of the nozzle, 2e front side of the nozzle, 2f rear nozzle, a table 3, a nozzle holder 4, the intake port 5, pressure chambers 6, 7 gauge port. 参见图1,为实现六维力的测量,本实施例中设置矩形六面体浮板1,对应于浮板1的每一个面,分别设置喷嘴,以各喷嘴与浮板相对应的面构成喷嘴挡板式压力传感器,并且, 作为挡板的浮板1在各喷嘴气压的作用下完全悬浮,以各喷嘴的气腔压力信号为检测输出信号。 Referring to Figure 1, in order to realize the measurement six-dimensional force, the present embodiment is provided a rectangular parallelepiped 1, each face corresponding to the floating plate body 1 floating plate embodiment, each nozzle is provided to each nozzle and the floating plate corresponding to a surface constituting the nozzle block a pressure sensor plate, and, as a floating baffle plate under the action of a complete suspension of each nozzle pressure, the pressure signal to the gas chamber for each nozzle detection output signal. 参见图2、图3和图4,具体实施中的相应设置为:在浮板顶面la和浮板底面lb的四角位置上,各有一只喷嘴,在浮板左面lc、浮板右面ld、浮板前侧le和浮板后侧lf的每个面上,位于两端各有一只喷嘴,即共有四只顶面喷嘴2a、四只底面喷嘴2b、两只左侧喷嘴2c、两只右侧喷嘴2d、两只前侧喷嘴2e和两只后侧喷嘴2f,所有各喷嘴的轴线与对应作为其挡板的浮板1的板面相垂直。 Referring to FIG. 2, 3 and 4, the corresponding implementations are provided: in the four corners of the floating plate top surface la and lb of the bottom surface of the floating plate, each with a nozzle, the left floating plate LC, LD right floating plate, each side surface of the floating front plate le and lf the rear side of the floating plate, and a nozzle located at each end, i.e. a total of four nozzles top surface 2a, the bottom surface of the nozzle four 2B, 2C nozzle two left, two right nozzles 2d, 2e two front and two rear side of the nozzle of the nozzle 2f, all corresponding to the axis of each nozzle plate as a floating baffle plate 1 perpendicular to the plane. 如图2和图3所示,设置浮板相对的两个面中对应位置上的两只喷嘴处在同一轴线位置上,以处在同一轴线位置上的两个喷嘴的气腔压力之差作为差动测量的检测信号。 As shown, the floating plate is provided in two opposing faces of the two positions corresponding to 2 and 3 at the same axial position on the nozzle to the chamber at a pressure difference between the two gas nozzles on the same axial position as the detection signal of the differential measurement. 测量方式如下-通过浮板1的中心0建立坐标系如图1所示。 Measured using the following - 0 coordinate system is established as shown in FIG. 1 through the center of the floating plate. 顶面喷嘴2a和底面喷嘴2b的作用力与Z 轴平行,其它各喷嘴的作用力在XOY平面内,且分别与X轴和Y轴平行。 The top surface of the nozzle and the bottom nozzle 2a and 2b in parallel to Z axis force, other forces in each nozzle XOY plane, and are parallel to the X and Y axes. 设:作用在浮板上的外力分解为沿各坐标轴的分力Fx、 Fy、 Fz、及绕各坐标轴的力矩Mx、 My、 Mz;浮板每个拐角处与坐标轴平行的三个喷嘴作用于浮板上的浮力交汇于一点, 四个拐角处的交汇点分别为A、 B、 C、 D;在坐标系中,A、 B、 C、 D各点的坐标分别为A (1/2,-1/2,0)、 B (1/2,1/2,0)、 C (-1/2,-1/2,0)、 D (-1/2,1/2,0);作用在浮板上的外力引起的各喷嘴作用在浮板上的力的变化量分别为:A点:Fax (X轴方向)、Fay (Y轴方向)、Faz+ (Z轴正方向)、Faz— (Z轴负方向); B点:Fbx (X轴方向)、Fby (Y轴方向)、Fbz+ (Z轴正方向)、Fbz- (Z轴负方向); C点:Fcx (X轴方向)、Fey (Y轴方向)、Fcz+ (Z轴正方向)、Fez— (Z轴负方向); D点:Fdx (X轴方向)、Fdy (Y轴方向)、Fdz+ (Z轴正方向)、Fdz- (Z轴负方向);则各组喷嘴浮力之差为: Fcax=Fcx — FaxFdbx=Fdx —Fbx Faby二Fay — FbyFcdy二Fcy Provided: floating force acting along the plate decompose each axis force component Fx, Fy, Fz, and moments around the respective axes Mx, My, Mz; floating plate at each corner with three parallel axes floating buoyancy acting on the nozzle plate to the intersection point, the meeting point at the four corners, respectively a, B, C, D; in the coordinate system, the coordinates of a, B, C, D are the points a (1 / 2, -1 / 2,0), B (1 / 2,1 / 2,0), C (-1 / 2, -1 / 2,0), D (-1 / 2,1 / 2, 0); the amount of change in an external force acting role of each nozzle plate caused by the floating force of the floating plate respectively, are: a point: Fax (X axis direction), Fay (Y-axis direction), Faz + (Z-axis positive direction ), Faz- (Z-axis negative direction); B point: Fbx (X axis direction), Fby (Y-axis direction), Fbz + (Z-axis positive direction), Fbz- (Z axis negative direction); point C: Fcx ( X-axis direction), Fey (Y-axis direction), Fcz + (Z-axis positive direction), Fez- (Z-axis negative direction); D point: Fdx (X axis direction), Fdy (Y-axis direction), Fdz + (Z-axis positive direction), Fdz- (Z-axis negative direction); the difference between the buoyancy of each set of nozzles: Fcax = Fcx - FaxFdbx = Fdx -Fbx Faby two Fay - FbyFcdy two Fcy — Fdy Faz= Faz+—Faz— Fbz= Fbz+ — Fbz— Fcz= Fcz+ — Fez— Fdz= Fdz+ —Fdz—于是-Fx- — (Fcax + Fdbx) (1)Fy= —(Faby + Fcdy) (2)Fz= —(Faz + Fbz+Fcz+Fdz) (3)Mx=(Faz+Fcz—Fbz—Fdz) 1/2 (4)My= (Faz+Fbz—Fcz—Fdz) 1/2 (5)Mz= (Fdbx—Fcax+Fcdy—F勿)1/2 (6)具体实施中,在工作台3上设置喷嘴支架4,四只底面喷嘴2b固定设置在工作台3的台面上,其它各喷嘴均设置在喷嘴支架4上。 - Fdy Faz = Faz + -Faz- Fbz = Fbz + - Fbz- Fcz = Fcz + - Fez- Fdz = Fdz + -Fdz- so -Fx- - (Fcax + Fdbx) (1) Fy = - (Faby + Fcdy) (2) Fz = - (Faz + Fbz + Fcz + Fdz) (3) Mx = (Faz + Fcz-Fbz-Fdz) 1/2 (4) My = (Faz + Fbz-Fcz-Fdz) 1/2 (5) Mz table = (Fdbx-Fcax + Fcdy-F Do) 1/2 (6) in a particular embodiment, the nozzle holder is provided on the table 34, four fixed to the bottom surface of the nozzle 2b provided on the table 3, the nozzles are other 4 is provided on the nozzle holder. 图4所示是由喷嘴和浮板对应的板面所构成的压力传感器。 Figure 4 is a pressure sensor and by the nozzle plate surface corresponding to the floating plate constituted. 工作时,恒定压力的压缩空气通向各个喷嘴的进气口5,浮板l被完全浮起,在喷嘴与挡板之间形成承压腔6,通过承压腔的测压口7可以测量出承压腔6的气体压力。 In operation, a constant pressure of compressed air leading to each nozzle of intake port 5, the floating plate l is completely lifted, the pressure chamber 6 is formed between the nozzle and the baffle 7 can be measured by manometric pressure port lumen a pressure receiving chamber 6 of the gas pressure. 如果在浮板1上作用一个外力,将会引起各个压力传感器的承压腔压力变化,根据每个承压腔气压变化量,即可按上式计算出作用在浮板上的沿各坐标轴的分力Fx、 Fy、 Fz、及绕各坐标轴的力矩Mx、 My、 Mz。 If a force will cause pressure changes in the respective chamber pressure acts on the pressure sensor 1 in the floating plate, each pressure chamber according to the pressure change amount, according to the above formula is calculated in the floating plate acting along each coordinate axis moment Mx component force Fx, Fy, Fz, and about a respective axis, My, Mz.

Claims (4)

1、气浮式多维力传感器,其特征是设置矩形六面体浮板(1),对应于所述浮板(1)的每一个面,分别设置喷嘴,所述各喷嘴与浮板相对应的面构成喷嘴挡板式压力传感器,以各喷嘴喷出的压力气体使矩形六面体浮板呈全悬气浮,以所述各喷嘴承压腔的压力信号为检测输出信号。 1, air flotation multidimensional force sensor, wherein is provided a rectangular hexahedron floating plate (1), each corresponding to one surface of the floating plate (1) are respectively provided with a nozzle, each nozzle and the corresponding surface of the floating plate constituting the nozzle flapper pressure sensor for gas pressure ejected from the nozzle of each of the rectangular hexahedral full floating plates are suspended flotation, the signal pressure bearing chamber for each nozzle detection output signal.
2、 根据权利要求1所述的气浮式多维力传感器,其特征是所述喷嘴按每两只为一组相对布置在浮板(1)的上下两侧、左右两侧和前后两侧,各喷嘴的轴线与作为其挡板的浮板板面垂直,相对设置的两只喷嘴处在同一轴线位置上,以处在同一轴线位置上的两个喷嘴的气腔压力差作为差动测量的检测信号。 2. The flotation-type multi-axis force sensor according to claim 1, wherein said nozzle is a group for each two oppositely disposed upper and lower sides of the floating plate (1), the right and left sides and front and rear sides, the axis of each nozzle with the surface as a floating vertical baffle plate board, two opposite nozzles arranged at the same axial position, the pressure in the gas chamber at the two nozzles on the same axial position as the difference between the measured differential detection signal.
3、 根据权利要求1所述的气浮式多维力传感器,其特征是所述各气浮喷嘴对称布置在浮板(1)的各拐角处,上下两侧位于四个拐角位置处各有一组,左右两侧和前后两侧位于两边各有一组。 3. The flotation-type multi-axis force sensor according to claim 1, wherein each of said flotation nozzles symmetrically disposed at each corner of the floating plate (1), located at upper and lower sides each have a set of four corner positions , the left and right sides of the front and rear sides and on each side of a group.
4、 一种气浮式多维力传感器的多维力测量方法,其特征是以所述各喷嘴的喷出的压力气体使矩形六面体浮板(1)完全浮起,通过测量各喷嘴承压腔(6)的压力变化,获得作用在浮板(1)上的沿坐标轴X、 Y、 Z方向的外力或绕坐标轴X、 Y、 Z方向的外力矩。 4, one kind of multi-axis force measurement flotation type multidimensional force sensor, wherein each nozzle is the discharge pressure gas to a rectangular hexahedron floating plate (1) is completely lifted, by measuring the pressure chamber of each nozzle ( 6 external) pressure change, effect is obtained along the coordinate axis X in the floating plate (1), Y, Z directions around the axis, or X, Y, Z direction external torque.
CN 200810019550 2008-01-24 2008-01-24 Air-floating type multidimensional force sensor and multidimensional force measuring method CN101221077B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200810019550 CN101221077B (en) 2008-01-24 2008-01-24 Air-floating type multidimensional force sensor and multidimensional force measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200810019550 CN101221077B (en) 2008-01-24 2008-01-24 Air-floating type multidimensional force sensor and multidimensional force measuring method

Publications (2)

Publication Number Publication Date
CN101221077A true CN101221077A (en) 2008-07-16
CN101221077B CN101221077B (en) 2010-10-13

Family

ID=39631056

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200810019550 CN101221077B (en) 2008-01-24 2008-01-24 Air-floating type multidimensional force sensor and multidimensional force measuring method

Country Status (1)

Country Link
CN (1) CN101221077B (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100595541C (en) 2008-03-07 2010-03-24 合肥工业大学 Force and displacement amount air-float type measurement method
CN102128703A (en) * 2010-12-23 2011-07-20 合肥工业大学 Calibration and loading method of air-floating multidimensional force transducer
CN102589801A (en) * 2012-02-24 2012-07-18 合肥工业大学 Air flotation loading test device with jet type guide keys
CN102589866A (en) * 2012-02-24 2012-07-18 合肥工业大学 Gas floating loading experiment device with gas floating guide function
CN102636297A (en) * 2012-04-20 2012-08-15 合肥工业大学 Three-dimensional force sensor
CN102636294A (en) * 2012-04-25 2012-08-15 合肥工业大学 Isolated coupling air-floatation force measurement nozzle
CN103398813A (en) * 2013-07-25 2013-11-20 合肥工业大学 Porous nozzle floating plate mechanism used for measuring force

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100595541C (en) 2008-03-07 2010-03-24 合肥工业大学 Force and displacement amount air-float type measurement method
CN102128703A (en) * 2010-12-23 2011-07-20 合肥工业大学 Calibration and loading method of air-floating multidimensional force transducer
CN102128703B (en) 2010-12-23 2012-07-25 合肥工业大学 Calibration and loading method of air-floating multidimensional force transducer
CN102589801A (en) * 2012-02-24 2012-07-18 合肥工业大学 Air flotation loading test device with jet type guide keys
CN102589866A (en) * 2012-02-24 2012-07-18 合肥工业大学 Gas floating loading experiment device with gas floating guide function
CN102589801B (en) * 2012-02-24 2014-07-30 合肥工业大学 Air flotation loading test device with jet type guide keys
CN102636297A (en) * 2012-04-20 2012-08-15 合肥工业大学 Three-dimensional force sensor
CN102636297B (en) 2012-04-20 2013-08-07 合肥工业大学 Three-dimensional force sensor
CN102636294A (en) * 2012-04-25 2012-08-15 合肥工业大学 Isolated coupling air-floatation force measurement nozzle
CN103398813A (en) * 2013-07-25 2013-11-20 合肥工业大学 Porous nozzle floating plate mechanism used for measuring force
CN103398813B (en) * 2013-07-25 2015-03-11 合肥工业大学 Porous nozzle floating plate mechanism used for measuring force

Also Published As

Publication number Publication date
CN101221077B (en) 2010-10-13

Similar Documents

Publication Publication Date Title
Gregory et al. On the stability of three-dimensional boundary layers with application to the flow due to a rotating disk
US6990867B2 (en) Force detection device
EP0386465A2 (en) Capacitive accelerometer with hinges on top and bottom surface
CN101487765B (en) Three-axial vibration composite testing apparatus
CN201600105U (en) A method of detecting the thickness of the part through regulations for
Bennetts et al. A multi-mode approximation to wave scattering by ice sheets of varying thickness
CN101290227B (en) Three axis optical fibre gyroscope inertia measurement unit integral structure
CN101634662B (en) Micro-accelerometer and preparation method thereof
US8156823B2 (en) 6-axis sensor structure using force sensor and method of measuring force and moment therewith
CN102095534B (en) Double rood beam high-sensitivity six-dimensional moment sensor
CN101726401B (en) Scale measuring device for pitching dynamic derivative experiment
CN100567993C (en) Dual-axis resonance type micromechanical accelerometer
CN102401842B (en) Non-equal height comb teeth capacitive triaxial acceleration transducer and method for manufacturing same
CN101038173A (en) A implicit type structure mini inertia measurement unit
CN101308051B (en) Three-dimensional micro- force silicon micro- sensor
CN101290226B (en) Three axis optical fibre gyro system integrated mounting cage
CN103076131B (en) Six-dimensional force and torque sensor for measuring large force and small torque of large mechanical arm
CN102798734B (en) MEMS triaxial accelerometer and manufacture method thereof
CN102103013A (en) Three-dimensional vector hydrophone
CN103528726A (en) Cross-beam-type six-dimensional force sensor with overload protection function
CN100476358C (en) MEMS gyroscope accurate installation reference component and installation method thereof
CN1396458A (en) Six-axle acceleration sensor with dual E-shaped circular membranes and cross beam structure
CN102759637B (en) MEMS (micro electro mechanical system) triaxial acceleration transducer and manufacture method thereof
CN2221208Y (en) Multiple force and moment sensor
CN102288334B (en) Parallel piezoelectric six-dimensional large force sensor

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C14 Grant of patent or utility model
EXPY Termination of patent right or utility model