CN101149147A - Dispersion Combustion Method for Fully Premixed Natural Gas Catalytic Combustion Device - Google Patents
Dispersion Combustion Method for Fully Premixed Natural Gas Catalytic Combustion Device Download PDFInfo
- Publication number
- CN101149147A CN101149147A CNA2007100360416A CN200710036041A CN101149147A CN 101149147 A CN101149147 A CN 101149147A CN A2007100360416 A CNA2007100360416 A CN A2007100360416A CN 200710036041 A CN200710036041 A CN 200710036041A CN 101149147 A CN101149147 A CN 101149147A
- Authority
- CN
- China
- Prior art keywords
- combustion
- catalytic
- catalytic body
- gas
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 title claims abstract description 52
- 238000007084 catalytic combustion reaction Methods 0.000 title claims abstract description 33
- 239000003345 natural gas Substances 0.000 title claims abstract description 23
- 238000009841 combustion method Methods 0.000 title claims abstract 3
- 239000006185 dispersion Substances 0.000 title abstract description 4
- 238000002485 combustion reaction Methods 0.000 claims abstract description 57
- 230000003197 catalytic effect Effects 0.000 claims abstract description 49
- 230000036760 body temperature Effects 0.000 claims 1
- 230000001413 cellular effect Effects 0.000 claims 1
- 238000011144 upstream manufacturing Methods 0.000 claims 1
- 239000007789 gas Substances 0.000 abstract description 43
- 238000012546 transfer Methods 0.000 abstract description 15
- 230000005855 radiation Effects 0.000 abstract description 14
- 239000001301 oxygen Substances 0.000 abstract description 11
- 229910052760 oxygen Inorganic materials 0.000 abstract description 11
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract description 7
- 230000008901 benefit Effects 0.000 abstract description 7
- 238000005516 engineering process Methods 0.000 abstract description 4
- 239000003054 catalyst Substances 0.000 description 8
- 239000000446 fuel Substances 0.000 description 8
- 238000000034 method Methods 0.000 description 5
- 239000000779 smoke Substances 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 239000011148 porous material Substances 0.000 description 4
- 230000004913 activation Effects 0.000 description 3
- 239000003245 coal Substances 0.000 description 3
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000003344 environmental pollutant Substances 0.000 description 2
- 239000003546 flue gas Substances 0.000 description 2
- 231100000719 pollutant Toxicity 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 241000282414 Homo sapiens Species 0.000 description 1
- 244000171022 Peltophorum pterocarpum Species 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000004200 deflagration Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 239000002737 fuel gas Substances 0.000 description 1
- 239000000295 fuel oil Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000004449 solid propellant Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Images
Abstract
一种综合分级燃烧、催化体非定向辐射传热和大火焰定向辐射传热技术优势的全预混型催化燃烧装置弥散燃烧方法。本发明包括预混室,均孔支撑板和中温型蜂窝催化体。天然气和空气全部通入预混室,催化体下游气相空间壁温>800℃,催化体温度600~1000℃,催化体厚度25~50mm且预混气流过催化体时间<0.1s,供应2~3.75倍理论燃烧所需空气。催化燃烧消耗的燃气份额与空气供应成正比,流出催化体预混气温度>800℃且含氧浓度<15%,催化体下游组织弥散燃烧并消耗剩余可燃气。发明简便安全,热效率>98%,CO排放<600ppm,NOx排放<25ppm。燃用天然气或富甲烷气的催化燃烧锅炉及炉窑可使用本发明。
A fully premixed catalytic combustion device dispersion combustion method that integrates the advantages of staged combustion, non-directional radiation heat transfer of catalytic body and large flame directional radiation heat transfer technology. The invention includes a premixing chamber, a support plate with uniform holes and a medium-temperature honeycomb catalytic body. All the natural gas and air are passed into the premixing chamber, the wall temperature of the gas phase space downstream of the catalytic body is >800°C, the temperature of the catalytic body is 600-1000°C, the thickness of the catalytic body is 25-50mm and the time for the premixed gas to flow through the catalytic body is <0.1s, supply 2~ 3.75 times the air required for theoretical combustion. The proportion of gas consumed by catalytic combustion is proportional to the air supply. The temperature of the premixed gas flowing out of the catalytic body is >800°C and the oxygen concentration is <15%. The invention is simple and safe, with thermal efficiency > 98%, CO emission < 600ppm, and NOx emission < 25ppm. Catalytic combustion boilers and kilns that burn natural gas or methane-rich gas can use the present invention.
Description
技术领域 technical field
本发明涉及一种基于分级燃烧,强化催化体非定向辐射传热和气相空间大火焰定向辐射传热原理的全预混型催化燃烧装置扩大火焰体积方法,具有安全稳定燃烧,高效节能,高燃烧效率,低CO和NOx排放等优势,适用于以节能减排为使用目的,燃用天然气或富甲烷气的各种工业或民用催化燃烧锅炉或加热装置、高温工业炉窑使用。The invention relates to a method for enlarging the flame volume of a fully premixed catalytic combustion device based on the principle of staged combustion, strengthening the non-directional radiation heat transfer of the catalytic body and the directional radiation heat transfer of the large flame in the gas phase space, which has safe and stable combustion, high efficiency and energy saving, and high combustion efficiency. Efficiency, low CO and NOx emissions and other advantages, suitable for various industrial or civil catalytic combustion boilers or heating devices, high-temperature industrial furnaces and kilns that use natural gas or methane-rich gas for the purpose of energy saving and emission reduction.
背景技术 Background technique
在常规火焰燃烧过程中,CO2排放所引起的地球温室效应和NOx排放使人类的可持续发展面临严峻考验。据2003年统计结果,我国GDP只占世界总量的约4%,但消耗的石油占世界总量的约7.4%,消耗煤炭占世界总量31%。我国未来十几年内需新增的煤炭需要量约为9~10×109t。我国能源消费占世界8~9%,CO2排放居世界第2位,NOx排放量是亚洲的48%。我国高温炉窑是造成生态环境破坏的最大污染源。大中型工业窑炉烟尘排放大都超标,其中以燃煤炉最为严重。其次是NOx的排放也很高,甚至燃油炉超过了燃煤炉。原因在于燃油以重油为主和对过量空气量的控制水平低所致。全国窑炉的污染排放状况也基本如此。由于大多数窑炉的炉温都很高,因而形成NOx急剧上升的趋势。电力部、各省市的火力发电厂、各大型企业的自备电厂和造纸厂的回收锅炉等共6000余台发电锅炉。全国20t/h以下民用、工业和生活锅炉有近1×106台。大规模利用天然气成为改善我国能源结构的重要措施。采用天然气替代固体燃料煤炭后,大气环境得到有效改善,但是在天然气利用过程中依然存在一些重要问题。绝大多数传统锅炉是基于非预混式扩散燃烧原理。入炉前燃料和空气是不混合的,入炉后燃料和空气边混合边燃烧,形成肉眼可见的火焰。火焰体积小,火焰平均温度不高,装置热效率不高;炉膛内存在局部高温区,燃料和空气混合物在高温区里的停留时间很短,加上空气和燃料混合不充分,燃烧反应不彻底;局部高温区给NOx生成创造了条件,NOx排放偏高。In the process of conventional flame combustion, the global warming effect and NOx emission caused by CO2 emission make the sustainable development of human beings face a severe test. According to statistics in 2003, my country's GDP only accounts for about 4% of the world's total, but its oil consumption accounts for about 7.4% of the world's total, and its coal consumption accounts for 31% of the world's total. In the next decade or so, China's domestic demand for coal will increase by about 9-10×10 9 t. China's energy consumption accounts for 8-9% of the world, CO 2 emissions rank second in the world, and NO x emissions are 48% of Asia's. my country's high-temperature furnaces are the largest source of pollution that causes damage to the ecological environment. Smoke and dust emissions from large and medium-sized industrial kilns mostly exceed the standard, among which coal-fired furnaces are the most serious. The second is that NOx emissions are also high, and even oil-fired stoves surpass coal-fired stoves. The reason is that the fuel is mainly heavy oil and the control level of excess air is low. The pollution discharge situation of kilns in the whole country is basically the same. Since the furnace temperature of most kilns is very high, the trend of NOx rises sharply. There are more than 6,000 power generation boilers in the Ministry of Electric Power, thermal power plants in various provinces and cities, self-provided power plants in large enterprises, and recovery boilers in paper mills. There are nearly 1×10 6 civil, industrial and domestic boilers below 20t/h in the country. Large-scale utilization of natural gas has become an important measure to improve my country's energy structure. After the use of natural gas instead of solid fuel coal, the atmospheric environment has been effectively improved, but there are still some important problems in the process of natural gas utilization. The vast majority of conventional boilers are based on the principle of non-premixed diffusion combustion. Before entering the furnace, the fuel and air are not mixed. After entering the furnace, the fuel and air are mixed and burned to form a flame visible to the naked eye. The size of the flame is small, the average temperature of the flame is not high, and the thermal efficiency of the device is not high; there is a local high temperature zone in the furnace, and the residence time of the mixture of fuel and air in the high temperature zone is very short, and the mixing of air and fuel is not sufficient, and the combustion reaction is not complete; The local high temperature zone creates conditions for the generation of NO x , and the emission of NO x is relatively high.
催化燃烧作为一种新型的燃烧方式,具有多重技术优势:可在较大燃气比范围内使用;能将燃烧反应活化能从常规水平(100~200kJ/mol)降低到更低水平(40~80kJ/mol),起燃温度降低,燃烧易达稳定,甚至到起燃温度后无需外界传热就能完成氧化反应;有利于控制NOx排放;燃烧反应完全;燃烧板面温度维持在1000℃温度水平,热效应显著;无二次污染,噪音小且燃烧缓和。在空气预热到1000℃且含氧体积浓度降低到15%以下的燃烧(弥散燃烧)具有全新特性:出现兰色或无色火焰,火焰体积扩大,火焰峰值温度降低,温度分布均匀,燃烧温度整体水平升高,燃烧释热强度降低。我国钢铁行业低氧弥散燃烧应用取得了节能效率高于30%,NOx排放30~50ppm等良好效果。因此综合催化燃烧和低氧弥散燃烧关键技术,克服传统火焰燃烧缺点,开发高效节能、低NOx和CO排放的天然气燃烧技术,具有显著的环境效益、经济效益和社会效益。As a new type of combustion, catalytic combustion has multiple technical advantages: it can be used in a large range of gas ratio; it can reduce the activation energy of combustion reaction from the conventional level (100-200kJ/mol) to a lower level (40-80kJ/mol). /mol), the light-off temperature is reduced, the combustion is easy to reach and stable, and even after the light-off temperature is reached, the oxidation reaction can be completed without external heat transfer; it is beneficial to control NOx emissions; the combustion reaction is complete; the temperature of the combustion plate is maintained at 1000 °C Level, significant thermal effect; no secondary pollution, low noise and moderate combustion. When the air is preheated to 1000°C and the oxygen volume concentration is reduced to less than 15% (diffuse combustion), it has new characteristics: blue or colorless flames appear, the flame volume expands, the flame peak temperature decreases, the temperature distribution is uniform, and the combustion temperature As the overall level increases, the heat release intensity of combustion decreases. The application of low-oxygen diffuse combustion in China's iron and steel industry has achieved good results such as energy-saving efficiency higher than 30%, and NO x emission of 30-50ppm. Therefore, integrating the key technologies of catalytic combustion and low-oxygen diffuse combustion, overcoming the shortcomings of traditional flame combustion, and developing natural gas combustion technology with high efficiency, energy saving, and low NOx and CO emissions will have significant environmental, economic, and social benefits.
发明内容 Contents of the invention
为了克服传统火焰燃烧具有的黄色火焰,热效率偏低,CO和NOx排放偏高等缺点,本发明综合催化燃烧,弥散燃烧,分级燃烧,催化体固体表面和气流通道的非定向辐射传热和气相空间大火焰的定向辐射传热等技术优势,提出一种全预混型天然气催化燃烧装置弥散燃烧组织方法。In order to overcome the shortcomings of traditional flame combustion such as yellow flame, low thermal efficiency, and high CO and NOx emissions, the present invention integrates catalytic combustion, diffuse combustion, staged combustion, non-directional radiation heat transfer and gas phase Taking advantage of technical advantages such as directional radiation heat transfer of a large space flame, a method for the dispersion combustion organization of a fully premixed natural gas catalytic combustion device is proposed.
催化燃烧装置包括预混室,均孔型支撑板和蜂窝状中温催化体,全部燃气及全部空气通入预混室,支撑板组成预混室顶部壁面,催化体置于支撑板上且两者气流通道轴线重合。The catalytic combustion device includes a premixing chamber, a uniform-porous support plate and a honeycomb medium-temperature catalytic body. All the gas and air are passed into the premixing chamber. The supporting plate forms the top wall of the premixing chamber. The catalytic body is placed on the supporting plate and the two The axes of the airflow passages are coincident.
使用上述装置时,将燃料全部通入催化体下游,设置25~50mm厚催化体,预混气流过催化体时间不超过0.1s,供应2~3.75倍理论燃烧所需空气,催化体温度控制在600~1000℃范围,催化体下游气相空间壁面温度调节到800℃以上。When using the above device, feed all the fuel into the downstream of the catalytic body, set a 25-50mm thick catalytic body, the time for the premixed gas to flow through the catalytic body does not exceed 0.1s, supply 2-3.75 times the air required for theoretical combustion, and control the temperature of the catalytic body at In the range of 600-1000°C, the temperature of the wall surface of the gas phase space downstream of the catalytic body is adjusted to be above 800°C.
在上述技术手段齐备时,流出催化体的预混气温度高于800℃且含氧浓度低于15%,催化体下游气相空间壁面温度高于800℃,能组织弥散燃烧并消耗剩余燃气。When the above-mentioned technical means are complete, the temperature of the premixed gas flowing out of the catalytic body is higher than 800°C and the oxygen concentration is lower than 15%, and the temperature of the wall surface of the gas phase space downstream of the catalytic body is higher than 800°C, which can organize diffuse combustion and consume the remaining gas.
发明实施简便,燃烧安全稳定,催化剂使用安全,节能和污染物排放指标达到国家标准GB6932-2001要求,使用干净且无黑烟。以减少燃烧黑烟、CO和NOx污染和节能降耗为使用目的,燃用天然气或富甲烷气的各种催化燃烧锅炉及催化燃烧加热装置,高温炉窑均可使用本发明。The invention has the advantages of simple implementation, safe and stable combustion, safe use of the catalyst, energy saving and pollutant discharge indicators meeting the requirements of the national standard GB6932-2001, clean use and no black smoke. With the purpose of reducing combustion black smoke, CO and NOx pollution and energy saving and consumption reduction, various catalytic combustion boilers, catalytic combustion heating devices, and high-temperature furnaces that burn natural gas or methane-rich gas can use the present invention.
附图说明 Description of drawings
图1为全预混型天然气催化燃烧装置结构示意图。Figure 1 is a schematic diagram of the structure of a fully premixed natural gas catalytic combustion device.
下面结合附图对本发明作进一步的说明。The present invention will be further described below in conjunction with the accompanying drawings.
具体实施方式 Detailed ways
如图1所示,催化燃烧装置主要包括预混室1,均孔型支撑板2和蜂窝状中温催化体3。全部燃气及全部空气通入预混室3,支撑板2组成预混室1顶部壁面。催化体3置于支撑板2之上,支撑板2可支撑催化体3重量,支撑板2上均匀分布细孔,催化体3内部设置有供燃空气预混物流过的蜂窝状气流通道,支撑板2和催化体3的气流通道中心轴线重合。沿预混气流流动方向催化体3下游区域为气相空间。催化体5为中温型催化体,可为整体式催化体,也可为涂敷式催化体。As shown in FIG. 1 , the catalytic combustion device mainly includes a
天然气和助燃空气全部通入预混室1进行充分均匀混合。预混气体经过支撑板2均匀流过催化体3气流通道。催化体3温度为600~1000℃。在催化体2气流通道里预混气体边流动边吸热,以致于预混气流升温到高于天然气起燃温度时发生表面催化燃烧反应。催化体3温度600~1000℃,能有效地启动表面催化燃烧反应。Natural gas and combustion-supporting air are all fed into the
部分天然气被催化体3固体壁面上的表面催化燃烧反应消耗,剩余天然气和中间反应可燃气在催化体3下游气相空间里以弥散燃烧方式消耗。催化体3厚度25~50mm且从预混室1流出的预混气流过催化体3的时间不超过0.1秒,实际空气供应为2~3.75倍理论燃烧空气量,通过催化体3蜂窝通道的预混气可燃气浓度和预混气流与催化体3固体壁面的接触条件都得到控制,由表面催化燃烧动力学特征可知,以表面催化燃烧方式消耗的天然气百分数就可以控制,最终流出催化体3的预混气流含氧体积浓度也可控制。在实际空气供应为2倍理论燃烧所需要空气量(空气供应系数为2)时催化燃烧消耗50%天然气。在空气供应系数大于2时催化燃烧消耗的天然气百分数随空气供应系数的增加而线性增加。在空气供应系数为3.75时催化燃烧消耗掉全部天然气。在这些条件下流出催化体3的预混物含氧体积浓度低于15%,满足弥散燃烧所需的助燃气流低氧条件。Part of the natural gas is consumed by the surface catalytic combustion reaction on the solid wall of the
在催化体3气流通道里预混气除吸收催化体3显热外还吸收表面催化燃烧放热,到离开催化体3时温度能升温到800℃以上,满足弥散燃烧所需的助燃气流高温条件。In the gas flow channel of the
催化体3下游气相空间壁面保温性能良好且调节后装置热负荷,使得催化体3下游气相空间壁面温度高于800℃,满足弥散燃烧所需的壁面高温条件。The thermal insulation performance of the wall surface of the gas phase space downstream of the
在预混气流进催化体3下游气相空间时,燃气分子和氧气分子已均匀混合,预混气体温度高于800℃且含氧体积浓度低于15%,壁面温度高于800℃,完全具备弥散燃烧所需要的物理化学条件,燃烧速度得到有效控制,燃烧火焰体积得到拓宽。When the premixed gas flows into the gas phase space downstream of the
纯度高或热值高的天然气须在较大的空气供应系数条件下燃烧。发明要求空气供应系数在2~3.75之间,此时预混室1天然气体积百分数低于5%,在天然气爆燃范围之外,因此对催化体3内气流通道孔径大小可以没有限制,可有效地降低气流流动阻力和降低催化体3加工成本,增强了燃烧安全性和稳定性。Natural gas with high purity or high calorific value must be burned under the condition of large air supply coefficient. The invention requires the air supply coefficient to be between 2 and 3.75. At this time, the volume percentage of natural gas in the
发明以分级燃烧方式组织燃烧。一级燃烧是催化燃烧,以催化剂3固体壁面和气孔内小火焰对受热面的辐射换热(非定向辐射传热)为主,二级燃烧是弥散燃烧,以大火焰对受热面的辐射换热(定向辐射传热)为主。传统燃烧装置中的火焰燃烧被本发明的无焰燃烧所代替,传统火焰定向辐射传热被本发明的“催化燃烧气孔和固体壁面非定向辐射传热+弥散燃烧大体积火焰定向辐射传热”或“催化燃烧气孔和固体壁面非定向辐射传热”所代替,综合应用了催化燃烧和低氧弥散燃烧技术,装置节能性能得到提高。催化燃烧锅炉基于预混燃烧原理,入炉前空气和燃料已经混合好,出现兰色或无色火焰;催化剂降低了燃烧反应活化能;气相空间弥散燃烧火焰体积变大,反应区范围拓宽,延长了可燃气在高温反应区的停留时间。三个因素使得燃烧效率提高,燃料利用更充分,能消除燃烧黑烟问题,明显降低烟气中CO含量,减少环境污染。催化燃烧使用了选择性催化剂,不能降低NOx生成反应所需要的活化能。催化燃烧的燃烧面宽,单位面积燃烧放热减小,火焰峰值温度降低。气相空间弥散燃烧火焰体积大,单位体积燃烧放热减小,火焰峰值温度降低。三个因素热力型NO生成得到抑制。The invention organizes combustion in a staged combustion manner. The primary combustion is catalytic combustion, mainly based on the radiation heat transfer (non-directional radiation heat transfer) of the
实验测试表明:发明催化燃烧安全稳定,无黑烟现象,催化剂使用安全,节能和污染物排放指标达到国家标准GB6932-2001要求,热效率超过98%,烟气CO含量低于600ppm,NOx含量低于25ppm。Experimental tests show that: the inventive catalytic combustion is safe and stable, no black smoke phenomenon, the catalyst is safe to use, energy saving and pollutant emission indicators meet the requirements of the national standard GB6932-2001, the thermal efficiency exceeds 98%, the CO content of the flue gas is lower than 600ppm, and the NO x content is low at 25ppm.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2007100360416A CN101149147B (en) | 2007-11-05 | 2007-11-05 | Dispersion Combustion Method for Fully Premixed Natural Gas Catalytic Combustion Device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2007100360416A CN101149147B (en) | 2007-11-05 | 2007-11-05 | Dispersion Combustion Method for Fully Premixed Natural Gas Catalytic Combustion Device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101149147A true CN101149147A (en) | 2008-03-26 |
CN101149147B CN101149147B (en) | 2010-04-07 |
Family
ID=39249792
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2007100360416A Expired - Fee Related CN101149147B (en) | 2007-11-05 | 2007-11-05 | Dispersion Combustion Method for Fully Premixed Natural Gas Catalytic Combustion Device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101149147B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107314373A (en) * | 2017-08-02 | 2017-11-03 | 沈阳达源节能环保科技有限公司 | A kind of combustion gas polarization energy saver |
CN107504487A (en) * | 2017-07-05 | 2017-12-22 | 广东工业大学 | Continuous disperse formula burner and the method for forming continuous dispersed combustion |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4893465A (en) * | 1988-08-22 | 1990-01-16 | Engelhard Corporation | Process conditions for operation of ignition catalyst for natural gas combustion |
CN1105869C (en) * | 1995-12-14 | 2003-04-16 | 松下电器产业株式会社 | Catalytic combustion appts. |
JPH11169709A (en) | 1997-12-15 | 1999-06-29 | Nippon Soken Inc | Combustion catalyst and catalyst combusting device |
CN1828137B (en) * | 2006-01-18 | 2010-05-12 | 北京工业大学 | gas fuel catalytic burner |
CN200940828Y (en) * | 2006-06-08 | 2007-08-29 | 北京建筑工程学院 | Flameless catalytic combustion boiler with near zero pollutant emission |
-
2007
- 2007-11-05 CN CN2007100360416A patent/CN101149147B/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107504487A (en) * | 2017-07-05 | 2017-12-22 | 广东工业大学 | Continuous disperse formula burner and the method for forming continuous dispersed combustion |
CN107504487B (en) * | 2017-07-05 | 2023-10-03 | 广东工业大学 | Continuous dispersion type combustion device and method for forming continuous dispersion type combustion |
CN107314373A (en) * | 2017-08-02 | 2017-11-03 | 沈阳达源节能环保科技有限公司 | A kind of combustion gas polarization energy saver |
Also Published As
Publication number | Publication date |
---|---|
CN101149147B (en) | 2010-04-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN2484481Y (en) | Gradual-change porous-medium burner | |
CN102777898B (en) | A special gasification burner and combustion method for biological liquid fuel | |
CN103343965B (en) | Heating furnace system utilizing oxygen-enriched combustion | |
CN100498061C (en) | High power gas catalytic burner | |
CN112443838B (en) | Blast premixed porous medium combustion radiator with secondary air and combustion method thereof | |
CN101101114A (en) | Quick switching catalytic combustion boiler unit | |
CN104121581A (en) | Efficient low-NOx tube type heating furnace low-concentration oxygen-enriched combustion system and combustor | |
CN104595897B (en) | Single-layer porous foam ceramic plate partial pre-mixing fuel gas combustor | |
CN108266726A (en) | A kind of porous media combustor of subsidiary heat exchange function | |
CN202012917U (en) | Air and smoke pipeline switching type catalysis/heat storage combustion boiler | |
CN106196051A (en) | A kind of tubule premixed swirl low stain gas burner | |
CN201083387Y (en) | Air fume pipe switching type catalyzing/heat storage combustion boiler | |
CN101149147B (en) | Dispersion Combustion Method for Fully Premixed Natural Gas Catalytic Combustion Device | |
CN201706506U (en) | Multi-fuel asphalt stirring equipment burner | |
CN109780582B (en) | A liquid methanol heating furnace | |
CN201288124Y (en) | Access pure oxygen combustor of glass kiln | |
CN201964411U (en) | High-power double-cyclone burning semi-premix gas burner | |
CN203454110U (en) | Heating furnace system utilizing oxygen-enriched combustion | |
CN115013811B (en) | An ultra-low nitrogen burner head for a horizontally mounted vertically burning burner | |
CN108131670B (en) | Microminiature Swiss coil burner suitable for non-premixed combustion | |
CN109268827B (en) | A low calorific value gas burner and hot air furnace | |
CN205137462U (en) | A many fuel combustor for wind channel heating | |
CN101430090B (en) | Rotational flow dispersion burner | |
CN202791995U (en) | Heat accumulating type oxygen enrichment burning device | |
CN201265863Y (en) | Four-stage premixed turbine infrared energy-saving environment-friendly cooking stove |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20100407 Termination date: 20101105 |