New! View global litigation for patent families

CN101176189A - 低介电常数隐晶层及纳米结构 - Google Patents

低介电常数隐晶层及纳米结构 Download PDF

Info

Publication number
CN101176189A
CN101176189A CN 200680017063 CN200680017063A CN101176189A CN 101176189 A CN101176189 A CN 101176189A CN 200680017063 CN200680017063 CN 200680017063 CN 200680017063 A CN200680017063 A CN 200680017063A CN 101176189 A CN101176189 A CN 101176189A
Authority
CN
Grant status
Application
Patent type
Prior art keywords
low
dielectric
constant
cryptocrystal
layers
Prior art date
Application number
CN 200680017063
Other languages
English (en)
Other versions
CN101176189B (zh )
Inventor
S·卡勒姆
Original Assignee
土耳其科学和技术研究委员会
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/26Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, elements provided for in two or more of the groups H01L29/16, H01L29/18, H01L29/20, H01L29/22, H01L29/24, e.g. alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer, carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer, carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28194Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation by deposition, e.g. evaporation, ALD, CVD, sputtering, laser deposition
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer, carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer, carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28211Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation in a gaseous ambient using an oxygen or a water vapour, e.g. RTO, possibly through a layer
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer, carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer, carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28264Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being a III-V compound
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer, carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer, carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30604Chemical etching
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer, carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer, carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers
    • H01L21/312Organic layers, e.g. photoresist
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer, carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer, carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28185Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation with a treatment, e.g. annealing, after the formation of the gate insulator and before the formation of the definitive gate conductor
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/511Insulating materials associated therewith with a compositional variation, e.g. multilayer structures
    • H01L29/513Insulating materials associated therewith with a compositional variation, e.g. multilayer structures the variation being perpendicular to the channel plane
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/16Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous

Abstract

本发明提供一种用于在现有技术半导体晶片上制造应用特性低介电常数(低k)隐晶层和用于由隐晶制造有机化的纳米结构的方法,并涉及到光学和电子器件,其可由这些材料获得。在此公开的结果表明使用化学汽相处理(CVP)的单晶基质的结构和化学成分的改性导致高质量隐晶层,所述隐晶层是均质的且与半导体晶片形成光滑界面。通过该方法,对于介电隐晶层形成可实现1μm/小时那样高的生长速度。本发明还提供一种方法,用于通过将隐晶转变成有机化的系统制造微米和纳米线。通过该方法,能制造尺寸从几纳米到1000纳米且长度达50微米的纳米线。隐晶、纳米线和有机化的结构可用在未来的互连中作为级间和金属间电介质,用在制造超高密度存储单元中,用在信息安全中作为密钥产生器,用在制造光电部件中,用在先进微米和纳米电子封装和传感器中的制造冷却通道中。

Description

低介电常数隐晶层及纳米结构

技术领域

本发明涉及一种低介电常数隐晶,其可与下一代集成电路和器件 结合使用。隐晶表示一种如此精细地成粒状以致在光学显微镜下甚 至在电子显微镜下不能分辨出不同的颗粒的材料。具有这种微小晶 体的以这种方式设置的物质的状态称作隐晶。这种类型的晶体能显 示出特别的介电特性,其可用于多种领域中。

本发明涉及到隐晶且特别涉及到氟化珪铵(Ammonium Silicon Fluoride) ( ASIF ),其已经从现有技术晶片获得,并且具有一般 式(NH4) 2XF6 (其中X=Si、 Ge、 C),被称作'氟化X铵,。

背景技术

关于上述光学特性介电氟化X铵隐晶在文献中没有报道。

当氟化铵NHJ与晶片表面上的Si反应时显示在硅晶片上形成了 氟化珪铵(ASiF )材料[M. Niwano, K. Kurita, Y. Takeda和 N.Miyamoto, Applied Physics Letters 62, 1003 ( 1993 )]。

如在另一文献中说明的,在等离子体辅助半导体清洗和沉积处理 期间在真空室的壁上和真空排气线中发现了氟化硅铵[S.Munley, I. McNaught, D. Mrotek,和C. Y. Lin, Semiconductor International , 10/1, ( 2001 )]。

也已经表明,使用HF/HN03能从多孔硅获得氟化硅铵的发光粉末 [M. Saadoun , B. Bessais, N.Mliki, M. Ferid, H/Ezzaouia 和 R. Be纖ceur, Applied Surface Science 210, 240 ( 2003 )〗。

相似;也, [H.0gawa, T.Arai, M.Yanagisawa, T.Ichiki 和 Y.Horiike, Jpn. J. Applied Physics 41, 5349 ( 2002 )]已经示 出,当剩余的天然(natural)氧化物与晶片表面上的热铵(NH3)和 氟化氮(NFO反应时,氟化硅铵形成于硅晶片上。

而且,才艮道了当HF和NH3气体于真空下在Si02上反应时形成了 氟化珪铵[P. D. Agnel lo, IBM J. of Research and Development 46, Number 2/3, 2002)]。

在上述文献中没有应用特性隐晶结构。而且,在这些文献中,获 得的是一种无意的、无规则的、杂乱且被产物污染的氟化硅铵。

文献中没有关于氟化x铵的微米和纳米线的报道。(x-硅、锗、 金刚石)

关于氟化X铵隐晶的介电常数能在很大范围内被调节且其可用

作绝缘体的事实没有报道。

微电子线路和纳电子线路是本发明最重要的应用领域。根据

International Road Map for Semiconductors (ITRS) [C.Case, Solid State Technology, Jan., 47(2004)] [P.Zeitzoff, R.W.Murto, H.R.Huff, Solid State Technology, 71 (2002)],半 导体工业需要一种低介电常数(k)的金属间绝缘体,对于高性能互 连其介电常数大大低于k=3. 0。因此,开发一种与下一代集成电路 (IC)制造相兼容的低k电介质是非常重要的。另一方面,继续努 力寻找一种用于50纳米制造节点中的1纳米以下CMOS栅绝缘的高k 电介质。本发明还利用隐晶层提供一种高k问题的解决方案,通过 扩散可以将隐晶层的介电常数设置为所需值。

才艮据历史上的摩尔定律[G. E. Moore, Electronics 38, 114 (1965)] [G. E. Moore, IEDM Technical Digest, Washington DC, 11 (1975)],在CMOS技术中继续按比例缩小。需要多级金属化以适

应多个有源元件的信号集成。这些金属互连中的电阻和寄生电容是 限制下一代系统中IC性能的重要因素。这引起工业从铝/Si(h转移 向铜/低k结构。虽然铜降低了线电阻,但是低k电介质降低了金 属线之间的寄生电容。

为了克服晶体管尺寸的按比例缩小中的困难,每单位面积的电容 要保持恒定。因此,需要一种高k值电介质。这些电介质可以是氧 化物和珪酸盐如Ah(h、 Zr(h、 ,2。 C.J. Parker, G. Ucovsky和 J.R. Hauser, IEEE Electron. Device Lett. ( 1998 ) ; Y. Wu和 G. Ucovsky, IEEE Electron. Device Lett ( 1998 ) ; H-Yang和 G. Lucovsky, IEDM Digest, ( 1999 )已经提出了 <吏用这些材料的解 决方案。然而,对于克服关于经济成本和界面缺陷数量存在非常困 难的挑战。本发明的隐晶技术能提供该领域中的潜在解决方案。例 如,保持原生(native)栅极氧化物的优点,可以使用隐晶形成高k电介质。

集成电路中的金属线通过介电绝缘体相互电绝缘。随着IC尺寸

变得更小,金属线之间的距离降低,由此导致增加的电容。这导致

RC延迟,功率损失,电容感应信号或串扰。需要低介电常数绝缘层 代替Si(h。

使用具有低于Si(h的介电常数的介电常数的聚合物作为互连绝 缘体。但是,聚合物不坚固的事实是重要的缺点。

掺杂碳的氧化物是低k电介质的解决方案。可以获得具有小于 3.0的介电常数的氧化物。然而,关于使用寿命其表现出很大的缺点。

IC制造中通过降低有源电路元件的尺寸获得的性能特性在互连 和封装元件中可能会损失。在这种情况下,不是晶体管的速度而是 互连的RC延迟变得重要。而且,随着降低尺寸,需要更深的金属线, 由此使得金属间电容比级间电容更重要。为了克服这些困难,需要 极好的低k电介质和新的制造方法。当前的低k电介质由氧化物和 聚合物构成。隐晶可以是潜在的解决方案。由此,能通过避免相邻 电路之间的串扰实现高性能IC。

一种解决方案是使用气隙降低电容的方法[B. Shieh等人,IEEE Electron Device Letters, 19, no. 1, p. 16-18 ( 1998 )〗[D丄 Wollesen, Low capacitance interconnection, 美国专利号 No: 5, 900, 668, 1999年5月4日提交]。在这些解决方案中,Si02已经 用作级间和金属间电介质。美国专利号Nos.US 5, 470, 802, US 5,494, 858、 US 5, 504, 042和US 5, 523, 615专利涉及通过气隙降寸氐 电容的可能性。但是在这些方法中,粗糙的(harsh)化学物质应当 用于形成气隙。隐晶技术在制造气隙中可提供更简单、无损伤、低 成本的解决方案。

发明内容

本发明涉及ASiF隐晶,其介电值能通过几种方法调节并且能在 Si和Si基晶片上合成。通过扩散,ASiF隐晶的介电常数能从其最 小值1. 50调节到较高得多的值(所需的)。由此,隐晶能具有其它 特性如铁电体性和光发射。

本发明对于低成本和高性能的低k技术提供一种重要的替换方 案。因为其是从潜在的集成电路晶片获得的并具有低于2. 00的介电 常数。该值比2007年及之后的ITRS所预测的更小。

本发明在Si CMOS技术和GaAs技术中、在增加异质结双极型晶 体管(HBT)特性、高密度信息存储和信息安全、微电子封装、光电 部件制造、IC系统冷却、技术集成和传感器制造方面具有重要的应 用。

附图说明

以下的图涉及到隐晶特性、隐晶层制造方法和能使用隐晶层的器件。

图1,隐晶制造装置,其由聚四氟乙烯制成,由包含液体的腔室 和隐晶制备夹具(hoder)构成。

图2,其中设置了晶片的样本夹具的详细绘图。

图3,在极化光学显微镜下获得的用上述装置生长的隐晶层的表 面图像。该图像示出了存在多孔、复杂且难分辨的粒状结构。

图4,利用扫描电子显微镜(SEM)在3. 000放大倍数下获得的 隐晶层的截面显微照片。隐晶结构的细节与图3相比能更好地看到。 该隐晶层的厚度是21 ym。

图5,用7.500的放大倍数以SEM看到的隐晶和晶片之间的界 面。清楚地示出了表面质量和隐晶从晶片的衍生。存在相对光滑的 界面且隐晶层很好地贴附到晶片。

图6, X射线衍射分析示出了层是(NHO 2SiF6,且晶体属于具有 Fm3m空间群的(4 / m — 32 / m )等3巨六/\面体(isometric hexoctahedral )系[W. L. Roberts, G. R. Rapp和T. J. Cambell, Enc. of Minerals, 2ndEd. , Kluwer Academic Publ is hers, Dordrecht, 1990 ]。

图7, X射线衍射分析的结果已经借助通过存在(NHO 2SiFs分组 的振动模式的FTIR分析而被证实。该分析表示所观察的在480cm—\ 725cm—\ 14 33cm—1和3327cm—1的振动模式属于N-H和Si-F结合 (bonding )。

图8,示出了在ASIF表面发生的改变和在退火之后介电结构的 性能。尽管在退火期间不保护该表面,但是在20(TC之后仍有一部分

粘着到该表面。而且,多种尺寸的体晶体形成于该表面上。

图9,可以选择性地写到晶片表面上,以不使用光刻而形成光刻 结构。该图示出了使用隐晶方法选择性写入的结果。

图10,隐晶的另一个重要特征在于其能被转变成微米和纳米 线。可以形成直的线且尺寸在从几纳米到1000nm的范围内,如图中 所示。通过该方法,可以制造长度高达100mm的直的线。

图11,示出使用隐晶作为场效应晶体管中的绝缘层。源极和漏 区位于第 一 表面中且隐晶处于两个区域之间。隐晶直接集成到天然 栅极氧化物且其介电常数通过扩散被调节到所需值。在笫二种情况 中,在隐晶和衬底之间存在原生氧化物。

图12,该图示出了在基极-集电极和源极-集电极之间的电容 可以怎样使用隐晶方法被降低。

图13,用于产生随机数的隐晶芯片。隐晶层形成窗口且正好位 于激光器或者LED腔前面。

图14,通过隐晶层的激光散射和使用隐晶芯片产生物理单向函 数(one—way function)。

以下给出图中的数字和其相应部分:

1. 晶片或衬底

2. 气体排气通道

3. 聚四氟乙烯容器

4. 蒸汽室

5. 化学混合物

6. 温度计

7. Ph计

8. 聚四氟乙烯块

9. 液体提取阀

10. 氮闪蒸阀(flashing valve)

11. 工艺室口

12. ASiF隐晶

13. 晶片和隐晶界面

14. ( 111 )主衍射峰

15. 单ASiF晶体16. 选择性形成于Si上的隐晶点17. ASiF孩t米和纳米线18. N-H振动模式19. Si-0振动模式20. Si-F振动模式21. 变形模式22. 晶体管栅极金属23. 晶体管源极金属24. 源极25. 漏极金属26. 漏极27. 栅极氧化物层(SiOO28. HBT集电极29. 隐晶HBT源区30. 隐晶HBT漏区31. 异质双极型晶体管(HBT)基区32. VECSEL有源区33. 保护层34. 绝缘体35. 顶部布拉格反射器36. 底部布拉格反射器37. 隐晶透明窗口38. 通过隐晶的He-Ne激光散射

具体实施方式

已经研究出一种用于在硅(Si)和Si基晶片上合成氟化硅铵 (ASiF)的方法。在该方法中,我们使用我们已经研究出的汽相生 长技术[S. Kalem和0. Yavuz, OPTICS EXPRESS 6, 7 ( 2000 )]。 通过该方法,我们通过使氢氟酸(HF)和硝酸(HNOO的蒸汽在晶片 表面上反应来生长隐晶层。具有白粒状颜色的隐晶层在晶片上以1 ym/小时的生长速度合成。

该技术的优点是:i)不需要电接触,ii)可以在表面上选择性 写入,iii)层是同质的,iv)能控制厚度,v)在蚀刻工艺中可以 形成扩散阻挡,vi )与其它常规技术相比节省成本,vii)具有隐晶 特性。

当常规化学制剂的混合物蒸汽在晶片上反应时,隐晶氟化硅铵层 (NHO 2SiF6 (ASiF)形成于现有技术晶片上。该方法称作化学汽相 处理(CVP)并包括以下步骤:

a) 准备聚四氟乙烯生长室和超声清洗工艺;

b) 制备化学制剂混合物,其含有HF:HN(h且比率为(4-10): (1-8)以及25 - 50 °/q氢氟酸(hf)和55% -75%硝酸(hn03);

c) 用氮气冲洗混合物并以一片晶片共腾(priming)该混合物 10秒;

d) 用待处理的晶片完全封闭室口;

e) 确保反应产物通过排气通道从腔室中排空; f )控制Ph和温度;

g) 通过在晶片上HF和HN03种类之间的遵循以下反应式的硅居 间耦合反应,隐晶层形成于晶片上:

x+6hf+2画"(nho 2xf6+302 其中X可以是Si、 Ge或C。

h) 晶片以1 Mm的速度转变成隐晶层;

i) 可以退火隐晶层并且能增强其强度和密度;

j )在氮气氛下在50'C以上将隐晶转变为纳米结构且特别是微米 和纳米线。

这里是在隐晶层制造中使用的晶片特性:

1. 在5 - 10欧姆-cm之间的电阻率

2. p型、硼掺杂、(100)和(111)取向的Si

3. n型、磷掺杂、(100)和(111)取向的Si

4. 在硅Si02/Si上的硅原生氧化物(热氧化物)

5. 化学计量的珪上Si晶(Si/SiD 6.SiHGex, x < 0. 3 ( Si上Sh-xGeO

隐晶制造装置由衬底(1 )、用于产物(2)反应的气体排气通道、 聚四氟乙烯容器(3)、蒸汽处理室(4)、化学制剂液体混合物(5)、 Ph计(7)、化学制剂液体提取门(9)、加热器块(8)和温度控制

器(6)、室口和样品夹具(11)以及氮闪蒸(10)。

隐晶层由不可辨别的颗粒(12)形成,如通过光学极性显微镜和

甚至通过扫描电子显微镜(SEM)表明的。此外,其具有光滑界面U3)

并且很好地集成到晶片上,如SEM界面研究所表明的。

X射线衍射分析表明隐晶优先在<111>方向(IO上生长。衍射

峰及其相对强度在表l中总结。

表1,总结在ASiF隐晶中观察到的衍射峰的X射线衍射数据。

其中,teta、 d和I/I1分别是衍射角度、平面之间的距离和标准化

的衍射强度。

<table>table see original document page 14</column></row> <table>

具有白色的隐晶(12)以规则薄层形式形成于晶片(1)上。退 火试验表明ASiF停留在高达约150。C的表面上。其在该温度以上分 解。

根据退火温度,ASiF的体晶(15)形成于该表面上。这些晶体 的尺寸可以高达15 "m x 30 "m。

隐晶可选择性地实现为晶片上的点U6)。

制造尺寸从几纳米直到一微米且长度高达50|im的纳米线 (17)。而且,制造多种纳米结构且特别是纳米支路。

ASiF隐晶的室温光学特性显示出振动峰,如表2中所总结的。 频率与ASiF中N-H ( 18) 、 Si-0(19)和(ve ) Si-F (20)的各种结合 结构的振动相关。Si-0振动与界面处原生氧化物层的存在有关。

表2, ASiF隐晶的FTIR数据总结,其中VS:非常坚固,S:坚固, M:中间,W:弱,VW:非常弱。

表2

<table>table see original document page 15</column></row> <table>FTIR分析表明ASiF在3/am(18)、 7pm(18)、 13. 6ym(20) 和20. 8 jam ( 21 )具有强吸收凹槽,且由此其可用在光学应用中。

本发明涉及到在集成电路中使用隐晶。在场效应晶体管(FET) 中,源区(24)和漏区(26)设置于第一表面中且在晶片内,并且 晶体管栅极(22 )或者沟道绝缘层(12 )位于这些区域之间。沟道 绝缘层(12)由隐晶材料形成。具有其可调的介电常数值的ASiF隐 晶可最小化FET中的漏电流由此产生优势。在FET中,隐晶电介质 直接形成与晶片的界面,由此降低漏电流。在其他情况下,能将薄 原生氧化物(27)保持在隐晶和晶片之间。后一结构在降低界面处 的状态密度方面是有效的。

在本发明的另一应用中,隐晶层位于(异质双极型晶体管,HBT) 晶体管中的源极(23)-集电极(28)和漏极(2" -集电极(28) 之间,以降低电容并由此提高HBT的高频性能。上述电容在m-v族 化合物半导体基(GaAs/AlGaAs bazh ) HBT [ M. Mochizuki , T.Nakamura, T. Tanoue和H.Masuda, Sol id State Electronics 38, 1619 ( 1995 )]和SiGe基HBT [ U. K6nig和H. Dambkes, Solid State Electronics 38, 1595 ( 1995 )]中起到非常重要的作用。在这种 器件中,隐晶层位于基区(31)的两側和源区(29)和漏区(30) 的下方。在该结构中,在形成晶体管结构之后,基极的两侧已经使 用上述方法被转变成低介电常数隐晶区。

通过增加对超高密度和高速应用的需要,对新的高性能信息存储

系统有增力口的兴趣[H. Coufal和G. W. Burr, International Trends in Optics, 2002 ][美国专利号No. 6, 846, 434 ]。在本发明的另一 应用中,我们提供了解决高性能信息存储的替换解决方案。使用隐 晶,可以在电子晶片上获得超高密度存储单元(20)。在该应用中, 已经可以在硅基晶片上通过形成隐晶单元(16)选择性写入。隐晶 在相对低的温度下可能具有相位变化(16)的事实提供了擦除和改 写的可能性。由此,低温下的快速相位变化特征能实现快速写入应 用。而且,通过ASiF隐晶的8. 5nm单位单元尺寸,可获得数量级为 Tb/cm2的信息存储密度。在该领域中由隐晶技术引入的新颖性在于: i )可以在微电子晶片上写入而不进行光刻,ii )以Tb/cm"的范围提 供高密度信息存储,iii)高速擦除和改写。

在信息安全应用中,隐晶用在垂直腔激光器或者LED中 [A. C. Tpper , H. D. Foreman , A. Garnache , K.G.Wilcox , S. H. Hoogland, J. Phys. D: Appl. Phys. 37, R75 ( 2004 )],正好在 有源区(32)和顶部布拉格反射器(35)上方形成隐晶窗口 ( 37)。 由此,激光器或LED表面已经被转变成透明窗口 。在此,ASiF必须 通过帽盖层(33)保护。利用这种激光器/LED芯片能产生物理单向 函数。He-Ne激光器自ASiF (38)的散射示出了可行性。该散射表 明存在随机结构。这证明在信息安全中隐晶可用于产生安全密钥。 与CMOS应用[A. Fort,F. Cort igiani , S. Rocchi和V. Vignol i , Analog Integrated Circuits and Signal Processing 34, 97 (2003)] 和使用无源元件的其它光学应用[R.Pappu, B.Recht, J.Taylor和 N. Gershenfeld, Science 297, 2026 ( 2002 )]相比,该方法更力口 节省成本且能够更好地集成到IC。

本发明能用于将两个晶片结合在一起。该方法包括通过CVP和在 高温在H20、氮气或氢气(HO下将两个晶片按压到一起在两个晶片 的表面上形成隐晶层。

Claims (30)

1.一种用于在现有技术半导体晶片上超声清洗之后在聚四氟乙烯容器中合成光学特性隐晶和纳米结构的方法,该隐晶具有低介电常数,该介电常数能被调节且可以具有磁性和光学发射特征,该方法包括以下步骤: a)在聚四氟乙烯容器(3)中对选自HF、HCl、HNO3、H2SO4酸的组的化学制剂混合物进行闪蒸和共腾且形成化学制剂蒸汽, b)用将被处理的晶片覆盖反应室的室口, c)通过排气通道(2)排空产物反应和反应室中的过压, d)将温度(6)和Ph(7)值分别调整在10℃-50℃和1-6之间, e)使选自HF、HCl、HNO3、H2SO4酸的组和H2O的化学制剂混合物蒸汽在晶片表面上反应,由此以高质量的界面(13)将晶片表面转变成隐晶, f)通过热固化增强隐晶的强度和密度, g)一种用于在隐晶层上生长金刚石、SiC、III-V族半导体和氮化物如GaN、InN、AlN和II-VI族半导体如ZnSe、CdSe、CdS的节省成本的外延层的方法, h)通过加热和/或通过金属蒸发在氮气氛下将隐晶层转变成微米和纳米线(21)。
2. 如权利要求1的在砷化镓和/或硅基晶片上超声清洗之后在 聚四氟乙烯容器中合成光学特性隐晶和纳米结构的方法,该隐晶具 有低介电常数,该介电常数能被调节并可以具有磁性和光学发射特 征,该方法包括以下步骤:a) 对选自HF、 HC1、 HNO3、 H2S04的组的化学制剂混合物进行闪蒸和共腾,并以由砷化镓和/或硅基晶片构成的一片晶片共腾该混合物5 - 30秒,b) 用将被处理的晶片覆盖反应室的室口 ,c) 通过排气通道排空产物反应和反应室中的过压,d )将温度(6 )和Ph ( 7 )值分别调整在10℃ - 50℃和1 - 6之间,e)使选自HF、 HC1、 HBR、 HN(h、 H2S04酸的组和H20的化学制剂混合物蒸汽在晶片X (X=Si、 Ge、 C、 GaAs)表面上以X居间反应进 行反应,由此将晶片表面转变成隐晶,f) 通过扩散元素如C、 N、 O和金属到隐晶基质中以及通过在50 -400℃之间的可编程退火增强隐晶层的强度,g) —种用于在隐晶层上生长金刚石、SiC、 III-V族半导体和氮 化物如GaN、 InN、 A1N和II-VI族半导体如ZnSe、 CdSe、 CdS的节省 成本的外延层的方法,h) 在30℃- 200℃在氮气氛下和金属蒸发将隐晶层转变成微米 和纳米线(21 )。
3. 如权利要求2的在硅基晶片上超声清洗之后在聚四氟乙烯容 器中合成光学特性氟化硅铵(ASiF)隐晶和纳米结构的方法,该隐 晶具有低介电常数,该介电常数能被调节并可以具有磁性和光学发 射特征,该方法包括以下步骤:a) 对选自HF、 HN03、 H20的组的化学制剂混合物进4亍闪蒸和共 腾,并以由硅基晶片构成的一片晶片共腾该混合物5- 30秒,b) 用将被处理的晶片覆盖反应室的室口,c) 通过排气通道排空产物反应和反应室中的过压,d) 将温度(6 )和Ph ( 7 )值分别调整在10℃ - 50℃和1 - 6之间,e) 使HF、 HN03、 H20的蒸汽在晶片表面上以硅居间反应进行反 应,由此将晶片表面转变成隐晶,f) 通过扩散元素如C、 N、 O和金属到隐晶基质中以及通过50-400℃之间的可编程退火增强隐晶层的强度,g) —种用于在如此生长的隐晶层上生长金刚石、SiC、 III-V族 半导体和氮化物如GaN、 InN、 A1N和II- VI族半导体如ZnSe、 CdSe、 CdS的节省成本的外延层的方法,h) 在30℃ - 200℃在氮气氛下和/通过金属蒸发将隐晶层转变 成微米和纳米线(21 )。
4. 如权利要求3的方法,其中,在50℃在氮气氛下制造的纳米 结构具有从几纳米至一微米的横向尺寸且长度高达50微米,其中所 述纳米线和孩i米线由ASIF制成。
5. 如权利要求3的方法,其中具有波导和电子传导沟道以及颜色中心的纳米结构能使用隐晶通过高功率脉冲激光获得。
6. 如权利要求3的方法,其中化学制剂是氢氟酸(HF)和硝酸(HNO3)。
7. 如权利要求6的方法,其中酸的体积比是HF: HNO3为(4-10):(l-8)。
8. 如权利要求7的方法,其中所使用的酸是电子级的且按重量为%25-50氲氟酸和%55-75硝酸。
9. 如权利要求3的方法,其中根据应用类型具有所需厚度或深度的同质隐晶层已经生长在现有技术硅基晶片上。
10. 如权利要求3的方法,其中现有技术晶片包括氮化硅 (Si3Ni4、 二氧化硅(SiO2 、硅锗合金(Sil-xGex)和碳化硅。
11. 如权利要求10中的转变所述晶片的方法,其中Ge比率在 o.o1和o.50之间。
12. 如权利要求3的隐晶生长的方法,其中隐晶生长速率是每小时1微米。
13. 如权利要求3的隐晶生长的方法,其中所述隐晶层能用在节省成本的晶体生长中,其包括:a) 在所述晶片上形成隐晶层,b) 增强隐晶层特性和表面制备,c) 生长IV族半导体如金刚石、SiC; 氮化物如GaN、 InN、 A1N 和II - VI化合物半导体如ZnSe、 CdSe、 CdS,d) 从隐晶剥离半导体层。
14. 如权利要求3的方法,其中隐晶是无机物且其介电常数是可调的。
15. 如权利要求14的方法,其中隐晶的介电常数能通过蒸发和扩散调整。
16. 如权利要求15的方法,其中隐晶的介电常数低于2.0且根据应用,所述介电常数能通过元素结合被设置在所需值。
17. 如权利要求3的隐晶层和纳米结构生长的方法,其中所述隐晶能具有磁性和光学发射特性且其介电常数能从1.5被调整为所需值。
18. 如权利要求3的方法,其中退火通过热加热和辐射(红外和紫外)实现。
19. 具有互连的集成电路系统,包括:a) 互连晶片上的电子器件的金属线,b) 其中隐晶电介质根据我们的CVP方法制备,其中所述隐晶具有低介电常数,c )通过使用隐晶方法形成的在信号承载金属线之间的气隙。
20. 如权利要求19的互连器件,其中金属传导线由银、铜、铝或金制成。
21. 如权利要求19的互连器件,其中所述隐晶是硅、锗或GaAs 基的。
22. 如权利要求19的互连系统,其中所述晶片是硅、锗、砷、陶 瓷或玻璃基的。
23. 如权利要求19的互连系统,其中金属线之间的隐晶的介电常数低于2. 0。
24. —种用于低k解决方案的方法,其中保持了原生氧化物优势且通过引入高介电常数绝缘体解决了由原生氧化物引起的漏电流问题,其包括:a) 通过热氧化在晶片上形成具有所需厚度的原生氧化物 (SiO2),b) 通过CVP方法将原生氧化物的顶部转变(12)为隐晶,c) 在1,5-15之间的值调整(13)隐晶的介电常数,d) 保持电子传导所需的高质量界面并由此避免漏电流。
25. 异质结双极型晶体管(HBT)器件,其中基区的左和右侧由硅基材料制成,其中在源区(23)和漏区(25)下方在源极(29)-集电极(28 )和漏极(30 )-集电极(28 )之间的区域被转变成通过CVP方法制造的隐晶。
26. 如权利要求25的异质双极型晶体管器件,其中所述晶体管可以由III - V化合物半导体如(Ga, Al ) As、 ( In, Ga ) As、 ( In, Ga) P的组合制造,其中在源极和漏极下方的基区由硅基材料制成。
27. 如权利要求25的晶体管器件,其中所述晶体管由III 族氮化物 如(Ga, Al ) N、 ( In, Ga ) N、 ( In, Al ) N的组合制成。
28. —种器件,用于产生物理单向函数和随机数(39)的安全芯片以及使用这些器件的信息处理系统,其是通过CVP制造的,其中 隐晶(12)形成透明窗口 ( 13)和位于面发射激光器或LED中的有 源区(32 )和布拉格反射器(35 )的顶部上的保护层。
29. —种用于结合两个不同晶片的方法,其中隐晶通过CVP方法 形成于两个晶片的表面上,其中两个表面在高温下于H20、氮气或氢 气下被按压到一起。
30. 光电器件,其中隐晶和隐晶方法用于制造激光器、LED、微处 理器和光学器件。
CN 200680017063 2005-03-16 2006-02-08 低介电常数隐晶层及纳米结构 CN101176189B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
TR200500923 2005-03-16
TR2005/00923 2005-03-16
PCT/IB2006/050406 WO2006097858A3 (en) 2005-03-16 2006-02-08 Low-dielectric constant cryptocrystal layers and nanostructures

Publications (2)

Publication Number Publication Date
CN101176189A true true CN101176189A (zh) 2008-05-07
CN101176189B CN101176189B (zh) 2011-05-11

Family

ID=36992107

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200680017063 CN101176189B (zh) 2005-03-16 2006-02-08 低介电常数隐晶层及纳米结构

Country Status (7)

Country Link
US (1) US20080191218A1 (zh)
EP (1) EP1878043A2 (zh)
JP (1) JP5112289B2 (zh)
KR (1) KR20070112410A (zh)
CN (1) CN101176189B (zh)
CA (1) CA2602365C (zh)
WO (1) WO2006097858A3 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007197302A (ja) * 2005-12-28 2007-08-09 Sumitomo Electric Ind Ltd Iii族窒化物結晶の製造方法および製造装置
US20130009128A1 (en) * 2010-03-31 2013-01-10 Gilberto Ribeiro Nanoscale switching device
CN102184873B (zh) * 2011-04-21 2012-10-10 北京科技大学 一种快速制备金刚石-碳化硅电子封装材料的方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1955821A (en) * 1929-06-14 1934-04-24 Ac Spark Plug Co Ceramic process
JPH0810672B2 (ja) * 1987-07-03 1996-01-31 富士通株式会社 平板の接着方法
JP2766992B2 (ja) * 1989-07-14 1998-06-18 富士通株式会社 半導体装置の製造方法
EP0473509A3 (fr) * 1990-08-29 1992-03-18 Rhone-Poulenc Chimie Procédé de préparation de zéolithes à base de silice et éventuellement d'oxydes d'éléments tétravalents
JPH07283381A (ja) * 1994-04-08 1995-10-27 Canon Inc 貼合わせ半導体基体の製造方法
US5470802A (en) * 1994-05-20 1995-11-28 Texas Instruments Incorporated Method of making a semiconductor device using a low dielectric constant material
JP3753805B2 (ja) * 1996-09-19 2006-03-08 株式会社東芝 半導体試料の分解装置および試料分解方法
JPH10158010A (ja) * 1996-11-26 1998-06-16 Matsushita Electric Works Ltd 酸化珪素被膜の製造方法
US6468927B1 (en) * 2000-05-19 2002-10-22 Applied Materials, Inc. Method of depositing a nitrogen-doped FSG layer
JP2002039927A (ja) * 2000-07-19 2002-02-06 Toshiba Ceramics Co Ltd シリコンウェーハ表層の部分分析方法
JP2004123484A (ja) * 2002-10-04 2004-04-22 Crystal System:Kk 金属酸化物膜およびその用途
JP4310415B2 (ja) * 2003-04-28 2009-08-12 財団法人新産業創造研究機構 液相析出法によるマイクロパターニング方法
US7279369B2 (en) * 2003-08-21 2007-10-09 Intel Corporation Germanium on insulator fabrication via epitaxial germanium bonding

Also Published As

Publication number Publication date Type
EP1878043A2 (en) 2008-01-16 application
CN101176189B (zh) 2011-05-11 grant
KR20070112410A (ko) 2007-11-23 application
WO2006097858A3 (en) 2007-07-19 application
US20080191218A1 (en) 2008-08-14 application
CA2602365C (en) 2017-05-09 grant
JP5112289B2 (ja) 2013-01-09 grant
WO2006097858A2 (en) 2006-09-21 application
JP2008537844A (ja) 2008-09-25 application
CA2602365A1 (en) 2006-09-21 application

Similar Documents

Publication Publication Date Title
Heyns et al. Ultimate scaling of CMOS logic devices with Ge and III–V materials
Gusev et al. Microstructure and thermal stability of HfO 2 gate dielectric deposited on Ge (100)
Derycke et al. Nanochemistry at the atomic scale revealed in hydrogen-induced semiconductor surface metallization
US6091081A (en) Insulating film comprising amorphous carbon fluoride, a semiconductor device comprising such an insulating film
US7399666B2 (en) Atomic layer deposition of Zr3N4/ZrO2 films as gate dielectrics
US20060177975A1 (en) Atomic layer deposition of CeO2/Al2O3 films as gate dielectrics
US20070048989A1 (en) Atomic layer deposition of GdScO3 films as gate dielectrics
US20080029790A1 (en) ALD of silicon films on germanium
US20090117715A1 (en) Semiconductor device fabricated by selective epitaxial growth method
US20050104142A1 (en) CVD tantalum compounds for FET get electrodes
Qi et al. Electrical and reliability characteristics of ZrO 2 deposited directly on Si for gate dielectric application
US6103567A (en) Method of fabricating dielectric layer
US20070066010A1 (en) Method of manufacturing semiconductor device
Kim et al. Effects of crystallization on the electrical properties of ultrathin HfO 2 dielectrics grown by atomic layer deposition
US20060043492A1 (en) Ruthenium gate for a lanthanide oxide dielectric layer
US6939748B1 (en) Nano-size semiconductor component and method of making
US20080293255A1 (en) Radical oxidation process for fabricating a nonvolatile charge trap memory device
US7727908B2 (en) Deposition of ZrA1ON films
Okamoto et al. Synthesis and modification of silicon nanosheets and other silicon nanomaterials
WO2002058130A1 (en) Method for producing material of electronic device
Ho et al. Nanoscale doping of InAs via sulfur monolayers
Bauer et al. Position controlled self-catalyzed growth of GaAs nanowires by molecular beam epitaxy
Samanta et al. Tungsten nanocrystals embedded in high-k materials for memory application
Xu et al. Quasi-aligned ZnO nanotubes grown on Si substrates
Osten et al. Introducing crystalline rare‐earth oxides into Si technologies

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
C14 Granted