CN101212048A - Anode material of Li-ion secondary battery and battery containing the same - Google Patents

Anode material of Li-ion secondary battery and battery containing the same Download PDF

Info

Publication number
CN101212048A
CN101212048A CN 200610172300 CN200610172300A CN101212048A CN 101212048 A CN101212048 A CN 101212048A CN 200610172300 CN200610172300 CN 200610172300 CN 200610172300 A CN200610172300 A CN 200610172300A CN 101212048 A CN101212048 A CN 101212048A
Authority
CN
China
Prior art keywords
material
positive electrode
lithium
battery
active material
Prior art date
Application number
CN 200610172300
Other languages
Chinese (zh)
Inventor
万彩敏
晞 沈
潘福中
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Priority to CN 200610172300 priority Critical patent/CN101212048A/en
Publication of CN101212048A publication Critical patent/CN101212048A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage
    • Y02E60/12Battery technologies with an indirect contribution to GHG emissions mitigation
    • Y02E60/122Lithium-ion batteries

Abstract

The invention relates to an anode material for a lithium ion secondary battery. The anode material comprises anode active substance, a conductive agent and a caking agent, wherein the anode active substance comprises material A and material B. The material B is the oxide C of plated metal lithium and/or the oxide D of plated metal lithium which are coated and processed by the material A. The material A is the lithium phosphate slat with a olivine structure. The anode material can obviously improve the safety performance of the lithium ion secondary battery; the battery has a big capacity; the anode material has a good performance of charge and discharge for a big current, circulation and high temperature storage.

Description

一种锂离子二次电池的正极材料及含有该正极材料的电池技术领域本发明涉及一种锂离子二次电池的正极材料,还涉及一种含有该正极材料的锂离子二次电池。 The positive electrode material for a lithium ion secondary battery and a battery Field of the invention contains the positive electrode material relates to a lithium ion secondary battery positive electrode material, also relates to a lithium ion secondary battery comprising the positive electrode material. 背景技术目前,锂离子电池正极材料中采用的正极活性物质使用得最多的有LiCo02、 LiNi02或LiMn204,但上述几种正极活性物质由于在高温下容易分解并产生大量热量,从而给电池带来较大的安全隐患。 Background Art Currently, a lithium ion battery positive electrode material used in the positive electrode active material has the most LiCo02, LiNi02 or LiMn204, but since the above-described positive electrode active material of several readily decompose and produce large amounts of heat at high temperatures, leading to more battery big security risk. 与这几种正极活性物质相比,LiFeP04材料则兼具了它们的优点,还具有低成本、安全性好、稳定性好、铁资源丰富、无毒环保等多项优势,非常适合用于锂离子二次电池。 Compared with these types of positive electrode active material, LiFeP04 material is both their advantages, but also has low-cost, good security, good stability, abundant iron resources, non-toxic environmental protection and many other advantages, is very suitable for lithium ion secondary battery. 然而磷酸锂铁作为正极活性物质由于特殊的橄榄石结构,其低电子电导率成为抑制该正极活性物质广泛使用的瓶颈。 However, the lithium iron phosphate as a cathode active material due to the special olivine structure, which becomes the bottleneck inhibiting the low electronic conductivity of the cathode active material is widely used. 为了提高磷酸锂铁作为正极活性物质的电子电导率, 一般采用离子掺杂以及碳包覆等方法。 In order to improve the electronic conductivity of lithium iron phosphate as a cathode active material, and carbon is generally used ion doping method such as coating. GX Wang等人(Electrochimica Acta, 50, (2004), 443-447.)提出了在LiFeP04中掺杂Mg元素的方法,但实际的改善效果并不明显,而且掺杂镁元素后正极材料的比容量也会降低很多。 GX Wang et al (Electrochimica Acta, 50, (2004), 443-447.) Proposes a method of doping Mg element in the LiFeP04, but the actual effect is not improved significantly, and the ratio of the positive electrode material doped with magnesium capacity will be reduced a lot. US2002182497公开了一种用于锂离子二次电池正极活性材料的含碳的锂铁复合磷氧,该含碳的锂铁复合磷氧含有以LiFeP04为基本成分的橄榄石结构的锂铁复合磷氧的颗粒,以及由含碳的微细颗粒复合的颗粒。 US2002182497 discloses a lithium-iron-phosphorus oxide containing carbon composite secondary battery positive electrode active material for lithium ions, the lithium-iron oxide composite carbon-phosphorus containing lithium iron phosphate oxide having an olivine structure compound to the basic component LiFeP04 particles, and composite fine particles of the carbonaceous particles. 但包覆材料在循环测试过程中容易出现包覆层脱落的现象,露出的新鲜表面易与电解液发生不可逆反应,从而导致电池的循环性能变差;而且包覆工艺复杂,制备周期长,成本高,包覆的均匀程度及包覆的量也难以控制。 However, the coating material prone cycle testing off phenomenon cladding layer, the exposed surface of fresh easily irreversible reaction with the electrolyte, resulting in deterioration of the cycle performance of the battery; and coating process complex, long preparation cycle, the cost of high, and the uniformity of the coating amount of the coating is also difficult to control. CN1641912A公开了一种锂电池用正极,包括锰酸锂、导电剂、粘合剂和用作搭配的活性物质,其中,所述导电剂至少包含碳纳米管、纳米银粉、 乙炔黑、石墨粉、碳黑中的一种,所述粘合剂至少包括聚四氟乙烯、聚偏二氟乙烯中的一种,所述用作搭配的活性物质至少包括钴酸锂、镍酸锂、镍钴酸锂、镍锰酸锂、磷酸铁锂、磷酸锰锂、磷酸钴锂中的一种。 CN1641912A discloses a positive electrode for a lithium battery, comprising a lithium manganese oxide, conductive agent, a binder and as with the active material, wherein the conductive agent comprises at least carbon nanotubes, silver powder, acetylene black, graphite powder, one kind of carbon black, at least the binder include polytetrafluoroethylene, polyvinylidene fluoride in an ethylene, as with the active material comprising at least a lithium cobaltate, lithium nickelate, nickel-cobalt lithium, lithium nickel manganese oxide, lithium iron phosphate, lithium manganese phosphate, lithium cobalt phosphate of one. 该正极中的锰酸锂材料在高温下极易与电解液反应,溶解的M^+离子在负极材料表面沉积,阻碍锂离子的迁移通道,电池的电化学性能变差,而简单地将锰酸锂材料跟其它正极材料混合并不能从本质上解决问题,另外搭配磷酸铁锂等材料也不能阻止锰酸锂与电解液的接触。 Lithium manganese oxide material of the positive electrode at a high temperature is extremely reactive with the electrolyte, the dissolved M ^ + ions is deposited on the surface of the negative electrode material, lithium ions that will prevent migration channels, deterioration of the battery electrochemical performance, simply Manganese mixed with other materials, lithium cathode material does not fundamentally solve the problem in essence, with additional material such as lithium iron phosphate can not be prevented from contacting with the electrolyte lithium manganate. 因此该正极虽然可以使电池获得大电流放电性能,但电池的安全性能较低。 Although the positive electrode so that the large current discharge of the battery performance, but the safety performance of the battery is low. 发明内容本发明的目的在于克服上述现有技术中的锂电池用正极虽然可以使电池获得大电流放电性能,但电池的安全性能较低的缺陷,提供一种既可以使电池获得大电流放电性能,而且使电池的安全性能较高的锂离子二次电池的正极材料。 Object of the present invention is to overcome the above-described prior art lithium battery positive electrode can be obtained although the large-current discharge performance, but with lower battery safety defect, the battery may be provided a large current discharge performance , and higher safety performance of the battery is a lithium ion secondary battery positive electrode material. 本发明提供了一种锂离子二次电池的正极材料,该正极材料含有正极活性物质、导电剂和粘结剂,其中,所述正极活性物质含有材料A和材料B, 所述材料B为由材料A包覆处理的式(2)所示的过渡金属锂氧化物C和/ 或式(3)所示的过渡金属锂氧化物D,所述材料A为式(1)所示的具有橄榄石结构的磷酸金属锂盐:Li1+aLbP04 (1),其中,-0.1《a《0.2, 0.9《b《ll, L为铁、铝、钛、钴、硼、铬、镍、镁、锆、镓、钒、锰和锌中的至少一种; Li,+xNi,一y—zMnyCozMp02 (2), The present invention provides a positive electrode material for a lithium ion secondary battery, the positive electrode material containing a positive electrode active material, a conductive agent and a binder, wherein the positive electrode active material containing materials A and B, the material B by olive having the formula (2) a material of the lithium-transition metal oxide coating treatment C and / or formula (3) of the lithium-transition metal oxide D, the material shown in a (1) of the formula lithium metal phosphate rock salt structure: Li1 + aLbP04 (1), wherein, -0.1 "a" 0.2, 0.9 "b" ll, L is iron, aluminum, titanium, cobalt, boron, chromium, nickel, magnesium, zirconium, gallium, vanadium, manganese and zinc at least one; Li, + xNi, a y-zMnyCozMp02 (2),

其中,-0.1《x《0.2, 0%《1, 0《z《l, 0《y+z《1.0, 0《p《0.2, M为硼、镁、铝、钛、铬、铁、锆、铜、锌、镓、钇、氟、碘和硫中的至少一种;或Li i +mMnnN2—n04 (3), Wherein, -0.1 "x" 0.2, 0% "1, 0" z "l, 0" y + z "1.0, 0" p "0.2, M is boron, magnesium, aluminum, titanium, chromium, iron, zirconium, copper, zinc, gallium, yttrium, fluorine, iodine, and sulfur; or Li i + mMnnN2-n04 (3),

其中,-0.1《m《0.2, 1.7《n《2.0, N为硼、镁、铝、钛、铬、铁、钴、锆、镍、铜、锌、镓、钇、氟、碘和硫中的至少一种。 Wherein, -0.1 "m" 0.2, 1.7 "n" 2.0, N is boron, magnesium, aluminum, titanium, chromium, iron, cobalt, zirconium, nickel, copper, zinc, gallium, yttrium, fluorine, iodine and sulfur at least one.

本发明还提供了一种锂离子二次电池,该电池包括电池壳体、电极组和电解液,电极组和电解液密封在电池壳体内,电极组包括依次巻绕或叠置的正极片、隔膜和负极片,所述正极片含有导电基体和涂覆在该导电基体两面的正极材料,其中,所述正极材料为本发明提供的正极材料。 The present invention also provides a lithium ion secondary battery which includes a battery case, an electrode group and an electrolyte, the electrode group and an electrolyte sealed in a battery case, an electrode group comprising a positive electrode sheet wound or stacked sequentially Volume, the separator and the negative electrode sheet, positive electrode sheet comprising a conductive substrate and a positive electrode material coated on both surfaces of the conductive substrate, wherein the positive electrode material of the present invention to provide a positive electrode material. 采用本发明提供的正极材料,既可以使锂离子二次电池获得大电流放电性能,而且使电池的安全性能较高,而且可以使锂离子二次电池具有改善的高容量、优异的循环性能和储存性能。 Using the positive electrode material provided by the invention, both the lithium ion secondary battery to obtain a large current discharge performance, but also high safety performance of the battery, and the lithium ion secondary battery can be improved with a high capacity, excellent cycle performance and storage performance.

采用本发明提供的正极材料具有以下优点: Using the positive electrode material of the present invention provides the following advantages:

1、 采用本发明的材料A与材料B混合的正极活性物质,用材料A包覆过渡金属锂氧化物C和/或过渡金属锂氧化物D的材料B,具有高导电性能, 可以更有效地提高正极材料的电子电导率,使正极材料能发挥出高比容量, 并具有更好的大电流充放电性能。 1, the present invention is mixed with the material B material A positive electrode active material, a lithium-transition metal oxide material A coated with C and / or D of the lithium-transition metal oxide material B, having a high conductivity, can be more effectively improve the electronic conductivity of the positive electrode material, the positive electrode material can exert a high specific capacity and better large-current charge-discharge performance. 且用材料A包覆过渡金属锂氧化物C和/ 或过渡金属锂氧化物D的包覆层不易脱落,在充放电过程中结构和体积变化减小,热稳定性提高,并能避免过渡金属锂氧化物C和/或过渡金属锂氧化物D与电解液直接接触,使得电池具有更好的循环充放电性能及安全性能。 And easy to fall off the coating material A lithium-transition metal oxides C and / or coating of lithium-transition metal oxide D is reduced during charging and discharging and the volume change of the structure, to improve thermal stability and to avoid the transition metal lithium oxide, and C / D or lithium-transition metal oxide in direct contact with the electrolyte, so that the battery has better charge-discharge cycle properties and safety performance.

2、 通过在本发明的正极材料中使用导电剂,能进一步提高正极材料的电子电导率,并可有效抑制在磷酸铁锂中加入材料B以后,由于正极活性物质嵌脱锂体积膨胀收缩的差异而容易出现的循环测试过程中活性物质与导电剂接触状态的变化,电池的循环性能及高温储存性能得到了极大的提升。 2, by using a conductive agent in the positive electrode material of the present invention, it is possible to further improve the electronic conductivity of the positive electrode material, and can effectively suppress a variation in the material B after addition of the lithium iron phosphate in the positive electrode active material lithium insertion and extraction volume of expansion and contraction prone to vary during the test cycle the active material and the conductive agent in a contact state, the cycle performance of the battery and high-temperature storage performance has been greatly improved.

具体实施方式本发明提供的锂离子二次电池的正极材料含有,正极活性物质、导电剂和粘结剂,其中,所述正极活性物质含有材料A和材料B,所述材料A为式(1)所示的具有橄榄石结构的磷酸金属锂盐,所述材料B为由材料A包覆处理的式(2)所示的过渡金属锂氧化物C和/或式(3)所示的过渡金属锂氧化物D:Li1+aLbP04 (1),其中,-0.1《a《0.2, 0.9《b《U, L为铁、铝、钛、钴、硼、铬、镍、镁、锆、镓、钒、锰和锌中的至少一种; Li1+xNihy—zMnyCozMp02 (2),其中,-0.1《x《0.2, 0《y《l, 0《z《l, 0《y+z《1.0, M为硼、镁、 铝、钛、铬、铁、锆、铜、锌、镓、钇、氟、碘和硫中的至少一种; 或Li,+mMllnN2—n04 (3),其中,-0.1《m《0.2, 1.7《n《2.0, N为硼、镁、铝、钛、铬、铁、钴、 锆、镍、铜、锌、镓、钇、氟、碘和硫中的至少一种。 The positive electrode material for a lithium ion secondary battery of the embodiment of the present invention provides comprising, a positive electrode active material, a conductive agent and a binder, wherein the positive electrode active material containing materials A and B, the material A is of formula (1 transition) having an olivine structure lithium metal phosphate salt represented by the formula by the material B material a coating treatment (2) a transition metal lithium oxide C and / or formula (3) lithium metal oxide D: Li1 + aLbP04 (1), wherein, -0.1 "a" 0.2, 0.9 "b" U, L is iron, aluminum, titanium, cobalt, boron, chromium, nickel, magnesium, zirconium, gallium, at least one vanadium, manganese and zinc; Li1 + xNihy-zMnyCozMp02 (2), wherein, -0.1 "x" 0.2, 0 "y" l, 0 "z" l, 0 "y + z" 1.0, M boron, magnesium, at least one of aluminum, titanium, chromium, iron, zirconium, copper, zinc, gallium, yttrium, fluorine, iodine, and sulfur; or Li, + mMllnN2-n04 (3), wherein, -0.1 " m "0.2, 1.7" n "2.0, N is boron, magnesium, aluminum, titanium, chromium, iron, cobalt, zirconium, nickel, copper, zinc, gallium, at least one of yttrium, fluorine, iodine and sulfur. 根据本发明提供的正极材料,在优选情况下,所述材料A的平均粒度为1-10微米,所述材料B的平均粒度为5-14微米。 The cathode material of the present invention provides, in the preferred case, the average particle size of the material A is 1 to 10 microns, an average particle size of the material B is 5-14 microns. 根据本发明提供的正极材料,在优选情况下,在所述正极材料中,所述正极活性物质中所述材料A与所述材料B的重量比为9.5: 0.5-0.5: 9.5,优选为7: 3-3: 7,所述导电剂的含量为所述正极活性物质总量的2-20重量%, 优选为3-15重量%,所述粘结剂的含量为所述正极活性物质总量的0.01-8 重量%,优选为1-5重量%。 The cathode material of the present invention provides, in the preferred case, the positive electrode material, the positive active material in the material A and the material B is a weight ratio of 9.5: 0.5-0.5: 9.5, preferably 7 : 3-3: 7, the content of said conductive agent is 2-20 wt of the total amount of the positive electrode active material%, preferably 3-15 wt%, the binder content of the total positive electrode active material amount of 0.01 to 8 wt%, preferably 1-5 wt%. 根据本发明提供的正极材料,式(1)所示的材料A优选为LiFeP04; 式(2)所示的过渡金属锂氧化物C优选为LiCo02;式(3)所示的过渡金属锂氧化物D优选为LiMn204。 The present invention provides a positive electrode material, as shown in (1) wherein A is preferably a material LiFeP04; formula (2) is preferably a lithium-transition metal oxide C LiCo02; formula (3) a transition metal lithium oxide D is preferably LiMn204. 根据本发明提供的正极材料,优选情况下,在所述材料B中,所述材料A与过渡金属锂氧化物C和/或过渡金属锂氧化物D的重量比为0.0001-0.1, 优选为0.001-0.05。 The present invention provides a positive electrode material, Preferably, the material B, the material A lithium-transition metal oxides and C and / or weight ratio of the transition metal lithium oxide D is 0.0001 to 0.1, preferably 0.001 -0.05. 所述材料A可以商购得到或采用己知的方法制备得到。 The material A may be obtained commercially or prepared using known methods to give. 所述材料B的制备方法可以采用水热法、溶胶-凝胶法、共沉淀法、氧化还原法的液相包覆方法,用包覆源包覆过渡金属锂氧化物C和/或过渡金属锂氧化物D得到。 The method of preparation of the material B may be hydrothermal method, sol - gel method, coprecipitation method, redox method of liquid-phase coating method, coating with a lithium-transition metal oxide source cover C and / or transition metal D to give lithium oxide. 采用的包覆源含有锂盐、磷酸盐和亚铁盐的浆液,其中的锂盐,如磷酸锂、碳酸锂、氢氧化锂、草酸锂和醋酸锂中的一种或几种; 磷酸盐,如磷酸铵、磷酸氢二铵、磷酸二氢铵和磷酸锂中的一种或几种;亚铁盐,如草酸亚铁、醋酸亚铁、氯化亚铁、硫酸亚铁、磷酸亚铁和水合磷酸亚铁中的一种或几种。 The coating source is a lithium-containing salt, phosphate and ferrous salt slurry, wherein the lithium salt such as lithium phosphate, lithium carbonate, lithium hydroxide, one or more of lithium oxalate and lithium acetate; and phosphate, the one or more ammonium phosphate, diammonium hydrogen phosphate, ammonium dihydrogen phosphate, and lithium phosphate; a ferrous salt such as ferrous oxalate, ferrous acetate, ferrous chloride, ferrous sulfate, ferrous phosphate, and one or more hydrated ferrous phosphate. 优选情况下,所述所述材料B的制备方法包括,在水或有机溶剂中将上述包覆源和过渡金属锂氧化物C和/或D粉末均匀混合;或者先将上述包覆源在水或有机溶剂中混合制得包覆前驱体,再加入过渡金属锂氧化物C和/ 或D粉末充分混合。 Preferably, the method of preparation of the material B include, in water or an organic solvent of the coating in the lithium-transition metal oxides and a source of C and / or D powder uniformly mixed; the above-described first coating or water source or an organic solvent prepared by mixing the coating precursor, lithium-transition metal oxide added C / D powder and thoroughly mixed or. 蒸发掉溶剂后,在300-90(TC焙烧l-24小时,冷却得到材料B。 •根据本发明提供的正极材料,用材料A包覆过渡金属锂氧化物C和/或过渡金属锂氧化物D的材料B,具有高导电性能,可以更有效地提高正极材料的电子电导率,使正极材料能发挥出高比容量,并具有更好的大电流充放电性能。且用材料A包覆过渡金属锂氧化物C和/或过渡金属锂氧化物D的包覆层不易脱落,在充放电过程中结构和体积变化减小,热稳定性提高,并能避免过渡金属锂氧化物C和/或过渡金属锂氧化物D与电解液直接接触, 使得电池具有更好的循环充放电性能及安全性能。根据本发明提供的正极材料,所述导电剂可以采用本领域所公知的任何 After evaporation of the solvent, 300-90 (TC firing l-24 hours, cooled to give a material B. • positive electrode material according to the present invention provides, a cladding material A lithium-transition metal oxide C, and / or a transition metal lithium oxide B D material, having a high conductivity, can be more effectively improve the electronic conductivity of the positive electrode material, the positive electrode material can exert a high specific capacity and better large-current charge-discharge performance. a coating material and a transition C lithium metal oxide and / or lithium-transition metal oxide covering layer D is not falling, reduce the charge-discharge process and the structure of the volume change, improved thermal stability, and lithium-transition metal oxide C can be avoided and / or lithium-transition metal oxide D direct contact with the electrolyte, so that the battery has better charge-discharge cycle properties and safety performance. the present invention provides a positive electrode material, the conductive agent may be employed known in the art that any

导电剂,例如可以釆用石墨、碳纤维、碳黑、金属粉末和纤维中的一种或几种。 A conductive agent, for example, preclude the use of graphite, carbon fibers, carbon black, metal powder and fibers of one or more. 通过在本发明的正极材料中使用导电剂,能进一步提高正极材料的电子电导率,并可有效抑制在磷酸铁锂中加入材料B以后,由于正极活性物质嵌脱锂体积膨胀收縮的差异而容易出现的循环测试过程中活性物质与导电剂接触状态的变化,电池的循环性能及高温储存性能得到了极大的提升。 By using a conductive agent in the positive electrode material of the present invention, it is possible to further improve the electronic conductivity of the positive electrode material, the material can be effectively suppressed after the addition of B in the lithium iron phosphate in the positive electrode active material of lithium insertion and extraction volume of expansion and contraction differences easily cycle test changes occurring during contact with the active material, a conductive agent, cycle characteristics and high-temperature storage performance of the battery has been greatly improved. 根据本发明提供的正极材料,所述粘结剂可以采用本领域所公知的任何粘结剂,例如可以采用聚偏二氟乙烯、聚四氟乙烯或丁苯橡胶中的一种或几种。 The present invention provides a positive electrode material, the binder may be used in any adhesive known in the art, for example, polyvinylidene fluoride may be used one or more of ethylene, the styrene-butadiene rubber or polytetrafluoroethylene. 本发明提供的锂离子二次电池,包括电池壳体、电极组和电解液,电极组和电解液密封在电池壳体内,电极组包括依次巻绕或叠置的正极片、隔膜和负极片,所述正极片含有导电基体和涂覆在该导电基体两面的正极材料, 其中,所述正极材料为本发明提供的正极材料。 The present invention provides a lithium ion secondary battery includes a battery case, an electrode group and an electrolyte, the electrode group and an electrolyte sealed in a battery case, an electrode group comprising wound or stacked sequentially Volume positive electrode sheet, negative electrode sheet and the separator, the positive electrode plate comprising a conductive substrate and a positive electrode material coated on both surfaces of the conductive substrate, wherein the positive electrode material of the present invention to provide a positive electrode material. 根据本发明提供的锂离子二次电池,其中,所述正极片含有导电基体和涂覆在该导电基体两面的正极材料,所述导电基体为本领域技术人员所公知,例如可以选自铝箔、铜箔或各种冲孔钢带。 The lithium ion secondary battery of the present invention provides, wherein said positive electrode plate comprising a conductive substrate and a positive electrode material coated on both surfaces of the conductive substrate, the conductive substrate known to those skilled in the art, for example, an aluminum foil may be selected, various steel foil or punching. 本发明的锂离子二次电池的正极片可以采用本领域的技术人员公知的现有的方法制备。 Lithium ion secondary battery positive electrode sheet of the present invention can be prepared according to conventional techniques well known in the art methods employed. 例如,常规的正极片的制备方法包括,将正极活性物质、 粘结剂和导电剂与溶剂混合成浆液,然后在宽幅导电基体上涂覆该浆液,接着干燥,辊轧并分切,得到正极片。 For example, a conventional method for preparing the positive electrode sheet comprises, mixing a positive electrode active material, a binder and a conductive agent to a slurry with a solvent and then coated on a conductive substrate of the wide slurry, then dried, rolled and cut to give The positive electrode sheet. 在所述方法中,与正极活性物质、粘结剂和导电剂混合的溶剂可以选自本领域技术人员公知的常规的溶剂,如可以选自N-甲基吡咯垸酮(NMP)、 二甲基甲酰胺(DMF)、 二乙基甲酰胺(DEF)、 二甲基亚砜(DMSO)、四氢呋喃(THF)以及水和醇类中的一种或几种。 In the method, the mixed positive electrode active material, conductive agent and a binder selected from conventional solvents may be a solvent known to those skilled in the art, as can be selected from N- methylpyrrolidin embankment one (NMP), dimethyl formamide (DMF), diethylformamide (DEF), dimethyl sulfoxide (DMSO), tetrahydrofuran (THF) and one or more of water and alcohols. 溶剂的用量使所述浆料能够涂覆到所述导电基体上即可。 The amount of solvent to the slurry can be coated on the conductive substrate can be. 一般来说,溶剂的用量使浆液中正极活性物质 In general, the amount of the solvent in the slurry of the positive electrode active material

的含量为40-90重量%,优选为50-85重量%。 An amount of 40-90% by weight, preferably 50 to 85 wt%. 干燥和辊压的条件为本领域技术人员所公知的,例如干燥正极片的温度一般为60-120°C,优选80-110°C,干燥时间为0.5-5小时。 Dried and rolled conditions known to those skilled in well-known, such as temperature drying of the positive electrode plate is generally 60-120 ° C, preferably 80-110 ° C, the drying time is 0.5 to 5 hours. 根据本发明提供的锂离子二次电池,所述电极组的结构为本领域技术人员所公知, 一般来说,所述电极组包括依次巻绕或叠置的正极片、隔膜和负极片,隔膜位于正极片和负极片之间。 The lithium ion secondary battery of the present invention provides the structure of the electrode group known to those skilled in the art, in general, the electrode group comprises Volume sequentially stacked or wound positive electrode sheet, negative electrode sheet and a separator, the separator positioned between the positive and negative electrode plates. 巻绕或叠置的方式为本领域技术人员所公知。 Volume wound or stacked manner known to those skilled in the art. 所述负极采用本领域内所公知的负极,即含有负极集流体和涂覆在该负极集流体上的负极材料层。 The negative electrode using the negative electrode is well known in the art, i.e., a negative electrode containing a negative electrode material layer is coated on the current collector and the negative electrode current collector. 本发明对负极材料层没有特别的限制,与现有技术*所述负极材料层通常包括负极活性物质、粘结剂以及选择性含有的导电剂。 The present invention is not particularly limited negative electrode material layer, the negative electrode material layer * prior art typically comprise an anode active material, a binder and a conductive agent contained in the selectivity. 所述负极活性物质可以采用现有技术中常用的各种负极活性物质, 例如碳材料。 The negative active material may be employed in the prior art commonly used in a variety of negative electrode active material, such as carbon material. 所述碳材料可以是非石墨化炭、石墨或由多炔类高分子材料通过高温氧化得到的炭,也可使用其它碳材料例如热解炭、焦炭、有机高分子烧结物、活性炭等。 The carbon material may be non-graphitized carbon, graphite or a polymer material polyacetylenes obtained by high-temperature oxidation of carbon, the carbon may also be used other materials such as pyrolytic carbon, coke, an organic high molecular sintered material, such as activated carbon. 所述有机高分子烧结物可以是通过将酚醛树脂、环氧树脂等烧结并炭化后所得的产物。 The organic polymer may be a sintered product obtained by adding a phenol resin, an epoxy resin after sintering and carbonization. 所述负极用粘结剂可以是现有技术中用于锂离子二次电池负极的各种粘结剂,优选所述粘结剂为憎水性粘结剂与亲水性粘结剂的混合物。 The negative electrode binder may be used in various binder prior art lithium ion secondary battery negative electrode, the binder is preferably a mixture of hydrophobic and hydrophilic binder of the binder. 所述憎水性粘结剂与亲水性粘结剂的比例没有特别的限制,可以根据实际需要确定,例如,亲水性粘结剂与憎水性粘结剂的重量比例可以为0.3: lh 1。 The ratio of hydrophobic binder to hydrophilic binder is not particularly limited and may be determined according to the actual example, the weight ratio of the hydrophilic binder and hydrophobic binder may be 0.3: lh 1 . 所述粘结剂可以以水溶液或乳液形式使用,也可以以固体形式使用,优选以水溶液或乳液形式使用,此时对所述亲水性粘结剂溶液的浓度和所述憎水性粘结剂乳液的浓度没有特别的限制,可以根据所要制备的负极浆料拉浆涂布的粘度和可操作性的要求对该浓度进行灵活调整,例如所述亲水性粘结剂溶液的浓度可以为0.5-4重量%,所述憎水性粘结剂乳液的浓度可以为10-80 重量%。 The binder may be used in aqueous solution or emulsion form, may also be used in solid form, preferably used in the form of an aqueous solution or an emulsion, then the concentration of said hydrophobic binder to hydrophilic binder solution and the the concentration of the emulsion is not particularly limited, and can pull the viscosity of the slurry coating and operability according to claim negative electrode slurry to be prepared to adjust the concentration of the flexible, for example, the concentration of the hydrophilic binder solution may range from 0.5 to 4 wt%, the concentration of the hydrophobic adhesive emulsion may be 10 to 80 wt%. 所述憎水性粘结剂可以为聚四氟乙烯或丁苯橡胶或者它们的混合物。 The hydrophobic binder may be a styrene-butadiene rubber or polytetrafluoroethylene, or mixtures thereof. 所述亲水性粘结剂可以为羟丙基甲基纤维素、羧甲基纤维素钠、羟乙基纤维素或聚乙烯醇中的一种或几种。 The hydrophilic binder may be one or more of hydroxypropyl methylcellulose, sodium carboxymethylcellulose, hydroxyethylcellulose or polyvinyl alcohol. 本发明提供的负极材料还可以选择性地含有现有技术负极材料中通常所含有的导电剂。 The negative electrode material provided by the present invention may further optionally contain a conductive agent prior art generally negative electrode material contained. 由于导电剂用于增加电极的导电性,降低电池的内阻,因此本发明优选含有导电剂。 Since the conductive agent for increasing the conductivity of the electrode, reduce the internal resistance of the battery, thus the present invention preferably contain a conductive agent. 所述导电剂的含量和种类为本领域技术人员所公知,例如,以负极材料为基准,导电剂的含量一般为0.1-12重量%。 The amount and type of conductive agent known to those skilled in the art, e.g., as a negative electrode material, the content of the conductive agent is generally 0.1 to 12 wt%. 所述导电剂可以选自导电碳黑、镍粉、铜粉中的一种或几种。 The conductive agent may be selected from conductive carbon black, nickel powder, copper powder of one or more. 负极的制备方法可以采用本领域所公知的各种方法,例如用溶剂将负极活性物质、粘结剂和选择性含有的导电剂制备成负极材料浆料,溶剂的加入量为本领域技术人员所公知的,可根据所要制备的负极浆料的拉浆涂布的粘度和可操作性的要求进行灵活调整。 Preparing a negative electrode variety of methods known in the art may be employed, for example, with a solvent to a negative electrode active material to prepare a conductive agent, a binder and a slurry containing selectivity, the amount of solvent added to the present skilled in the art known, can be flexibly adjusted depending on the viscosity of the negative electrode slurry was applied to pull the slurry to be prepared and operability requirements. 然后将所制得的负极材料浆料拉浆涂覆在负极集电体上干燥压片,再裁片得到负极。 Then the negative electrode material slurry prepared slurry was coated on to pull negative electrode current collector was dried tableting, then cut pieces to obtain a negative electrode. 所述干燥的温度通常为i2o°c,干燥时间通常为5个小时。 The drying temperature is usually i2o ° c, drying time is usually 5 hours. 所述负极浆料所用的溶剂可以是现有技术中的各种溶剂,如水、水溶性溶剂或者它们的混合物,所述水溶性溶剂包括碳原子数为l-6的低级醇、丙酮、N,N-二甲基甲酰胺等。 The negative electrode slurry solvent various solvents may be used in the prior art, such as water, water-soluble solvent or a mixture thereof, the water-soluble solvent comprises a lower alcohol having a carbon number of l-6, acetone, N, N- dimethylformamide and the like. 根据本发明提供的锂离子二次电池,隔膜层设置于正极和负极之间,具有电绝缘性能和液体保持性能。 The lithium ion secondary battery of the present invention provides, a separator layer disposed between the positive and negative electrodes, having electrical insulating properties and liquid retention. 所述隔膜层可以选自本领域技术人员公知的锂离子二次电池中所用的各种隔膜层,例如聚烯烃微多孔膜、聚乙烯毡、玻璃纤维毡或超细玻璃纤维纸。 The membrane layer may be selected from a variety of those skilled in the separator layer known lithium ion secondary batteries used in, for example, a polyolefin microporous membrane, polyethylene mat, glass mat, or microglass fiber paper. 根据本发明提供的锂离子二次电池,电解液为非水电解液。 The lithium ion secondary battery of the present invention provides, for a nonaqueous electrolyte electrolytic solution. 所述的非水电解液为电解质锂盐在非水溶剂中形成的溶液,可以使用本领域技术人员已知的常规的非水电解液。 Conventional non-aqueous electrolyte of the non-aqueous electrolyte solution as an electrolyte lithium salt in a nonaqueous solvent may be used known to the skilled person. 比如电解质锂盐可以选自六氟磷酸锂(LiPF6)、高氯酸锂(LiC104)、四氟硼酸锂(UBF4)、六氟砷酸锂(LiAsF6)、六氟硅酸锂(LiSiF6)、四苯基硼酸锂(LiB(C6H5)4)、氯化锂(LiCl)、溴化锂(LiBr)、 An electrolyte such as lithium salt may be selected from lithium hexafluorophosphate (LiPF6), lithium perchlorate (LiC104), lithium tetrafluoroborate (UBF4), lithium hexafluoroarsenate (LiAsF6), lithium hexafluorosilicate (LiSiF6), tetraphenylborate lithium (LiB (C6H5) 4), lithium chloride (LiCl), lithium bromide (LiBr),

氯铝酸锂(LiAlCl4)及氟烃基磺酸锂(UC(s02cf3)3)、LiCH3S03、LiN(S02CF3)2中的一种或几种。 Lithium aluminum chloride (LiAlCl 4) hydrocarbon lithium and fluorine acid (UC (s02cf3) 3), LiCH3S03, LiN (S02CF3) 2 in one or more. 非水溶剂可以选自链状酸酯和环状酸酯混合溶液,其中链状酸酯可以为碳酸二甲酯(DMC)、碳酸二乙酯(DEC)、碳酸甲乙酯(EMC)、 碳酸甲丙酯(MPC)、碳酸二丙酯(DPC)以及其它含氟、含硫或含不饱和键的链状有机酯类中的一种或几种。 Non-aqueous solvent may be selected from a chain esters and cyclic esters mixed solution, wherein the chain esters may be dimethyl carbonate (DMC), diethyl carbonate (DEC), ethylmethyl carbonate (EMC), carbonate methyl ester (the MPC), dipropyl carbonate (DPC) and other fluorine, sulfur or a chain containing one or more organic esters of unsaturated bond. 环状酸酯可以为碳酸乙烯酯(EC)、碳酸丙烯酯(PC)、碳酸亚乙烯酯(VC)、 y-丁内酷(,BL)、磺内酯以及其它含氟、含硫或含不饱和键的环状有机酯类中的一种或几种。 The cyclic ester can be ethylene carbonate (EC), propylene carbonate (PC), vinylene carbonate (VC), y- butyrolactone cool (, BL), sultone, and other fluorine-containing, sulfur-containing or one or more unsaturated bond in the cyclic organic esters. 在所述非水电解液中,电解质锂盐的浓度一般为0.1-2摩尔/升,优选为0.8-1.2摩尔/升。 In the non-aqueous electrolyte, a lithium salt concentration of the electrolyte is generally from 0.1 to 2 mol / liter, preferably 0.8 to 1.2 mol / liter. 根据本发明提供的锂离子二次电池,该电池的制备方法为本领域的技术人员所公知的, 一般来说,该电池的制备方法包括将电极组置入电池壳中, 加入电解液,然后密封,得到锂离子二次电池。 The lithium ion secondary battery of the present invention provides methods of preparation of the cell are known to those known in the art, in general, the method for preparing a battery comprising an electrode group into a battery case, electrolyte is added, and then sealed to obtain a lithium ion secondary battery. 其中,密封的方法,电解液的用量为本领域技术人员所公知。 Wherein the sealing method, the amount of the electrolytic solution are known to those skilled in the art. 下面的实施例将对本发明作进一步的描述。 The following examples of the present invention will be further described. 实施例1将Fe重量占LiCo02 0.1重量。 Example 1 A Fe wt account LiCo02 0.1 wt. /^的FeS04和H3P04、 LiOH按照l: 1: 3 的摩尔比混合溶解在水中,加入LiCo02粉末,混合均匀,蒸发掉溶剂,然后在700。 / ^ Of FeS04 and H3P04, LiOH according to l: 1: 3 molar ratio is dissolved in water, added LiCo02 powder mixing, the solvent was evaporated off, then 700. C热处理6小时,冷却得到平均粒度为10微米的包覆材料LiCo02/LiFeP04。 C heat treated 6 hours, cooled to obtain a coating material of average particle size of 10 microns LiCo02 / LiFeP04. 将PVDF按1:10的比率溶解在NMP中,将LiFeP04 (平均粒度为5微米)、LiCo02/LiFeP04包覆材料、石墨和碳黑加入该溶液中,充分混合制成浆料,其组成为LiFeP04: (LiCo02/LiFeP04):(石墨+碳黑):PVDF = 70: 30: (6+3): 5。 A ratio of 1:10, the PVDF dissolved in NMP, the LiFeP04 (average particle size 5 microns), LiCo02 / LiFeP04 cladding material, graphite and carbon black were added to the solution, and thoroughly mixed to obtain a slurry, consisting of LiFeP04 : (LiCo02 / LiFeP04) :( graphite + carbon black): PVDF = 70: 30: (6 + 3): 5. 将该浆料均匀地涂布在20微米的铝箔上,于12(TC下干燥,分切、 压延后得到450X42X170毫米的正极片,该正极片中含有5克正极活性物质(LiFeP04+(LiCo02/LiFeP04))。 The slurry was uniformly coated on an aluminum foil 20 microns in 12 (TC dried, cut, 450X42X170 mm after rolling obtained positive electrode sheet, positive electrode sheet The positive electrode active material containing 5 g (LiFeP04 + (LiCo02 / LiFeP04 )).

将PVDF按1:10的比率溶解在NMP中,将人造石墨加入该溶液中,充分混合制成浆料,其组成为人造石墨:PVDF=100: 5。 A ratio of 1:10, the PVDF dissolved in NMP, artificial graphite was added to the solution, and thoroughly mixed to obtain a slurry, consisting of artificial graphite: PVDF = 100: 5. 再将该浆料均匀地涂布在20微米的铜箔上,在12(TC下干燥,压延后得到470X45X120毫米的负极片,该负极片中含有2.5克人造石墨。将上述正、负极片与25微米厚的聚丙烯膜巻绕成一个方型锂离子电池的极芯并收纳在方形电池外壳中,随后将LiPF6按1摩尔/升的浓度溶解在碳酸乙烯酯/碳酸二甲酯(EC/DMC) = 1: 1的混合溶剂中所形成的电解液注入电池壳中,密封,制成厚5毫米,宽34毫米,高50毫米的方型锂离子电池, 该电池型号为LP053450A,容量为720mAh。比较例1按照与实施例l相同的方法,不同的是正极材料的组成为LiFeP04:石墨:PVDF=100: 9: 5。实施例2按照与实施例1相同的方法,不同的是正极材料的组成为LiFeP04: (LiCo02/LiFeP04):(石墨+碳黑):PVDF = 90: 10: (6+3): 5, LiFeP。4的平均粒度为9微米,LiCo02/LiFeP04的平均粒度为13微米。实施例3按照与实施例1相同的方法,不同的是材料B Was added and the slurry was uniformly coated on a copper foil of 20 microns, at 12 (TC dried, rolled to obtain a negative electrode sheet after 470X45X120 mm, the negative electrode sheet containing 2.5 g of artificial graphite would be the positive and negative electrode sheet Volume 25 micron thick polypropylene film is wound into a prismatic lithium ion battery pole core and housed in a rectangular battery casing, followed by concentration of LiPF6 was 1 mol / liter was dissolved in ethylene carbonate / dimethyl carbonate (EC / DMC) = 1: a mixed solvent electrolyte injected into the battery case 1 is formed in the sealing, is made of 5 mm thick, 34 mm wide, 50 mm high rectangular lithium ion battery, the battery model is produced is labeled, capacity . 720mAh Comparative Example 1 Following the same method of Example l, except that the composition of the positive electrode material is LiFeP04: graphite: PVDF = 100: 9: 5. Example 2 in the same manner as in Example 1, except that the positive electrode material is composed LiFeP04: (LiCo02 / LiFeP04) :( graphite + carbon black): PVDF = 90: 10: (6 + 3): the average particle size of 5, LiFeP.4 of 9 m and an average particle size of LiCo02 / LiFeP04 is 13 [mu] m. Example 3 in the same manner as in Example 1, except that the material B 所包覆的是LiMn204 粉末,且正极材料的组成为LiFeP04: (LiMn204/LiFeP04):(石墨+碳黑): PVDF二70: 30: (6+3): 5, LiFeP04的平均粒度为2微米,LiMn204/LiFeP04的平均粒度为6微米。 LiMn204 is coated with a powder, and the composition of the positive electrode material is LiFeP04: (LiMn204 / LiFeP04) :( graphite + carbon black): 70 two of PVDF: 30: (6 + 3): The average particle size of 5, LiFeP04 is 2 m the average particle size of LiMn204 / LiFeP04 to 6 microns.

实施例4按照与实施例l相同的方法,不同的是导电剂为石墨和金属粉末,且正极材料的组成为LiFeP04: (LiCo02/LiFeP04):(石墨+金属粉末):PVDF =70: 30: (2+1) : 5。 Example 4 Following the same method of Example l, except that the graphite and metal powder, a conductive agent and the composition of the positive electrode material is LiFeP04: (LiCo02 / LiFeP04) :( metal + graphite powder): PVDF = 70: 30: (2 + 1): 5. 按照与实施例l相同的方法,不同的是导电剂为碳黑和碳纤维,正极材料的组成为LiFeP04: (LiCo02/LiFeP04):(碳黑+碳纤维):PVDF = 30: 70: (6+3) : 5。 Following the same method of Example l, except that the conductive agent and the composition of carbon black as the carbon fiber material of the positive electrode LiFeP04: (LiCo02 / LiFeP04) :( carbon black, carbon fibers +): PVDF = 30: 70: (6 + 3 ): 5. 实施例6按照与实施例l相同的方法,不同的是导电剂为碳黑和金属纤维,正极材料的组成为LiFeP04: (LiCo02/LiFeP04):(碳黑+金属纤维):PVDF=70: 30: (7+5) : 5。 Example 6 Following the same method of Example l, except that the conductive agent and the composition of carbon black, metal fiber of the positive electrode material is LiFeP04: (LiCo02 / LiFeP04) :( metal fiber + carbon black): PVDF = 70: 30 : (7 + 5): 5. 实施例7按照与实施例1相同的方法,不同的是正极材料的组成为LiFeP04: (LiCo02/LiFeP04):(石墨+碳黑):PVDF = 70: 30: (1+4) : 5。 Example 7 In the same method as in Example 1, except that the composition of the positive electrode material is LiFeP04: (LiCo02 / LiFeP04) :( graphite + carbon black): PVDF = 70: 30: (1 + 4): 5. 实施例8按照与实施例1相同的方法,不同的是正极材料的组成为LiFeP04: (LiCo02/LiFeP04):(石墨+碳黑):PVDF = 60: 40: (1.5+1) : 5。 Example 8 In the same method as in Example 1, except that the composition of the positive electrode material is LiFeP04: (LiCo02 / LiFeP04) :( graphite + carbon black): PVDF = 60: 40: (1.5 + 1): 5. 电池特性测试常温下将实施例及比较例的电池分别以1C毫安电流充电至3.8伏,在电压升至3.8伏后以恒定电压充电,截止电流为0.05C毫安,搁置5分钟; 电池以1C毫安电流放电至2.0伏,搁置5分钟。 Battery characteristic test at normal temperature Examples and Comparative Examples are battery at 1C mA to 3.8 volt charge, charged at a constant voltage after the voltage was raised to 3.8 volts, mA 0.05C cut-off current, hold for 5 minutes; batteries 1C mA discharge to 2.0 volts, hold for 5 minutes. 得到电池常温1C毫安电流放电至2.0伏的容量,将各实施例及比较例的电池容量列于表l中。 1C mA at room temperature to give the battery discharge capacity to 2.0 volts, the battery capacity of each embodiment examples and comparative examples are shown in Table l. 表l 电池容量(毫安小时) 容量维持率(%)<table>table see original document page 15</column></row> <table>2、 高温循环性能测试6(TC条件下,将实施例及比较例电池分别以1C毫安电流充电至3.8伏, 在电压升至3.8伏后以恒定电压充电,截止电流为0.05C毫安,搁置5分钟; 电池以1C毫安电流放电至2.0伏,搁置5分钟。重复以上步骤300次,得到电池300次循环后1C毫安电流放电至2.0伏的容量,计算循环前后容量维持率,实施例及比较例的容量维持率列于表l中。3、 高温储存性能测试室温条件下,将实施例及比较例电池分别以1C毫安电流充电至3.8伏, 在电压升至3.8伏后以恒定电压充电,截止电流为0.05C毫安,搁置5分钟后,准确测量电池厚度;然后将上述电池在60。C条件下储存一周,测定电池以1C毫安电流放电至2.0伏的容量,并再次测量电池厚度,计算电池容量维持率及厚度变化值 , At high temperature cycle performance test 2 6 (TC Table l Condition Battery Capacity (mAh) Capacity maintenance rate (%) <table> table see original document page 15 </ column> </ row> <table>, Example and Comparative Example 1C, respectively, the battery was charged to 3.8 V mA current, constant voltage charging after the voltage was raised to 3.8 volts, mA 0.05C cut-off current, hold 5 minutes; battery is discharged to 2.0 V at 1C mA, hold for 5 minutes. step was repeated 300 times, to obtain 1C mA discharge after 300 cycles of the battery capacity to 2.0 volts, the capacity retention rate is calculated before and after the cycle capacity retention ratio of Examples and Comparative Examples are shown in table l .3 , high temperature storage performance testing at room temperature, the Comparative Example and Example 1C, respectively, the battery was charged to 3.8 V mA current, constant voltage charging after the voltage was raised to 3.8 volts, mA 0.05C cut-off current, hold 5 minutes after the accurate measurement of the thickness of the battery; said battery is then stored for one week at 60.C conditions, measurement of the battery at 1C to 2.0V mA discharge capacity, and again measuring the thickness of the battery, the battery capacity retention rate is calculated and a thickness variation value ,实施例及比较例的容量维持率及厚度变化值列于表2中。表2 <table>table see original document page 16</column></row> <table>4、 大电流放电性能测试室温条件下,将实施例及比较例电池分别以1C毫安电流充电至3.8伏, 在电压升至3.8伏后以恒定电压充电,截止电流为0.05C毫安,搁置5分钟后,电池以0.2C毫安电流放电至2.0伏,搁置5分钟,得到电池常温0.2C 毫安电流放电至2.0伏的容量;然后重复上述充电步骤再将电池分别以3C 毫安和5C毫安的电流放电,得到电池常温3C毫安和5C毫安电流放电至2.0 伏的容量,计算不同电流下电池的放电容量比率。实施例和比较例中不同电流下电池的放电容量比率列于表2中。5、 安全性能测试 , The capacity retention rate and the thickness variations of the embodiments and comparative examples listed in Table 2. Table 2 <table> table see original document page 16 </ column> </ row> <table> 4, large-current discharge performance test at room temperature under conditions of Example and Comparative Example 1C, respectively, the battery was charged to 3.8 V mA current, constant voltage charging after the voltage was raised to 3.8 volts, mA 0.05C cut-off current, hold 5 minutes, the battery at 0.2C mA discharge to 2.0 volts, set aside for 5 minutes at room temperature to give the battery 0.2C mA discharge capacity to 2.0 volts; then again repeat the charging step of the battery current, respectively 3C and 5C mA mA discharge cell to give 3C 5C mA at room temperature and discharged to 2.0 volts mA current capacity, the discharge capacity ratio of the battery at different current ratio of the discharge capacity of the examples and comparative examples under the different current cell listed in table .5, 2 security test

室温条件下,将实施例及比较例电池分别以1C毫安电流充电至3.8伏, 在电压升至3.8伏后以恒定电压充电,截止电流为0.05C毫安,搁置5分钟; 进行16(TC炉热测试,观察电池在1小时后有无异常,并测出电池表面的最高温度,对实施例及比较例的观察情况和电池表面的最高温度列于表2中。以上表1和表2的测试结果表明,采用本发明的正极材料使锂离子二次电池的安全性能得到明显提高,且电池的容量很大,并具有优异的大电流充放电性能、循环性能及高温储存性能。 At room temperature, the Comparative Example and Example 1C, respectively, the battery was charged to 3.8 V mA current, constant voltage charging after the voltage was raised to 3.8 volts, mA 0.05C cut-off current, hold for 5 minutes; for 16 (TC furnace heat test, the battery was observed any abnormal after 1 hour, the highest temperature of the battery and the measured surface, the highest temperature of the battery cases and to observe the surface and Comparative Examples are shown in table 2. table 1 and table 2 above the test results show that the positive electrode material of the present invention that the safety performance of the lithium ion secondary battery has been significantly improved, and a large battery capacity, and is excellent in large current charge-discharge characteristics, cycle characteristics and high temperature storage properties.

Claims (9)

1. 一种锂离子二次电池的正极材料,该正极材料含有正极活性物质、导电剂和粘结剂,其特征在于,所述正极活性物质含有材料A和材料B,所述材料B为由材料A包覆的式(2)所示的过渡金属锂氧化物C和/或式(3)所示的过渡金属锂氧化物D,所述材料A为式(1)所示的具有橄榄石结构的磷酸金属锂盐: Li1+aLbPO4 (1), 其中,-0.1≤a≤0.2,0.9≤b≤1.1,L为铁、铝、钛、钴、硼、铬、镍、镁、锆、镓、钒、锰和锌中的至少一种; Li1+xNi1-y-zMnyCozMpO2 (2), 其中,-0.1≤x≤0.2,0≤y≤1,0≤z≤1,0≤y+z≤1.0,0≤p≤0.2,M为硼、镁、铝、钛、铬、铁、锆、铜、锌、镓、钇、氟、碘和硫中的至少一种; 或Li1+mMnnN2-nO4 (3), 其中,-0.1≤m≤0.2,1.7≤n≤2.0,N为硼、镁、铝、钛、铬、铁、钴、锆、镍、铜、锌、镓、钇、氟、碘和硫中的至少一种。 The positive electrode material for a lithium ion secondary battery, the positive electrode material containing a positive electrode active material, a conductive agent and a binder, wherein the positive electrode active material containing materials A and B, the material B by a material having an olivine coated with formula (2) of the lithium-transition metal oxides C and / or formula (3) of the lithium-transition metal oxide D, the material shown in a (1) of the formula lithium metal phosphate salt structure: Li1 + aLbPO4 (1), wherein, -0.1≤a≤0.2,0.9≤b≤1.1, L is iron, aluminum, titanium, cobalt, boron, chromium, nickel, magnesium, zirconium, gallium , at least one vanadium, manganese and zinc; Li1 + xNi1-y-zMnyCozMpO2 (2), wherein, -0.1≤x≤0.2,0≤y≤1,0≤z≤1,0≤y + z≤ 1.0,0≤p≤0.2, M is boron, at least one magnesium, aluminum, titanium, chromium, iron, zirconium, copper, zinc, gallium, yttrium, fluorine, iodine, and sulfur; or Li1 + mMnnN2-nO4 ( 3), wherein, -0.1≤m≤0.2,1.7≤n≤2.0, N is boron, magnesium, aluminum, titanium, chromium, iron, cobalt, zirconium, nickel, copper, zinc, gallium, yttrium, fluorine, iodine, and at least one sulfur.
2、 根据权利要求1所述的正极材料,其中,所述材料A的平均粒度为1-10微米,所述材料B的平均粒度为5-14微米。 2, the positive electrode material according to claim 1, wherein an average particle size of the material A is 1 to 10 microns, an average particle size of the material B is 5-14 microns.
3、 根据权利要求1所述的正极材料,其中,在所述正极活性物质中所述材料A与所述材料B的重量比为9.5: 0.5-0.5: 9.5,所述导电剂的含量为所述正极活性物质总量的2-20重量%,所述粘结剂的含量为所述正极活性物质总重的0.01-8重量%。 3, the positive electrode material according to claim 1, wherein the positive electrode active material in the material A and the material B weight ratio is 9.5: 0.5-0.5: 9.5, the content of the conductive agent is 2-20 wt% of said positive electrode active material, the binder content of the total weight of the positive active material is 0.01 to 8 wt%.
4、 根据权利要求3所述的正极材料,其中,所述正极活性物质中所述材料A与所述材料B的重量比为7: 3-3: 7,所述导电剂的含量为所述正极活性物质总量的3-15重量%,粘结剂的含量为所述正极活性物质总重的1-5重量%。 4, the positive electrode material according to claim 3, wherein the positive active material in a weight ratio of the material A and the material B is 7: 3-3: 7, the content of said conductive agent is 3-15% by weight of the total amount of the positive electrode active material, the content of the binder for the positive electrode active material 1-5% by weight of the total weight.
5、 根据权利要求1所述的正极材料,其中,在所述材料B中,所述材料A与过渡金属锂氧化物C和/或过渡金属锂氧化物D的重量比为O扁l漏Ol。 5. The cathode material as claimed in claim 1, wherein, in the material B, the weight of the lithium-transition metal oxide material A and C and / or D of the lithium-transition metal oxide ratio l drain flat Ol O .
6、 根据权利要求4所述的正极材料,其中,在所述材料B中,所述材料A与过渡金属锂氧化物C和/或过渡金属锂氧化物D的重量比为0.001-0.05。 6. The cathode material as claimed in claim 4, wherein, in the material B, the material A lithium-transition metal oxides and C and / or weight ratio of the transition metal lithium oxide D is 0.001 to 0.05.
7、 根据权利要求l、 3或4所述的正极材料,其中,所述导电剂为石墨、 碳纤维、碳黑、金属粉末和纤维中的一种或几种。 7, according to claim L, positive electrode material of claim 3 or 4, wherein the conductive agent graphite, carbon fibers, carbon black, metal powder and fibers of one or more.
8、 根据权利要求l、 3或4所述的正极材料,其中,所述粘结剂为聚偏二氟乙烯、聚四氟乙烯或丁苯橡胶中的一种或几种。 8, according to claim l, 3 or 4, wherein the positive electrode material, wherein the binder is polyvinylidene fluoride, one or more of ethylene, the styrene-butadiene rubber or polytetrafluoroethylene.
9、 一种锂离子二次电池,该电池包括电池壳体、电极组和电解液,电极组和电解液密封在电池壳体内,电极组包括依次巻绕或叠置的正极片、隔膜和负极片,所述正极片含有导电基体和涂覆在该导电基体两面的正极材料,其特征在于,所述正极材料为权利要求1-8中任一项所述的正极材料。 9. A lithium ion secondary battery which includes a battery case, an electrode group and an electrolyte, the electrode group and an electrolyte sealed in a battery case, an electrode group comprising wound or stacked sequentially Volume positive electrode sheet, a separator and a negative electrode sheet, the positive electrode sheet comprising a conductive substrate and a positive electrode material coated on both surfaces of the conductive substrate, wherein the cathode material is a cathode material as claimed in claim any one of claims 1-8.
CN 200610172300 2006-12-30 2006-12-30 Anode material of Li-ion secondary battery and battery containing the same CN101212048A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200610172300 CN101212048A (en) 2006-12-30 2006-12-30 Anode material of Li-ion secondary battery and battery containing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200610172300 CN101212048A (en) 2006-12-30 2006-12-30 Anode material of Li-ion secondary battery and battery containing the same

Publications (1)

Publication Number Publication Date
CN101212048A true CN101212048A (en) 2008-07-02

Family

ID=39611828

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200610172300 CN101212048A (en) 2006-12-30 2006-12-30 Anode material of Li-ion secondary battery and battery containing the same

Country Status (1)

Country Link
CN (1) CN101212048A (en)

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101373845A (en) * 2007-08-24 2009-02-25 法国原子能委员会 Lithium electrochemical generator operating with an aqueous electrolyte
US7722848B2 (en) 2007-09-25 2010-05-25 Byd Company Limited Lithium iron phosphate cathode material
CN101841028A (en) * 2010-06-10 2010-09-22 温岭市恒泰电池有限公司 Lithium battery anode slurry for starting power supply of motorcycle and car starting power supply and lithium battery
CN101859887A (en) * 2010-06-22 2010-10-13 华中科技大学 Transition metal phosphate-clad composite lithium ion battery anode material
CN101958157A (en) * 2009-07-02 2011-01-26 日立粉末冶金株式会社;株式会社日立制作所 Electroconductive material and positive electrode material for lithium ion secondary battery using the same
WO2011072547A1 (en) * 2009-12-16 2011-06-23 深圳市德方纳米科技有限公司 Composite positive electrode material with core-shell structure for lithium ion battery and preparing method therefor
US8052897B2 (en) 2008-02-29 2011-11-08 Byd Company Limited Composite compound with mixed crystalline structure
US8057711B2 (en) 2008-02-29 2011-11-15 Byd Company Limited Composite compound with mixed crystalline structure
US8062560B2 (en) 2008-02-29 2011-11-22 Byd Company Limited Composite compound with mixed crystalline structure
US8062559B2 (en) 2008-02-29 2011-11-22 Byd Company Limited Composite compound with mixed crystalline structure
US8088305B2 (en) 2008-02-22 2012-01-03 Byd Company Limited Lithium iron phosphate cathode material
US8148015B2 (en) 2008-03-21 2012-04-03 Byd Company Limited Cathode materials for lithium batteries
US8153032B2 (en) 2008-06-06 2012-04-10 Byd Company Limited Transition metal hydroxide and oxide, method of producing the same, and cathode material containting the same
CN102498596A (en) * 2009-09-15 2012-06-13 魁北克水电公司 Material consisting of composite oxide particles, method for preparing same, and use thereof as electrode active material
US8216725B2 (en) 2008-01-25 2012-07-10 Byd Company Limited Electrolyte for batteries and battery packs
CN101577325B (en) 2009-05-27 2012-08-08 温岭市恒泰电池有限公司 Mixed type anode sizing agent and lithium battery using anode sizing agent
CN102656726A (en) * 2009-12-15 2012-09-05 丰田自动车株式会社 Process for producing positive electrode active material for lithium secondary battery
CN102779995A (en) * 2011-05-13 2012-11-14 上海空间电源研究所 Phosphoric acid cathode material of lithium battery
CN103022485A (en) * 2012-12-19 2013-04-03 苏州大学 Lithium manganese phosphate-clad lithium manganate lithium secondary battery anode material and preparation method thereof
CN103078102A (en) * 2013-01-05 2013-05-01 宁波大学 Defect-structure LiFePO4 surface-modification layer-spinel composite lithium-rich anode material and preparation method thereof
CN103117385A (en) * 2013-01-05 2013-05-22 宁波大学 Defective-structure LiFePO4 surface-modified lithium-enriched layer-layer cathode material and preparation method thereof
CN103165897A (en) * 2011-12-14 2013-06-19 比亚迪股份有限公司 A cathode material for lithium-ion batteries, lithium-ion battery cathodes, and lithium-ion batteries
CN103199260A (en) * 2013-04-08 2013-07-10 严建泗 Preparation method of positive material of lithium-ion battery for portable game machine
CN101789507B (en) 2009-01-22 2013-08-14 韩华石油化学株式会社 Electrode active material for anion-deficient lithium transition metal phosphate compound, method of preparing same, and electrochemical device using same
CN103493259A (en) * 2011-04-28 2014-01-01 丰田自动车株式会社 Production method for coated active material
CN103606671A (en) * 2013-12-09 2014-02-26 湖南杉杉新材料有限公司 Positive electrode material of high-capacity dynamic-type nickel-rich lithium ion battery and preparation method thereof
CN103682326A (en) * 2013-12-13 2014-03-26 南通瑞翔新材料有限公司 High-capacity lithium cobalt oxide-base lithium ion battery anode material and preparation method thereof
US8883356B2 (en) 2008-07-30 2014-11-11 Byd Company Limited Electrolyte for lithium batteries
CN102449821B (en) * 2009-06-24 2014-12-24 株式会社杰士汤浅国际 Positive electrode active material for lithium secondary battery, and lithium secondary battery
CN104582878A (en) * 2013-01-10 2015-04-29 株式会社Lg化学 Method for preparing lithium iron phosphate nanopowder
CN104681859A (en) * 2015-02-06 2015-06-03 惠州市豪鹏科技有限公司 High-security polymer lithium ion battery
CN104752690A (en) * 2013-12-30 2015-07-01 北京当升材料科技股份有限公司 A lithium ion battery cathode material and a preparing method thereof
CN105932324A (en) * 2016-06-24 2016-09-07 双登集团股份有限公司 Cobalt lithium phosphate positive electrode material and preparation method therefor
CN105990600A (en) * 2015-02-02 2016-10-05 曙鹏科技(深圳)有限公司 Lithium ion secondary battery
CN106654224A (en) * 2017-01-16 2017-05-10 湖南瑞翔新材料股份有限公司 Lithium cobaltate composite material and preparation method thereof as well as positive electrode material
CN106654196A (en) * 2016-11-22 2017-05-10 深圳市沃特玛电池有限公司 Preparation method for ternary positive electrode material of lithium battery

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101373845A (en) * 2007-08-24 2009-02-25 法国原子能委员会 Lithium electrochemical generator operating with an aqueous electrolyte
US7722848B2 (en) 2007-09-25 2010-05-25 Byd Company Limited Lithium iron phosphate cathode material
US8216725B2 (en) 2008-01-25 2012-07-10 Byd Company Limited Electrolyte for batteries and battery packs
US8088305B2 (en) 2008-02-22 2012-01-03 Byd Company Limited Lithium iron phosphate cathode material
US8062559B2 (en) 2008-02-29 2011-11-22 Byd Company Limited Composite compound with mixed crystalline structure
US8052897B2 (en) 2008-02-29 2011-11-08 Byd Company Limited Composite compound with mixed crystalline structure
US8062560B2 (en) 2008-02-29 2011-11-22 Byd Company Limited Composite compound with mixed crystalline structure
US8057711B2 (en) 2008-02-29 2011-11-15 Byd Company Limited Composite compound with mixed crystalline structure
US8148015B2 (en) 2008-03-21 2012-04-03 Byd Company Limited Cathode materials for lithium batteries
US8153032B2 (en) 2008-06-06 2012-04-10 Byd Company Limited Transition metal hydroxide and oxide, method of producing the same, and cathode material containting the same
US8883356B2 (en) 2008-07-30 2014-11-11 Byd Company Limited Electrolyte for lithium batteries
CN101789507B (en) 2009-01-22 2013-08-14 韩华石油化学株式会社 Electrode active material for anion-deficient lithium transition metal phosphate compound, method of preparing same, and electrochemical device using same
CN102292855B (en) * 2009-01-22 2014-01-22 韩华石油化学株式会社 Electrode-active anion-deficient transition metal lithium phosphate, method for preparing the same, and electrochemical device using the same
CN101577325B (en) 2009-05-27 2012-08-08 温岭市恒泰电池有限公司 Mixed type anode sizing agent and lithium battery using anode sizing agent
CN102449821B (en) * 2009-06-24 2014-12-24 株式会社杰士汤浅国际 Positive electrode active material for lithium secondary battery, and lithium secondary battery
CN101958157B (en) 2009-07-02 2013-06-05 日立粉末冶金株式会社 Electroconductive material and positive electrode material for lithium ion secondary battery using the same
CN101958157A (en) * 2009-07-02 2011-01-26 日立粉末冶金株式会社;株式会社日立制作所 Electroconductive material and positive electrode material for lithium ion secondary battery using the same
US9431675B2 (en) 2009-09-15 2016-08-30 Hydro-Quebec Material consisting of composite oxide particles, method for preparing same, and use thereof as electrode active material
CN102498596A (en) * 2009-09-15 2012-06-13 魁北克水电公司 Material consisting of composite oxide particles, method for preparing same, and use thereof as electrode active material
CN102498596B (en) * 2009-09-15 2015-08-05 魁北克水电公司 The material be made up of composite oxide particle, its preparation method and the purposes as electrode active material thereof
CN102656726B (en) * 2009-12-15 2015-06-24 丰田自动车株式会社 Process for producing positive electrode active material for lithium secondary battery
US9496553B2 (en) 2009-12-15 2016-11-15 Toyota Jidosha Kabushiki Kaisha Production method of positive electrode active material for lithium secondary battery
CN102656726A (en) * 2009-12-15 2012-09-05 丰田自动车株式会社 Process for producing positive electrode active material for lithium secondary battery
WO2011072547A1 (en) * 2009-12-16 2011-06-23 深圳市德方纳米科技有限公司 Composite positive electrode material with core-shell structure for lithium ion battery and preparing method therefor
CN101841028A (en) * 2010-06-10 2010-09-22 温岭市恒泰电池有限公司 Lithium battery anode slurry for starting power supply of motorcycle and car starting power supply and lithium battery
CN101859887A (en) * 2010-06-22 2010-10-13 华中科技大学 Transition metal phosphate-clad composite lithium ion battery anode material
CN103493259A (en) * 2011-04-28 2014-01-01 丰田自动车株式会社 Production method for coated active material
CN102779995A (en) * 2011-05-13 2012-11-14 上海空间电源研究所 Phosphoric acid cathode material of lithium battery
CN103165897A (en) * 2011-12-14 2013-06-19 比亚迪股份有限公司 A cathode material for lithium-ion batteries, lithium-ion battery cathodes, and lithium-ion batteries
CN103165897B (en) * 2011-12-14 2016-04-27 比亚迪股份有限公司 A kind of anode material for lithium-ion batteries, lithium ion cell positive and lithium ion battery
CN103022485A (en) * 2012-12-19 2013-04-03 苏州大学 Lithium manganese phosphate-clad lithium manganate lithium secondary battery anode material and preparation method thereof
CN103117385B (en) * 2013-01-05 2016-05-18 宁波大学 A kind of defect sturcture LiFePO4The rich lithium layer-layer positive electrode of surface modification and preparation method
CN103078102B (en) * 2013-01-05 2016-05-18 宁波大学 A kind of defect sturcture LiFePO4Surface reforming layer-spinelle composite lithium-rich anode material and preparation method
CN103078102A (en) * 2013-01-05 2013-05-01 宁波大学 Defect-structure LiFePO4 surface-modification layer-spinel composite lithium-rich anode material and preparation method thereof
CN103117385A (en) * 2013-01-05 2013-05-22 宁波大学 Defective-structure LiFePO4 surface-modified lithium-enriched layer-layer cathode material and preparation method thereof
CN104582878B (en) * 2013-01-10 2016-06-29 株式会社Lg化学 The preparation method of lithium iron phosphate nano powder
CN104582878A (en) * 2013-01-10 2015-04-29 株式会社Lg化学 Method for preparing lithium iron phosphate nanopowder
CN103199260A (en) * 2013-04-08 2013-07-10 严建泗 Preparation method of positive material of lithium-ion battery for portable game machine
CN103606671B (en) * 2013-12-09 2015-09-09 湖南杉杉新材料有限公司 A kind of positive electrode material of high-capacity dynamic-type nickel-rich lithium ion battery and preparation method thereof
CN103606671A (en) * 2013-12-09 2014-02-26 湖南杉杉新材料有限公司 Positive electrode material of high-capacity dynamic-type nickel-rich lithium ion battery and preparation method thereof
CN103682326A (en) * 2013-12-13 2014-03-26 南通瑞翔新材料有限公司 High-capacity lithium cobalt oxide-base lithium ion battery anode material and preparation method thereof
CN104752690A (en) * 2013-12-30 2015-07-01 北京当升材料科技股份有限公司 A lithium ion battery cathode material and a preparing method thereof
CN105990600A (en) * 2015-02-02 2016-10-05 曙鹏科技(深圳)有限公司 Lithium ion secondary battery
CN104681859A (en) * 2015-02-06 2015-06-03 惠州市豪鹏科技有限公司 High-security polymer lithium ion battery
CN105932324A (en) * 2016-06-24 2016-09-07 双登集团股份有限公司 Cobalt lithium phosphate positive electrode material and preparation method therefor
CN106654196A (en) * 2016-11-22 2017-05-10 深圳市沃特玛电池有限公司 Preparation method for ternary positive electrode material of lithium battery
CN106654224B (en) * 2017-01-16 2019-11-29 湖南瑞翔新材料股份有限公司 A kind of cobalt acid lithium composite material and preparation method, positive electrode
CN106654224A (en) * 2017-01-16 2017-05-10 湖南瑞翔新材料股份有限公司 Lithium cobaltate composite material and preparation method thereof as well as positive electrode material

Similar Documents

Publication Publication Date Title
CN1282272C (en) Non-aqoue seconary battery
CN1271742C (en) Non-aqneous electrolyte battery
CN1126185C (en) Electrode for nonaqueous electrolyte battery
CN1248350C (en) Nonaqueous electrolyte and lithium secondary battery
CN100337363C (en) A non-aqueous electrolyte secondary battery
CN1320976B (en) Positive electrode and non-aqueous electrolyte cell
US8148015B2 (en) Cathode materials for lithium batteries
CN101939874B (en) The non-aqueous electrolyte battery
JP3475911B2 (en) Non-aqueous electrolyte and a lithium secondary battery using the same
US8052897B2 (en) Composite compound with mixed crystalline structure
CN101297433B (en) Redox shuttle additive to reduce the life-cycle inhibitor, and the inhibitor comprises a non-aqueous electrolyte secondary battery and
CN1274052C (en) Method for producing lithium ion secondary cell
CN101461088B (en) High voltage charging type non-aqueous electrolyte secondary battery
CN1231990C (en) Nonaqueous electrolyte secondary battery
US8062560B2 (en) Composite compound with mixed crystalline structure
CN101345326B (en) battery
CN1475038A (en) Electrolyte for non-aqueous cell and non-aqueous secondary cell
CN101399370A (en) Secondary battery, battery pack and car
JP2010531041A (en) Anode material with excellent conductivity and high-power secondary battery using the same
CN1897331A (en) Positive electrode for lithium secondary battery, and lithium secondary battery using the same
CN101295781B (en) Negative electrode for rechargeable lithium battery, and rechargeable lithium battery including same
KR100982595B1 (en) Positive electrode and nonaqueous electrolyte secondary battery
JP5244966B2 (en) Cathode material for lithium batteries
EP2223368B1 (en) Negative electrode for battery and lithium battery using the same
CN1612383B (en) Lithium battery and electrolyte used for the lithium battery

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C12 Rejection of a patent application after its publication