CN101179356A - Data transmitting, receiving method and device - Google Patents

Data transmitting, receiving method and device Download PDF

Info

Publication number
CN101179356A
CN101179356A CN 200710178304 CN200710178304A CN101179356A CN 101179356 A CN101179356 A CN 101179356A CN 200710178304 CN200710178304 CN 200710178304 CN 200710178304 A CN200710178304 A CN 200710178304A CN 101179356 A CN101179356 A CN 101179356A
Authority
CN
China
Prior art keywords
data
subchannel
unit
channel
subchannels
Prior art date
Application number
CN 200710178304
Other languages
Chinese (zh)
Inventor
伍瑞卿
涛 卢
艺 张
张菊茜
群 李
伟 陈
顾庆水
Original Assignee
中国海洋石油总公司;中海油田服务股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国海洋石油总公司;中海油田服务股份有限公司 filed Critical 中国海洋石油总公司;中海油田服务股份有限公司
Priority to CN 200710178304 priority Critical patent/CN101179356A/en
Publication of CN101179356A publication Critical patent/CN101179356A/en

Links

Abstract

一种数据发送、接收方法及装置,数据发送方法包含如下步骤:A:待发送数据在所述发送端进行分割、随机化、前向纠错编码后进行交织处理;B:根据子信道比特和能量分配参数将交织处理后的数据进行QAM映射处理,映射为相应的QAM星座点;C:使用QAM映射处理后的数据生成频域数据帧,并将频域数据帧进行IFFT变换生成OFDM信号;D:在OFDM信号中插入循环前缀并进行数模转换生成基带模拟信号,将基带模拟信号在所述测井电缆的业务子信道中发送给所述接收端。 A data transmission method and a reception apparatus, a data transmission method comprising the steps of: A: dividing data to be sent at the sending end, randomized, interleaving the FEC coding treatment; B: The subchannel and bit energy distribution parameter data interleaving processing QAM mapping processing, is mapped to the corresponding point QAM constellation; C: data using QAM mapping process to generate frequency-domain data frames, the data frames and frequency-domain transform IFFT OFDM signal is generated; D: inserting a cyclic prefix in the OFDM signal digital-analog conversion and generates a baseband analog signal, the analog baseband signal to the receiving end of the wireline traffic subchannels in. 采用本发明的方法和装置,在现有的测井电缆上大幅提高了数据传输速率,满足了井下仪器的大数据量的传输要求。 The method and apparatus of the present invention, in a conventional wireline substantial increase in the data transfer rate to meet the amount of a large data transmission requirements for downhole tools.

Description

一种数据发送、接收方法及装置 A data transmitting, receiving method and apparatus

技术领域 FIELD

本发明涉及一种数据发送、接收方法及装置,尤其涉及一种用于测井电缆的数据发送、接收方法及装置。 The present invention relates to a data transmitting apparatus and a receiving method, in particular, to a logging cable for data transmission, reception method and apparatus.

背景技术 Background technique

测井系统通常包括地面设备(地面端设备)和井下仪器(井下端设备) 两部分,地面设备和井下仪器通过测井电缆相连。 Logging system typically comprises a ground equipment (ground side apparatus) and downhole equipment (downhole end of the device) in two parts, connected to surface equipment and downhole equipment through the logging cable. 井下仪器需要将采集得到 Downhole tools you need to collect to get

的数据通过测井电缆传输到地面设备;而地面设备也需要将控制指令等数据传输到井下仪器。 The data transmitted through the logging cable to the surface equipment; surface equipment and also need to transfer data and control commands to the downhole tools.

测井作业始于20世纪二十年代〜三十年代,测井系统经历了从模拟到数字的发展。 Logging operation began in the 1920s - the thirties, logging system has undergone development from analog to digital. 目前已经发展到了第五代成像测井阶段。 It has now developed to the fifth generation of imaging logging stage. 随着测井仪器的发展, 对数据传输速率的需求也逐渐提高。 With the development of logging tools, the demand for data transmission rate is gradually increased.

为了满足对数据传输速率不断提高的需求,大量的研究人员对测井传输技术进行研究。 In order to meet the data transfer rates continue to increase demand, a large number of researchers logging transmission technology research. 六十年代以前基本上釆用调频、调幅等模拟调制方式传输模拟量,传输的数据量很少,传输速率也很低。 Before the sixties substantially preclude the use of analog transmission analog FM modulation, amplitude modulation, very little amount of data transmitted, the transmission rate is low. 八十年代,测井传输技术开始大量采用数字调制方式,但是数据传输速率仍然无法满足需求。 Eighties, began a large number of logging transmission technology using digital modulation scheme, but the data transfer rate is still unable to meet demand.

例如,阿特拉斯7>司在八十年代中期研制成代号为3502的PCM (Pulse Code Modulation,脉冲编码调制)调制器,传输速率仅为7.5 kbps。 For example, Atlas 7> Division of the mid-1980s to the development of the code for PCM 3502 (Pulse Code Modulation, Pulse Code Modulation) modulator, a transmission rate is only 7.5 kbps. 之后, 该公司的调制解调技术开始采用曼彻斯特编码方式,传输速率提高到93.35 kbps (型号为WTC3510)。 Thereafter, the modem technology companies began using the Manchester encoding method, increase the transmission rate to 93.35 kbps (model WTC3510).

斯伦贝谢公司一直采用相移键控(Phase Shift Keying,简称PSK)调制方式传输数据。 Schlumberger been using phase shift keying (Phase Shift Keying, referred to as PSK) modulation scheme for transmitting data. 八十年代中期以前,研制出CCS和CTS两种型号的数字传输短节,其中CCS的传输速率为80kbps, CTS的传输速率为100kbps。 Before the mid-eighties, CCS and CTS developed two models of digital transmission short section, where the transmission rate CCS is 80kbps, CTS transmission rate is 100kbps. CCS 与CTS均采用BPSK (Binary Phase Shift Keying, 二进制相移键控)调制技 CCS and CTS are used BPSK (Binary Phase Shift Keying, Binary Phase Shift Keying) modulation techniques

术。 Surgery. 九十年代初研制出型号为MAX-500的成像测井系统,"MAX-500"中的"500"代表它的遥传系统数据上行传输速率可达500kb/s。 Developed a model for the early nineties MAX-500 imaging logging system, "MAX-500" in "500" represents that the uplink telemetry system data transfer rate up to 500kb / s. 斯伦贝谢公司的遥传系统称为DTS数字遥传系统,采用QAM (Quadrature Amplitude Modulation,正交幅度调制)技术,可达到500kbps的数据传输速率,基本上能够满足成像测仪器信息量传输的需要。 Schlumberger telemetry system called DTS digital telemetry system using QAM (Quadrature Amplitude Modulation, quadrature amplitude modulation) technique, can achieve a data transfer rate of 500kbps, the test meter can basically meet the imaging information transmitted need. 在哈里伯顿公司推出的成像测井系统EXCELL-2000中,其遥传系统(型号为DITS )采用调制的二进制码传输,上传速率为217.6kbps。 In Release imaging Halliburton Logging EXCELL-2000 system in which telemetry system (model of DITS) modulated binary code transmission, uploading rate of 217.6kbps. 贝克-阿特拉斯公司推出的型号为ECLIPS-2000 的成像测井系统中,其遥传系统(型号为WTC)采用曼彻斯特码传输,上传速率为230kbps。 Baker - Model Atlas launch ECLIPS-2000 imaging logging system in which telemetry system (Model WTC) using Manchester code transmission, uploading rate is 230kbps.

但是,随着现代测井系统的实时性要求越来越高,地面设备和井下仪器之间需要传输的数据量越来越多,现在的测井系统的传输速率已无法满足要求。 However, with the real-time requirements of modern logging system is getting higher and higher, the amount of data to be transferred between surface equipment and downhole tools more and more, the transfer rate is now logging system has been unable to meet the requirements.

发明内容 SUMMARY

本发明所要解决的技术问题是,克服现有技术的不足,提出一种用于测井电缆的高速率的数据发送、接收方法及装置。 The present invention solves the technical problem, overcoming the disadvantages of the prior art, is proposed for a high-rate data logging cable transmission, reception method and apparatus.

为了解决上述问题,本发明提供一种数据发送方法,应用于包含通过测 To solve the above problems, the present invention provides a data transmission method, applied by measuring comprising

井电缆相连的发送端和接收端的测井通信系统中,其特征在于,该方法包含如下步骤: Sending and receiving ends of a communication system coupled to the well logging cable, characterized in that the method comprises the steps of:

A:待发送数据在所述发送端进行分割、随机化、前向纠错编码后进行交织处理; A: dividing data to be sent at the sending end, randomized, an interleaving process performed after forward error correction coding;

B:根据子信道比特和能量分配参数将交织处理后的数据进行QAM映射处理,映射为相应的QAM星座点; B: QAM-mapped according to the sub-channel data bits and interleaving processing parameters energy distribution, mapped to the corresponding point QAM constellation;

C:使用QAM映射处理后的数据生成频域数据帧,并将频域数据帧进行IFFT变换生成OFDM信号; C: data using QAM mapping process to generate frequency-domain data frames, the data frames and frequency-domain transform IFFT OFDM signal is generated;

D:在OFDM信号中插入循环前缀并进行数模转换生成基带模拟信号, 将基带模拟信号在所述测井电缆的业务子信道中发送给所述接收端。 D: inserting a cyclic prefix in the OFDM signal digital-analog conversion and generates a baseband analog signal, the analog baseband signal to the receiving end of the wireline traffic subchannels in.

此外,所述步骤A之前还包含如下步骤:所述发送端和接收端进行信 Furthermore, said step further comprising the step prior to A: the sending end and the receiving end performs channel

道初始化,确定所述子信道的比特和能量分配参数。 Channel initialization, determine the bit allocation and energy parameters of the subchannels.

此外,所述步骤A之前还包含如下步骤:根据所述测井电缆信道的传输特性确定OFDM基本参数;所述OFDM基本参数包含:子信道间隔,子信道总数,有效符号时间,保护间隔时间,FFT处理带宽。 Further, before the step A further comprises the steps of: determining parameters according to the basic OFDM transmission characteristics of the logging cable channel; basic parameters of the OFDM comprising: sub-interval, the total number of subchannels, the time effective symbol, a guard interval time, FFT processing bandwidth.

此外,所述子信道间隔为1.220703125 kHz;所述子信道总数为256;所述有效符号时间为819.2us;所述保护间隔时间为204.8us;所述FFT处理带宽为312.5 kHz。 In addition, the subchannel spacing 1.220703125 kHz; the total number of subchannel 256; and the symbol time is effective 819.2us; the guard interval time is 204.8us; FFT processing bandwidth of the 312.5 kHz.

此外,在所述256个子信道中,将由低频至高频的第nl个子信道至nl+ml个子信道用作上行子信道;将由低频至高频的第nl +1112个子信道至第256个子信道用作下行子信道; Further, the sub-channel 256, the first frequencies to higher frequencies by nl nl + ml subchannel to subchannel as an uplink subchannel; frequencies to higher frequencies by the first through nl +1112 subchannel with subchannel 256 for downlink subchannel;

其中,nl, ml, m2为正整数,3《nl《7; 3《m2_ml<7; nl+m2<256; Wherein, nl, ml, m2 is a positive integer, 3 "nl" 7; 3 "m2_ml <7; nl + m2 <256;

所述上行子信道的数据传输方向为所述测井通信系统的井下端至地面端;所述下行子信道的数据传输方向为所述测井通信系统的地面端至井下端。 Subchannel of the uplink data transmission direction to the downhole well logging communication system according to the ground terminal end; subchannels of the downlink data transmission direction of the ground communication system logging downhole end to end.

此外,在上行子信道和/或下行子信道中选择1个子信道作为导频信道; 所述导频信道传输的导频信号为一正弦波。 In addition, a selected subchannel as a pilot channel in the uplink subchannel and / or downlink subchannel; the pilot channel transmitting a pilot signal is a sine wave.

此外,每隔128个OFDM符号插入1个第一同步信号SYNC,并在所述128个OFDM符号中的第64个与第65个OFDM符号之间插入1个第二同步信号§^; SYNC与^^为相位相反的信号。 In addition, every 128 OFDM symbols into a first synchronizing the SYNC signal, and between the 64th and 65th OFDM symbols inserted into a second synchronization signal in the § 128 OFDM symbol ^; SYNC and ^^ as opposite phase signals.

此外,所述SYNC由PRBS进行BPSK调制而成,BPSK星座的映射决见则为1^-1, 0^ + 1;所述PRBS的生成多项式为:? Further, the SYNC PRBS by BPSK modulation, BPSK constellation mapping see decision was 1 -1, + 1 ^ 0; the PRBS generator polynomial is:? +;c6+?+x4 + l 。 +; C6 + + x4 + l?.

此外,在所述步骤A中, Further, in the step A,

将所述待发送数据分割成112字节长的数据包; The data to be transmitted is divided into 112-byte packets;

所述PRBS序列的生成多项式为x15 +l; The PRBS sequence generator polynomial is x15 + l;

所述前向纠错编码采用RS码;所述RS算法采用的参数为纠错能力t=8; 数据总长度=128;所述RS码的域生成多项式为:p(x)-x8+x4+x3+x2+1; RS码的码生成多项式为: Using the forward error correction coding RS code; algorithm parameters of the RS error correction capability of t = 8; total data length = 128; domain of the RS code generator polynomial is: p (x) -x8 + x4 + x3 + x2 + 1; RS code is a code generating polynomial:

所述交织处理采用参数为:交织宽度1=8,交织深度M-16的巻积交织。 The interleaving processing parameters are employed: 1 interlace width = 8, M-16 interleaving depth of the interleaving convolving.

本发明还提供一种数据接收方法,应用于包含通过测井电缆相连的发送端和接收端的测井通信系统中,其特征在于,该方法包含如下步骤: The present invention further provides a data receiving method applied to transmitting and receiving ends comprising a wireline logging via a communication system of connected, characterized in that the method comprises the steps of:

a)所述接收端将基带模拟信号进行模数转换采样后进行时域均衡和同 With the time domain equalization and after a) receiving a baseband analog signal the end of the sampling analog to digital conversion

后进行频域均衡处理; After the frequency domain equalization processing;

c )根据子信道比特和能量分配参数将频域均衡处理后的数据进行QAM c) The data for QAM subchannel bit domain equalization and the frequency-energy distribution parameter

d )将QAM解映射后输出的数据进行解交织和RS译码处理后进行解随机化获得原始用户数据。 De-randomized data to obtain the original user d) the data is QAM demapped and deinterleaved output RS decoding process.

此外,所述步骤a)之前还包含如下步骤:所述发送端和接收端进行信道初始化,确定所述子信道的比特和能量分配参数。 Further, the before step a) further comprises the step of: sending end and the receiving end of the channel initialization, determine the bit allocation and energy parameters of the subchannels.

此外,所述步骤a)之前还包含如下步骤:根据所述测井电缆信道的传输特性确定OFDM基本参数;所述OFDM基本参数包含: Further, the before step a) further comprises the step of: determining characteristics of OFDM transmission according to the basic parameters of the logging cable channel; substantially the OFDM parameters comprising:

子信道间隔,子信道总数,有效符号时间,保护间隔时间,FFT处理带宽。 Sub-interval, the total number of subchannels, the time effective symbol, a guard interval time, an FFT processing bandwidth.

此外,所述子信道间隔为1.220703125 kHz;所述子信道总数为256;所述有效符号时间为819.2us;所述保护间隔时间为204.8us;所述FFT处理带宽为312.5 kHz。 In addition, the subchannel spacing 1.220703125 kHz; the total number of subchannel 256; and the symbol time is effective 819.2us; the guard interval time is 204.8us; FFT processing bandwidth of the 312.5 kHz.

此外,采用信道初始化阶段获得的时域均衡器系数进行所述时域均衡; 所述时域均衡使信道沖激响应造成的时延扩展落在所述时间保护间隔范围 Further, time domain equalizer coefficients of the channel initialization phase is performed to obtain the time domain equalizer; the time-domain equalization so that channel impulse response delay spread caused by falling of the guard interval range

之内; within;

采用信道初始化阶段获得的同步信息进行所述同步校正; Synchronous information channel initialization phase the synchronization correction is obtained;

采用信道初始化阶段获得的频域均衡器系数进行所述频域均衡; Using frequency domain equalizer coefficients of the channel initialization phase is performed to obtain the frequency domain equalization;

采用参数为交织宽度1=8、交织深度M=16的巻积解交织方法进行所述解交织; 1 using the parameters for the interleaving width = 8, M = Volume interleaving depth the product 16 the deinterleaver deinterleaving method;

所述RS译码采用如下参数:纠错能力1=8;数据总长度=128;数据原始长度=112; The RS decoding using the following parameters: 1 = 8 error correction capability; total data length = 128; original data length = 112;

所述RS译码釆用的RS码的域生成多项式为<formula>formula see original document page 12</formula>所述RS码的码生成多项式为: Decoding RS codes RS preclude the use of field generator polynomial is a generator polynomial <formula> formula see original document 12 </ formula> RS code of the code page is:

<formula>formula see original document page 12</formula>。 <Formula> formula see original document page 12 </ formula>.

本发明还提供一种数据发送装置,通过测井电缆与接收装置相连;所述发送装置设置有调制器;所述调制器包含随机化单元,RS编码单元,交织单元,DAC;其特征在于,所述调制器还包含:QAM映射单元;其中: The present invention further provides a data transmission apparatus connected through the logging cable receiving means; said transmission means is provided with a modulator; said modulator unit comprises a random, RS coding unit, an interleaving unit, the DAC; wherein, said modulator further comprising: the QAM mapping unit; wherein:

QAM映射单元用于根据子信道比特和能量分配参数,将所述随机化单元进行随机化,RS编码单元进行前向纠错编码,交织单元进行交织处理的数据进行QAM映射处理,映射为相应的QAM星座点后输出; QAM mapping means for allocating subchannels according to the bit and energy parameters, the randomizing unit randomizing, interleaving processing of data to error correction coding, interleaving section before RS encoding unit perform QAM mapping processing, a mapping to the corresponding It outputs the QAM constellation points;

恢早7L用于将QAM映射早7L输 7L early recovery for QAM mapping input early 7L

IFFT单元用于将频域数据帧进行IFFT变换生成OFDM信号后输出; IFFT unit frequency-domain data for the frame after the IFFT to generate an OFDM signal output;

保护间隔插入单元用于在OFDM信号中插入循环前缀后送入所述DAC 中进行数模转换生成基带模拟信号,将基带模拟信号在所述测井电缆的业务子信道中发送给所述接收装置。 The guard interval insertion unit for inserting a cyclic prefix in the OFDM signal into the digital to analog conversion DAC generates a baseband analog signal, the analog baseband signal to the receiving device traffic subchannel in the logging cable .

此外,所述调制器使用如下参数进行数据的发送:子信道间隔为1.220703125 kHz;子信道总数为256;有效符号时间为819.2us;保护间隔时间为204.8us; FFT处理带宽为312.5 kHz。 Furthermore, the modulator uses the following parameters for data transmission: a subchannel interval 1.220703125 kHz; the total number of subchannels 256; effective symbol time 819.2us; guard interval time 204.8us; FFT processing bandwidth of 312.5 kHz.

此外,在所述256个子信道中,将由低频至高频的第nl个子信道至nl+ml个子信道用作上行子信道;将由低频至高频的第nl + m2个子信道至第256个子信道用作下行子信道; Further, the sub-channel 256, the first frequencies to higher frequencies by nl nl + ml subchannel to subchannel as an uplink subchannel; frequencies to higher frequencies by the first nl + m2 subchannel with subchannel to 256th for downlink subchannel;

其中,nl, ml, m2为正整数,3《nl《7; 3《m2-ml《7; nl + m2<256; Wherein, nl, ml, m2 is a positive integer, 3 "nl" 7; 3 "m2-ml" 7; nl + m2 <256;

所述上行子信道的数据传输方向为所述测井通信系统的井下端至地面 Subchannels of the uplink data transmission direction to the downhole well logging communication system according to the ground terminal

端;所述下行子信道的数据传输方向为所述测井通信系统的地面端至井下端。 End; subchannels of the downlink data transmission direction of the ground communication system logging downhole end to end.

此外,所述调制器在上行子信道或下行子信道中的1个子信道中传输导频信号,所述导频信号为一正弦波。 Furthermore, the transmission modulator subchannels 1 subchannel in the uplink or downlink pilot subchannel pilot signal, the pilot signal is a sine wave.

此外,所述调制器每隔128个OFDM符号插入1个第一同步信号SYNC, 并在所述128个OFDM符号中的第64个与第65个OFDM符号之间插入1 个第二同步信号§^; SYNC与^巧为相位相反的信号。 Further, the modulator is inserted into every 128 OFDM symbols the SYNC a first synchronization signal, and between the 64th and 65th OFDM symbols inserted into a second synchronization signal in the § 128 OFDM symbols ^; ^ coincidence with the SYNC signal of opposite phases.

此外,所述SYNC由PRBS进行BPSK调制而成,BPSK星座的映射规则为1^-1, 0^ + 1;所述PRBS的生成多项式为:x8+x6 + x5 + x4+l 。 Further, the SYNC PRBS by BPSK modulation, the BPSK constellation mapping rule 1 is -1, 0 ^ + 1; the PRBS generator polynomial is: x8 + x6 + x5 + x4 + l.

本发明还提供一种数据接收装置,通过测井电缆与发送装置相连;所述发送装置设置有解调器;所述解调器包含:ADC,时域均衡单元,同步校正单元;其特征在于,所述解调器还包含:FFT单元,频域均衡单元,QAM 解映射单元,解交织单元,RS译码单元,解随机化单元;其中: The present invention further provides a data receiving apparatus connected to the transmitting apparatus through the logging cable; said transmitting means is provided with a demodulator; said demodulator comprising: ADC, time domain equalization unit, the synchronization correction unit; characterized in that , said demodulator further comprising: an FFT unit, frequency domain equalization section, QAM demapping unit, a deinterleaving unit, RS decoding unit, derandomizer means; wherein:

FFT单元用于将经过所述ADC进行模数转换采样后,经过所述时域均衡单元进行时域均衡,并经过同步校正单元同步校正处理去除时间保护间隔后输出的数据进行FFT变换后输出; Through the FFT unit for the ADC samples the analog to digital conversion, the time-domain equalization through a time domain equalization unit, and after the synchronization correction processing unit corrects the synchronization after the removal time intervals to protect the data output by FFT transformed output;

QAM解映射单元用于根据子信道比特和能量分配参数将频域均衡单元输出的数据进行QAM解映射; QAM demapping means for assigning the parameter domain equalization unit outputs audio data of a subchannel according QAM demapped bit and energy;

解交织单元用于将QAM解映射单元输出的数据进行解交织后输出; Means for deinterleaving data output from the QAM demapping unit after deinterleaving an output;

RS译码单元用于将解交织单元输出的数据进行RS译码处理后输出; RS decoding unit for deinterleaving the data output unit after RS ​​decoding process output;

解随机化单元用于将RS译码单元输出的数据进行解随机化获得原始用户数据。 Means for de-randomizing the data output by the RS coding unit derandomizer obtain the original user data.

此外,所述解调器使用如下参数进行数据的接收:子信道间隔为1.220703125 kHz;子信道总数为256;有效符号时间为819.2us;保护间隔时间为204.8us; FFT处理带宽为312.5 kHz。 Further, the demodulator using the following parameters received data: sub-interval is 1.220703125 kHz; the total number of subchannels 256; effective symbol time 819.2us; guard interval time 204.8us; FFT processing bandwidth of 312.5 kHz.

此外,在所述256个子信道中,将由低频至高频的第nl个子信道至nl+ml个子信道用作上行子信道;将由低频至高频的第nl +m2个子信道至第256个子信道用作下行子信道; Further, the sub-channel 256, the first frequencies to higher frequencies by nl nl + ml subchannel to subchannel as an uplink subchannel; frequencies to higher frequencies by the first nl + m2 subchannel with subchannel to 256th for downlink subchannel;

其中,nl, ml, m2为正整数,3《nl《7; 3《m2-ml<7; nl+m2<256; Wherein, nl, ml, m2 is a positive integer, 3 "nl" 7; 3 "m2-ml <7; nl + m2 <256;

所述上行子信道的数据传输方向为所述测井通信系统的井下端至地面端;所述下行子信道的数据传输方向为所述测井通信系统的地面端至井下端。 Subchannel of the uplink data transmission direction to the downhole well logging communication system according to the ground terminal end; subchannels of the downlink data transmission direction of the ground communication system logging downhole end to end.

此外,所述解调器在上行子信道或下行子信道中的1个子信道中接收导频信号,所述导频信号为一正弦波。 Furthermore, the demodulator uplink or downlink subchannels, subchannel subchannels 1 receives a pilot signal, the pilot signal is a sine wave.

此外,所述解调器每隔128个OFDM符号接收1个第一同步信号SYNC, 并在所述128个OFDM符号中的第64个与第65个OFDM符号之间接收1 个第二同步信号§^; SYNC与§^巧为相位相反的信号。 Furthermore, the demodulator 128 received OFDM symbol intervals a first synchronization signal the SYNC, and between the 64th and 65th OFDM symbol receiving a second synchronization signal in the OFDM symbols 128 § ^; SYNC § ^ coincidence with the phase opposite to the signal.

此外,所述SYNC由PRBS进行BPSK调制而成,BPSK星座的映射头见则为l今-l, 0^ + 1;所述PRBS的生成多项式为:x8 + x6 + x5+x4 + l 。 Further, the SYNC PRBS by the BPSK modulation, the BPSK constellation mapping l head was now see -l, 0 ^ + 1; the PRBS generator polynomial is: x8 + x6 + x5 + x4 + l.

综上所述,采用本发明基于OFDM的数据发送、接收方法及装置,在现有的测井电缆上大幅提高了数据传输速率,满足了井下仪器的大数据量的传输要求。 In summary, the present invention is based on OFDM data transmission, receiving method and apparatus, in a conventional wireline substantial increase in the data transfer rate to meet the amount of a large data transmission requirements for downhole tools.

附图说明 BRIEF DESCRIPTION

图1是采用本发明信道初始化和数据传输方法的测井系统结构示意图; Figure 1 is a schematic view of a logging system initialization and configuration channel data transmission method of the present invention;

图2是根据测井电缆所对应的OFDM基本参数进行信道划分的示意图; FIG 2 is a schematic view of a channel according to the divided OFDM basic parameters corresponding to the wireline;

图3是本发明实施例用于测井电缆的信道初始化方法流程图; FIG 3 is a channel initialization method for the wireline embodiment of the present invention, a flow chart of embodiment;

图4是本发明实施例数据发送装置中的调制器的系统结构示意图; FIG 4 is a diagram showing a system configuration example of a data transmission modulator device of the embodiment of the present invention;

图5是本发明实施例数据传输方法中的调制方法的流程图; FIG 5 is a flowchart of a modulation method for data transmission in the embodiment of the method of the present invention;

图6是使用本发明实施例数据发送方法所形成的超帧结构示意图; FIG 6 is a schematic diagram of a superframe structure used in Example data transmission method of the embodiment of the present invention is formed;

图7是本发明实施例数据发送装置中的解调器的系统结构示意图; FIG 7 is a diagram of a system configuration example of a data transmission apparatus in the present invention, a demodulator of the embodiment;

图8是本发明实施例数据传输解调方法的流程图。 FIG 8 is a flowchart of a data transmission embodiment of the demodulating method of the present invention.

具体实施方式 Detailed ways

本发明的基本思路是,为了提高数据传输速率,将多载波技术,尤其是 The basic idea of ​​the invention is to improve data transmission rate, multi-carrier techniques, in particular

OFDM ( Orthogonal Frequency Division Multiplexing,正交步贞分复用)技术应用于测井电缆的数据传输。 OFDM (Orthogonal Frequency Division Multiplexing, orthogonal Chen step Division Multiplexing) data transmission technology is applied to the logging cable.

多载波技术就是通过频谱交叠的频分复用(FDM)等技术实现并行数据传输和多信道数据传输,以提高数据的传输速率。 It is to realize the multi-carrier technology and multi-channel parallel data transmission by the data transmission spectrum overlapping frequency division multiplexing (FDM) technology to increase data transmission rate. 其中,通常采用离散傅立叶变换(DFT)来实现FDM方案。 Wherein FDM scheme commonly used to achieve discrete Fourier transform (DFT).

在各种FDM技术中,基于多载波方案的OFDM技术是通信技术领域最有发展前景的调制解调技术之一。 In various FDM technique, multiple carrier scheme based on OFDM technology is one of communication technologies most promising modem technology. OFDM将速率很高的信息码流分成许多低速码流,在一组正交的子信道上进行并行传输。 OFDM divides the information stream at a high rate stream into a plurality of low-speed, parallel transmission over a set of orthogonal subchannel. 采用OFDM技术可以扩展子信道传输符号的宽度,从而大大简化接收机中均衡器的设计。 Using OFDM technology can extend the width of the sub-transmission symbols, which greatly simplifies the design of an equalizer in the receiver. 同时OFDM 技术采用时间保护间隔(筒称TGI)有效地去除符号间干扰(简称ISI), 克服了小于TGI的信道时延扩展。 Meanwhile OFDM technology uses guard interval (called cylindrical TGI) to effectively remove inter-symbol interference (referred to as ISI), to overcome the less than TGI channel delay spread. 另一方面,利用子载波间的正交性,OFDM 技术有效地提高了频谱利用率。 On the other hand, the use of the orthogonality between sub-carriers, the OFDM technique effectively improve the spectrum utilization. 与传统的单载波技术相比,OFDM具有较高的频谱利用率,其频谱利用率随着子信道数目的增加而趋近Nyquist (奈奎斯特)极限,并且可以根据每个子信道的传输条件进行自适应的比特和能量(功率)分配,以充分利用信道容量,提高传输速率。 Compared with conventional single carrier technology, the OFDM has high spectrum efficiency, spectrum efficiency with which the number of subchannels increases approaching the Nyquist (Nyquist) limit, and may be in accordance with the transmission condition of each subchannel and adaptive bit energy (power) distribution, to take advantage of channel capacity, increase the transmission rate.

下面将结合附图和实施例对本发明进行详细描述。 The present invention will now be described in detail in conjunction with the accompanying drawings and embodiments.

图1是采用本发明信道初始化和数据传输方法的测井系统结构示意图。 1 is a schematic system configuration of channel initialization logging and data transmission method of the present invention is employed. 如图l所示,该系统包含:地面端,井下端,和连接地面端与井下端的测井电缆。 As shown in FIG. L, the system comprising: a ground terminal, a downhole end, and a ground terminal connected to the wireline downhole end.

地面端包含:地面终端,地面终端接口, COFDM (Coded Orthogonal Frequency Division Multiplexing,编码正交频分多路复用)调制器B, COFDM 解调器B,地面电缆^妄口。 Ground terminal comprising: a ground terminal, the ground terminal interface, COFDM (Coded Orthogonal Frequency Division Multiplexing, coded orthogonal frequency division multiplexing) modulator B, COFDM demodulator B, ^ jump ground cable port.

井下端包含:井下仪器,井下仪器接口, COFDM调制器A, COFDM Downhole end comprising: a downhole tool, a downhole instrument interface, COFDM modulator A, COFDM

解调器A,井下电缆接口。 A demodulator A, downhole cable connector.

地面终端通过地面终端接口与COFDM调制器B和COFDM解调器B 相连,发送和接收数据。 Ground terminals are connected through the ground terminal interface with COFDM modulation COFDM demodulator B and B, send and receive data.

COFDM调制器B从地面终端接口接收待发送数据,调制后通过地面电缆接口承栽在测井电缆上发送至井下端。 COFDM modulator B from the ground terminal interface receives data to be transmitted, modulated transmitted on wireline to the downhole end of the interface cable through the ground bearing plant.

COFDM解调器B通过地面电缆接口接收井下端承载在测井电缆上发送的数据,经过解调后通过地面终端接口发送给地面终端。 COFDM demodulator B via terrestrial cable interface to receive data sent by the downhole end of the carrier in the wireline, after demodulation is sent to ground through the ground terminal interface terminal.

COFDM调制器B和COFDM解调器B可直接进行数据交互。 COFDM modulation COFDM demodulator B and B can directly exchange data. 可以将COFDM调制器B和COFDM解调器B合并称为COFDM调制解调器B。 COFDM modulation COFDM demodulator B and B may be referred to as a combined modem B. COFDM

井下仪器通过井下仪器接口与COFDM调制器A和COFDM解调器A 相连,发送和接收数据。 Downhole tool is connected to downhole interface COFDM modulator A COFDM demodulator and A, to send and receive data.

COFDM调制器A从井下仪器接口接收待发送数据,调制后通过井下电缆接口承载在测井电缆上发送至地面端。 COFDM modulator A downhole tool from the interface receives data to be transmitted, modulated carrier is transmitted to the interface end in the ground downhole wireline cable.

COFDM解调器A通过井下电缆接口接收地面端承载在测井电缆上发送的数据,经过解调后通过井下仪器接口发送给井下仪器。 A COFDM demodulator bearer data transmitted over a cable interface downhole logging cable receiving surface side, after demodulation by the downhole tool to a downhole instrument interface.

同样,COFDM调制器A和COFDM解调器A可直接进行数据交互。 Similarly, COFDM modulator A and A COFDM demodulator can directly exchange data. 也可以将COFDM调制器A和COFDM解调器A合并称为COFDM调制解调器A。 Also COFDM modulator A COFDM demodulator and A may be referred to as a combined modem A. COFDM

测井电缆通常采用铠装测井电缆。 Usually armored wireline logging cable. 本发明实施例基于OFDM的数据传输方法所使用的部分OFDM系统参数根据铠装测井电缆信道的传输特性确定。 Embodiments of the present invention, part of the OFDM system parameters of the OFDM data transmission method is used is determined based on the transfer characteristics armored logging cable channel.

以7000米铠装测井电缆为例,根据电缆信道的传输特性可确定以下OFDM基本参数: To 7000 m armored logging cable, for example, may be determined according to the transmission characteristics of the cable channel OFDM following basic parameters:

>子信道间隔:1.220703125 kHz。 > Subchannel interval: 1.220703125 kHz.

>子信道总数和FFT处理点数:256;从直流分量开始依次编号为0, 1,……,255。 > FFT processing points and the total number of subchannels: 256; starting from the DC component are numbered 0, 1, ......, 255.

>可用子信道总数:202个,其中, > Total number of available subchannels: 202, wherein

上行信道(UpLink,井下到地面)包含的可用子信道总数:195个. Total number of available subchannels upstream channel (UpLink, downhole to the surface) contains: 195.

下行信道(Down Link,地面到井下)包含的可用子信道总数:7个。 Total number of available subchannels of the downlink channel (Down Link, ground downhole) contains: 7.

>有效符号时间:819.2us > Effective symbol time: 819.2us

>保护间隔时间:204.8us (即:OFDM符号长度的1/4 ) ^FFT处理带宽:312.5 kHz > Protection interval: 204.8us (i.e.: OFDM symbol length 1/4) ^ FFT processing bandwidth: 312.5 kHz

在铠装测井电缆上,4艮据上述OFDM基本参数进行信道划分。 On armored logging cable, according to the above-described OFDM Gen 4 basic parameters for channelization. 图2是根据测井电缆所对应的OFDM基本参数进行信道划分的示意图。 FIG 2 is a schematic view of a channel according to the divided OFDM basic parameters corresponding to the logging cable. 如图2所示, as shown in picture 2,

子载波0~子载波5:作为保留子载波(不使用)。 Sub-carrier 0 through sub-carrier 5: As reserved subcarriers (not used). 不使用子载波0~ 子载波5的原因是避免低频端的交流供电干扰; Reason not to use subcarrier 0 through sub-carrier 5 is to avoid the low end of the AC power supply interference;

子载波6〜子载波12:作为下行信道(地面端设备至井下端设备); 6 ~ 12 subcarriers of sub-carriers: a downlink channel (the ground side apparatus to the downhole end of the device);

子载波13〜子载波26:作为保留子载波(不使用),起到将下行信道和上4亍信道隔离的作用; 13~ 26 subcarriers of subcarriers: subcarriers are reserved (not used), and serves to downlink channel 4 channel isolation role of the right foot;

子载波27〜子载波221:作为上行信道(井下端设备至地面端设备); 其中,子载波36为导频子信道,其余为上行业务子信道。 Subcarriers 221 subcarrier 27~: as an uplink channel (downhole end of the device to the ground terminal apparatus); wherein a pilot subcarrier 36 subchannels, the remaining uplink traffic subchannels.

上述导频子信道上传输的导频信号为一正弦波,用于发送端和接收端之间进行时钟同步。 The above-described pilot subchannel transmitted pilot signal is a sine wave, for performing clock synchronization between a transmitting end and a receiving end.

本发明的数据传输方法分为:信道初始化阶段和数据传输阶段。 The data transmission method according to the invention is divided into: channel initialization phase and data transfer phase.

在信道初始化阶段需要完成:通信链路建立、发送功率控制、接收AGC 参数、时钟同步、符号同步、帧同步、时域均衡器训练、频域均衡器训练、 子信道性能估计、子信道比特分配和能量分配等^喿作。 Complete channel initialization phase: a communication link is established, transmission power control, reception AGC parameter, clock synchronization, symbol synchronization, frame synchronization, equalizer training time domain, frequency domain equalizer training, performance estimates subchannel, subchannel bit allocation and distribution of energy as ^ Qiao. 图3是本发明实施例用于测井电缆的信道初始化方法流程图。 FIG 3 is a channel initialization method for the wireline embodiment of the present invention embodiment of a flow chart. 如图3所示,该方法包含如下步骤: 3, the method comprising the steps of:

101: COFDM调制器A向COFDM调制解调器B发送训练序列0; 101: COFDM COFDM modulator A modem sends a training sequence B 0;

训练序列0对应的信号由PRBS (伪随机二进制序列)进行BPSK调制而成,BPSK星座的映射规则为1, + PRBS的生成多项式为: 0 corresponding to the training sequence signal by the PRBS (Pseudo Random Binary Sequence) BPSK modulation, BPSK constellation mapping rule is 1, + PRBS generator polynomial is:

训练序列o可以使用上行信道的所有子信道进行发送,也可以使用一个 O training sequence may be used for all subchannels of the uplink channel transmitting, it may also be used a

或多个子信道进行发送。 Or more subchannels transmitted. 使用多个子信道发送训练序列0可以增加时钟同 Training sequences transmitted using a plurality of subchannels may be increased clock with 0

步、均衡器训练的精确度。 Precision step, equalizer training.

102: COFDM调制解调器B接收到训练序列0后,完成信道激活、多载波时钟同步、多载波符号同步、多栽波帧同步、AGC参数设置、发送功率调整、时域均衡器和频域均衡器的训练。 102: COFDM modem B after receiving the training sequence 0, complete channel activation, multi-carrier clock synchronization, a multi-carrier symbol synchronization, a multi-planted wave frame synchronization, the AGC parameter, the transmission power adjustment, a time domain equalizer and frequency domain equalizer training.

通过AGC参数设置,COFDM解调器B将AGC控制在最佳接收电平; 通过多载波符号同步,COFDM解调器B将FFT窗调整到最佳位置,使接收信号没有子信道间干扰;通过时域均衡器和频域均衡器的训练,COFDM解调器B获得时域和频域均衡器的均衡系数,为后续的训练序列和数据传输做好准备。 By setting the AGC parameter, the COFDM demodulator B AGC control in the best reception level; synchronized by multicarrier symbols, the COFDM demodulator B is adjusted to the optimum position of the FFT window, the reception signal without interference between subchannels; by time domain equalizer and frequency domain equalizer training, COFDM demodulator B equalization coefficients obtained time domain and frequency domain equalizer, to prepare for the training sequence and the subsequent data transmission.

通过计算信道衰减,COFDM调制器B进行功率调整,使发送功率达到最佳状态。 Calculated channel attenuation, B COFDM modulator adjusting the power, the transmission power to achieve the best.

103: COFDM调制器B向COFDM调制解调器A发送训练序列0; 训练序列0的生成方法与步骤101中的相同。 103: COFDM modulator B COFDM transmission modem training sequence 0 to A; the same training sequence generator 101 is 0 and the method step.

同样,训练序列O可以使用下行信道的所有的子信道进行发送,也可以使用下行信道的一个或多个子信道进行发送。 Similarly, the training sequence may be used for all subchannels O downlink channel is transmitted, may be used one or more subchannels of the downlink channel is transmitted.

104: COFDM调制解调器A接收到训练序列0后,完成信道激活、多载波时钟同步、多载波符号同步、多载波帧同步、AGC参凄"殳置、信道响应估计、发送功率调整、时域均衡器和频域均衡器的训练。 104: After COFDM modem A receives the training sequence 0, complete channel activation, multi-carrier clock synchronization, a multi-carrier symbol synchronization, a multi-carrier frame synchronization, the AGC reference desolate "Shu set, channel response estimation, transmit power adjustment, the time domain equalizer and training frequency domain equalizer.

通过AGC参数设置,COFDM解调器A将AGC控制在最佳接收电平; 通过多载波符号同步,COFDM解调器A将FFT窗调整到最佳位置,使接收 By setting parameters AGC, the AGC A COFDM demodulator control in the best reception level; synchronized by multicarrier symbols, A COFDM demodulator FFT window is adjusted to the optimum position, the reception

信号没有子信道间干扰;通过时域均衡器和频域均衡器的训练,COFDM解调器A获得时域和频域均衡器的均衡系数,为后续的训练序列和数据传输做好准备。 No inter-subchannel interference signal; training through a time domain equalizer and frequency domain equalizer, A COFDM demodulator equalization coefficients obtained time domain and frequency domain equalizer, to prepare for the training sequence and the subsequent data transmission.

通过信道响应估计,计算信道衰减,COFDM调制器A进行功率调整, 使发送功率达到最佳状态。 The channel response estimate calculated channel attenuation, COFDM modulator A power adjustment, the transmission power to achieve the best.

105: COFDM调制解调器A向COFDM调制解调器B发送ACK (ACKnowledgement ,确认应答)序歹寸0; 105: COFDM COFDM sends modem A modem B ACK (ACKnowledgement, acknowledgment) 0 inch bad sequence;

通过发送ACK序列0, COFDM调制解调器B获知COFDM调制解调器A已完成训练序列0的接收和相应的设置,可以进入下一阶段。 0 sequence by sending an ACK, known COFDM COFDM modem A modem B has been completed and the corresponding received training sequence set to 0, go to the next stage.

ACK序列0的生成原理与训练序列0相同,只是比训练序列O延迟一个比特,以使其相位与训练序列O不同。 ACK sequence generation principle and the same training sequence 0, 0, O training sequence than just a bit delayed, so the training sequence different from O phase.

106: COFDM调制解调器B向COFDM调制解调器A发送ACK序列0; 106: COFDM modem B transmits an ACK sequence COFDM 0 to modem A;

通过发送ACK序列0, COFDM调制解调器A获知COFDM调制解调器B已完成训练序列0的接收和相应的设置,可以进入下一阶段。 0 sequence by sending an ACK, known COFDM COFDM modem A modem B has been completed and the corresponding received training sequence set to 0, go to the next stage.

ACK序列0的生成方法与步骤105中相同。 A method of generating ACK sequence 0 in step 105 the same.

107: COFDM调制器A向COFDM调制解调器B发送训练序列1; 训练序列l在上行信道的所有的子信道发送。 107: COFDM COFDM modulator A modem sends a training sequence B 1; l training sequence transmitted in all subchannels of the uplink channel.

训练序列1的生成原理与训练序列0相同,只是比训练序列0延迟2个比特,以使其相位与训练序列0和ACK序列0不同。 The principle of generating a training sequence and the same training sequence 0, but more than 0 training sequence delayed by two bits, so the phase of the training sequence and ACK sequence different 0 0.

108: COFDM调制解调器B接收到训练序列1后,根据该训练序列进行子信道SNR (Signal to Noise Ratio,信噪比)估计,根据估计得到的SNR 值对每一子信道进行比特及能量分配。 108: COFDM modem B receives a training sequence, a subchannel SNR (Signal to Noise Ratio, SNR) estimate based on the training sequence, the SNR value based on the estimated for each subchannel and bit energy distribution.

在后续的数据传输阶段将根据上述子信道比特及能量分配结果确定每个子信道用什么星座进行调制,以及每个子信道用多大的功率进行发送。 In a subsequent data transfer phase will be determined for each subchannel modulation, and what each subchannel constellation how much transmission power based on the sub-channel bit and power allocation result.

本实施例中,每个子信道比特分配的范围:0~10bits。 In this embodiment, each subchannel bit allocation range: 0 ~ 10bits.

109: COFDM调制器B向COFDM调制解调器A发送训练序列1; 109: COFDM COFDM modulator B sends A modem training sequence;

训练序列1在下行信道的所有的子信道发送。 A training sequence transmitted in all subchannels of the downlink channel. 训练序列1的生成方法与 The method of generating a training sequence and

步骤107相同。 Same as step 107.

110: COFDM调制解调器A接收到训练序列1后,根据该训练序列进行子信道SNR估计,根据估计得到的SNR值对每一子信道进行比特及能量分配。 110: COFDM modem receives the A 1, the sub-channel based on the SNR estimation training sequence is the training sequence, based on the estimated SNR value for each subchannel and bit energy distribution.

同样,在后续的数据传输阶段将根据上述子信道比特及能量分配结果确定每个子信道用什么星座进行调制,以及每个子信道用多大的功率进行发送。 Similarly, the subsequent data transmission phase for each subchannel to determine the modulation, and what each subchannel constellation how much transmission power based on the sub-channel bit and power allocation result.

111: COFDM调制解调器A向COFDM调制解调器B发送ACK序列1; 111: COFDM COFDM modem A to modem B transmits ACK sequence;

通过发送ACK序列1 , COFDM调制解调器B获知COFDM调制解调器A已完成训练序列1的接收和相应的设置,可以进入下一阶段。 By sending an ACK sequence, known COFDM COFDM modem A modem B has been completed and the corresponding received training sequence set to be the next stage.

本步骤中的ACK序列1与ACK序列0相同。 In this step, the ACK sequence is identical to a sequence ACK 0.

112: COFDM调制解调器B向COFDM调制解调器A发送ACK序列1; 112: COFDM COFDM modem B to modem A transmits ACK sequence;

通过发送ACK序列1, COFDM调制解调器A获知COFDM调制解调器B已完成训练序列1的接收和相应的设置,可以进入下一阶段。 By sending an ACK sequence, the modem A known COFDM COFDM modem B has been completed and the corresponding received training sequence set to be the next stage.

本步骤中的ACK序列l与ACK序列O相同。 L ACK ACK sequence identical with the sequence O in this step.

113: COFDM调制解调器A向COFDM调制解调器B发送系统信息; 上述系统信息包含:子信道比特分配信息和子信道能量分配信息。 113: COFDM COFDM modem A to modem B transmits information system; and the system information comprises: a sub-channel bit allocation information and the energy allocation information subchannel. 系统信息采用QPSK调制方式,使用上行信道的一个或多个子信道发送。 The system uses QPSK modulation mode information using an uplink channel transmits one or more subchannels.

在本实施例中,系统信息使用上行信道的最低频率(信道条件好)的4 个子信道发送,以提高可靠性。 In the present embodiment, the lowest frequency of the system information using an uplink channel (channel condition is good) of 4 subchannels transmitted, to improve reliability.

114: COFDM调制解调器B向COFDM调制解调器A发送系统信息; 114: COFDM system information to the modem B COFDM modem A;

同样,上述系统信息包含:子信道比特分配信息和子信道能量分配信息。 Also, the above system information comprises: a sub-channel bit allocation information and the energy allocation information subchannel.

系统信息釆用QPSK调制方式,使用下行信道的一个或多个子信道发送。 Systems preclude the use of QPSK modulation information, a downlink channel transmitted using one or more subchannels.

在本实施例中,系统信息使用下行信道的最低频率(信道条件好)的4 个子信道发送,以提高可靠性。 In the present embodiment, a downlink system information using the lowest frequency channel (good channel condition) of the transmission 4 subchannels, to improve reliability.

115: COFDM调制解调器A向COFDM调制解调器B发送ACK序列2; 115: COFDM COFDM modem A to modem B transmits ACK sequence 2;

通过发送ACK序列2, COFDM调制解调器B获知COFDM调制解调器A已完成系统信息的接收和相应的设置,可以进入数据传输阶段。 2 by sending an ACK sequence, the modem B is known COFDM COFDM modem A reception has been completed and the corresponding set of system information, may enter a data transfer phase.

ACK序列2与ACK序列0相同。 Sequence ACK ACK sequence 0 to 2 identical.

116: COFDM调制解调器B向COFDM调制解调器A发送ACK序列2; 116: COFDM COFDM modem B to modem A transmits ACK sequence 2;

通过发送ACK序列2, COFDM调制解调器A获知COFDM调制解调器B已完成系统信息的接收和相应的设置,可以进入数据传输阶段。 2 by sending an ACK sequence, the modem A known COFDM COFDM receiver and modem B has completed setting the appropriate system information, you may enter a data transfer phase.

ACK序列2与ACK序列O相同。 ACK sequence 2 O and the same ACK sequence.

由上可知,本发明的通过2个训练序列的发送完成各通信参数的设置; 也就是说,参数的设置分两个阶段进行,第二阶段的参数设置可以参考第一阶段的参数设置结果。 From the above, the present invention performs setting of communication parameters by each of the two transmitted training sequences; that is, set the parameters of the two phases, the second phase parameters may be reference parameters of the first stage results. 采用这种方式,可以更加准确地对通信参数进行设置。 In this way, it is possible to more accurately set the communication parameters.

在数据的传输阶段,待发送数据被发送端的调制器调制后发送给接收端的解调器;接收端识别并接收到调制信号后经解调器解调后传送给终端。 In the data transmission phase, the data to be transmitted is transmitted after the transmitting end to the receiving end modulator modulates the demodulator; and identifying a receiving end after receiving the modulated signal to the terminal after the demodulation. 下面将结合附图和实施例对本发明的调制、解调方法及其装置分别进行说明。 It will modulation, demodulation method and apparatus of the present invention are explained in conjunction with the accompanying drawings and embodiments.

在下文中,调制器是指COFDM调制器A和COFDM调制器B;解调器是指COFDM解调器A和COFDM解调器B。 Hereinafter, modulator refers to a COFDM modulator A and B COFDM modulator; COFDM demodulator demodulator means A and B. The COFDM demodulator

下面将结合附图对本发明的调制器进行简要的介绍。 Following with reference to the modulator of the present invention will be briefly described.

图4是本发明实施例数据发送装置中的调制器的系统结构示意图。 4 is a schematic system configuration of a modulator according to the data transmission apparatus in the embodiment of the present invention. 如图4所示,该调制器包含:随机化单元,RS编码单元,交织单元,QAM映射单元,频域成帧单元,IFFT单元,保护间隔插入单元,DAC。 4, the modulator comprising: a random unit, RS coding unit, an interleaving unit, QAM mapping unit, a frequency domain framing unit, the IFFT unit, a guard interval insertion unit, DAC. 其中: among them:

随机化单元用于对输入数据进行随机化处理后输出; Randomizing means for randomizing the input data output processing;

RS编码单元用于将随机化单元输出的数据进行FEC (前向纠错编码) 编码后输出; RS encoding unit configured to output the data randomizing unit performs FEC (forward error correction encoding) the encoded output;

交织单元用于将RS编码单元输出的数据进行交织处理后输出; Means for interleaving the RS-encoded data output means outputs post-interleaving processing;

QAM映射单元用于将交织单元输出的数据根据比特及能量分配表中的子信道比特和能量分配信息进行QAM映射后输出; QAM mapping means for interleaving the data unit allocation information outputted from bit QAM mapping according to the energy and the bit allocation table and energy output subchannel;

频域成帧单元用于使用QAM映射单元输出的数据生成并输出频域数据 Frequency domain data framing unit used for output from the QAM mapping unit generates and outputs frequency domain data

帧; frame;

IFFT单元用于将频域成帧单元输出的频域数据帧进行IFFT变换,输出出时域OFDM信号; IFFT unit for the frequency domain data in the frequency domain output frame framing unit IFFT transformation, an output time-domain OFDM signal;

保护间隔插入单元用于将IFFT单元输出的时域OFDM信号添加循环前缀作为时域保护间隔,输出基带发送信号; The guard interval inserting unit configured to add a cyclic prefix to the time domain OFDM signal outputted from the IFFT unit as a time domain guard interval, the output of baseband transmit signals;

DAC用于将保护间隔插入单元输出的基带发送信号进行数模转换,输出基带模拟信号。 DAC for baseband transmit signals output from the interval inserting unit protected digital-analog conversion, the output baseband analog signal.

下面将结合附图对本发明调制器所采用的调制方法进行详细介绍。 It will now be described in detail in conjunction with the accompanying drawings of the modulation method employed in the present invention.

图5是本发明实施例数据传输方法中的调制方法的流程图。 FIG 5 is a flowchart of a modulation method for data transmission in the embodiment of the method of the present invention. 如图5所示, 该调制方法包含如下步骤: 5, the modulation method comprising the steps of:

201:待发送数据进入调制器后被分割成112字节长的物理层数据包, 物理层数据包被送入随机化单元进行随机化后,输出随机化数据包; 201: data to be sent into the modulator 112 is divided into bytes of physical layer data packet, the packet is sent to the physical layer randomization unit after randomization, output of the random data packet;

随机化单元由一个PRBS发生器产生PRBS序列,该PRBS序列与输入的物理层数据包进行模2加完成随机化。 Randomization unit generates a PRBS sequence by the PRBS generator, the physical layer data packets with the PRBS sequence inputted randomized complete modulo-2 addition.

上述PRBS序列的生成多项式为:x15+x14 + l。 The above generator polynomial for the PRBS sequence: x15 + x14 + l.

202:随机化数据包被送入RS (Reed-Solomon,里德.所罗门)编码单元进行FEC (前向纠错编码)编码,输出128字节长的RS编码数据包; 202: randomized data packet is sent to RS (Reed-Solomon, Reed-Solomon) encoding unit performs FEC (forward error correction coding), the output of the RS-encoded 128 byte packet length;

RS编码单元使用如下参数:纠错能力t-8;数据总长度=128;数据原始长度=112。 RS encoding unit using the following parameters: the error correction capability t-8; total data length = 128; original data length = 112.

RS码的域生成多项式为:= x8 +x4 +x3 +x2 +1; RS code field generating polynomial: = x8 + x4 + x3 + x2 +1;

RS码的码生成多项式为: RS code is a code generator polynomial:

<formula>formula see original document page 23</formula>203: RS编码数据包净皮送入交织单元进行交织处理,输出交织数据包; <Formula> formula see original document page 23 </ formula> 203: RS-coded data packets into the net Paper interleaving unit to perform interleaving processing, interleaving the output data packet;

交织单元采用巻积交织,其参数为:交织宽度1=8,交织深度M-16。 Convolving using interleaving unit interleaving parameters are: 1 = 8 interleaver width, interleaving depth M-16.

RS编码数据包经过交织处理可增强其RS码纠错的性能。 RS interleaved encoded packet processing which can enhance the performance of the RS code error correction.

204:交织数据包被送入QAM映射单元进行映射处理; 204: interleaving data packets are mapped into the QAM mapping processing unit;

映射单元根据信道初始化阶段获得的子信道比特和能量分配信息(存储在比特及能量分配表中),将交织数据包中的数据按相应的比特数分配给各子信道,并映射为相应的QAM星座点,输出QAM调制后的频域数据。 The channel mapping unit allocates subchannel obtained initialization phase and energy information bits (stored in the bit and energy allocation table), the interleaved data packet according to the corresponding number of bits assigned to each sub-channel, and is mapped to a corresponding QAM constellation points, the frequency-domain data output QAM modulation.

205: QAM映射单元输出的数据;故送入频域成帧单元生成频域数据帧。 205: output data of QAM mapped cells; it into the frequency domain to generate frequency-domain data framing unit frame.

206:频域数据帧被送入IFFT (Inverse Fast Fourier Transform,快速傅立叶逆变换)单元进行IFFT变换,即进行OFDM调制而产生出时域OFDM 信号(包含若干个OFDM符号)。 206: frequency domain data frame is sent to IFFT (Inverse Fast Fourier Transform, Inverse Fast Fourier Transform) unit performs IFFT transform, i.e., performs OFDM modulation and generates a time domain OFDM signal (OFDM symbols comprising a plurality).

207: IFFT变换后生成的OFDM信号净皮送入保护间隔插入单元添加循环前缀作为时域保护间隔(TGI)就形成时域基带发送信号;时域基带发送信号经DAC (Digital Analog Convert,数模转换),生成基带模拟信号后送入测井电缆信道传输。 207: generated after the IFFT net OFDM signal sheath into the guard interval insertion unit adds a cyclic prefix to form the time-domain baseband transmission signal as a time domain guard interval (TGI); time-domain baseband transmission signal via the DAC (Digital Analog Convert, a digital to analog conversion), generating group into the logging cable transmission channel with analog signals.

图6是使用本发明实施例数据发送方法所形成的超帧结构示意图;如图6所示, 一个超帧由128个OFDM符号和2个同步帧组成。 FIG 6 is a schematic diagram of a superframe structure used in Example data transmission method of the embodiment of the present invention is formed; FIG. 6, a superframe consists of 128 OFDM symbols and two sync frames.

1个OFDM符号由1个CP和1个IFFT块构成;CP的长度为IFFT块长度的1/4。 One OFDM symbol is composed of a CP and the IFFT blocks 1; CP length of 1/4 of the length of IFFT block.

2个同步帧:SYNC和^T^,分别位于第1个OFDM符号(Data0)之前,第64个OFDM符号(Data 63 )和第65个OFDM符号(Data 64)之间。 Two sync frames: SYNC and ^ T ^, are located in the first OFDM symbol (DataO) before, the first 64 OFDM symbols (Data 63) and 65 OFDM symbols (Data 64) between. 其中,SYNC与训练序列0相同,长度为256; ^^为SYNC的反相。 Wherein, the same training sequence SYNC 0, length 256; ^^ is inverted SYNC.

下面将结合附图对本发明的解调器进行简要的介绍。 Following with reference to the demodulator of the present invention will be briefly described.

图7是本发明实施例数据发送装置中的解调器的系统结构示意图。 FIG 7 is a diagram of a system configuration example of the data transmission apparatus of the embodiment of the present invention a demodulator. 如图7所示,该解调器包含:ADC,时域均衡单元,信道信息获取器,AGC单元,同步才交正单元,FFT (Fast Fourier Transform,快速傅立叶变换)单元, 频域均衡单元,QAM解映射单元,解交织单元,RS译码单元,解随机化单元。 As shown in FIG 7, the demodulator comprising: ADC, time domain equalization unit, a channel information acquirer, the AGC unit, n is synchronous cross section, FFT (Fast Fourier Transform, Fast Fourier Transform) unit, a frequency domain equalizing unit, QAM demapping unit, a deinterleaving unit, RS decoding unit, de-randomization unit. 其中, among them,

ADC用于将输入的基带模拟信号进行模数转换,输出数字信号; ADC for the baseband analog signal input analog to digital conversion, a digital output signal;

时域均衡单元用于从信道信息获取器提取信道初始化阶段获得的时域均衡器系数,并使用该系数将ADC输出的数字信号进行时域均衡以截短信道沖激响应,使信道沖激响应造成的时延扩展落在TGI范围之内; The time domain equalizer means for extracting a time domain equalizer coefficients of the channel initialization phase obtained from the channel information acquirer, and using the coefficients of the digital signal from the ADC output of time domain equalization to cut short channel impulse response, so that the channel impulse response caused by delay spread falls within the scope of TGI;

AGC单元用于根据ADC输出的数字信号进行AGC参数的设置和调整; AGC unit for setting and adjusting the AGC parameter based on the digital signal output from the ADC;

同步校正单元用于从信道信息获取器提取信道初始化阶段获得的同步信息,并使用该信息对时域均衡单元输出的数据进入同步校正单元去除TGI 后输出; Synchronization correction unit is configured to obtain channel information from the extracted synchronization information channel initialization phase obtained, using the information data and time domain equalization unit outputs the synchronization correction unit enters after removal of TGI output;

FFT单元用于将同步校正单元输出的数据进行FFT变换后输出; FFT unit for the output data after the synchronization correction unit performs FFT conversion output;

频域均衡单元用于从信道信息获取器提取信道初始化阶段获得的频域均衡器系数,并使用该系数将FFT单元输出的数据进行频域均衡处理; Means for extracting a frequency domain equalizer the frequency domain equalizer coefficients of the channel initialization phase obtained from the channel information acquirer, and uses the coefficient data outputted from the FFT unit frequency-domain equalization processing;

QAM解映射单元用于从信道信息获取器提取初始化阶段获得的比特分配信息,并使用该信息将频域均衡单元输出的数据进行QAM解映射; QAM demapping means for bit allocation information acquirer extracts channel information from the initialization phase obtained, and using the information data outputted from frequency domain equalization section QAM demapping;

解交织单元和RS译码单元用于将QAM解映射单元输出的数据进行解交织和RS译码处理后输出; Deinterleaving unit and the RS decoding unit for the data outputted from QAM demapping unit deinterleaved and RS decoding process outputs;

化后输出用户数据。 After the output of user data.

下面将结合附图对本发明解调器所采用的解调方法进行详细介绍。 We will now be described in detail in conjunction with the accompanying drawings of the present invention, a demodulator demodulating method employed.

图8是本发明实施例数据传输解调方法的流程图。 FIG 8 is a flowchart of a data transmission embodiment of the demodulating method of the present invention. 如图8所示,该解调方法包含如下步骤: 8, the demodulation method comprising the steps of:

301:基带模拟信号经ADC (Analog Digital Convert,模数转换)采样 301: baseband analog signal by ADC (Analog Digital Convert, analog to digital conversion) samples

后送入时域均衡单元进行时域均衡以截短信道沖激响应,使信道冲激响应造成的时延扩展落在TGI范围之内。 After the time-domain equalization unit into time domain equalization to cut short channel impulse response, so that the delay spread of the channel impulse response due to fall within the scope of the TGI.

时域均衡单元从信道信息获取器提取信道初始化阶段获得的时域均衡器系数进行时域均衡。 Acquiring time domain equalizer unit extracts a time domain equalizer coefficients obtained from the initialization phase channel time-domain channel equalization information.

此外,ADC采样后的数据还送入AGC单元进行AGC参数的设置和调整。 Furthermore, data is also fed to the ADC sampling unit AGC AGC setting and adjusting parameters.

302:经时域均衡单元输出的数据进入同步校正单元去除TGI后输出; 302: The data output from the time domain equalization unit enters the synchronization correction unit after removal of TGI output;

同步校正单元从信道信息获取器提取信道初始化阶段获得的同步信息进行同步校正。 The synchronization correction unit acquires the channel information extracted by the synchronization initialization phase synchronization correction is obtained from the channel information.

303:同步校正单元输出的数据被送入FFT (Fast Fourier Transform,快速傅立叶变换)单元进行FFT变换。 303: Data output from the synchronization correction unit is fed to FFT (Fast Fourier Transform, Fast Fourier Transform) unit performs FFT transform.

304: FFT变换后输出的数据进入频域均衡单元进行频域均衡处理; 304: FFT data output from the converted into the frequency domain equalization unit performs frequency domain equalization processing;

频域均衡单元从信道信息获取器提取信道初始化阶段获得的频域均衡器系数进行频域均衡。 Frequency domain equalization section acquirer extracts frequency domain equalizer coefficients obtained from the initialization phase channel frequency domain equalization channel information.

305:频域均衡单元输出的数据进入QAM解映射单元进行QAM解映射; 305: frequency domain equalization unit outputs the data into the QAM demapping means for demapping QAM;

QAM解映射单元从信道信息获取器提取初始化阶段获得的比特分配信息进行QAM解映射。 Acquirer QAM demapping unit extracts the channel information from the bit allocation information is obtained initialization phase QAM demapping.

306: QAM解映射单元输出的数据进入解交织单元和RS译码单元进行解交织和RS译码处理后输出; 306: QAM demapping means outputs the data entry unit and a deinterleave unit after RS ​​decoding and RS decoding deinterleaved output;

解交织单元采用巻积解交织,其参数为:交织宽度1=8,交织深度M46。 Deinterleaving unit deinterleaves convolving employed, which parameters are: a = width of 8 interleaved, the interleaving depth M46.

RS译码单元使用如下参数:纠错能力^8;数据总长度=128;数据原始长度=112。 RS coding unit using the following parameters: the error correction capability ^ 8; 128 = total data length; original data length = 112.

RS码的域生成多项式为:= x8 + x4 + jc3 + x2 +1; RS码的码生成多项式为: RS code field generating polynomial: = x8 + x4 + jc3 + x2 +1; RS code of the code generator polynomial is:

<formula>formula see original document page 25</formula> 。 <Formula> formula see original document page 25 </ formula>.

307:经解交织单元和RS译码单元处理后输出的数据进入解随机化单 307: deinterleaved data processing unit and the RS decoding unit output into the single derandomizer

元进行解随机化以获得原始的用户数据; De-randomizing element to obtain the original user data;

解随机化单元由一个PRBS发生器产生PRBS序列,该PRBS序列与输入的物理层数据包进行模2加完成解随机化。 Derandomizer means generates a PRBS sequence by the PRBS generator, the physical layer data packet inputted PRBS sequence modulo-2 addition is completed derandomizer.

上述PRBS序列的生成多项式为:x15+x14 + l。 The above generator polynomial for the PRBS sequence: x15 + x14 + l.

综上所述,本发明根据OFDM技术在数据传输中的优越性,并结合测井系统的本身特点,提出了这种基于OFDM技术的测井电缆高速数据传输方法。 As described above, according to the present invention, in the data transmission OFDM technology advantages, and binding characteristics by logging system it is proposed that OFDM technology based on high-speed wireline data transmission method. 使用本发明的方法和装置,在7000米铠装测井电缆上可实现上传速率800kbps,下传速率30kbps的高速数据传输。 The method and apparatus of the present invention, in the 7000 m armored logging cable can be achieved upload rate 800kbps, 30kbps downlink high speed data transmission rate.

Claims (26)

1、一种数据发送方法,应用于包含通过测井电缆相连的发送端和接收端的测井通信系统中,其特征在于,该方法包含如下步骤: A:待发送数据在所述发送端进行分割、随机化、前向纠错编码后进行交织处理; B:根据子信道比特和能量分配参数将交织处理后的数据进行QAM映射处理,映射为相应的QAM星座点; C:使用QAM映射处理后的数据生成频域数据帧,并将频域数据帧进行IFFT变换生成OFDM信号; D:在OFDM信号中插入循环前缀并进行数模转换生成基带模拟信号,将基带模拟信号在所述测井电缆的业务子信道中发送给所述接收端。 A data transmission method, applied comprising transmitting and receiving ends of a communication system via a wireline logging is connected, which is characterized in that the method comprises the steps of: A: dividing data to be sent at the sending end , randomizing, interleaving the forward error correction encoding treatment; B: QAM-mapped according to the sub-channel data bits and interleaving processing parameters energy distribution, mapped to the corresponding point QAM constellation; C: treatment using QAM mapping the frame data generating frequency-domain data, frequency-domain data frame and the IFFT to generate an OFDM signal; D: inserting a cyclic prefix in the OFDM signal and digital to analog conversion to generate an analog baseband signal, the baseband analog signal in the wireline service subchannels transmitted to the receiving end.
2、 如权利要求1所述的数据发送方法,其特征在于,所述步骤A之前还包含如下步骤:所述发送端和接收端进行信道初始化,确定所述子信道的比特和能量分配参数。 2, a data transmission method as claimed in claim 1, wherein said step further comprises the step of prior to A: the sending end and the receiving end channel initialization, determine the bit allocation and energy parameters of the subchannels.
3、 如权利要求1所述的数据发送方法,其特征在于,所述步骤A之前还包含如下步骤:根据所述测井电缆信道的传输特性确定OFDM基本参数; 所述OFDM基本参数包含:子信道间隔,子信道总数,有效符号时间,保护间隔时间,FFT处理带宽。 3, a data transmission method as claimed in claim 1, characterized in that, prior to said step A further comprises the steps of: determining parameters according to the basic OFDM transmission characteristics of the logging cable channel; basic parameters of the OFDM comprising: sub channel spacing, the total number of subchannels, the time effective symbol, a guard interval time, an FFT processing bandwidth.
4、 如权利要求3所述的数据发送方法,其特征在于,所述子信道间隔为1.220703125 kHz;所述子信道总数为256;所述有效符号时间为819.2us; 所述保护间隔时间为204.8us;所述FFT处理带宽为312.5 kHz。 4, the data transmission method as claimed in claim 3, wherein said interval is a subchannel 1.220703125 kHz; the total number of subchannel 256; and the symbol time is effective 819.2us; the guard interval is 204.8 US; the FFT processing bandwidth is 312.5 kHz.
5、 如权利要求4所述的数据发送方法,其特征在于,在所述256个子信道中,将由低频至高频的第nl个子信道至nl+ml个子信道用作上行子信道;将由低频至高频的第nl +1112个子信道至第256个子信道用作下行子信道;其中,nl, ml, m2为正整数,3<nl<7; 3《m2-ml<7; nl+m2<256;所述上行子信道的数据传输方向为所述测井通信系统的井下端至地面端;所述下行子信道的数据传输方向为所述测井通信系统的地面端至井下端。 5, the data transmission method as claimed in claim 4, wherein, in the sub-channel 256, the first frequencies to higher frequencies by nl nl + ml subchannel to subchannel as an uplink subchannel; by frequencies to nl +1112 frequency of sub-channel to sub-channel 256 as downlink subchannel; wherein, nl, ml, m2 is a positive integer, 3 <nl <7; 3 "m2-ml <7; nl + m2 <256 ; subchannels of the uplink data transmission direction to the downhole well logging communication system according to the ground terminal end; subchannels of the downlink data transmission direction of the ground communication system logging downhole end to end.
6、 如权利要求5所述的数据发送方法,其特征在于,在上行子信道和/ 或下行子信道中选择1个子信道作为导频信道;所述导频信道传输的导频信号为一正弦波。 6, the data transmission method as claimed in claim 5, wherein the selected one subchannel as a pilot channel in the uplink subchannel and / or downlink subchannel; the pilot channel transmitting a pilot signal is a sinusoidal wave.
7、 如权利要求1所述的数据发送方法,其特征在于,每隔128个OFDM 符号插入1个第一同步信号SYNC,并在所述128个OFDM符号中的第64个与第65个OFDM符号之间插入1个第二同步信号§^; SYNC与§^ 为相位相反的信号。 7. The data transmission method as claimed in claim 1, wherein, every 128 OFDM symbols into a first synchronizing the SYNC signal, and the first 64 and the second 65 in the OFDM OFDM symbols 128 1 is inserted between the second synchronization signal symbol § ^; sYNC § ^ with opposite phase to the signal.
8、 如权利要求7所述的数据发送方法,其特征在于,所述SYNC由PRBS进行BPSK调制而成,BPSK星座的映射规则为1^-1, 0^ + 1;所述PRBS的生成多项式为:x8+x6+x5+x4 + l。 8, a data transmission method as claimed in claim 7, characterized in that the SYNC is BPSK modulation by the PRBS, BPSK constellation mapping rule 1 is -1, 0 ^ + 1; the PRBS generator polynomial It is: x8 + x6 + x5 + x4 + l.
9、 如权利要求1所述的数据发送方法,其特征在于,在所述步骤A中, 将所述待发送it据分割成112字节长的数据包;所述PRBS序列的生成多项式为x15 +x14 +1;所述前向纠错编码釆用RS码;所述RS算法采用的参数为纠错能力t二8; 数据总长度=128;所述RS码的域生成多项式为:= x8+x4+x3+x2+l; RS码的码生成多项式为:g(x) = (x + A°)(;c +义"(x + /l2)...(x +义15) = g16x16 +... + &x + g0 ;所述交织处理采用参数为:交织宽度1=8,交织深度M-16的巻积交织。 9. The data transmission method according to claim 1, wherein, in the step A, the data to be transmitted it is divided into 112-byte data packet; the PRBS sequence generator polynomial is x15 + x14 +1; RS code preclude the use of forward error correction encoding said front; algorithm parameters of the RS error correction capability of t = 8; total data length = 128; domain of the RS code generating polynomial: = x8 + x4 + x3 + x2 + l; RS code is a code generator polynomial: g (x) = (x + a °) (; c + Yi "(x + /l2)...(x + 15 sense) = g16x16 + ... + & x + g0; the interleaving processing parameters are employed: 1 interlace width = 8, M-16 interleaving depth of the interleaving convolving.
10、 一种数据接收方法,应用于包含通过测井电缆相连的发送端和接收端的测井通信系统中,其特征在于,该方法包含如下步骤:a)所述接收端将基带模拟信号进行模数转换釆样后进行时域均衡和同后进行频域均衡处理;c )根据子信道比特和能量分配参数将频域均衡处理后的数据进行QAM 解映射;d )将QAM解映射后输出的数据进行解交织和RS译码处理后进行解随机化获得原始用户数据。 10. A data receiving method, applied to a receiving end and a transmitting end comprising logging wireline communication systems connected, which is characterized in that the method comprises the steps of: a) the receiving end the analog baseband analog signal digital conversion frequency domain equalization processing with the time domain equalization and the like after Bian; c) distribution parameter data for frequency domain equalization processing in accordance with sub-bit QAM demapping and energy; D) after the output of the QAM demapped de-randomized data to obtain the original user data after deinterleaving, and RS decoding.
11、 如权利要求10所述的数据接收方法,其特征在于,所述步骤a) 之前还包含如下步骤:所述发送端和接收端进行信道初始化,确定所述子信道的比特和能量分配参数。 11. The data receiving method according to claim 10, wherein said step a) further comprises prior to the step of: sending end and the receiving end of the channel initialization, determine the bit and energy allocation parameters of the subchannels .
12、 如权利要求10所述的数据接收方法,其特征在于,所述步骤a) 之前还包含如下步骤:根据所述测井电缆信道的传输特性确定OFDM基本参数;所述OFDM基本参数包含:子信道间隔,子信道总数,有效符号时间,保护间隔时间,FFT处理带宽。 12. The data receiving method according to claim 10, wherein said step a) further comprises the following prior steps of: determining parameters according to the basic OFDM transmission characteristics of the logging cable channel; substantially the OFDM parameters comprising: sub-interval, the total number of subchannels, the time effective symbol, a guard interval time, an FFT processing bandwidth.
13、 如权利要求12所述的数据发送方法,其特征在于,所述子信道间隔为1.220703125 kHz;所述子信道总数为256;所述有效符号时间为819.2us;所述保护间隔时间为204.8us;所述FFT处理带宽为312,5 kHz。 13, the data transmission method as claimed in claim 12, wherein said interval is a subchannel 1.220703125 kHz; the total number of subchannel 256; and the symbol time is effective 819.2us; the guard interval is 204.8 US; the FFT processing bandwidth 312,5 kHz.
14、 如权利要求IO所述的数据接收方法,其特征在于,采用信道初始化阶段获得的时域均衡器系数进行所述时域均衡;所述时域均衡使信道冲激响应造成的时延扩展落在所述时间保护间隔范围之内;采用信道初始化阶段获得的同步信息进行所述同步校正;采用信道初始化阶段获得的频域均衡器系数进行所述频域均衡;采用参数为交织宽度1=8、交织深度M46的巻积解交织方法进行所述解交织;所述RS译码采用如下参数:纠错能力1=8;数据总长度=128;数据原始长度=112;所述RS译码采用的RS码的域生成多项式为:= ? + x4 + x3 + x2 +1; 所述RS码的码生成多项式为:= (x + /)(x +义)(;c + f)…(x +义15) = g16x16 +…+ gj + g0 。 14, the data receiving method as claimed in claim IO, characterized in that the time domain equalizer coefficients of the channel initialization phase is performed to obtain the time domain equalizer; the time-domain equalization so that channel impulse response delay spread caused by the time interval falling within the scope of protection; synchronous channel information obtained by performing the initialization phase synchronization correction; frequency domain equalizer coefficients of the channel obtained is the initialization phase of the frequency-domain equalization; interleaver parameters using width = 1 8, the interleaving depth M46 convolving said deinterleaver deinterleaving method; the RS decoding using the following parameters: 1 = 8 error correction capability; total data length = 128; original data length = 112; the RS decoder domain to generate the RS code polynomial is employed: = + x4 + x3 + x2 +1; RS code of the code generating polynomial is:? = (x + /) (x + sense) (; c + f) ... ( Meaning x + 15) = g16x16 + ... + gj + g0.
15、 一种数据发送装置,通过测井电缆与接收装置相连;所述发送装置设置有调制器;所述调制器包含随机化单元,RS编码单元,交织单元,DAC; 其特征在于,所述调制器还包含:QAM映射单元;其中:QAM映射单元用于根据子信道比特和能量分配参数,将所述随机化单元进行随机化,RS编码单元进行前向纠错编码,交织单元进行交织处理的数据进行QAM映射处理,映射为相应的QAM星座点后输出;IFFT单元用于将频域数据帧进行IFFT变换生成OFDM信号后输出;保护间隔插入单元用于在OFDM信号中插入循环前缀后送入所述DAC 中进行数模转换生成基带模拟信号,将基带模拟信号在所述测井电缆的业务子信道中发送给所述接收装置。 15. A data transmission apparatus connected through the logging cable receiving means; said transmission means is provided with a modulator; said modulator unit comprises a random, RS coding unit, an interleaving unit, the DAC; wherein said modulator further comprising: QAM mapping unit; wherein: QAM mapping means for allocating subchannels according to the bit and energy parameters, the random randomizing unit performs the FEC coding, interleaving unit interleaving unit performs RS encoding before treatment QAM mapping process of data mapped to QAM constellation point corresponding to the output; IFFT unit frequency-domain data for the frame after the IFFT to generate an OFDM signal output; guard interval insertion unit for inserting a cyclic prefix in the OFDM signal evacuation digital to analog conversion to generate a baseband analog signal into the DAC, the baseband analog signal to the receiving device traffic subchannel in the logging cable.
16、 如权利要求15所述的数据发送装置,其特征在于,所述调制器使用如下参数进行数据的发送:子信道间隔为1.220703125 kHz;子信道总数为256;有效符号时间为819.2us;保护间隔时间为204,8us; FFT处理带宽为312.5 kHz。 16, a data transmitting apparatus as claimed in claim 15, wherein the modulator uses the following parameters for data transmission: a subchannel interval 1.220703125 kHz; the total number of subchannels 256; effective symbol time 819.2us; protection interval time is 204,8us; FFT processing bandwidth of 312.5 kHz.
17、 如权利要求16所述的数据发送装置,其特征在于,在所述256个子信道中,将由低频至高频的第nl个子信道至nl+ml个子信道用作上行子信道;将由低频至高频的第nl +1112个子信道至第256个子信道用作下行子信道;其中,nl, ml, m2为正整数,3《nl《7; 3<m2-ml《7; nl+m2<256;所述上行子信道的数据传输方向为所述测井通信系统的井下端至地面端;所述下行子信道的数据传输方向为所述测井通信系统的地面端至井下端。 17, a data transmitting apparatus as claimed in claim 16, wherein, in the sub-channel 256, the first frequencies to higher frequencies by nl nl + ml subchannel to subchannel as an uplink subchannel; by frequencies to nl +1112 frequency of sub-channel to sub-channel 256 as downlink subchannel; wherein, nl, ml, m2 is a positive integer, 3 "nl" 7; 3 <m2-ml "7; nl + m2 <256 ; subchannels of the uplink data transmission direction to the downhole well logging communication system according to the ground terminal end; subchannels of the downlink data transmission direction of the ground communication system logging downhole end to end.
18、 如权利要求17所述的数据发送装置,其特征在于,所述调制器在上行子信道或下行子信道中的1个子信道中传输导频信号,所述导频信号为一正弦波。 18, a data transmitting apparatus as claimed in claim 17, wherein the modulator 1 pilot subchannels in the uplink transmission or downlink subchannels subchannel pilot signal, the pilot signal is a sine wave.
19、 如权利要求15所述的数据发送装置,其特征在于,所述调制器每隔128个OFDM符号插入1个第一同步信号SYNC,并在所述128个OFDM 符号中的第64个与第65个OFDM符号之间插入1个第二同步信号^巧;SYNC与^巧为相位相反的信号。 19, a data transmitting apparatus as claimed in claim 15, wherein the modulator every 128 OFDM symbols into a first synchronizing the SYNC signal, and the 128 OFDM symbols of the 64 inserting a second synchronization signal of 65 ^ coincidence between OFDM symbols; ^ coincidence with the sYNC opposite phase signal.
20、 如权利要求19所述的数据发送装置,其特征在于,所述SYNC由PRBS进行BPSK调制而成,BPSK星座的映射规则为1+ - 1 , 0^ + 1;所述PRBS的生成多项式为:x8+x6+x5+;c4+l。 20, a data transmitting apparatus as claimed in claim 19, characterized in that the SYNC is BPSK modulation by the PRBS, BPSK constellation mapping rule 1+ - 1, 0 + ^ 1; the PRBS generator polynomial It is: x8 + x6 + x5 +; c4 + l.
21、 一种数据接收装置,通过测井电缆与发送装置相连;所述发送装置设置有解调器;所述解调器包含:ADC,时域均衡单元,同步校正单元;其特征在于,所述解调器还包含:FFT单元,频域均衡单元,QAM解映射单元,解交织单元,RS译码单元,解随机化单元;其中:FFT单元用于将经过所述ADC进行模数转换釆样后,经过所述时域均衡单元进行时域均衡,并经过同步^f交正单元同步^^交正处理去除时间保护间隔后输出的数据进行FFT变换后输出;QAM解映射单元用于根据子信道比特和能量分配参数将频域均衡单元输出的数据进行QAM解映射;解交织单元用于将QAM解映射单元输出的数据进行解交织后输出;RS译码单元用于将解交织单元输出的数据进行RS译码处理后输出;解随机化单元用于将RS译码单元输出的数据进行解随机化获得原始用户数据。 21. A data receiving device connected via a wireline transmission means; said transmission device is provided with a demodulator; said demodulator comprising: ADC, time domain equalization unit, the synchronization correction unit; characterized by said demodulator further comprising: FFT unit, frequency domain equalization section, QAM demapping unit, a deinterleaving unit, RS decoding unit, derandomizer means; wherein: FFT unit via the ADC for the analog to digital conversion preclude after the sample through the time-domain equalization unit time domain equalization, and after synchronization the synchronization unit n ^ f ^^ deposit after being processed by removing the deposit after the guard interval data output by the FFT output; according to the QAM demapping unit domain equalization unit outputs data bits and the subchannel frequency energy distribution parameters QAM-demapping; means for deinterleaving the data output from the QAM demapping unit de-interleaved output; the RS decoding unit for deinterleaving an output unit after RS ​​decoding data output; means for de-randomizing the data output by the RS coding unit derandomizer obtain the original user data.
22、 如权利要求21所述的数据接收装置,其特征在于,所述解调器使用如下参数进行数据的接收:子信道间隔为1.220703125 kHz;子信道总数为256;有效符号时间为819.2us;保护间隔时间为204.8us; FFT处理带宽为312.5 kHz。 22, the data receiving apparatus as claimed in claim 21, characterized in that the receiver uses the following parameters for the data demodulation: subchannel interval 1.220703125 kHz; the total number of subchannels 256; effective symbol time 819.2us; the guard interval time is 204.8us; FFT processing bandwidth of 312.5 kHz.
23、 如权利要求22所述的数据接收装置,其特征在于,在所述256个子信道中,将由低频至高频的第nl个子信道至nl+ml个子信道用作上行子信道;将由低频至高频的第nl +1112个子信道至第256个子信道用作下行子信道;其中,nl, ml, m2为正整数,3《nl《7; 3<m2-ml《7; nl+m2<256;所述上行子信道的数据传输方向为所述测井通信系统的井下端至地面端;所述下行子信道的数据传输方向为所述测井通信系统的地面端至井下端o 23, the data receiving apparatus as claimed in claim 22, wherein, in the sub-channel 256, the first frequencies to higher frequencies by nl nl + ml subchannel to subchannel as an uplink subchannel; by frequencies to nl +1112 frequency of sub-channel to sub-channel 256 as downlink subchannel; wherein, nl, ml, m2 is a positive integer, 3 "nl" 7; 3 <m2-ml "7; nl + m2 <256 ; subchannels of the uplink data transmission direction of the communication system to the downhole logging end to the ground terminal; subchannels of the downlink data transmission direction of the ground communication system logging downhole end side o
24、 如权利要求23所述的数据接收装置,其特征在于,所述解调器在上行子信道或下行子信道中的1个子信道中接收导频信号,所述导频信号为一正弦波。 24, the data receiving apparatus as claimed in claim 23, wherein said demodulator uplink or downlink subchannels of a subchannel subchannels received pilot signal, the pilot signal is a sine wave .
25、 如权利要求21所述的数据接收装置,其特征在于,所述解调器每隔128个OFDM符号接收1个第一同步信号SYNC,并在所述128个OFDM 符号中的第64个与第65个OFDM符号之间接收l个第二同步信号^^; SYNC与§^为相位相反的信号。 25, the data receiving apparatus as claimed in claim 21, wherein the OFDM symbols 128 receives a synchronizing signal SYNC of the first demodulator intervals, and the 128 OFDM symbols of 64 between the first 65 OFDM symbols with a second synchronization signal received l ^^; sYNC § ^ with opposite phase signals.
26、 如权利要求25所述的数据接收装置,其特征在于,所述SYNC由PRBS进行BPSK调制而成,BPSK星座的映射规则为1^-1, 0^ + 1;所述PRBS的生成多项式为:;cs+JC6+x5+JC4 + i。 26, the data receiving apparatus as claimed in claim 25, characterized in that the SYNC is BPSK modulation by the PRBS, BPSK constellation mapping rule 1 is -1, 0 ^ + 1; the PRBS generator polynomial is:; cs + JC6 + x5 + JC4 + i.
CN 200710178304 2007-11-28 2007-11-28 Data transmitting, receiving method and device CN101179356A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200710178304 CN101179356A (en) 2007-11-28 2007-11-28 Data transmitting, receiving method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200710178304 CN101179356A (en) 2007-11-28 2007-11-28 Data transmitting, receiving method and device

Publications (1)

Publication Number Publication Date
CN101179356A true CN101179356A (en) 2008-05-14

Family

ID=39405460

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200710178304 CN101179356A (en) 2007-11-28 2007-11-28 Data transmitting, receiving method and device

Country Status (1)

Country Link
CN (1) CN101179356A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102369683A (en) * 2009-02-12 2012-03-07 新加坡科技研究局 A method of communication
CN101686547B (en) 2008-09-23 2012-04-25 电信科学技术研究院 Frequency domain configuration method of random accessing channel, system and device thereof
WO2013173992A1 (en) * 2012-05-23 2013-11-28 Renesas Mobile Corporation Method and apparatus for communicating with multicarrier mobile terminals
CN104079573A (en) * 2009-05-19 2014-10-01 安全第一公司 Systems and methods for securing data in the cloud
WO2014172911A1 (en) * 2013-04-27 2014-10-30 华为技术有限公司 Signal sending and detecting methods, transceivers, and control entity
CN104813591A (en) * 2012-12-27 2015-07-29 英特尔公司 Systems and methods for implementing soft-decision reed-solomon decoding to improve cable modem and cable gateway performance
CN104836764A (en) * 2014-02-10 2015-08-12 上海数字电视国家工程研究中心有限公司 Sending method and receiving method for physical frame
CN104994049A (en) * 2009-04-15 2015-10-21 Lg电子株式会社 Method and apparatus for transmitting and receiving broadcast signals
WO2016112775A1 (en) * 2015-01-12 2016-07-21 Huawei Technologies Co., Ltd. System and method for using semi-orthogonal multiple access in wireless local area networks
WO2017070860A1 (en) * 2015-10-28 2017-05-04 华为技术有限公司 Data processing method and apparatus
CN107610435A (en) * 2017-08-18 2018-01-19 中国科学院地质与地球物理研究所 High-speed logging telemetry communication method suitable for various types of cables
US9906500B2 (en) 2004-10-25 2018-02-27 Security First Corp. Secure data parser method and system
US10068103B2 (en) 2010-03-31 2018-09-04 Security First Corp. Systems and methods for securing data in motion
US10305645B2 (en) 2013-02-19 2019-05-28 Huawei Technologies Co., Ltd. Frame structure for filter bank multi-carrier (FBMC) waveforms

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9906500B2 (en) 2004-10-25 2018-02-27 Security First Corp. Secure data parser method and system
CN101686547B (en) 2008-09-23 2012-04-25 电信科学技术研究院 Frequency domain configuration method of random accessing channel, system and device thereof
CN102369683A (en) * 2009-02-12 2012-03-07 新加坡科技研究局 A method of communication
CN104994049A (en) * 2009-04-15 2015-10-21 Lg电子株式会社 Method and apparatus for transmitting and receiving broadcast signals
CN104079573A (en) * 2009-05-19 2014-10-01 安全第一公司 Systems and methods for securing data in the cloud
US10068103B2 (en) 2010-03-31 2018-09-04 Security First Corp. Systems and methods for securing data in motion
WO2013173992A1 (en) * 2012-05-23 2013-11-28 Renesas Mobile Corporation Method and apparatus for communicating with multicarrier mobile terminals
CN104813591A (en) * 2012-12-27 2015-07-29 英特尔公司 Systems and methods for implementing soft-decision reed-solomon decoding to improve cable modem and cable gateway performance
US10305645B2 (en) 2013-02-19 2019-05-28 Huawei Technologies Co., Ltd. Frame structure for filter bank multi-carrier (FBMC) waveforms
CN104380639B (en) * 2013-04-27 2017-08-11 华为技术有限公司 A signal transmitting and detecting method and a transceiver, the control entity
WO2014172911A1 (en) * 2013-04-27 2014-10-30 华为技术有限公司 Signal sending and detecting methods, transceivers, and control entity
CN104380639A (en) * 2013-04-27 2015-02-25 华为技术有限公司 Signal sending and detecting methods, transceivers, and control entity
CN104836764A (en) * 2014-02-10 2015-08-12 上海数字电视国家工程研究中心有限公司 Sending method and receiving method for physical frame
CN104836764B (en) * 2014-02-10 2019-02-26 上海数字电视国家工程研究中心有限公司 The sending method and method of reseptance of physical frame
WO2016112775A1 (en) * 2015-01-12 2016-07-21 Huawei Technologies Co., Ltd. System and method for using semi-orthogonal multiple access in wireless local area networks
US9614711B2 (en) 2015-01-12 2017-04-04 Huawei Technologies Co., Ltd. System and method for using semi-orthogonal multiple access in wireless local area networks
US10374771B2 (en) 2015-01-12 2019-08-06 Huawei Technologies Co., Ltd. System and method for using semi-orthogonal multiple access in wireless local area networks
WO2017070860A1 (en) * 2015-10-28 2017-05-04 华为技术有限公司 Data processing method and apparatus
CN107610435A (en) * 2017-08-18 2018-01-19 中国科学院地质与地球物理研究所 High-speed logging telemetry communication method suitable for various types of cables

Similar Documents

Publication Publication Date Title
CN102882665B (en) Method and apparatus for channel systems Ofdm interleaved
CN1300963C (en) Apparatus and method for transmitting and receiving additional information of partial transmission sequence at orthogonal frequency division multiplexing communication system
JP4130995B2 (en) In a multi-carrier transmission system, or improved about it
US7042367B2 (en) Very high data rate telemetry system for use in a wellbore
CN101809885B (en) Method and apparatus of improved circular buffer rate matching for turbo-coded mimo-ofdm wireless systems
EP2897300B1 (en) Transmitter and method for applying multi-tone ofdm based communications within a lower frequency range
CN1938975B (en) Apparatus and method for switching between an amc mode and a diversity mode in a broadband wireless communication
CN1939017B (en) Time filtering for excess delay mitigation in OFDM systems
CN101682451B (en) Methods and apparatus for mapping modulation symbols to resources in OFDM systems
CN101599945B (en) New frame and signalling pattern structure for multi-carrier systems
KR100742127B1 (en) Apparatus and method for transmitting/receiving uplink random access channel in ofdma mobile communication system
CN1777166B (en) Apparatus and method for acquiring synchronization in mobile communication system using OFDM scheme
CN102299886B (en) Apparatus and method for generating and transmitting a frame in a wireless communication system
JP3679722B2 (en) Enhanced bit-loading for the multicarrier communication channel
JP4130996B2 (en) In a multi-carrier transmission system, or improved about it
CN1849761B (en) Apparatus and method for reducing peak average power ratio in OFDM communication system
KR100575980B1 (en) Apparatus and method for minimizing peak to average power ratio in a communication system using orthogonal frequency division multiplexing scheme
CN101375531B (en) Hybrid multiple access apparatus and method in a mobile communication system
JP4130997B2 (en) Improvement of multi-carrier transmission system
CN102224719B (en) Efficient multiplexing of reference signal and data in a wireless communication system
ES2291272T3 (en) System and method of digital data transmission of point to multipoint grid.
CN101606338B (en) Method and apparatus for transmitting and receiving control information in a single carrier fdma system
CN103401571B (en) Method and apparatus for interleaving data in a mobile communication system,
CN100571239C (en) Synchronous pilot frequency sequence forming system and method in communication system
KR100539947B1 (en) Apparatus and method for transmitting/receiving pilot pattern for distinguish base station in communication using orthogonal frequency division multiplexing scheme

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
C02 Deemed withdrawal of patent application after publication (patent law 2001)