CN101195989A - Construction technology of prefabricated bridge based on three steel pipe truss segments - Google Patents
Construction technology of prefabricated bridge based on three steel pipe truss segments Download PDFInfo
- Publication number
- CN101195989A CN101195989A CNA2008100172591A CN200810017259A CN101195989A CN 101195989 A CN101195989 A CN 101195989A CN A2008100172591 A CNA2008100172591 A CN A2008100172591A CN 200810017259 A CN200810017259 A CN 200810017259A CN 101195989 A CN101195989 A CN 101195989A
- Authority
- CN
- China
- Prior art keywords
- steel pipe
- bridge
- truss
- pipe truss
- segments
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Bridges Or Land Bridges (AREA)
Abstract
本发明公开了一种基于三种钢管桁架节段的装配式桥梁建造工艺,首先建造桥梁下部结构,其次建造上部结构,先将预制的多段桁架节段依次架设在下部结构之上并拼装组成桥梁承重结构,最终铺设桥面完成桥梁建造,桁架节段的上下弦杆通过腹杆连为一体,预制组成所述承重结构的多段桁架节段前,应先分析各个桁架节段的受力情况,根据受力将其分为三种类型,即上弦杆与下弦杆均不填充混凝土的空钢管桁架节段、受压的上弦杆或下弦杆单独填充混凝土的钢管桁架节段与上弦杆与下弦杆全部填充混凝土的钢管桁架节段。本发明建造工艺简单、所建造桥梁结构受力合理且适用范围广,能有效解决桥梁建造中的施工、造价以及工程质量问题,具有良好的经济效益。
The invention discloses a prefabricated bridge construction process based on three types of steel tube truss segments. First, the substructure of the bridge is constructed, and then the superstructure is constructed. First, prefabricated multiple truss segments are sequentially erected on the substructure and assembled to form a bridge load-bearing structure. Finally, the bridge deck is laid to complete the bridge construction. The upper and lower chords of the truss segments are connected as a whole through a web member. Before prefabricating multiple truss segments that form the load-bearing structure, the stress conditions of each truss segment should be analyzed first, and they are divided into three types according to the stress, namely, empty steel tube truss segments in which both the upper chord and the lower chord are not filled with concrete, steel tube truss segments in which the compressed upper chord or the lower chord is filled with concrete alone, and steel tube truss segments in which both the upper chord and the lower chord are filled with concrete. The invention has a simple construction process, reasonable stress on the constructed bridge structure, and a wide range of applications. It can effectively solve the construction, cost, and engineering quality problems in bridge construction, and has good economic benefits.
Description
技术领域technical field
本发明涉及桥梁建造技术领域,尤其是涉及一种基于三种钢管桁架节段的装配式桥梁建造工艺。The invention relates to the technical field of bridge construction, in particular to an assembled bridge construction process based on three steel pipe truss segments.
背景技术Background technique
目前,国内的桥梁建造形式主要是预应力混凝土结构和钢桁架、钢箱梁结构,而钢管混凝土结构和钢管桁架结构在现有桥梁建造工程中的应用也较多。上述桥梁结构形式虽各自具备诸多优点,适用于不同的桥梁建造环境,但同时这些结构也存在一些较大的缺陷。如预应力混凝土箱梁由于其结构材料比强度(材料强度/材料容重)较小,恒载在总荷载中所占比例很大,承受力利用效率低,以致无法适应大跨径桥梁需求;因而实践中为减轻自重,桥梁的腹板通常需设置大量的预应力钢筋,使得施工需要大量的、复杂的机械设备,而且现场施工场地大,施工周期较长。而钢桁架梁用钢量大,结构整体刚度小、节点构造复杂,再加上其节点性能也不好保证,安全系数较低、需定期实施加固等维修措施,使用年限有限制且完全利用钢材承受压力也不经济。对于钢箱梁结构来说,同样用钢量大,焊接要求高,不便于现场制作、拼装和架设,不适宜在山区峡谷地带建造。At present, the domestic bridge construction forms are mainly prestressed concrete structures, steel trusses, and steel box girder structures, and steel pipe concrete structures and steel pipe truss structures are also widely used in existing bridge construction projects. Although the above-mentioned bridge structures have many advantages and are suitable for different bridge construction environments, these structures also have some relatively large defects. For example, the specific strength of prestressed concrete box girders is small due to the specific strength of structural materials (material strength/material bulk density), the dead load accounts for a large proportion of the total load, and the utilization efficiency of bearing capacity is low, so that it cannot meet the needs of long-span bridges; therefore In practice, in order to reduce the self-weight, the web of the bridge usually needs to be equipped with a large number of prestressed steel bars, so that the construction requires a large number of complex mechanical equipment, and the construction site is large and the construction period is long. However, the steel truss girder uses a large amount of steel, the overall structure rigidity is small, and the joint structure is complex. In addition, the performance of its joints is not guaranteed, the safety factor is low, and maintenance measures such as reinforcement are required on a regular basis. The service life is limited and the steel is completely used to withstand pressure. Not economical either. For the steel box girder structure, the steel consumption is also large and the welding requirements are high, which is not convenient for on-site fabrication, assembly and erection, and is not suitable for construction in mountainous and canyon areas.
发明内容Contents of the invention
本发明所要解决的技术问题在于针对上述现有技术中的不足,提供一种基于三种钢管桁架节段的装配式桥梁建造工艺,其建造工艺简单、所建造强梁结构受力合理且适用范围广,能有效解决桥梁建造中的施工、造价以及工程质量问题。The technical problem to be solved by the present invention is to provide a prefabricated bridge construction process based on three steel pipe truss segments in view of the above-mentioned deficiencies in the prior art. , can effectively solve the construction, cost and project quality problems in bridge construction.
为解决上述技术问题,本发明的技术方案是:一种基于三种钢管桁架节段的装配式桥梁建造工艺,首先施工建造桥梁的下部结构,包括用于支撑桥梁上部结构的桥台7、桥墩8以及用于承载二者下传压力的基础;其次施工建造桥梁的上部结构,包括承重结构以及桥面16,先预制组成桥梁承重结构的多段桁架节段,再将其依次架设在下部结构之上并连接拼装组成桥梁承重结构,最终铺设桥面16完成整个桥梁的建造施工,其桁架节段的上弦杆1与下弦杆2通过腹杆3固定连接为一体,预制组成所述承重结构的多段钢管桁架节段之前,应首先分析各个桁架节段在整个桥梁承重结构中所处位置的受力情况,根据受力分析将多段钢管桁架节段分为三种类型,即对上弦杆1与下弦杆2均不受压力或均受压力较小的桁架节段采用上弦杆1与下弦杆2均不填充混凝土的空钢管桁架节段,对上弦杆1或下弦杆2单独受较大压力的桁架节段采用受压的上弦杆1或下弦杆2单独填充混凝土的钢管桁架节段,对于上弦杆1与下弦杆2均受较大压力的桁架节段采用上弦杆1与下弦杆2全部填充混凝土的钢管桁架节段;预制完成后,在工厂或施工现场依受力情况将预制的多段钢管桁架节段固定连接并拼装组成整个桁架结构即桥梁的承重结构。In order to solve the above-mentioned technical problems, the technical solution of the present invention is: a kind of prefabricated bridge construction technology based on three kinds of steel pipe truss segments, first construct the substructure of the bridge, including the
作为本发明的一种优选方案,所述三种类型的钢管桁架节段的上弦杆1与下弦杆2通过腹杆3焊接成一体,腹杆3为空钢管。As a preferred solution of the present invention, the upper chord 1 and the
作为本发明的另一种优选方案,所述上弦杆1、下弦杆2与腹杆3为矩形、方形或圆形钢管。As another preferred solution of the present invention, the upper chord 1 , the
作为本发明的又一种优选方案,所述三种类型的钢管桁架节段之间以法兰盘4或者焊接方式连接构成整体桁架结构。As yet another preferred solution of the present invention, the three types of steel pipe truss segments are connected by means of
作为本发明的进一步优选方案,所述三种类型钢管桁架节段组成的桁架结构为二榀、三榀或多榀,各榀桁架结构之间通过横连杆5进行连接。As a further preferred solution of the present invention, the truss structure composed of the three types of steel pipe truss segments is two, three or multiple trusses, and the truss structures of each truss are connected by
作为本发明的更进一步优选方案,所述三种类型钢管桁架节段组成的每两榀桁架结构横连杆5组成一个组合榀架,由一个、两个或多个组合榀架构成整体桁架结构。As a further preferred solution of the present invention, every two truss structure
作为本发明的再一种优选方案,所述三种钢管桁架节段整体为直线形状或弧线形状。As yet another preferred solution of the present invention, the three steel pipe truss segments are generally in the shape of a straight line or an arc.
综上,采用本发明一种基于三种钢管桁架节段的装配式桥梁建造工艺,具有以下优点:1、建造工艺简单、加工制作及施工方便,受外界建造环境限制少,适合于各种桥梁建造环境;2、适用范围范围广,适用于各种结构形式桥梁的建造;3、所建造桥梁工程质量好且造价低,其桥梁结构自重轻、跨越能力强,与传统钢桁架相比,该结构构造简单、用钢量低,结构整体刚度大、节点性能好,且便于施加预应力;4、采用的三种钢管桁架节段便于工厂标准化制作,而且现场拼装和架设方便,尤其在山区峡谷地带建造特大跨桥梁具有明显优势;5、采用三种钢管桁架节段建造的桥梁结构性能稳固,该结构的拱桥在拱顶区域可采用空钢管节段,有利于提高桥梁结构的稳定性,与传统钢管混凝土拱桥相比,其构造简单,施工方便,混凝土的填充质量好;6、应用于斜拉桥、自锚式悬索桥等体外预应力桥梁结构体系中,通过充分利用钢管混凝土的抗压性能,从而大大减少用钢量。To sum up, the adoption of a prefabricated bridge construction process based on three steel pipe truss segments of the present invention has the following advantages: 1. The construction process is simple, the processing and construction are convenient, and there are few restrictions on the external construction environment, so it is suitable for various bridges The construction environment; 2. The scope of application is wide, and it is suitable for the construction of bridges with various structural forms; 3. The bridges built are of good quality and low cost. The bridge structure has light weight and strong spanning ability. Compared with traditional steel trusses, this The structure is simple, the steel consumption is low, the overall structure rigidity is large, the joint performance is good, and it is easy to apply prestress; 4. The three steel pipe truss segments used are easy to standardize in the factory, and it is easy to assemble and erect on site, especially in
下面通过附图和实施例,对本发明的技术方案做进一步的详细描述。The technical solutions of the present invention will be described in further detail below with reference to the accompanying drawings and embodiments.
附图说明Description of drawings
图1是本发明第一优选实施方式基于三种直线型钢管桁架节段的梁桥结构示意图。Fig. 1 is a schematic diagram of a girder bridge structure based on three straight steel pipe truss segments according to the first preferred embodiment of the present invention.
图2是本发明第二优选实施方式基于三种弧线型钢管桁架节段的拱桥结构示意图。Fig. 2 is a schematic diagram of the structure of an arch bridge based on three arc-shaped steel pipe truss segments according to the second preferred embodiment of the present invention.
图3是图1或图2中钢管桁架节段组合连接处P处经放大后的结构示意图。Fig. 3 is an enlarged structural schematic diagram of the combined joint P of steel pipe truss segments in Fig. 1 or Fig. 2 .
图4是图1或图2中钢管桁架节段组合连接处Q处经放大后的结构示意图。Fig. 4 is an enlarged structural schematic diagram of the combined joint Q of steel pipe truss segments in Fig. 1 or Fig. 2 .
图5是本发明第三优选实施方式基于三种钢管桁架节段的中承式拱桥结构示意图。Fig. 5 is a structural schematic diagram of a mid-through arch bridge based on three steel pipe truss segments according to the third preferred embodiment of the present invention.
图6是本发明第三优选实施方式基于三种钢管桁架节段的斜拉桥结构示意图。Fig. 6 is a schematic structural diagram of a cable-stayed bridge based on three steel pipe truss segments according to a third preferred embodiment of the present invention.
图7是本发明第三优选实施方式基于三种钢管桁架节段的悬索桥结构示意图。Fig. 7 is a schematic structural diagram of a suspension bridge based on three steel pipe truss segments according to the third preferred embodiment of the present invention.
图8是本发明基于三种钢管桁架节段的八榀梁桥纵向结构示意图。Fig. 8 is a schematic diagram of the longitudinal structure of the eight-girder bridge based on three steel pipe truss segments according to the present invention.
附图标记说明:Explanation of reference signs:
1-上弦杆; 2-下弦杆; 3-腹杆;1-top chord; 2-bottom chord; 3-web bar;
4-法兰盘; 5-横连杆; 6-支座;4-flange; 5-horizontal connecting rod; 6-support;
7-桥台; 8-桥墩; 9-主拱;7-Abutment; 8-Pier; 9-Main arch;
10-立柱; 11-吊杆; 12-主梁;10-column; 11-suspension rod; 12-main beam;
13-缆索; 14-塔架; 15-锚碇;13-cable; 14-tower; 15-anchor;
16-桥面; 17-地基; 18-螺栓。16-deck; 17-foundation; 18-bolt.
具体实施方式Detailed ways
第一优选实施方式,如图1所示,所述基于三种直线型钢管桁架节段的梁桥建造中,首先施工建造桥梁的下部结构,即用于支撑桥梁上部结构的3个支座6;其次施工建造桥梁的上部结构,包括承重结构以及桥面16,先预制组成桥梁承重结构的多段桁架节段,再将其依次架设在下部结构之上并连接拼装组成桥梁承重结构,最终铺设桥面16完成整个桥梁建造施工。其桁架节段的上弦杆1与下弦杆2通过腹杆3焊接成一体,且三者均为矩形钢管。预制组成所述承重结构的多段钢管桁架节段之前,应首先分析各个桁架节段在整个桥梁承重结构中所处位置的受力情况,根据受力分析将多段钢管桁架节段分为三种类型,即对上弦杆1与下弦杆2均不受压力或受压力较小的桁架节段采用上弦杆1与下弦杆2均不填充混凝土的空钢管桁架节段,对上弦杆1或下弦杆2单独受较大压力的桁架节段采用上弦杆1或下弦杆2单独填充混凝土的钢管桁架节段,对于上弦杆1与下弦杆2均受较大压力的桁架节段采用上弦杆1与下弦杆2全部填充混凝土的钢管桁架节段;预制完成后,在工厂或现场施工过程中依受力情况将预制的多段钢管桁架节段固定连接并拼装组成桥梁的承重结构。The first preferred embodiment, as shown in Figure 1, in the construction of the girder bridge based on three straight steel pipe truss sections, first construct the substructure of the bridge, that is, three supports 6 for supporting the superstructure of the bridge Secondly, construct the upper structure of the bridge, including load-bearing structure and
在图1所示的整个梁桥的承重结构中,各部分受力情况为上弦杆1单独受较大压力或下弦杆2单独受较大压力,因而只单纯地选择一种类型的钢管桁架节段,即受压上弦杆1或下弦杆2单独填充混凝土的钢管桁架节段,腹杆3为空钢管。结合图3、图4,在相邻的钢管桁架节段上弦杆1或下弦杆2中交错填充混凝土,之后将预制好的多段钢管桁架节段以法兰盘4连接构成整体桁架结构即承重结构,最终架设在梁桥两端及中心处的三个支座6上,最终再在整个承重结构上铺设桥面16完成后续工作即可。此种方式装配成的梁桥既能保证良好的承受性能,而且制造工艺简单、省时省料。In the load-bearing structure of the entire girder bridge shown in Figure 1, the stress of each part is that the upper chord 1 is under a greater pressure alone or the
第二优选实施方式,如图2所示,所述基于三种弧线型钢管桁架节段的拱桥建造工艺同第一优选实施方式,其桥梁的承重结构即主拱部分也由多段预制的三种类型钢管桁架节段依桥梁结构受力情况相应进行装配而成,其中钢管桁架节段由上弦杆1、下弦杆2与腹杆3组成,其上弦杆1与下弦杆2通过腹杆3焊接成一体且三者均为矩形钢管。拱桥与梁桥相比,其不仅要承受竖直方向的荷载,而且还要承受水平方向的力。In the second preferred embodiment, as shown in Figure 2, the construction process of the arch bridge based on three arc-shaped steel pipe truss segments is the same as that in the first preferred embodiment, and the load-bearing structure of the bridge, that is, the main arch part, is also made of multi-section prefabricated three Two types of steel pipe truss segments are assembled according to the stress of the bridge structure. The steel pipe truss segments are composed of upper chord 1,
首先,分析各个桁架节段在整个桥梁承重结构中所处位置的受力情况,根据受力分析将多段钢管桁架节段分为三种类型,即对上弦杆1与下弦杆2均不受压力或受压力较小的桁架节段采用上弦杆1与下弦杆2均不填充混凝土的空钢管桁架节段,对上弦杆1或下弦杆2单独受较大压力的桁架节段采用上弦杆1或下弦杆2单独填充混凝土的钢管桁架节段,对于上弦杆1与下弦杆2均受较大压力的桁架节段采用上弦杆1与下弦杆2全部填充混凝土的钢管桁架节段;预制完成后,在工厂或现场施工过程中依受力情况将预制的多段钢管桁架节段固定连接并拼装组成桥梁的承重结构。在拱桥的建造中,根据受力特点,其拱顶中心处所受的压力较小,因而此部分选择上弦杆1与下弦杆2均不填充混凝土的空钢管桁架节段;从拱顶中心处逐渐往外各个钢管桁架节段的上弦杆1所需承受荷载的压力逐渐增大,因而选择上弦杆1单独填充混凝土的钢管桁架节段;而越靠近主拱底部,由于底部支撑作用等的影响其下弦杆2所需承受的压力也逐渐增大,因而选择上弦杆1与下弦杆2全部填充混凝土的钢管桁架节段,腹杆3均为空钢管。结合图3、图4,将预制好的多段三种类型弧线型的钢管桁架节段以法兰盘4连接构成整体桁架结构,并采用螺栓18固定法兰盘4,之后再在整体桁架结构上铺上桥面16完成后续工作即可。First, analyze the stress of each truss segment in the entire bridge load-bearing structure, and divide the multi-segment steel pipe truss segments into three types according to the force analysis, that is, neither the upper chord 1 nor the
第三优选实施方式,如图5所示,所述基于三种弧线型钢管桁架节段的中承式拱桥建造同第一、第二优选实施方式,首先施工建造桥梁的下部结构即两端的桥台7及其支座6,再在桥台7上架设桥梁的承重结构。本桥梁的承重结构即主拱9也由多段预制的三种类型钢管桁架节段依桥梁结构受力情况相应进行装配而成,其中钢管桁架节段由上弦杆1、下弦杆2与腹杆3组成,其上弦杆1与下弦杆2通过腹杆3焊接成一体且三者均为矩形钢管。若仅供人行走,拱桥所需承受的压力力度较小,则可以把桥面16直接铺在呈弧形的主拱9上。但现代交通工具通行的拱桥桥面16必须保持一定的平直度,不能直接铺在弧线形的主拱9上。拱桥的支撑部分不但要承受竖直方向的压力,还要承受水平方向的作用力。因此拱桥对桥台7与地基17的要求比梁桥要高。而中承式拱桥桥面1 6的一部分在主拱9上方,一部分在主拱9下方,要通过立柱10或吊杆11将桥面16间接支承起来。其中主拱9架设在两端的桥台7上,桥面16的两端分别固定在两个支座6上。The third preferred embodiment, as shown in Figure 5, the construction of the intermediate-supported arch bridge based on three kinds of arc-shaped steel pipe truss segments is the same as that of the first and second preferred embodiments.
在本中承式拱桥的建造中,拱桥桥面16的一部分在主拱9上方,该部分桥面16靠连接固定在地基17与主拱9上的竖直向立柱10支承;另一部分在主拱9下方,该部分桥面16靠连接固定在主拱9上的竖直向吊杆11支承起来。同样地,首先分析各个钢管桁架节段的上弦杆1与下弦杆2所处位置的受力情况,根据受力分析,主拱9处于桥面16上方的部分中,拱顶中心处承受的荷载压力力度较小,因而选择上弦杆1与下弦杆2均不填充混凝土的空钢管桁架节段;从顶端中心处逐渐往外、接近桥面16的部分,上弦杆1与下弦杆2通过吊杆11需承受的压力逐渐增大,因而需采用上弦杆1与下弦杆2全部填充混凝土的钢管桁架节段,腹杆3均为空钢管。对于主拱9处于桥面16下方的部分,其上弦杆1与下弦杆2通过立柱10均需承受很大的压力,因而选择上弦杆1与下弦杆2全部填充混凝土的钢管桁架节段,腹杆3均为空钢管。结合图3、图4,将预制好的多段三种类型弧线型的钢管桁架节段以法兰盘4连接构成整体主拱9桁架结构,并采用螺栓18固定法兰盘4,再铺设桥面19完成后续工作即可。In the construction of this intermediate arch bridge, a part of the
第四优选实施方式,如图6所示,所述基于三种直线型钢管桁架节段的斜拉桥建造工艺同上述三个优选实施方式,首先施工建造桥梁的下部结构,包括固定主梁12的两个桥墩8以及位于两端的两个支座6,之后在下部结构上架设固定桥梁的承重结构。其桥梁的承重结构即主梁12也由多段预制的三种类型钢管桁架节段依桥梁结构受力情况相应进行装配而成,其中钢管桁架节段由上弦杆1、下弦杆2与腹杆3组成,其上弦杆1与下弦杆2通过腹杆3焊接成一体且三者均为矩形钢管。The fourth preferred embodiment, as shown in Figure 6, the construction process of the cable-stayed bridge based on the three linear steel pipe truss segments is the same as the above three preferred embodiments, first constructing the substructure of the bridge, including fixing the
在本斜拉桥的建造中,其承重结构两端架设在固定在地基17之上的两个支座6上,中间部分由两个固定在地基17上的竖直向桥墩8支撑,在承重部分即主梁12上方相对两个桥墩8固定设置有两个竖直向的塔架14,同时分别在两个塔架14两侧与承重部分即主梁12之间对称连接设置多根缆索13。同样地,首先分析各个钢管桁架节段的上弦杆1与下弦杆2所处位置的受力情况,根据受力分析,其承重结构即主梁12的各个钢管桁架节段中,其上弦杆1均需承受来自上部荷载的较大水平压力,因而其所有钢管桁架节段的上弦杆1中均填充混凝土。具体来说,在靠近塔架14的部分,上弦杆1与下弦杆2同时需承受来自缆索13的水平压力,因而该部分采用上弦杆1与下弦杆2全部填充混凝土的钢管桁架节段;对于承重部分即主梁12的中间部分以及两端部分,上弦杆1需承受较大的荷载压力,而下弦杆2承受的压力较小,因而选择上弦杆1单独填充混凝土的钢管桁架节段。对于塔架14部分,根据受力分析,靠近主梁12的部分其上弦杆1与下弦杆2均需承受来自缆索13和塔架14自重很大的竖向压力,因而选择上弦杆1与下弦杆2全部填充混凝土的钢管桁架节段;对于塔架14上端部分,因为上弦杆1与下弦杆2承受来自缆索13和塔架14自重的竖向压力较小,因而选择上弦杆1与下弦杆2均不填充混凝土的空钢管桁架节段,而各个钢管桁架节段的腹杆3均为空钢管。结合图3、图4,将预制好的多段三种类型弧线型的钢管桁架节段以法兰盘4连接构成整体主梁12桁架结构,并采用螺栓18固定法兰盘4,再铺设桥面16并完成后续工作即可。In the construction of this cable-stayed bridge, the two ends of the load-bearing structure are erected on two
第五优选实施方式,如图7所示,所述基于三种直线型钢管桁架节段的悬索桥建造工艺同上述四种优选实施方式,首先施工建造桥梁的下部结构,包括固定主梁12的两个桥墩8以及位于两端的两个支座6,之后在下部结构上架设固定桥梁的承重结构。其桥梁的承重结构即主梁12也由多段预制的三种类型钢管桁架节段依桥梁结构受力情况相应进行装配而成,其中钢管桁架节段由上弦杆1、下弦杆2与腹杆3组成,其上弦杆1与下弦杆2通过腹杆3焊接成一体且三者均为矩形钢管。In the fifth preferred embodiment, as shown in Figure 7, the construction process of the suspension bridge based on the three linear steel pipe truss segments is the same as the above four preferred embodiments. There are two
本悬索桥的建造与斜拉桥大体相同,其承重部分两端架设在固定在地基17之上的两个支座6上,中间部分由两个固定在地基17上的竖直向桥墩8支撑,在承重部分即主梁12上方相对两个桥墩8固定设置有两个竖直向的塔架14。同时在两个塔架14顶端之间搭设一根缆索13,另外从每个塔架14的顶端向外引出一根缆索13并锚固在主梁12两端的锚碇15上。这样便在整个主梁12上方搭设了缆索13,同时在缆索13与主梁12之间均匀连接固定有多根吊杆11。The construction of the suspension bridge is generally the same as that of the cable-stayed bridge. The two ends of the load-bearing part are erected on two
同样地,首先分析各个钢管桁架节段的上弦杆1与下弦杆2所处位置的受力情况,根据受力分析,其承重结构即主梁12的各个钢管桁架节段中,其上弦杆1均需承受来自上部荷载的较大水平压力,因而其所有钢管桁架节段的上弦杆1中均需填充混凝土。具体来说,对于靠近塔架14的部分,其各个钢管桁架节段的下弦杆需承受水平很大的压力,即此部分中上弦杆1与下弦杆2同时均需承受很大的压力,因而该部分采用上弦杆1与下弦杆2全部填充混凝土的钢管桁架节段;对于承重部分即主梁12的中间部分以及两端部分,相对来说需承受的作用力较小,只是上弦杆1需承受较大的压力,而下弦杆2承受的压力较小,因而选择上弦杆1单独填充混凝土的钢管桁架节段。对于塔架14部分,靠近主梁12的部分其上弦杆1与下弦杆2通过吊杆11均需承受来自缆索13和塔架自重很大的竖向压力,因而选择上弦杆1与下弦杆2全部填充混凝土的钢管桁架节段;对于塔架14上端部分,因为上弦杆1与下弦杆2通过吊杆11承受来自缆索13和塔架自重的竖向压力较小,因而选择上弦杆1与下弦杆2均不填充混凝土的空钢管桁架节段,而各个钢管桁架节段的腹杆3均为空钢管。结合图3、图4,将预制好的多段三种类型弧线型的钢管桁架节段以法兰盘4连接构成整体主梁12桁架结构,并采用螺栓18固定法兰盘4,再铺设桥面16并完成后续工作即可。Similarly, firstly analyze the stress situation of the upper chord 1 and the
综上五种本发明的优选实施方式中,不论是拱桥、斜拉桥,还是悬索桥,均可以根据实际需要建造成二榀、三榀或多榀,以增大所建桥梁的稳固性,增大桥梁的承受能力。如图8所示,所述八榀梁桥由四个组合榀架构成整体桁架结构,各个组合榀架的各榀桁架结构之间通过横连杆5进行连接,通过横连杆5将各个钢管桁架节段的上弦杆1之间、下弦杆2之间连接固定起来。最终在整体桁架结构上铺设桥面16并完成后续工作即可。In summary, in the above five preferred embodiments of the present invention, no matter it is an arch bridge, a cable-stayed bridge, or a suspension bridge, it can be built into two, three or more bridges according to actual needs, so as to increase the stability of the built bridge and increase the stability of the bridge. Bearing capacity of large bridges. As shown in Figure 8, the eight truss girder bridge is composed of four combined trusses to form an overall truss structure, and each truss structure of each combined truss is connected by a horizontal connecting
以上所述,仅是本发明的较佳实施例,并非对本发明作任何限制,凡是根据本发明技术实质对以上实施例所作的任何简单修改、变更以及等效结构变化,均仍属于本发明技术方案的保护范围内。The above are only preferred embodiments of the present invention, and do not limit the present invention in any way. All simple modifications, changes and equivalent structural changes made to the above embodiments according to the technical essence of the present invention still belong to the technical aspects of the present invention. within the scope of protection of the scheme.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200810017259A CN100585082C (en) | 2008-01-08 | 2008-01-08 | Construction technology of prefabricated bridge based on three steel pipe truss segments |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200810017259A CN100585082C (en) | 2008-01-08 | 2008-01-08 | Construction technology of prefabricated bridge based on three steel pipe truss segments |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101195989A true CN101195989A (en) | 2008-06-11 |
CN100585082C CN100585082C (en) | 2010-01-27 |
Family
ID=39546597
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200810017259A Expired - Fee Related CN100585082C (en) | 2008-01-08 | 2008-01-08 | Construction technology of prefabricated bridge based on three steel pipe truss segments |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100585082C (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101967793A (en) * | 2010-10-28 | 2011-02-09 | 南京工业大学 | Rapidly Assembled Segmented Composite Truss Bridge |
CN102409603A (en) * | 2011-07-29 | 2012-04-11 | 中铁大桥勘测设计院有限公司 | Double-layer steel truss concrete superposed arch structure and construction method thereof |
CN102418315A (en) * | 2011-09-30 | 2012-04-18 | 长沙理工大学 | Construction method for concrete-filled steel tube arched bridge with large low-buckle tower erection bridge width |
CN104562936A (en) * | 2014-12-08 | 2015-04-29 | 中铁六局集团有限公司 | Construction method for continuous tie bar steel tube arch bridge |
CN105568840A (en) * | 2014-10-17 | 2016-05-11 | 任丘市永基建筑安装工程有限公司 | Application of steel bow bridge in municipal road |
CN105625175A (en) * | 2014-10-27 | 2016-06-01 | 任丘市永基建筑安装工程有限公司 | Steel arch bridge service life guarantee technology |
CN105862593A (en) * | 2015-01-20 | 2016-08-17 | 任丘市永基建筑安装工程有限公司 | Rapid construction method of steel arch bridge |
CN105926462A (en) * | 2016-06-20 | 2016-09-07 | 中山市公路钢结构制造有限公司 | A method for erecting a split steel bridge |
CN107542032A (en) * | 2017-04-25 | 2018-01-05 | 江苏沪宁钢机股份有限公司 | A kind of safety-type bolt steel girder bridge and its construction technology |
CN109056496A (en) * | 2018-09-13 | 2018-12-21 | 中铁第四勘察设计院集团有限公司 | A kind of super-span steel truss continuous bridge having initial curvature and construction method |
CN109972491A (en) * | 2019-04-30 | 2019-07-05 | 泉州理工职业学院 | A kind of method of construction of arch bridge structure and arch bridge |
CN111364362A (en) * | 2020-03-16 | 2020-07-03 | 长安大学 | Bridge construction process adopting all-welded integral node steel pipe truss chord member prefabricated unit |
CN111894053A (en) * | 2020-09-08 | 2020-11-06 | 江西诚规检测咨询有限公司 | A benchmark beam structure for self-balancing load box detection of foundation piles |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN85102731B (en) * | 1985-04-16 | 1988-12-21 | 布亚格斯特 | Method for building bridge span and truss type bridge span |
CN1081486A (en) * | 1993-06-26 | 1994-02-02 | 汤国栋 | Integrated glass-fibre reinforced plastics, steel pipe concrete cable-carried arch bridge and job practices |
CN1730825A (en) * | 2004-08-08 | 2006-02-08 | 李勇 | Steel pipe concrete double Y-type rigid frame bridge |
-
2008
- 2008-01-08 CN CN200810017259A patent/CN100585082C/en not_active Expired - Fee Related
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101967793A (en) * | 2010-10-28 | 2011-02-09 | 南京工业大学 | Rapidly Assembled Segmented Composite Truss Bridge |
CN102409603A (en) * | 2011-07-29 | 2012-04-11 | 中铁大桥勘测设计院有限公司 | Double-layer steel truss concrete superposed arch structure and construction method thereof |
CN102418315A (en) * | 2011-09-30 | 2012-04-18 | 长沙理工大学 | Construction method for concrete-filled steel tube arched bridge with large low-buckle tower erection bridge width |
CN105568840A (en) * | 2014-10-17 | 2016-05-11 | 任丘市永基建筑安装工程有限公司 | Application of steel bow bridge in municipal road |
CN105625175A (en) * | 2014-10-27 | 2016-06-01 | 任丘市永基建筑安装工程有限公司 | Steel arch bridge service life guarantee technology |
CN104562936A (en) * | 2014-12-08 | 2015-04-29 | 中铁六局集团有限公司 | Construction method for continuous tie bar steel tube arch bridge |
CN105862593A (en) * | 2015-01-20 | 2016-08-17 | 任丘市永基建筑安装工程有限公司 | Rapid construction method of steel arch bridge |
CN105926462B (en) * | 2016-06-20 | 2018-02-13 | 中山市公路钢结构制造有限公司 | Method for erecting split steel bridge |
CN105926462A (en) * | 2016-06-20 | 2016-09-07 | 中山市公路钢结构制造有限公司 | A method for erecting a split steel bridge |
CN107542032A (en) * | 2017-04-25 | 2018-01-05 | 江苏沪宁钢机股份有限公司 | A kind of safety-type bolt steel girder bridge and its construction technology |
CN109056496A (en) * | 2018-09-13 | 2018-12-21 | 中铁第四勘察设计院集团有限公司 | A kind of super-span steel truss continuous bridge having initial curvature and construction method |
CN109056496B (en) * | 2018-09-13 | 2023-12-15 | 中铁第四勘察设计院集团有限公司 | Ultra-large span steel truss continuous beam bridge with initial curvature and construction method |
CN109972491A (en) * | 2019-04-30 | 2019-07-05 | 泉州理工职业学院 | A kind of method of construction of arch bridge structure and arch bridge |
CN109972491B (en) * | 2019-04-30 | 2024-04-12 | 泉州职业技术大学 | Arch bridge structure and arch bridge construction method |
CN111364362A (en) * | 2020-03-16 | 2020-07-03 | 长安大学 | Bridge construction process adopting all-welded integral node steel pipe truss chord member prefabricated unit |
CN111894053A (en) * | 2020-09-08 | 2020-11-06 | 江西诚规检测咨询有限公司 | A benchmark beam structure for self-balancing load box detection of foundation piles |
Also Published As
Publication number | Publication date |
---|---|
CN100585082C (en) | 2010-01-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101195989A (en) | Construction technology of prefabricated bridge based on three steel pipe truss segments | |
CN201148590Y (en) | A simply supported to continuous beam bridge composed of rectangular steel pipe trusses | |
Shao et al. | Conceptual design of 1000 m scale steel-UHPFRC composite truss arch bridge | |
CN110777643A (en) | A large-span steel truss composite continuous beam structure and its construction method | |
CN103061243B (en) | Prestressed steel tube concrete combination trussed beam and construction method thereof | |
CN103669194B (en) | Based on the continuous rigid frame bridge of steel truss-concrete slab composite beam | |
CN102140850B (en) | Frame with floors of composite grid structure and construction method thereof | |
CN206328669U (en) | The narrow composite beam of steel box of new concrete | |
CN111979891A (en) | A kind of semi-penetrating rectangular steel tube concrete composite truss bridge and construction method | |
CN212335738U (en) | Double-combination continuous truss girder of combined steel web member for highway and railway construction | |
CN214573257U (en) | Truss-suspension cable composite pedestrian bridge structure using cold-formed thin-wall steel | |
CN107724227A (en) | A kind of continuous rigid frame deck type plate arch combined bridge | |
CN108978432A (en) | A medium-span assembled steel hollow sandwich slab bridge and its manufacturing method | |
CN209816632U (en) | Arch foot structure for special-shaped space arch bridge | |
CN112049078A (en) | Truss-like steel aqueduct of wave web | |
CN111749114A (en) | Steel truss-UHPC combined beam bridge hogging moment area structure and construction method | |
CN207933866U (en) | Duplexing font ultra-high performance concrete-normal concrete composite beam bridge girder construction | |
CN216040610U (en) | Large-span deck cable-auxiliary beam arch combined rigid frame bridge | |
CN216947799U (en) | A steel hollow sandwich slab concrete composite channel girder bridge | |
CN218951933U (en) | Large-span upper-bearing type perforated web girder arch combined rigid frame bridge | |
CN114457667B (en) | Large-span top-decker open-hole web-beam-arch composite rigid frame bridge and its construction method | |
CN211689854U (en) | Large-span steel truss combined continuous beam structure | |
CN214831844U (en) | Assembled lacing wire steel pipe concrete composite beam | |
CN214328474U (en) | A prestressed V-truss steel-concrete composite structure bridge | |
CN216893067U (en) | Assembled composite floor system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20100127 Termination date: 20110108 |