CN101219844A - A kind of process of biological treatment of acid mine wastewater - Google Patents
A kind of process of biological treatment of acid mine wastewater Download PDFInfo
- Publication number
- CN101219844A CN101219844A CNA2008100544876A CN200810054487A CN101219844A CN 101219844 A CN101219844 A CN 101219844A CN A2008100544876 A CNA2008100544876 A CN A2008100544876A CN 200810054487 A CN200810054487 A CN 200810054487A CN 101219844 A CN101219844 A CN 101219844A
- Authority
- CN
- China
- Prior art keywords
- elemental sulfur
- reactor
- sulfur
- sulfate
- sand
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002351 wastewater Substances 0.000 title claims abstract description 40
- 238000000034 method Methods 0.000 title claims abstract description 19
- 239000002253 acid Substances 0.000 title claims description 15
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims abstract description 70
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 55
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 claims abstract description 39
- 239000004576 sand Substances 0.000 claims abstract description 39
- 241000894006 Bacteria Species 0.000 claims abstract description 25
- 230000002378 acidificating effect Effects 0.000 claims abstract description 24
- 238000000605 extraction Methods 0.000 claims abstract description 24
- 239000010802 sludge Substances 0.000 claims abstract description 21
- 239000007788 liquid Substances 0.000 claims abstract description 18
- 239000000463 material Substances 0.000 claims abstract description 15
- 238000000926 separation method Methods 0.000 claims abstract description 15
- 239000011593 sulfur Substances 0.000 claims abstract description 15
- 238000001035 drying Methods 0.000 claims abstract description 14
- 239000010865 sewage Substances 0.000 claims abstract description 14
- 238000004821 distillation Methods 0.000 claims abstract description 13
- 238000000855 fermentation Methods 0.000 claims abstract description 12
- 230000004151 fermentation Effects 0.000 claims abstract description 12
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 9
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 9
- 238000001914 filtration Methods 0.000 claims description 17
- 239000003795 chemical substances by application Substances 0.000 claims description 15
- 238000007254 oxidation reaction Methods 0.000 claims description 12
- 239000000047 product Substances 0.000 claims description 10
- 238000010992 reflux Methods 0.000 claims description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 9
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 claims description 8
- 239000002245 particle Substances 0.000 claims description 8
- QGJOPFRUJISHPQ-UHFFFAOYSA-N Carbon disulfide Chemical compound S=C=S QGJOPFRUJISHPQ-UHFFFAOYSA-N 0.000 claims description 7
- 238000005516 engineering process Methods 0.000 claims description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 6
- 229910052760 oxygen Inorganic materials 0.000 claims description 6
- 239000001301 oxygen Substances 0.000 claims description 6
- 230000000630 rising effect Effects 0.000 claims description 3
- 239000000126 substance Substances 0.000 claims description 3
- 230000002053 acidogenic effect Effects 0.000 claims description 2
- 238000005119 centrifugation Methods 0.000 claims description 2
- 238000006243 chemical reaction Methods 0.000 claims description 2
- 239000000945 filler Substances 0.000 claims description 2
- 230000000717 retained effect Effects 0.000 claims description 2
- 239000006228 supernatant Substances 0.000 claims description 2
- 229910021653 sulphate ion Inorganic materials 0.000 claims 8
- 230000000813 microbial effect Effects 0.000 claims 4
- 239000000243 solution Substances 0.000 claims 3
- 244000005706 microflora Species 0.000 claims 2
- 239000005864 Sulphur Substances 0.000 claims 1
- 239000000706 filtrate Substances 0.000 claims 1
- 239000008187 granular material Substances 0.000 claims 1
- 239000011259 mixed solution Substances 0.000 claims 1
- 238000009287 sand filtration Methods 0.000 claims 1
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 abstract description 4
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 abstract description 3
- 230000001580 bacterial effect Effects 0.000 abstract description 3
- 238000004065 wastewater treatment Methods 0.000 abstract description 3
- 230000007613 environmental effect Effects 0.000 abstract description 2
- 239000000284 extract Substances 0.000 abstract 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 abstract 1
- 239000011780 sodium chloride Substances 0.000 abstract 1
- 229910001385 heavy metal Inorganic materials 0.000 description 6
- 230000003647 oxidation Effects 0.000 description 6
- 150000002500 ions Chemical class 0.000 description 4
- 238000011084 recovery Methods 0.000 description 4
- 239000002699 waste material Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 230000001174 ascending effect Effects 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 229910052976 metal sulfide Inorganic materials 0.000 description 2
- 238000006386 neutralization reaction Methods 0.000 description 2
- 238000007790 scraping Methods 0.000 description 2
- 238000004062 sedimentation Methods 0.000 description 2
- 239000002689 soil Substances 0.000 description 2
- 238000004174 sulfur cycle Methods 0.000 description 2
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 1
- 235000019738 Limestone Nutrition 0.000 description 1
- 235000011941 Tilia x europaea Nutrition 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- 238000009388 chemical precipitation Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000000909 electrodialysis Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 239000004571 lime Substances 0.000 description 1
- 239000006028 limestone Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 238000011946 reduction process Methods 0.000 description 1
- 239000002910 solid waste Substances 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000004073 vulcanization Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Landscapes
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
Abstract
一种含硫酸盐酸性废水生物处理并回收单质硫的工艺,属于环境保护和废水处理技术领域,其特征在于是一种利用污水厂污泥酸性发酵产物为硫酸盐还原菌的碳源处理酸性硫酸盐废水并回收单质硫的工艺:厌氧生物反应器中硫酸盐还原菌SRB将硫酸盐SO4 2-生物还原为硫化氢H2S或S2--好氧生物膜反应器中无色硫细菌CSB将H2S或S2-生物氧化为单质硫-慢砂滤池过滤、刮砂;采用萃取设备充分溶解砂滤料中的单质硫S-固液分离设备将萃取剂CS2与砂滤料、生物膜相分离-蒸馏设备蒸馏萃取后溶液-干燥设备烘干,回收单质硫S。既处理了含硫酸盐酸性矿山废水,又回收了单质硫,还使污水处理厂污泥达到资源化和无害化。
A process for biologically treating sulfate-containing acidic wastewater and recovering elemental sulfur, which belongs to the technical field of environmental protection and wastewater treatment, and is characterized in that it is a carbon source for treating acidic sulfuric acid using the acidic fermentation product of sewage plant sludge as sulfate-reducing bacteria The process of recovering elemental sulfur from saline wastewater: Sulfate-reducing bacteria SRB in anaerobic bioreactors biologically reduce sulfate SO 4 2- to hydrogen sulfide H 2 S or S 2- colorless sulfur in aerobic biofilm reactors Bacterial CSB oxidizes H 2 S or S 2 into elemental sulfur-biologically oxidizes H 2 S or S 2 into elemental sulfur-filters and scrapes sand in a slow sand filter; uses extraction equipment to fully dissolve elemental sulfur S in the sand filter material-solid-liquid separation equipment extracts CS 2 and sand Filter material, biofilm phase separation-distillation equipment distills and extracts the solution-drying equipment to dry and recover elemental sulfur S. It not only treats acidic mine wastewater containing sulfate, but also recovers elemental sulfur, and also makes the sludge of sewage treatment plants be recycled and harmless.
Description
一、技术领域1. Technical field
本发明一种生物处理酸性矿山废水的工艺,属于环境保护和废水处理技术领域。具体来讲,是一种生物处理含硫酸盐的酸性矿山废水并回收单质硫工艺的技术方案。The invention discloses a process for biologically treating acidic mine wastewater, which belongs to the technical field of environmental protection and wastewater treatment. Specifically, it is a technical scheme for biologically treating sulfate-containing acidic mine wastewater and recovering elemental sulfur.
二.背景技术2. Background technology
采矿工业部门排出的废水中含有高浓度的硫酸盐,其SO4 2-含量多在2000~3000mgSO4 2-/L,也有的高于3000mg SO4 2-/L,甚至达到5000~6000mg SO4 2-/L。该废水多呈酸性,pH最低至2.5~3.0,且含有Fe、Mn、Ni、Zn、Cu、Al、Mg、Cd、Pb等多种重金属。这种含硫酸盐酸性矿山废水如不经处理直接排入水体会使受纳水体酸化,降低pH,危害水生生物,并产生潜在腐蚀性。含硫酸盐酸性废水还会破坏土壤结构,减少农作物产量。目前处理这类废水主要采用中和、化学沉淀和电渗析法,但这些方法很不经济,还产生二次污染。中和法是处理酸性废水比较成熟的方法,主要采用石灰石或石灰,也有采用碱性废液来中和酸性废水。该法的缺点是处理成本高、处理后废渣量大、含水率高、易造成二次污染。湿地法也可用来处理酸性矿山废水,但湿地法占地面积大,处理程度受环境影响很大,而且残余硫化氢从土壤中逸出会污染大气。生物法处理酸性矿山废水是利用自然界硫循环原理,在厌氧条件下利用硫酸盐还原菌SRB使废水中的SO4 2-还原为H2S或S2-,SO4 2-还原为H2S或S2-的过程中会释放出碱度,使pH值提高,再用生物法或化学方法将还原产物H2S或S2-氧化为单质硫。SO4 2-还原产生的H2S或S2-与废水中的重金属离子生成金属硫化物沉淀,在废水pH值提高的同时,也大大降低了废水中重金属离子的浓度。生物法处理酸性矿山废水处理效果好,无二次污染,且可以回收单质硫。生物法处理酸性矿山废水与上述的几种方法相比具有明显的效果和优势,但是,仍然存在选择技术可行、经济合理的硫酸盐还原菌碳源的难题,生物处理最终产物的处置也有待于向经济合理化的方向发展。The wastewater discharged from the mining industry contains high concentrations of sulfate, and its SO 4 2- content is mostly 2000-3000mgSO 4 2- /L, and some are higher than 3000mg SO 4 2- /L, even reaching 5000-6000mg SO 4 2- /L. The wastewater is mostly acidic, with a pH as low as 2.5 to 3.0, and contains various heavy metals such as Fe, Mn, Ni, Zn, Cu, Al, Mg, Cd, and Pb. If this sulfate-containing acidic mine wastewater is discharged directly into the water body without treatment, it will acidify the receiving water body, lower the pH, harm aquatic organisms, and cause potential corrosion. Sulfate-containing acidic wastewater can also damage soil structure and reduce crop yields. At present, neutralization, chemical precipitation and electrodialysis are mainly used to treat this kind of wastewater, but these methods are very uneconomical and produce secondary pollution. The neutralization method is a relatively mature method for treating acidic wastewater. Limestone or lime is mainly used, and alkaline waste liquid is also used to neutralize acidic wastewater. The disadvantages of this method are high treatment cost, large amount of waste residue after treatment, high moisture content, and easy to cause secondary pollution. The wetland method can also be used to treat acid mine wastewater, but the wetland method occupies a large area, and the treatment degree is greatly affected by the environment, and the residual hydrogen sulfide escapes from the soil and will pollute the atmosphere. Biological treatment of acid mine wastewater is based on the principle of natural sulfur cycle, and under anaerobic conditions, the sulfate-reducing bacteria SRB is used to reduce SO 4 2- in wastewater to H 2 S or S 2- , and SO 4 2- to H 2 During the process of S or S 2- , alkalinity will be released to increase the pH value, and then the reduction product H 2 S or S 2- will be oxidized to elemental sulfur by biological or chemical methods. The H 2 S or S 2- produced by the reduction of SO 4 2- and the heavy metal ions in the wastewater form metal sulfide precipitation, which greatly reduces the concentration of heavy metal ions in the wastewater while increasing the pH value of the wastewater. Biological treatment of acid mine wastewater has a good treatment effect, no secondary pollution, and elemental sulfur can be recovered. Biological treatment of acid mine wastewater has obvious effects and advantages compared with the above-mentioned several methods, but there is still the problem of selecting a technically feasible and economically reasonable sulfate-reducing bacteria carbon source, and the disposal of the final product of biological treatment also needs to be determined. To the direction of economic rationalization.
三、发明内容3. Contents of the invention
本发明一种生物处理酸性矿山废水的工艺,其目的在于解决上述现有处理技术存在的问题,从而公开一种利用污水厂污泥酸性发酵产物为硫酸盐还原菌碳源的生物处理含硫酸盐酸性矿山废水并回收单质硫工艺的技术方案。The present invention is a process for biological treatment of acidic mine wastewater, the purpose of which is to solve the problems existing in the above-mentioned existing treatment technology, thereby disclosing a biological treatment of sulfuric acid containing hydrochloric acid using the acidic fermentation product of sewage plant sludge as the carbon source of sulfate reducing bacteria The technical scheme of the mine wastewater and recovery of elemental sulfur.
本发明一种生物处理酸性矿山废水的工艺,其特征在于是一种利用污水厂污泥酸性发酵产物为硫酸盐还原菌的碳源生物处理酸性硫酸盐废水并回收单质硫的工艺,其工艺流程为:酸性矿山废水1和污水厂污泥产酸发酵上清液2首先进入硫酸盐生物还原反应器3中,利用硫酸盐还原菌SRB将SO4 2-生物还原为H2S或S2-,反应器3的部分出水10进行回流,接着反应器3的处理出水进入H2S或S2-生物氧化反应器4,利用无色硫细菌CSB将H2S或S2-生物氧化为单质硫S,然后含单质硫S的出水流经慢砂滤池5进行过滤、刮砂、截留单质硫S,并排放生物处理出水11,再采用萃取设备6充分溶解砂滤料中的单质硫S,由固液分离设备7将萃取剂与砂滤料、生物膜相分离,由蒸馏设备8蒸馏萃取剂、析出单质硫S,最后经干燥设备9烘干,回收单质硫12,其具体的步骤和条件如下:The present invention is a process for biologically treating acidic mine wastewater, which is characterized in that it is a process for biologically treating acidic sulfate wastewater and reclaiming elemental sulfur by using the acidic fermentation product of sewage plant sludge as a carbon source of sulfate-reducing bacteria. For:
I利用硫酸盐还原菌SRB将硫酸盐生物还原为H2S或S2- I Biological reduction of sulfate to H 2 S or S 2- by sulfate-reducing bacteria SRB
①硫酸盐生物还原工艺在厌氧生物反应器3中完成;①The sulfate biological reduction process is completed in the
②反应器3中优势菌群为硫酸盐还原菌SRB,SRB将硫酸盐生物还原为H2S或S2-;②The dominant bacterial group in
③以污水厂污泥酸性发酵产物为碳源,废水中污泥酸性发酵液2的投加量按照混合液中COD/SO4 2-比值来控制,COD/SO4 2-的控制范围为0.9~1.5;③Using the acidic fermentation product of sewage plant sludge as carbon source, the dosage of sludge
④硫酸盐负荷为1.0~7.0kgSO4 2-/m3·d,温度为20~35℃,进水pH值为3.5~6.5,厌氧膨胀颗粒污泥床反应器EGSB上升流速vup为3.0~6.0m/h,回流比为80∶1~200∶1,水力停留时间HRT为0.2~0.85d,升流式厌氧滤池AF回流比为20∶1~60∶1,HRT为0.25~1.25d,厌氧折流板反应器ABR,HRT为0.2~1.0d,厌氧流化床反应器AFBR,HRT为0.02~0.3d;④ The sulfate load is 1.0-7.0kgSO 4 2- /m 3 ·d, the temperature is 20-35°C, the pH value of the influent is 3.5-6.5, and the rising velocity v up of the EGSB of the anaerobic expanded granular sludge bed reactor is 3.0 ~6.0m/h, reflux ratio is 80:1~200:1, hydraulic retention time HRT is 0.2~0.85d, upflow anaerobic filter AF reflux ratio is 20:1~60:1, HRT is 0.25~ 1.25d, for anaerobic baffle reactor ABR, HRT is 0.2~1.0d, for anaerobic fluidized bed reactor AFBR, HRT is 0.02~0.3d;
II利用无色硫细菌CSB将H2S或S2-生物氧化为单质硫SII Biological oxidation of H 2 S or S 2- to elemental sulfur S by colorless sulfur bacteria CSB
①H2S或S2-生物氧化工艺在好氧生物膜反应器4中进行;①The H 2 S or S 2- biological oxidation process is carried out in the
②反应器4中优势菌群为无色硫细菌CSB,CSB将H2S或S2-生物氧化为单质硫S;② The dominant bacterial population in
③进水pH值6.5~8.0,温度15~25℃的条件下,控制硫化物负荷和溶解氧DO浓度,使H2S或S2-生物氧化产物为单质硫,溶解氧DO浓度随着硫化物负荷的升高而提高;③ Under the condition of influent pH value of 6.5-8.0 and temperature of 15-25°C, control the sulfide load and dissolved oxygen DO concentration, so that the H 2 S or S 2- biological oxidation product is elemental sulfur, and the dissolved oxygen DO concentration increases with the vulcanization Increased by the increase of material load;
④不同类型填料的CSB好氧生物反应器中硫化物负荷与溶解氧浓度需由试验确定;④ The sulfide load and dissolved oxygen concentration in CSB aerobic bioreactors with different types of fillers need to be determined by experiments;
III采用慢砂滤池5截留单质硫SIII Use
①过滤:采用慢砂滤池5对CSB生物氧化H2S的出水进行过滤,将水中单质硫和脱落的生物膜截留在滤床表面,达到固液分离,慢砂滤池滤速0.1~0.3m/h,砂滤层粒径0.5~1.2mm,厚度25cm,承托层砂粒由下至上粒径5.0~10.0mm、2.5~5.0mm、1.2~2.5mm,每层高度3cm,单质硫和脱落的生物膜截留于慢砂滤表层5~6cm的砂层中;① Filtration: Use the
②刮砂:刮取砂滤料表层5~6cm厚度的含硫砂层;②Sand scraping: Scrape the sulfur-containing sand layer with a thickness of 5-6cm on the surface of the sand filter material;
V回收单质硫SV recovery of elemental sulfur S
①萃取:以二硫化碳CS2作为萃取剂,采用萃取设备6将所刮取的砂滤料与萃取剂CS2溶液充分接触,使CS2充分溶解单质硫颗粒;①Extraction: use carbon disulfide CS 2 as the extraction agent, use the
②分离:采用固液分离设备7,利用重力沉淀分离、离心分离或过滤分离操作将溶解单质硫后的萃取剂CS2与砂滤料和脱落的生物膜相分离,获得萃取剂CS2溶液;②Separation: using the solid-
③蒸馏:温度为48~55℃,采用蒸馏设备8蒸馏析出单质硫,萃取剂CS2进行重复利用;③ Distillation: the temperature is 48-55°C, the
④干燥:温度为165~175℃,采用干燥设备9将所析出的单质硫干燥1~2小时,回收单质硫。④ Drying: the temperature is 165-175°C, and the precipitated elemental sulfur is dried for 1-2 hours by using the
本发明一种生物处理酸性矿山废水的工艺的优点及用途:Advantages and purposes of a kind of technology of biological treatment acid mine wastewater of the present invention:
1)本发明基于自然界的硫循环原理,利用硫酸盐还原菌SRB还原SO4 2-,生物处理有机物浓度低的含硫酸盐酸性矿山废水。1) Based on the principle of sulfur cycle in nature, the present invention utilizes sulfate-reducing bacteria SRB to reduce SO 4 2- , and biologically treat sulfate-containing acidic mine wastewater with low organic concentration.
2)酸性矿山废水SO4 2-浓度高,有机物含量低,生物处理酸性矿山废水的关键是选择技术可行,经济合理的碳源物质。污水处理厂污泥是污水处理厂的固体废弃物,其产酸发酵产物可作为生物处理酸性矿山废水的廉价碳源。2) Acid mine wastewater has high SO 4 2- concentration and low organic matter content. The key to biological treatment of acid mine wastewater is to select technically feasible and economically reasonable carbon sources. Sludge from sewage treatment plants is the solid waste of sewage treatment plants, and its acidogenic fermentation products can be used as cheap carbon sources for biological treatment of acid mine wastewater.
3)本发明在处理酸性矿山废水的同时,可回收单质硫,又解决了污水处理厂污泥处置的问题,使污水处理厂污泥资源化和无害化,达到以废治废、变废为宝的目标,降低了废水处理成本。该方法的特点是处理效果好,无二次污染,且可以回收单质硫。同时硫酸盐还原产物S2-可与重金属离子发生沉淀反应将重金属离子转化为金属硫化物沉淀,从而使废水中的重金属得以去除。3) The present invention can recycle elemental sulfur while treating acid mine wastewater, and solve the problem of sewage treatment plant sludge disposal, making the sewage treatment plant sludge resourceful and harmless, and achieving waste treatment and waste transformation For Bao's goal, reduce the cost of wastewater treatment. The method is characterized by good treatment effect, no secondary pollution, and elemental sulfur can be recovered. At the same time, the sulfate reduction product S2- can undergo precipitation reaction with heavy metal ions to convert heavy metal ions into metal sulfide precipitation, so that heavy metals in wastewater can be removed.
四、附图说明4. Description of drawings
图1生物法处理含硫酸盐酸性矿山废水及单质硫回收流程图Figure 1 Biological treatment of sulfate-containing acidic mine wastewater and flow chart of elemental sulfur recovery
图中标号为:1.含硫酸盐酸性矿山废水The labels in the figure are: 1. Acidic mine wastewater containing sulfate
2.污水厂污泥酸性发酵液2. Sewage plant sludge acid fermentation liquid
3.硫酸盐生物还原反应器3. Sulfate bioreduction reactor
4.硫化氢生物氧化反应器4. Hydrogen sulfide biooxidation reactor
5.慢砂滤池5. Slow sand filter
6.萃取设备6. Extraction equipment
7.固液分离设备7. Solid-liquid separation equipment
8.蒸馏设备8. Distillation equipment
9.干燥设备9. Drying equipment
10.硫酸盐生物还原反应器出水回流10. Backflow of effluent from the sulfate bioreduction reactor
11.生物处理出水11. Biological treatment of effluent
12.回收单质硫12. Recovery of elemental sulfur
五.具体实施方式5. Specific implementation
实施方式1、硫酸盐生物还原反应器,硫酸盐负荷为7.0kgSO4 2/m3·d,温度为35℃,COD/SO4 2-值为1.2,进水pH值为6.5,厌氧膨胀颗粒污泥床反应器EGSB上升流速vup为3.0m/h,回流比为80∶1,水力停留时间HRT为0.2d;厌氧生物滤池AF回流比为20∶1,HRT为0.25d;厌氧折流板反应器ABR,HRT为0.2d;厌氧流化床反应器AFBR,HRT为0.02d;无色硫细菌CSB生物氧化S2-反应器,pH值为8.0,温度为15℃,硫化物负荷为12.0kg/m3·d,反应器中DO≈5.5mg/L;慢砂滤池,滤速为0.1m/h,过滤周期为25d,截留单质硫S于表层6cm的砂层中;砂滤层粒径1.2mm,厚度25cm;承托层砂粒由下至上粒径5.0mm、2.5mm、1.2mm,每层高度3cm;萃取设备,以二硫化碳CS2作为萃取剂,将所刮取的砂滤料与萃取剂CS2溶液充分接触,使CS2充分溶解单质硫颗粒;固液分离设备,由过滤分离作用使萃取剂CS2溶液、砂滤料和脱落的生物膜相分离;蒸馏设备,温度为48℃,蒸馏萃取剂CS2溶液,析出单质硫,萃取剂进行重复利用;干燥设备,温度为175℃,将所析出的单质硫干燥1小时,回收单质硫。
实施方式2、硫酸盐生物还原反应器,硫酸盐负荷为4.0kgSO4 2/m3·d,厌氧膨胀颗粒污泥床反应器EGSB,HRT为0.5d;厌氧生物滤池AF,HRT为0.75d;厌氧折流板反应器ABR,HRT为0.6d;厌氧流化床反应器AFBR,HRT为0.16d,其它同实施方式1。
实施方式3、硫酸盐生物还原反应器,硫酸盐负荷为1.0kgSO4 2/m3·d,厌氧膨胀颗粒污泥床反应器EGSB,HRT为0.85d;厌氧生物滤池AF,HRT为1.25d;厌氧折流板反应器ABR,HRT为1.0d;厌氧流化床反应器AFBR,HRT为0.3d,其它同实施方式1。
实施方式4、硫酸盐生物还原反应器,温度为30℃,其它同实施方式1。
实施方式5、硫酸盐生物还原反应器,温度为20℃,其它同实施方式1。
实施方式6、硫酸盐生物还原反应器,COD/SO4 2-值为0.9,其它同实施方式1。
实施方式7、硫酸盐生物还原反应器,COD/SO4 2-值为1.5,其它同实施方式1。
实施方式8、硫酸盐生物还原反应器,进水pH值为5.0,厌氧膨胀颗粒污泥床反应器EGSB,液体上升流速vup为4.5m/h,回流比为140∶1,HRT为0.5d;厌氧生物滤池AF,HRT为0.75d;厌氧折流板反应器ABR,HRT为0.6d;厌氧流化床反应器AFBR,HRT为0.16d,其它同实施方式1。
实施方式9、硫酸盐生物还原反应器,进水pH值为3.5,厌氧膨胀颗粒污泥床反应器EGSB,液体上升流速vup为6.0m/h,回流比为200∶1,HRT为0.85d;厌氧生物滤池AF,HRT为1.25d;厌氧折流板反应器ABR,HRT为1.0d;厌氧流化床反应器AFBR,HRT为0.3d,其它同实施方式1。
实施方式10、无色硫细菌CSB生物氧化S2-反应器,pH值为7.0,其它同实施方式8。
实施方式11、无色硫细菌CSB生物氧化S2-反应器,pH值为6.5,其它同实施方式9。
实施方式12、无色硫细菌CSB生物氧化S2-反应器,温度为20℃,硫化物负荷为8.5kg/m3·d,反应器中DO≈3.8mg/L,其它同实施方式1。
实施方式13、无色硫细菌CSB生物氧化S2-反应器,温度为25℃,硫化物负荷为5.0kg/m3·d,反应器中DO≈2.0mg/L,其它同实施方式1。Embodiment 13. Colorless sulfur bacteria CSB biooxidation S 2- reactor, the temperature is 25°C, the sulfide load is 5.0kg/m 3 ·d, DO≈2.0mg/L in the reactor, and the others are the same as
实施方式14、慢砂滤池,滤速为0.2m/h,过滤周期为17d,其它同实施方式1。Embodiment 14, the slow sand filter, the filtration rate is 0.2m/h, the filtration cycle is 17d, and the others are the same as
实施方式15、慢砂滤池,滤速为0.3m/h,过滤周期为8d,其它同实施方式1。Embodiment 15, the slow sand filter, the filtration rate is 0.3m/h, the filtration cycle is 8d, and the others are the same as
实施方式16、固液分离设备,由离心分离作用使萃取剂CS2溶液、砂滤料和脱落的生物膜相分离,其它同实施方式1。Embodiment 16, solid-liquid separation equipment, extractant CS 2 solution, sand filter material and shed biofilm are separated by centrifugation, and the others are the same as
实施方式17、固液分离设备,由重力沉淀作用使萃取剂CS2溶液、砂滤料和脱落的生物膜相分离,其它同实施方式1。Embodiment 17, solid-liquid separation equipment, the extraction agent CS 2 solution, the sand filter material and the shed biofilm are separated by gravity sedimentation, and the others are the same as
实施方式18、蒸馏设备,温度为50℃,其它同实施方式1。Embodiment 18. Distillation equipment, the temperature is 50° C., and the others are the same as
实施方式19、蒸馏设备,温度为55℃,其它同实施方式1。Embodiment 19. Distillation equipment, the temperature is 55° C., and the others are the same as
实施方式20、干燥设备,温度为170℃,干燥1.5小时,其它同实施方式1。Embodiment 20. Drying equipment, the temperature is 170° C., and the drying is for 1.5 hours. Others are the same as
实施方式21、干燥设备,温度为165℃,干燥2小时,其它同实施方式1。Embodiment 21. Drying equipment, the temperature is 165° C., and the drying is for 2 hours. Others are the same as
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2008100544876A CN101219844B (en) | 2008-01-23 | 2008-01-23 | Technique for biological treatment of mine acidic wastewater |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2008100544876A CN101219844B (en) | 2008-01-23 | 2008-01-23 | Technique for biological treatment of mine acidic wastewater |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101219844A true CN101219844A (en) | 2008-07-16 |
CN101219844B CN101219844B (en) | 2010-08-11 |
Family
ID=39629969
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2008100544876A Expired - Fee Related CN101219844B (en) | 2008-01-23 | 2008-01-23 | Technique for biological treatment of mine acidic wastewater |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101219844B (en) |
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101838083A (en) * | 2010-05-17 | 2010-09-22 | 浙江大学 | Method for treating organic chemical wastewater having high COD and high concentration of sulfate ions |
CN101628773B (en) * | 2009-08-04 | 2011-04-20 | 紫金矿业集团股份有限公司 | Treatment process of copper-iron-contained high-concentration acidic mine wastewater |
CN101531976B (en) * | 2009-04-21 | 2011-06-15 | 中山大学 | Citrobacter sp. strain DBM and method for treating acid mine drainage (AMD) using same |
CN102311189A (en) * | 2011-08-12 | 2012-01-11 | 马前 | System for treatment of acid mine drainage and resource recovery of iron, aluminum, copper and zinc in drainage |
CN102491535A (en) * | 2011-12-15 | 2012-06-13 | 南京大学 | Method using sulfate-reducing bacteria for demineralization of lakes and rivers |
CN102746999A (en) * | 2011-04-19 | 2012-10-24 | 张金松 | LH microbes and their preparation method and use |
CN103172218A (en) * | 2013-03-06 | 2013-06-26 | 北京赛科康仑环保科技有限公司 | Method and device for recovery and purifying elemental sulfur from high-concentration sulfate wastewater |
CN103964629A (en) * | 2013-01-31 | 2014-08-06 | 衢州绿怡环保科技有限公司 | Acid mine drainage OLWS method |
CN104710017A (en) * | 2015-02-08 | 2015-06-17 | 吉林大学 | Method for treating acidic polymetallic sulfate industrial wastewater by use of sulfate-reducing bacteria |
CN105439374A (en) * | 2014-12-12 | 2016-03-30 | 武汉森泰环保股份有限公司 | Acidic high sulfate organic wastewater treatment process and apparatus |
CN105945054A (en) * | 2016-05-30 | 2016-09-21 | 青岛理工大学 | Heavily-polluted site Zn in-situ and ex-situ coupling detoxification method based on biogas residues |
CN106430799A (en) * | 2015-08-05 | 2017-02-22 | 铜仁市万山区盛和矿业有限责任公司 | Method for treating acid mine wastewater through papermaking black liquid |
CN106830493A (en) * | 2017-01-18 | 2017-06-13 | 杭州火焰山温泉度假有限公司 | The recovery technology of iron and sulphur in the high ferro high-sulfur thermal water that a kind of bone coal spontaneous combustion is formed |
CN107189960A (en) * | 2017-05-26 | 2017-09-22 | 核工业北京化工冶金研究院 | A kind of preparation method of the compound organic carbon source of sulfate reducing bacteria |
CN108883444A (en) * | 2016-01-15 | 2018-11-23 | 环球阿卡迪卡有限公司 | For handling the method for generating the barren rock material of acid |
CN109133362A (en) * | 2018-08-06 | 2019-01-04 | 中国地质大学(武汉) | A kind of construction method of acidproof arsenic oxidizing bacteria group biofilm reactor and application |
CN110040881A (en) * | 2019-05-29 | 2019-07-23 | 脚爬客(武汉)信息技术有限公司 | A kind of disintegrating system in waste pipe |
CN110104788A (en) * | 2019-04-03 | 2019-08-09 | 华南师范大学 | A kind of mercury-containing waste water treatment method and device |
CN110467312A (en) * | 2019-08-12 | 2019-11-19 | 安徽环境科技集团股份有限公司 | A kind of recycling treatment process of white carbon black industrial wastewater |
CN110734145A (en) * | 2019-11-28 | 2020-01-31 | 云南大学 | ecological wetland system with bodies of ore-collecting mountain wastewater treatment and plant residue treatment and use method thereof |
CN110862205A (en) * | 2019-12-23 | 2020-03-06 | 智慧化净资源环境科技(辽宁省)有限公司 | Oil sludge separation device and separation method |
CN111747511A (en) * | 2020-07-08 | 2020-10-09 | 江西理工大学 | A method and system for synchronously removing ammonia nitrogen and rare earth ion pollution in rare earth mining area |
CN112194327A (en) * | 2020-10-19 | 2021-01-08 | 张家港市五湖新材料技术开发有限公司 | Mine acidic wastewater treatment process |
CN112458014A (en) * | 2020-11-26 | 2021-03-09 | 广西科技大学 | Method for preparing acid-resistant and low-temperature-resistant sulfuric acid reduction complex microbial inoculum by using cassava residues as carbon source and application of microbial inoculum |
CN113351641A (en) * | 2021-06-23 | 2021-09-07 | 西南科技大学 | Method for remedying heavy metal pollution of smelting slag through non-covering organisms |
CN113461176A (en) * | 2021-07-21 | 2021-10-01 | 辽宁工程技术大学 | Method for recovering elemental sulfur in acid mine wastewater by using micro-oxygen symbiotic reactor |
CN113860517A (en) * | 2021-10-21 | 2021-12-31 | 南昌航空大学 | Method for treating chemical nickel plating cleaning wastewater by using sulfate reducing bacteria |
CN115259560A (en) * | 2022-07-29 | 2022-11-01 | 西安西热水务环保有限公司 | System and method for biological softening of desulfurization wastewater and recovery of elemental sulfur |
-
2008
- 2008-01-23 CN CN2008100544876A patent/CN101219844B/en not_active Expired - Fee Related
Cited By (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101531976B (en) * | 2009-04-21 | 2011-06-15 | 中山大学 | Citrobacter sp. strain DBM and method for treating acid mine drainage (AMD) using same |
CN101628773B (en) * | 2009-08-04 | 2011-04-20 | 紫金矿业集团股份有限公司 | Treatment process of copper-iron-contained high-concentration acidic mine wastewater |
CN102190411A (en) * | 2010-05-17 | 2011-09-21 | 浙江大学 | Treatment method for acidic organic chemical wastewater with high COD (chemical oxygen demand) and high sulfate radical concentration |
CN102190411B (en) * | 2010-05-17 | 2013-01-09 | 浙江大学 | Treatment method for acidic organic chemical wastewater with high COD (chemical oxygen demand) and high concentration sulfate radical |
CN101838083A (en) * | 2010-05-17 | 2010-09-22 | 浙江大学 | Method for treating organic chemical wastewater having high COD and high concentration of sulfate ions |
CN102746999A (en) * | 2011-04-19 | 2012-10-24 | 张金松 | LH microbes and their preparation method and use |
CN102311189A (en) * | 2011-08-12 | 2012-01-11 | 马前 | System for treatment of acid mine drainage and resource recovery of iron, aluminum, copper and zinc in drainage |
CN102491535A (en) * | 2011-12-15 | 2012-06-13 | 南京大学 | Method using sulfate-reducing bacteria for demineralization of lakes and rivers |
CN103964629B (en) * | 2013-01-31 | 2016-04-13 | 衢州绿怡环保科技有限公司 | Acidic mine waste water OLWS method |
CN103964629A (en) * | 2013-01-31 | 2014-08-06 | 衢州绿怡环保科技有限公司 | Acid mine drainage OLWS method |
CN103172218B (en) * | 2013-03-06 | 2015-03-25 | 北京赛科康仑环保科技有限公司 | Method and device for recovery and purifying elemental sulfur from high-concentration sulfate wastewater |
CN103172218A (en) * | 2013-03-06 | 2013-06-26 | 北京赛科康仑环保科技有限公司 | Method and device for recovery and purifying elemental sulfur from high-concentration sulfate wastewater |
CN105439374A (en) * | 2014-12-12 | 2016-03-30 | 武汉森泰环保股份有限公司 | Acidic high sulfate organic wastewater treatment process and apparatus |
CN105439374B (en) * | 2014-12-12 | 2018-01-23 | 武汉森泰环保股份有限公司 | A kind of handling process and its device of acid high-sulfate organic wastewater |
CN104710017A (en) * | 2015-02-08 | 2015-06-17 | 吉林大学 | Method for treating acidic polymetallic sulfate industrial wastewater by use of sulfate-reducing bacteria |
CN106430799B (en) * | 2015-08-05 | 2020-03-27 | 贵州筑信达创科技有限公司 | Method for treating mine acidic wastewater by using papermaking black liquor |
CN106430799A (en) * | 2015-08-05 | 2017-02-22 | 铜仁市万山区盛和矿业有限责任公司 | Method for treating acid mine wastewater through papermaking black liquid |
CN108883444A (en) * | 2016-01-15 | 2018-11-23 | 环球阿卡迪卡有限公司 | For handling the method for generating the barren rock material of acid |
CN105945054A (en) * | 2016-05-30 | 2016-09-21 | 青岛理工大学 | Heavily-polluted site Zn in-situ and ex-situ coupling detoxification method based on biogas residues |
CN105945054B (en) * | 2016-05-30 | 2022-03-04 | 上海洁壤环保科技有限公司 | Heavily-polluted site Zn in-situ and ex-situ coupling detoxification method based on biogas residues |
CN106830493A (en) * | 2017-01-18 | 2017-06-13 | 杭州火焰山温泉度假有限公司 | The recovery technology of iron and sulphur in the high ferro high-sulfur thermal water that a kind of bone coal spontaneous combustion is formed |
CN107189960A (en) * | 2017-05-26 | 2017-09-22 | 核工业北京化工冶金研究院 | A kind of preparation method of the compound organic carbon source of sulfate reducing bacteria |
CN109133362A (en) * | 2018-08-06 | 2019-01-04 | 中国地质大学(武汉) | A kind of construction method of acidproof arsenic oxidizing bacteria group biofilm reactor and application |
CN110104788A (en) * | 2019-04-03 | 2019-08-09 | 华南师范大学 | A kind of mercury-containing waste water treatment method and device |
CN110040881A (en) * | 2019-05-29 | 2019-07-23 | 脚爬客(武汉)信息技术有限公司 | A kind of disintegrating system in waste pipe |
CN110467312A (en) * | 2019-08-12 | 2019-11-19 | 安徽环境科技集团股份有限公司 | A kind of recycling treatment process of white carbon black industrial wastewater |
CN110734145A (en) * | 2019-11-28 | 2020-01-31 | 云南大学 | ecological wetland system with bodies of ore-collecting mountain wastewater treatment and plant residue treatment and use method thereof |
CN110862205A (en) * | 2019-12-23 | 2020-03-06 | 智慧化净资源环境科技(辽宁省)有限公司 | Oil sludge separation device and separation method |
CN111747511A (en) * | 2020-07-08 | 2020-10-09 | 江西理工大学 | A method and system for synchronously removing ammonia nitrogen and rare earth ion pollution in rare earth mining area |
CN112194327A (en) * | 2020-10-19 | 2021-01-08 | 张家港市五湖新材料技术开发有限公司 | Mine acidic wastewater treatment process |
CN112458014A (en) * | 2020-11-26 | 2021-03-09 | 广西科技大学 | Method for preparing acid-resistant and low-temperature-resistant sulfuric acid reduction complex microbial inoculum by using cassava residues as carbon source and application of microbial inoculum |
CN113351641A (en) * | 2021-06-23 | 2021-09-07 | 西南科技大学 | Method for remedying heavy metal pollution of smelting slag through non-covering organisms |
CN113461176A (en) * | 2021-07-21 | 2021-10-01 | 辽宁工程技术大学 | Method for recovering elemental sulfur in acid mine wastewater by using micro-oxygen symbiotic reactor |
CN113860517A (en) * | 2021-10-21 | 2021-12-31 | 南昌航空大学 | Method for treating chemical nickel plating cleaning wastewater by using sulfate reducing bacteria |
CN115259560A (en) * | 2022-07-29 | 2022-11-01 | 西安西热水务环保有限公司 | System and method for biological softening of desulfurization wastewater and recovery of elemental sulfur |
Also Published As
Publication number | Publication date |
---|---|
CN101219844B (en) | 2010-08-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101219844A (en) | A kind of process of biological treatment of acid mine wastewater | |
Das et al. | Effluent Treatment Technologies in the Iron and Steel Industry‐A State of the Art Review: Das et al. | |
AU598041B2 (en) | Sewage treatment | |
CN105906142B (en) | A kind of landfill leachate advanced treatment system and processing method | |
CN104150592A (en) | Method for deeply treating sewage by using calcined pyrite as filtering material | |
CN101830585A (en) | Acid mine water treatment system | |
CN103979750B (en) | Reactor for sewage treatment and phosphorus recovery and method for recovering phosphorus by using same | |
CN102951752A (en) | Filter-pressing action-based acid mine drainage treatment system and treatment method | |
CN110407414A (en) | A kind of acid mine wastewater treatment method | |
CN102010104A (en) | Method for treating riboflavin fermentation waste water | |
CN103880253A (en) | Garbage leachate advanced treatment method and Fenton reaction tower | |
CN107055937A (en) | A kind of advanced treatment of wastewater regeneration method based on biochemical and electrolysis tech | |
CN104843866A (en) | Sewage disposal method with low sludge yield and low energy consumption | |
CN103232140A (en) | Multi-stage treatment process for biodiesel wastewater | |
CN105540987A (en) | Water deep purification method | |
CN105481176A (en) | Pulping and papermaking wastewater biological treatment system | |
CN101941749A (en) | Method for treating high-concentration copper-containing antibiotic wastewater and recovering copper by iron-carbon micro-electrolysis | |
CN104261561A (en) | Sequencing batch reactor activated sludge process (SBR) with low yield of sludge and low energy consumption | |
CN103449670B (en) | System for treating acidic industrial wastewater | |
CN105906144A (en) | Excrement sewage treatment equipment and method | |
McLaughlin | Demonstration of an innovative heavy metals removal process | |
CN108178257A (en) | A kind of full processing landfill leachate flucculation process | |
CN205368049U (en) | Sizing agent effluent treatment plant | |
CN103787444B (en) | Spathic iron ore active sand phosphorus removing method | |
CN111875171A (en) | A kind of duck raising wastewater treatment process and resource recovery method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C53 | Correction of patent for invention or patent application | ||
CB03 | Change of inventor or designer information |
Inventor after: Li Yaxin Inventor after: Song Xiulan Inventor after: Su Bingqin Inventor after: Duan Yun Inventor before: Li Yaxin Inventor before: Song Xiulan Inventor before: Su Bingqin |
|
COR | Change of bibliographic data |
Free format text: CORRECT: INVENTOR; FROM: LI YAXIN SONG XIULAN SU BINGQIN TO: LI YAXIN SONG XIULAN SU BINGQIN DUAN YUN |
|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20100811 Termination date: 20120123 |