CN101148538A - Method for preparing nano titanium dioxide modified polyurethane material and products thereof - Google Patents

Method for preparing nano titanium dioxide modified polyurethane material and products thereof Download PDF

Info

Publication number
CN101148538A
CN101148538A CN 200610052471 CN200610052471A CN101148538A CN 101148538 A CN101148538 A CN 101148538A CN 200610052471 CN200610052471 CN 200610052471 CN 200610052471 A CN200610052471 A CN 200610052471A CN 101148538 A CN101148538 A CN 101148538A
Authority
CN
Grant status
Application
Patent type
Prior art keywords
polyurethane material
titanium dioxide
modified
material
polyurethane
Prior art date
Application number
CN 200610052471
Other languages
Chinese (zh)
Other versions
CN101148538B (en )
Inventor
樊先平
王小山
王智宇
钱国栋
华 阮
Original Assignee
宁波荣山新型材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Abstract

The present invention discloses one kind of high performance nanometer titania modified polyurethane material and its preparation process. By means of wet chemical technology of preparing nanometer titania powder, the precursor liquid of nanometer titania powder is added into the polyurethane material preparing process, so that the nanometer powder is attached to the surface of other micron level pigment and stuffing powder inside the polyurethane material. The preparation process includes two steps, including preparing the precursor liquid of nanometer titania powder and modifying polyurethane material with the nanometer titania powder. The modified polyurethane material has obvious nanometer modifying effect.

Description

纳米二氧化钛改性聚氨酯材料的制备方法及其产品 Nano-titanium dioxide-modified polyurethane material preparation and their products

技术领域 FIELD

本发明涉及一种无机纳米粒子改性聚氨酯材料的制备方法,更具体的说, The present invention relates to a method for preparing inorganic nanoparticles modified polyurethane material, more particularly,

本发明涉及一种纳米二氧化钛改性聚氨酯材料的制备方法,同时,本发明还涉 The present invention relates to a method for preparing a titanium dioxide nano-modified polyurethane material, while the present invention also relates to

及由该方法制备的产品;属;材料科学领域。 And products prepared by this method; belongs; field of materials science. 背景技术 Background technique

聚氨酯是一种新兴的有H高分子材料,被誉为"第五大塑料",因其卓越的性能而被广泛应用于国民经济众多领域。 Polyurethane is a new polymer material has H, known as "the fifth largest plastic" because of its superior performance has been widely used in many fields of national economy. 产品应用涉及轻工、化工、电子、纺织、医疗、建筑、建材、汽S、国防、航天、航空等各个领域。 Applications involving various fields of light industry, chemical industry, electronics, textiles, medical, construction, building materials, gasoline and S, defense, aerospace and aviation.

在聚氮酯工业中,纳米粉体由于其独特的作用机理和多方面的适用性,己 In polyethylenimine ester industry, nano powder because of its unique mechanism of action and a wide range of applicability, had

经成为聚氨酯配方中一种非常:霞要的助剂。 It becomes a very polyurethane formulation: aid Xia want. 在技术应用中,纳米粉体在聚氨酯中的分散性与附聚的状态和形弍最为重要。 In technical applications, the polyurethane dispersion of the nano powder in agglomerated state with Er and most important form. 通常纳米粉体的原生粒子不是以独立的孤立粒子存在的,而是延玍形成聚集体,然后以松散的附聚粒子的形式存在,分散程度对这些纳米粉体的效率最为重要,为了充分利用各种纳米粉体的 Typically nanopowders primary particles are not isolated particles are present in an independent, but the extension of Ga to form aggregates, and then in the form of loosely agglomerated particles, the degree of dispersion is most important for the efficiency of the nano-powders, to take full advantage a variety of nano-powders

经济有效性,必须要求良好的分散;同財,这些经分散的纳米微粒由于具有很大的比表面能和表面活性,很容易发生相互自聚集,形成聚集体(二次粒子) 和附聚体(三次粒子),因此必须控制这些微粒再聚集的方式和状态,避免自聚集并使得它们能附聚在聚氨酯材料屮其他微米级的颜填料粉体颗粒表面上,保证纳米粉体改性的有效性。 Cost-effectiveness, must require good dispersion; Choi with these nanoparticles dispersed because of a large specific surface energy and surface active, it is prone to self-assemble with each other to form an aggregate (secondary particles) and agglomerates (cubic particles), the particles must be controlled and re-aggregated state manner, and to avoid that they can self-assemble on the surface of the particles to agglomerate pigment powder a polyurethane material Che other micron-sized to ensure effective modification nanopowders sex.

在目前的无机纳米粒子改性聚氨酯材料研制与开发中,人们普遍采用了ft 接使用纳米粉体或者采用纳米粉体的浓缩浆液作为聚氨酯的外加剂原料,然后利用机械方法进行分散的常规的制备技术。 In the current materials research and development of inorganic nano-modified polyurethane particles, it is generally prepared using conventional bonding ft using a nano powders or nanopowders using concentrated slurry admixture of a polyurethane material, then mechanically dispersed using a technology. 但这种纳米粉体机械分散制备方让在制备纳米聚氨酯材料过程中存在本质性的问题:首先,纳米粉体难以分散均匀并保证分散效果;更重要的娃,这种制备方法根本无法抑制已分散的纳米微 However, this mechanical dispersing preparing nano powder so essential problem in the preparation of polyurethane materials nanometer process: First, nano powder is difficult to disperse uniformly and to ensure dispersion; baby More importantly, this method can not be suppressed has been prepared dispersed nanoparticles

粒的自聚集现象,并对这些微粒附聚的方式和状态进行控制,难以保证纳米粉体改性的有效性。 Self-aggregation of particles, and the particles agglomerated state control mode and it is difficult to ensure the effectiveness of modification nanopowders.

发明内容 SUMMARY

本发明的目的是为了克报上述缺陷,提供一种具有显著纳米改性效果的高性能纳米二氧化钛改性聚氨酯材料的制备方法。 Object of the present invention is to g reported above drawbacks, there is provided a method for preparing nano Nanostructured significant modification effect of titanium dioxide having a modified polyurethane material.

本发明的另一个目的是提供本发明的制备方法制备的纳米二氧化钛改性聚氨酯材料。 Another object of the present invention is to provide modified polyurethane nano-titanium dioxide material produced by the production method of the present invention.

本发明的上述技术问题是通过以F技术方案得以实施的: 一种纳米二氧化钛改性聚氨酯材料的制备方法:该方法由以下步骤构成: The above technical problem by the present invention is implemented in the technical solution F: Preparation of titanium dioxide nano-modified polyurethane material: the method consists of the following steps:

A. 纳米二氧化钛先驱液的制备:将四氯化钛溶液加入到苯甲酸溶液中,搅拌均匀后即得纳米二氧化钛先驱液;其中四氯化钛溶液和苯甲酸溶液的体积比为1: 5〜40; A. Preparation of titanium dioxide pioneer solution: titanium tetrachloride was added to the benzoic acid solution, and stirred to obtain a uniform titanium dioxide after pioneer fluid; wherein the volume ratio of the titanium tetrachloride solution and the acid solution is 1: -5 to 40;

B. 聚氨酯材料乙组分的^备:将制备聚氨酯材料的常规成分进行混合,然 Part B of the polyurethane material B. Preparation ^: conventional components for preparing the polyurethane material are mixed, then

后加入重量百分比为1%〜25%的纳米二氧化钛先驱液在搅拌混合的条件下进行反应,反应后即得聚氨酯材料乙组分;其中反应的温度为60〜180°C,搅拌混合的时间为0. 5〜20小时; After addition of 1% ~ 25 wt% of titanium dioxide pioneer mixing was carried out under stirring conditions of the reaction, after the reaction to give the polyurethane material B points; wherein the reaction temperature of 60~180 ° C, stirring and mixing time is 0. 5~20 hours;

C. 纳米二氧化钛改性聚氛酯材料的制备:将上述生成的聚氨酯材料乙组分 C. Preparation of modified poly titanium dioxide atmosphere ester material: the generation of the polyurethane material Part B

和聚氨酯材料甲组分均匀混合后,在10〜80。 Group A and the polyurethane material uniformly mixed at 10~80. C的温度下,0. 5〜24小时的时间内交联固化后可得到纳米二氧化钛改性聚氨酯材料;其中聚氨酯材料甲组分和聚氨酯材料乙组分的比例为"2〜8;其中所述的聚氨酯材料甲组分为多异械酸酯类或多异氰酸酯与聚合物多元醇的预聚体中的一种。其中在本发明中制备聚氨酯材料的常规成分有交联剂(如;1,4 — 丁二醇、2、 3 — 丁二醇、二廿醇、 甘油、三羟甲基丙烷(TMP)、 m梨醇等物质);催化剂(如辛酸亚锡或二月桂酸二丁基锡等等物质);扩链齐l (如1, 4一丁二醇,2, 3 — 丁二醇,二甘醇、甘油等物质)等物质,本发明利用四氯化钛溶液加入到苯甲酸溶液中,搅拌均匀后即得纳米二氧化钛先驱液,然后将纳米二氧化钛先驱液加入聚氨酯反应体系进行原位聚合制得纳米二氧化鈦改性聚氨酯材料,由于在制备聚氨酯材料的常 . C at a temperature of from 0 5~24 hours post-crosslinking polyurethane obtained modified titanium dioxide material; wherein the ratio of Group A polyurethane material and Part B is a polyurethane material "2~8; wherein said Group a polyurethane material into a multi-armed isobutyl esters or polyisocyanate with a polymer polyol in the prepolymer, wherein the polyurethane material of the conventional ingredients in the preparation of the present invention, crosslinking agent (e.g.,;. 1, 4 - butanediol, 2, 3 - butylene glycol, policosanol, glycerol, trimethylolpropane (TMP), m sorbitol and other substances); catalyst (such as stannous octoate or dibutyl tin dilaurate, etc. substances); Qi L chain (such as 1, 4-butanediol, 2, 3 - butylene glycol, diethylene glycol, glycerin and other substances) and other substances, the present invention is the use of titanium tetrachloride was added to the benzoic acid solution stir obtained after titanium dioxide was a pioneer, pioneer then titanium dioxide was added to the polyurethane reaction system in situ polymerization of titanium dioxide modified polyurethane material, because often the preparation of polyurethane materials

规成分时加入纳米二氧化钛先驱液,使聚氨酯在粒子表面产生原位聚合,有利于纳米二氧化钛粒子的分散,而分散的纳米二氧化钛粒子的诱导结晶作用和聚 Regulation component was added when titanium dioxide was a pioneer in the polyurethane produced in situ polymerization on the particle surface, it facilitates the dispersion of titanium dioxide particles, to induce crystallization of the dispersed titanium dioxide particles and poly

氨酯大分子的化学键合使得纳米二氧化钛改性聚氨酯材料的力学性能大大提高,此外通过加入分散的纳米二氧化钛粒子聚氨酯材料乙组分和聚氨酯材料甲组分经过交联固化,使得纳米二氧化钛粒子能够均匀稳定地分散于其中,并保持纳米尺寸,同时与聚氨酯中的基团发生化学键合,使得制备而成纳米二氧化钛改性聚氨酯材料的抗拉强度高,断裂伸长率大,压縮复原率高;使用寿命长, 耐候、耐水解、抗潮抗菌、^燃性能好,自我清洁性能强。 Macromolecules such chemically bonded urethane mechanical properties of titanium dioxide modified polyurethane material greatly improved, in addition by the addition of titanium dioxide particles dispersed polyurethane material and Part B Group A polyurethane material after crosslinking, such titanium dioxide particles uniformly stably dispersed therein, nano-sized and maintained, while the polyurethane is chemically bonded to a group, so that the high tensile strength of the polyurethane-modified titanium dioxide nano material prepared from large elongation at break, high compression recovery; long life, weather, water resistance, moisture resistance antibacterial, ^ good combustion performance, self-cleaning properties.

作为优选,在步骤B中析述的反应的温度为90〜150匸。 Preferably, the temperature of the reaction described in step B of 90~150 Xi analysis. 在上述的纳米二氧化钛改性聚氨酯材料的制备方法中,在步骤C中所述的聚合物多元醇为聚酯多元醇或聚醚多元醇中的---种或两种混合。 In the method for preparing the modified polyurethane of the titanium dioxide material, in the step C is a polymer polyol --- mixing two kinds or polyester polyol or polyether polyol.

在上述的纳米二氧化钛改性聚氨酯材料的制备方法中,在步骤c中所述的 In the method for preparing the modified polyurethane of the titanium dioxide material in said step c

多异氰酸酯为甲苯二异氰酸酯、4, 一二苯基甲烷二异氰酸酯(MDI)、 1, 6-己二异氰酸酯(HDI)、异佛尔硐二异氰酸酯(IPDI)、多亚甲基多苯基多异氰酸酯(PAPI)中一种或多种混合。 The polyisocyanate is toluene diisocyanate, 4-diphenyl methane diisocyanate (MDI), 1, 6- hexamethylene diisocyanate (HDI), isophorone tunnel diisocyanate (IPDI), multiple polymethylene polyphenyl polyisocyanate (the PAPI) in one or more mixed.

此外本发明还提供了一种田上述制备方法制备的纳米二氧化钛改性聚氨酯材料。 The invention also provides the preparation of nano method for producing a titania-modified polyurethane material field. 该材料中纳米二氧化钛粉体呈锐钛矿晶型;粒径为L0〜80mri,在国家标准GB/T 14833-93的测定条件F抗拉强度大于等于2. 5,断裂伸长率大于等于550% ,压縮复原率大于等于98% 。 The material was titanium dioxide anatase powder; particle size L0~80mri, national standard assay conditions GB / T 14833-93 F tensile strength greater than or equal to 2.5, an elongation at break greater than or equal 550 %, a compression recovery rate of 98% or greater.

一:因此本发明具有以—、'优点: A: The present invention therefore has a -, 'advantages:

1 、纳米二氧化钛粉体在本发明的纳米二氧化钛改性聚氨酯材料的制备过程 1, the preparation of titanium dioxide nano-modified titanium dioxide powder according to the present invention the polyurethane material

中原位合成,具有高度的分散性; In situ synthesis of a high degree of dispersion;

2、 本发明的制备方法通过选择适当的组份、温度和制备条件,可以控制这些纳米二氧化钛粉体的粒径分布和附聚方式,保证了无机纳米二氧化钛粉体改性的有效性-, 2, the method of the present invention is prepared by choosing the appropriate components, temperature, and manufacturing conditions, which can control the particle size distribution of titanium dioxide powder and agglomeration methods to ensure the effectiveness of the titanium oxide inorganic nano-modified powders -,

3、 本发明的制备方法中纳米二氧化钛粉体的合成与分散一步完成,本发明 3, the production method of the present invention, titanium dioxide powder with a dispersing synthesized in one step, the present invention

的制备方法技术路线科学,能耗低;大大降低了成本。 TECHNICAL route of Sciences, low energy consumption; greatly reduced costs.

4、本发明的制备方法中由于确保了纳米二氧化钛粉体的分散性和改性有效性,在低纳米二氧化钛粉体引入量的情况下即可获得显著的改性效果, 4, the production method of the present invention, since the dispersion and ensuring the effectiveness of the modified titanium dioxide powder, at a low titanium dioxide powder introduced to obtain a significant amount of a modifying effect,

5 、由本发明制备的纳米二氧化钛改性聚氨酯材料在国家标准GB/T 5, titanium dioxide modified polyurethane material prepared by the present invention in the national standard GB / T

14833-93的测定条件下抗拉强度高,断裂伸长率大,压縮复原率高;使用寿命 14833-93 high tensile strength under the assay conditions, and large elongation at break, high compression recovery; life

长,耐候、耐水解、抗潮抗菌、阻燃性能好,自我清洁性能强。 Long, good weatherability, water resistance, moisture resistance anti-bacterial, flame retardant, strong self-cleaning properties. 附图说明 BRIEF DESCRIPTION

图1为本发明聚氨酯材料中原位生成的纳米二氧化钛粉体的透射电子显微分析图 Figure 1 is a transmission electron microscopy in FIG situ polyurethane material nano-titanium dioxide powder of the present invention

图2为本发明聚氨酯材料中原位生成的纳米二氧化钛粉体的X射线衍射分 FIG 2 is generated in situ polyurethane material titanium dioxide powder X-ray diffraction of the present invention

析图 Analysis Figure

具体实施方式 detailed description

下面通过实施例,并结合附图,对本发明的技术方案作进一步具体的说明。 The following Examples, in conjunction with the accompanying drawings, technical solutions of the present invention will be further specifically described. 但并不局限于此。 But is not limited to this. 实施例1 Example 1

1. 纳米二氧化钛先驱液的制备:将四氯化钛溶液加入到苯甲酸溶液中,搅拌均匀后即得纳米二氧化钛先驱液;其中四氯化钛溶液和苯甲酸溶液的体积比为l: 5; 1. Preparation of titanium dioxide pioneer solution: titanium tetrachloride was added to the benzoic acid solution, and stirred to obtain a uniform titanium dioxide after pioneer fluid; wherein the volume of a titanium tetrachloride solution and acid solution = l: 5;

2. 聚氨酯材料乙组分的制备:将制备聚氨酯材料的常规成分进行均匀混合, 在上述组分中加入重量百分比为1 %的纳米二氧化钛先驱液在搅拌混合的条件下进行反应,反应后即得聚氨酯材料乙组分;其中反应的温度为60t:,搅拌混合的时间为20小时: 2. Preparation of polyurethane materials Part B: A mixture of conventional ingredients to produce polyurethane materials were uniformly mixed, added to the above components in the percentages by weight of 1% of titanium dioxide was subjected to pioneer the reaction mixture under stirring, after the reaction to give Part B polyurethane material; wherein the reaction temperature is 60t :, stirring and mixing time was 20 hours:

3. 纳米二氧化钛改性聚氨酯材料的制备:将上述生成的聚氨酯材料乙组分 3. Preparation of titanium dioxide modified polyurethane material: the generation of the polyurethane material Part B

和聚氨酯材料甲组分均匀混合后,在20t:的温度下,18小时的时间内交联固化 Group A and the polyurethane material uniformly mixed in 20t: at a temperature, 18 hours crosslinked and cured

后可得到纳米二氧化钛改性聚氨酯材料;其中聚氨酯材料甲组分和聚氨酯材料乙组分的比例为1;: 3。 After the obtained polyurethane-modified titanium dioxide material; wherein the ratio of Group A polyurethane material and the polyurethane material is 1 ;: Part B 3. 所述的甲组分为甲苯二异氰酸酯与聚醚多元醇的预聚体。 Group A is divided into the prepolymer of toluene diisocyanate and a polyether polyol. 实施例21. 纳米二氧化钛先驱液的制备:将四氯化钛溶液加入到苯甲酸溶液中,搅拌均匀后即得纳米二氧化钛先驱液;其中四氯化钕溶液和苯甲酸溶液的体积比为1: 10;2. 聚氨酯材料乙组分的制备:将制备聚氨酯材料的常规成分进行均匀混合, 在上述组分中加入重量百分比为1()%的纳米二氧化钛先驱液在搅拌混合的条件下进行反应,反应后即得聚氨酯材料乙组分;其中反应的温度为90T:,搅拌混合的时间为15小时;3. 纳米二氧化钛改性聚氨酯材料的制备:将上述生成的聚氨酯材料乙组分和聚氨酯材料甲组分均匀混合后,在5(TC的温度下,4小时的时间内交联固化后可得到纳米二氧化钛改性聚氨li旨材料;其中聚氨酯材料甲组分和聚氨酯材料乙组分的比例为1: 5,所述的甲组分为为4, 4' 一二苯基甲烷二异氰酸酯(MDI) 和l, 6-己二异氰酸酯(HDI)(两者的比例为3: 2)与 Preparation of titanium oxide nano pioneer liquid 21. Example: The titanium tetrachloride was added to the benzoic acid solution, and stirred to obtain a uniform after titanium dioxide was a pioneer; wherein four neodymium chloride solution and acid solution volume ratio of 1: 10; 2 preparation of Part B of the polyurethane material: conventional components for preparing the polyurethane material are uniformly mixed, and the above components in the percentages by weight of 1 ()% of titanium dioxide was subjected to reaction at pioneer stirring and mixing conditions, the reaction to give the polyurethane material after the Part B; wherein the reaction temperature is 90T :, stirring and mixing time was 15 hours; 3 preparation of nano-modified polyurethane dioxide material: the generation of the polyurethane material polyurethane material a and B points. after the components were uniformly mixed, in 5 (the temperature TC, within 4 hours after crosslinking can be obtained urethane-modified titanium dioxide li purpose material; wherein the ratio of Group a polyurethane material and the polyurethane material for Part B 1: 5, said Group a is divided into 4, 4 'twelve diphenylmethane diisocyanate (MDI) and l, 6- hexamethylene diisocyanate (HDI) (ratio between the two is 3: 2) and 聚醚多元醇的预聚体。实施例31. 纳米二氧化钛先驱液的制备:将四氯化钛溶液加入到苯甲酸溶液中,搅拌均匀后即得纳米二氧化钛先驱液;其中四氯化钛溶液和苯甲酸溶液的体积比为1: 20;2. 聚氨酯材料乙组分的制备:将制备聚氨酯材料的常规成分进行均匀混合, 在上述组分中加入重量百分比为15%的纳米二氧化钛先驱液在搅拌混合的条件下进行反应,反应后即得聚氨酯材料乙组分;其中反应的温度为ioor,搅拌混合的时间为3小时:3. 纳米二氧化钛改性聚氨酯材料的制备:将上述生成的聚氨酯材料乙组分和聚氨酯材料甲组分均匀混合后,在80。C的温度下,1小时的时间内交联固化后可得到纳米二氧化钛改性聚氨酯材料;其中聚氨酯材料甲组分和聚氨酯材料乙组分的比例为1: 7.5,所述的甲组分为异佛尔酮二异氰酸酯(IPDI)和聚酯多元醇的预聚体。 . The prepolymer polyether polyol prepared titanium dioxide nano pioneer was 31. Example: The titanium tetrachloride was added to the benzoic acid solution, and stirred to obtain a uniform titanium dioxide after pioneer liquid; and wherein a titanium tetrachloride solution the benzoic acid solution volume ratio of 1:20; 2 preparation of Part B of the polyurethane material: conventional components for preparing the polyurethane material are uniformly mixed, and the percentage by weight of the above components in 15% of titanium dioxide was stirred pioneer the reaction carried out under conditions of mixing, after the reaction to give the polyurethane material b points; wherein the reaction temperature is ioor, stirring and mixing time of 3 hours: 3 preparation of titanium dioxide modified polyurethane material: the generation of the polyurethane material acetate. after the polyurethane component and the Group a materials were uniformly mixed, at a temperature of 80.C, a time period of 1 hour to obtain titanium dioxide cross-modified polyurethane material was linked cured; Group a wherein the polyurethane material and the polyurethane material Part B ratio is 1: 7.5, into the Group a prepolymer of isophorone diisocyanate (IPDI) and polyester polyol.

实施例41. 纳米二氧化钛先驱液的制备:将四氯化钛溶液加入到苯甲酸溶液中,搅拌均匀后即得纳米二氧化钛先驱液;其中四氯化钛溶液和苯甲酸溶液的体积比为1: 30;2. 聚氨酯材料乙组分的制备:将制备聚氨酯材料的常规成分进行均匀混合, 在上述组分中加入重量百分比为2()%的纳米二氧化钛先驱液在搅拌混合的条件下进行反应,反应后即得聚變:酯材料乙组分;其中反应的温度为150r,搅拌混合的时间为2小时:3. 纳米二氧化钛改性聚氨酯材料的制备:将上述生成的聚氨酯材料乙组分和聚氨酯材料甲组分均匀混合后,在50T:的温度下,12小时的时间内交联固化后可得到纳米二氧化钛改性聚氨酉旨材料;其中聚氨酯材料甲组分和聚氨酯材料乙组分的比例为1: 4,所述的甲组分为多亚甲基多苯基多异氰酸酯(PAPI)和聚醚多元醇的预聚体。 Preparation of titanium oxide nano pioneer liquid 41. Example: The titanium tetrachloride was added to the benzoic acid solution, and stirred to obtain a uniform titanium dioxide after pioneer fluid; wherein the titanium tetrachloride solution and acid solution volume ratio of 1: 30; 2 preparation of Part B of the polyurethane material: conventional components for preparing the polyurethane material are uniformly mixed, and the above components in the percentages by weight of 2 ()% of titanium dioxide was subjected to reaction at pioneer stirring and mixing conditions, the reaction is obtained after fusion: material Part B ester; wherein the reaction temperature is 150r, the stirring and mixing time was 2 hours: 3 preparation of titanium dioxide modified polyurethane material: the generation of the polyurethane material and the polyurethane material B points. Group a after uniformly mixed, in 50T: at a temperature within 12 hours post-crosslinking polyurethane obtained modified titanium dioxide unitary purpose material; wherein the ratio of Group a polyurethane material and the polyurethane material for Part B 1: 4, Group a is divided into a plurality of said polymethylene polyphenyl polyisocyanate (the PAPI) and the polyether polyol prepolymer. 实施例51. 纳米二氧化钛先驱液的制备:将四氯化钛溶液加入到苯甲酸溶液中,搅拌均匀后即得纳米二氧化钛先驱液;其中四氯化钛溶液和苯甲酸溶液的体积比为1: 40,四氯化钛溶液的浓度为? Preparation of titanium oxide nano pioneer liquid 51. Example: The titanium tetrachloride was added to the benzoic acid solution, and stirred to obtain a uniform titanium dioxide after pioneer fluid; wherein the titanium tetrachloride solution and acid solution volume ratio of 1: 40, the concentration of titanium tetrachloride solution is? ;2. 聚氨酯材料乙组分的制备:将制备聚氨酯材料的常规成分进行均匀混合,在上述组分中加入重量百分比为25%的纳米二氧化钛先驱液在搅拌混合的条件下进行反应,反应后即得聚氨酯材料乙组分;其中反应的温度为180x:,搅拌混合的时间为0.5小时;3. 纳米二氧化钛改性聚氨酯材料的制备:将上述生成的聚氨酯材料乙组分和聚氨酯材料甲组分均匀混合后,在10'C的温度下,24小时的时间内交联固化后可得到纳米二氧化钛改性聚氣,i材料:其中聚氨酯材料甲组分和聚氨酯材料乙组分的比例为1: 8,所述的甲组分为甲苯二异氰酸酯和聚醚多元醇的预聚体。 ; 2 Preparation of Part B of the polyurethane material: conventional components for preparing the polyurethane material are uniformly mixed, and the above components in percentages by weight 25% titanium dioxide pioneer liquid reaction mixture under stirring, after the reaction Part B a polyurethane material; wherein the reaction temperature is 180x :, stirring and mixing time is 0.5 hours; 3 preparation of TiO2-modified polyurethane material: the generation of the polyurethane material and the polyurethane material B points uniformly Group a after mixing, at a temperature of 10'C, 24 hours after crosslinking can be obtained modified poly titanium dioxide gas, I material: polyurethane material wherein the ratio of Group a and Part B of the polyurethane material is 1: 8 , into the Group a prepolymer of toluene diisocyanate and polyether polyol. 将本发明制备的纳米二氧化钛改性聚氨酯材料通过透射电子显微分析如图1所示与X射线衍射分析如图2所示的结果表明,在本发明的纳米二氧化钛改性聚氨酯材料中原位生成的纳来二氧化钛粉体粒径在40nm左右,分散性能良好,呈锐钛矿晶型。 The preparation of nano-modified polyurethane of the present invention, the titanium dioxide material by transmission electron microscopy as shown in Figure 2 with the results shown in FIG. X-ray diffraction analysis showed 1, generated in situ according to the present invention, the titanium oxide nano-modified polyurethane material nano-titanium dioxide powder to a particle size of about 40nm, good dispersion property, was anatase. 在国家标准(GB/T14833-93)的测定条件下对本发明制备的纳米二氧化钛改性聚氨酯材料进行测试,测试的结果如表2、表3所示。 The results were tested at the national standard (GB / T14833-93) measurement conditions nano-titanium dioxide modified polyurethane material of the present invention prepared, tested as shown in Table 2, Table 3. 表:1\<table>table see original document page 10</column></row> <table> Table: 1 \ <table> table see original document page 10 </ column> </ row> <table>

综上所述:本发明采用原位生成纳米二氧化钛改性聚氨酯材料的性能优异,测试结果表明:1、 抗拉强度(MPa):抗拉强度的国家标准(GB/T14833-93,下同)为0. 7, 本发明的纳米二氧化钛改性聚氨酯材料大于等于2. 5。2、 扯断伸长率(%):断裂伸长率的国家标准为90%,纳米二氧化钛改性聚氨酯材料大于等于550%。 To sum up: the present invention uses titanium dioxide excellent in situ modified polyurethane material properties, test results show: 1, the tensile strength (MPa): Tensile strength national standard (GB / T14833-93, the same below) of 0.7, titanium dioxide modified polyurethane material of the present invention is greater than equal to 2 5.2 elongation at break (%): national elongation at break was 90%, titanium dioxide modified polyurethane material greater than or equal 550%. 在纳米二氧化钛改性聚氨酯材料黏合剂占10%,黑胶粒占90%的情况下,纳米二氧化钛改性聚氨酯材料大于等于102%,仍然超过国家标准。 In the case of titanium dioxide modified polyurethane adhesive material 10%, 90% of black rubber, urethane-modified titanium dioxide material is not less than 102%, still more than the national standard. 3、 压縮复原率(%):压缩复原率国家标准为》95%,纳米二氧化钛改性聚氨酯材料大于等于98%。 3, the compression recovery rate (%): the restoration rate national standard "95%, titanium dioxide modified polyurethane material greater than or equal to 98%. 4、 使用寿命:纳米二氧化钛改性聚氨酯材料在不添加抗紫外线剂、防老化剂的情况下,使用期在15年以上。 4, the service life: titanium dioxide nano-modified polyurethane material without added anti-UV agents, anti-aging agent, use of more than 15 years. 5、 耐候性:纳米二氧化钛改性聚氨酯塑胶对气候变化适应性强,在过于高温(70°C)和超低的寒冷气候(--4CTC)环境下,其各项性能非常稳定。 5, the weather resistance: titanium dioxide modified polyurethane plastic adaptability to climate change, at temperature is too high (70 ° C) and ultra-low cold climate (--4CTC) environment, its performance is very stable. 6、 耐水解性能:纳米二氧化钛改性聚氨酯材料在不添加耐水剂的情况F, 其耐水解性能优异。 6, hydrolysis resistance: titanium dioxide nano-modified polyurethane material in water without the addition agent F., Which is excellent in hydrolysis resistance. 7、 抗潮抗菌性能:纳米二氧化钛改性聚氨酯材料具有非常好的防潮抗菌性,可在潮湿的环境中抵抗!f菌的滋生。 7, moisture resistance antibacterial properties: titanium dioxide modified polyurethane material having excellent antibacterial moisture, resistant in humid environments bacteria breeding f!. 8、 阻燃性(级):纳米二氧化钛改性聚氨酯材料无需加入阻燃剂即可达到国家一级标准。 8, the flame-retardant (Class): titanium dioxide modified polyurethane material without adding flame retardant to meet the national standards. 9、自我清洁功能:由于纳米颗粒极为细小,所以纳米二氧化钛改性聚氨酯材料的物理结构极其紧密::灰尘和其它杂物不易渗入,自我清洁功能强,很容易清洗。 9. A self-cleaning: Due to extremely small nanoparticles, the physical structure of the polyurethane-modified titanium dioxide material in an extremely close :: difficult to penetrate dust and other debris, self-cleaning function is strong, it is easily cleaned. 本发明中所描述的具体实施例仅仅是对本发明精神作举例说明。 In particular the present invention is described in the embodiments are merely spirit of the present invention will be illustrated. 本发明所属技术领域的技术人员可以:":-所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,但并不会偏离本发明的精神或者超越所附权利要求书所定义的范围。尽管对本发明已作出了洋细的说明并引证了一些具体实例,但是对本领域熟练技术人员来说,只要不离开本发明的精神和范围可作各种变化或修正是显然的。 Skilled art in the art of the present invention can be: ": - the specific embodiments described embodiments make various modifications or additions, or a similar alternative embodiment, but without departing from the spirit of the invention or the appended claims exceed scope defined. While the present invention has been made ocean fine described citing some specific examples, but those skilled in the art, as long as not departing from the spirit and scope of the present invention may make various changes or modifications are apparent of.

Claims (6)

  1. 1、一种纳米二氧化钛改性聚氨酯材料的制备方法:该方法由以下步骤构成: A.纳米二氧化钛先驱液的制备:将四氯化钛溶液加入到苯甲酸溶液中,搅拌均匀后即得纳米二氧化钛先驱液;其中四氯化钛溶液和苯甲酸溶液的体积比为1∶5~40; B.聚氨酯材料乙组分的制备:将制备聚氨酯材料的常规成分进行混合,然后加入重量百分比为1%~25%的纳米二氧化钛先驱液在搅拌混合的条件下进行反应,反应后即得聚氨酯材料乙组分;其中反应的温度为60~180℃,搅拌混合的时间为0.5~20小时; C、纳米二氧化钛改性聚氨酯材料的制备:将上述生成的聚氨酯材料乙组分和聚氨酯材料甲组分均匀混合后,在10~80℃的温度下,0.5~24小时的时间内交联固化后可得到纳米二氧化钛改性聚氨酯材料;其中聚氨酯材料甲组分和聚氨酯材料乙组分的比例为1∶2~8;其中所述 1, method for preparing a polyurethane-modified titanium dioxide material: the method consists of the following steps: A. Preparation of the titanium dioxide liquid pioneer: titanium tetrachloride was added to the benzoic acid solution, and stirred to obtain a uniform titanium dioxide after pioneer fluid; wherein the titanium tetrachloride solution and the acid solution the volume ratio of 1/5 to 40; B. preparation of Part B of the polyurethane material: conventional components for preparing the polyurethane material are mixed, followed by addition of 1% by weight to 25% of titanium dioxide was subjected pioneer under stirring the reaction mixture, after the reaction to give the polyurethane material B points; wherein the reaction temperature is 60 ~ 180 ℃, stirring and mixing time is 0.5 to 20 hours; C, nano preparation of titania-modified polyurethane material: after the generation of the polyurethane material and the polyurethane material Part B Group a uniformly mixed, at a temperature of 10 ~ 80 ℃, crosslinking within 0.5 to 24 hours to obtain nano titania modified polyurethane material; polyurethane material wherein the ratio of Group a and Part B of the polyurethane material is 1/2 to 8; wherein said 聚氨酯材料甲组分为多异氰酸酯类或多异氰酸酯与聚合物多元醇的预聚体中的一种。 Group A polyurethane material into one kind of polyisocyanate-based prepolymer or polyisocyanate with a polymer polyol.
  2. 2、 根据权利要求1所述的纳米二氧化钛改性聚氨酯材料的制备方法,其特征在于步骤B中所述的反应的温度为90〜150°C。 2, according to claim 1 nanometer titanium dioxide prepared according to a method modified polyurethane material, characterized in that the temperature of the reaction in Step B is 90~150 ° C.
  3. 3、 根据权利要求l所述的纳米二氧化钛改性聚氨酯材料的制备方法,其特征在于步骤C中所述的聚合,多元醇为聚酯多元醇或聚醚多元醇中的一种或两种混合。 3, nano-titanium dioxide production method of the modified polyurethane material according to claim l, characterized in that the polymerization in step C, the polyol is polyester polyol or polyether polyol or two mixing .
  4. 4、 根据权利要求l所述的纳米二氧化钛改性聚氨酯材料的制备方法,其特征在于步骤C中所述的多异氰酸酯为甲苯二异氰酸酯、4, 4' 一二苯基甲烷二异氰酸酯(MDI)、 1, 6-己二异氰酸酯(HDl)、异佛尔酮二异氰酸酯(IPDI)、多、il(甲基多苯基多异氰酸酯(PAPI)中一种或多种混合。 4. The titanium dioxide preparation of modified polyurethane Nano l claim, wherein in step C the polyisocyanate is toluene diisocyanate, 4, 4 'twelve diphenylmethane diisocyanate (MDI), 1, 1,6-diisocyanate (HDl), isophorone diisocyanate (IPDI), multiple, IL (meth polyphenyl polyisocyanate (the PAPI) in one or more mixed.
  5. 5、 一种如权利要求1〜4所述的制备方法制备的纳米二氧化钛改性聚氨酯材料。 5, the titanium dioxide nano-modified polyurethane prepared according to the method of preparation as claimed in claim 1 ~ 4.
  6. 6、 根据权利要求5所述的纳米二氧化钛改性聚氨酯材料,其特征在于该材料中纳米二氧化钛粉体呈锐汰矿晶型;粒径为10〜80nm,在国家标准GB/T 14833-93的测定条件下抗拉强度大于等于2. 5,断裂伸长率大于等于550%, 压縮复原率大于等于98%。 6, a modified titanium dioxide as claimed in polyurethane material according to claim 5, characterized in that the powder material is titanium dioxide was anatase type crystals and elimination; particle diameter 10~80nm, the national standard GB / T 14833-93 of under assay conditions is equal to 2.5 greater than the tensile strength, elongation at break of 550% or greater, a compression recovery rate of 98% or greater.
CN 200610052471 2006-09-23 2006-09-23 Method for preparing nano titanium dioxide modified polyurethane material and products thereof CN101148538B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200610052471 CN101148538B (en) 2006-09-23 2006-09-23 Method for preparing nano titanium dioxide modified polyurethane material and products thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200610052471 CN101148538B (en) 2006-09-23 2006-09-23 Method for preparing nano titanium dioxide modified polyurethane material and products thereof

Publications (2)

Publication Number Publication Date
CN101148538A true true CN101148538A (en) 2008-03-26
CN101148538B CN101148538B (en) 2010-08-11

Family

ID=39249245

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200610052471 CN101148538B (en) 2006-09-23 2006-09-23 Method for preparing nano titanium dioxide modified polyurethane material and products thereof

Country Status (1)

Country Link
CN (1) CN101148538B (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101985541A (en) * 2010-10-25 2011-03-16 江苏考普乐新材料股份有限公司 Polyurethane coating and preparation method thereof
CN101613452B (en) 2009-07-13 2011-05-11 邬剑明 Preparation method of plugging composite material polyurethane elastomer used in coal mines
CN101597461B (en) 2009-07-10 2011-11-09 浙江东化实业有限公司 Multiple curable aqueous hyperbranched polyurethane inorganic nanomaterial hybrid coating agent and preparation method thereof
CN102241943A (en) * 2011-06-01 2011-11-16 东北林业大学 Preparation of visible light response photosensitizer loaded nano TiO2 modified water-based polyurethane flat paint
CN101550224B (en) 2009-05-07 2012-01-11 四川大学 Preparation method of cation polyurethane/inorganic nanometer material organic-inorganic hybrid coating agent
CN103937022A (en) * 2014-05-06 2014-07-23 盛宇星 Nanometer supported potocatalyst as well as preparation method and application of nanometer supported potocatalyst
CN104151816A (en) * 2014-08-25 2014-11-19 吴江市德佐日用化学品有限公司 Dampness-proof and anti-microbial PU resin and preparation method thereof
CN104193950A (en) * 2014-07-30 2014-12-10 东莞市吉鑫高分子科技有限公司 Nano antibacterial polyurethane composition and preparation method thereof
CN104193949A (en) * 2014-07-30 2014-12-10 苏州市雄林新材料科技有限公司 Nano-antibacterial TPU (Thermoplastic Polyurethane) material and preparation method thereof
CN106543696A (en) * 2016-10-28 2017-03-29 无锡市永兴金属软管有限公司 Modified polyurethane elastomer based on in-situ polymerization of titanium dioxide and preparation method of modified polyurethane elastomer

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1189528C (en) 2001-12-21 2005-02-16 中国科学院金属研究所 Nano photo catalyzed polyurethane paint and its preparation method
CN100335416C (en) 2005-04-18 2007-09-05 江苏大学 Method for preparing rutile type nanometer Ti02 in low temperature using carboxylic acid as finishing agent

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101550224B (en) 2009-05-07 2012-01-11 四川大学 Preparation method of cation polyurethane/inorganic nanometer material organic-inorganic hybrid coating agent
CN101597461B (en) 2009-07-10 2011-11-09 浙江东化实业有限公司 Multiple curable aqueous hyperbranched polyurethane inorganic nanomaterial hybrid coating agent and preparation method thereof
CN101613452B (en) 2009-07-13 2011-05-11 邬剑明 Preparation method of plugging composite material polyurethane elastomer used in coal mines
CN101985541A (en) * 2010-10-25 2011-03-16 江苏考普乐新材料股份有限公司 Polyurethane coating and preparation method thereof
CN101985541B (en) 2010-10-25 2013-03-20 江苏考普乐新材料股份有限公司 Polyurethane coating and preparation method thereof
CN102241943A (en) * 2011-06-01 2011-11-16 东北林业大学 Preparation of visible light response photosensitizer loaded nano TiO2 modified water-based polyurethane flat paint
CN103937022B (en) * 2014-05-06 2016-08-17 盛宇星 Nano immobilized photocatalyst, preparation and use thereof
CN103937022A (en) * 2014-05-06 2014-07-23 盛宇星 Nanometer supported potocatalyst as well as preparation method and application of nanometer supported potocatalyst
CN104193950A (en) * 2014-07-30 2014-12-10 东莞市吉鑫高分子科技有限公司 Nano antibacterial polyurethane composition and preparation method thereof
CN104193949A (en) * 2014-07-30 2014-12-10 苏州市雄林新材料科技有限公司 Nano-antibacterial TPU (Thermoplastic Polyurethane) material and preparation method thereof
CN104151816A (en) * 2014-08-25 2014-11-19 吴江市德佐日用化学品有限公司 Dampness-proof and anti-microbial PU resin and preparation method thereof
CN104151816B (en) * 2014-08-25 2016-08-24 吴江市德佐日用化学品有限公司 Pu moisture antibacterial resin and preparation method
CN106543696A (en) * 2016-10-28 2017-03-29 无锡市永兴金属软管有限公司 Modified polyurethane elastomer based on in-situ polymerization of titanium dioxide and preparation method of modified polyurethane elastomer

Also Published As

Publication number Publication date Type
CN101148538B (en) 2010-08-11 grant

Similar Documents

Publication Publication Date Title
Ma et al. Effects of flower-like ZnO nanowhiskers on the mechanical, thermal and antibacterial properties of waterborne polyurethane
Pattanayak et al. Synthesis of thermoplastic polyurethane nanocomposites of reactive nanoclay by bulk polymerization methods
Verdejo et al. Enhanced acoustic damping in flexible polyurethane foams filled with carbon nanotubes
Camargo et al. Nanocomposites: synthesis, structure, properties and new application opportunities
Pojanavaraphan et al. Development of biodegradable foamlike materials based on casein and sodium montmorillonite clay
Matei et al. Synthesis and characterization of ZnO–polymer nanocomposites
Gao et al. Synthesis and characterization of polyurethane/SiO2 nanocomposites
CN101250375A (en) POSS/polyurethane aqueous composite paint and preparation method thereof
CN102002141A (en) Preparation method of polyurethane-nano kaolin composite material
Rao et al. Polymer nanocomposites with a low thermal expansion coefficient
JP2010506013A (en) Functional graphene for gas barrier applications - polymer nanocomposites
JP2000185916A (en) Metal oxide-based particle, its production and use
CN102241942A (en) Poly(propylene carbonate)-based polyurethane fireproof coating and preparation method thereof
CN103045037A (en) Water-based expandable fireproof steel structure coating and preparation method
CN101230224A (en) Fluorosilicone rubber nano composite alloy three-proof paint and production method thereof
CN101475759A (en) Practical method for preparing high thixotropy surface treating nano calcium carbonate
CN101565588A (en) Organic attapulgite water-borne polyurethane nano composite leather coating agent and preparation method thereof
CN102321279A (en) Dopamine modified carbon nanotube/rubber composite material and preparation method thereof
Gao et al. Preparation and characterization of well-dispersed waterborne polyurethane/CaCO3 nanocomposites
Pattanayak et al. High‐strength and low‐stiffness composites of nanoclay‐filled thermoplastic polyurethanes
CN102962045A (en) Inorganic nonmetallic mineral composite material loaded with titanium dioxide layer, preparation method and application thereof
JP2010506014A (en) Functional graphene - Gomunano composite material
CN103756541A (en) Transparent super-hydrophobicity wood coating and preparation method thereof
Gao et al. Synergistic effect of expandable graphite, melamine polyphosphate and layered double hydroxide on improving the fire behavior of rosin-based rigid polyurethane foam
JP2004035362A (en) Tubular titanium oxide particle and method for manufacturing tubular titanium oxide particle

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C14 Grant of patent or utility model
CF01