CN101091990A - A preparation method of ultrafine carbonyl iron powder for high-performance magnetic powder core - Google Patents
A preparation method of ultrafine carbonyl iron powder for high-performance magnetic powder core Download PDFInfo
- Publication number
- CN101091990A CN101091990A CN 200710029203 CN200710029203A CN101091990A CN 101091990 A CN101091990 A CN 101091990A CN 200710029203 CN200710029203 CN 200710029203 CN 200710029203 A CN200710029203 A CN 200710029203A CN 101091990 A CN101091990 A CN 101091990A
- Authority
- CN
- China
- Prior art keywords
- iron
- carbonyl
- powder
- preparation
- magnetic powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 title claims abstract description 62
- 239000006247 magnetic powder Substances 0.000 title claims abstract description 15
- 238000002360 preparation method Methods 0.000 title claims abstract description 7
- 229910052742 iron Inorganic materials 0.000 claims abstract description 20
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims abstract description 15
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 15
- 239000002994 raw material Substances 0.000 claims abstract description 9
- 239000007788 liquid Substances 0.000 claims abstract description 8
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 8
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 8
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 6
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims abstract description 4
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 4
- 229910002091 carbon monoxide Inorganic materials 0.000 claims abstract description 4
- 238000009833 condensation Methods 0.000 claims abstract description 4
- 230000005494 condensation Effects 0.000 claims abstract description 4
- 238000000926 separation method Methods 0.000 claims abstract description 4
- 238000003860 storage Methods 0.000 claims abstract description 4
- 238000003786 synthesis reaction Methods 0.000 claims abstract description 4
- 238000000354 decomposition reaction Methods 0.000 claims description 13
- 238000010438 heat treatment Methods 0.000 claims description 12
- 238000000034 method Methods 0.000 claims description 11
- 229910021529 ammonia Inorganic materials 0.000 claims description 7
- 239000000843 powder Substances 0.000 claims description 7
- 239000002131 composite material Substances 0.000 claims description 6
- 238000001816 cooling Methods 0.000 claims description 4
- 238000002161 passivation Methods 0.000 claims description 4
- 239000007789 gas Substances 0.000 claims description 3
- 229940087654 iron carbonyl Drugs 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 abstract description 7
- 238000005265 energy consumption Methods 0.000 abstract description 3
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen(.) Chemical compound [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 abstract description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 239000002245 particle Substances 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 241000234282 Allium Species 0.000 description 1
- 235000002732 Allium cepa var. cepa Nutrition 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 238000004663 powder metallurgy Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Landscapes
- Powder Metallurgy (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种高性能磁粉芯用超细羰基铁粉的制备方法。The invention relates to a preparation method of ultrafine carbonyl iron powder for high-performance magnetic powder cores.
背景技术Background technique
金属磁粉芯是采用粉末冶金技术制造的一种软磁材料,其特殊的磁性能使得其在许多应用场合具有其它材料难以比拟的优势,高性能磁粉芯虽然历史悠久,但过去主要用于军工而未得到广泛应用,随着IT产业飞速发展,伴随着逆变技术和电磁兼容性的需求,金属磁粉芯产业化得到迅速发展。羰基铁粉是一种粒径为0.05-9微米具有洋葱球层状结构的圆球形超细铁颗粒,不同的生产工艺对产品的化学成分和电磁性能影响巨大。因此,研究新的工艺方法,改善提高产品的电磁性能和适用性,降低生产成本,提高铁粉芯的性价比正成为人们研究的重点课题。Metal magnetic powder core is a kind of soft magnetic material manufactured by powder metallurgy technology. Its special magnetic properties make it have incomparable advantages in many applications. Although high-performance magnetic powder core has a long history, it was mainly used in military industry in the past. It has not been widely used. With the rapid development of the IT industry and the demand for inverter technology and electromagnetic compatibility, the industrialization of metal magnetic powder cores has developed rapidly. Carbonyl iron powder is a kind of spherical ultrafine iron particles with a particle size of 0.05-9 microns and a layered structure of onion balls. Different production processes have a great impact on the chemical composition and electromagnetic properties of the product. Therefore, researching new process methods, improving the electromagnetic properties and applicability of products, reducing production costs, and improving the cost performance of iron powder cores are becoming the focus of research.
发明内容Contents of the invention
为了克服现有技术的不足,本发明提供一种高性能磁粉芯用超细羰基铁粉的制备方法,该方法将分解、复合包覆和钝化三步工艺合而为一,生产出的产品电磁性能优良,降低了能耗,大幅度降低了生产成本,从而提高了磁粉芯的性价比。In order to overcome the deficiencies of the prior art, the present invention provides a method for preparing ultrafine carbonyl iron powder for high-performance magnetic powder cores. This method combines the three-step process of decomposition, composite coating and passivation into one, and the produced product The electromagnetic performance is excellent, the energy consumption is reduced, and the production cost is greatly reduced, thereby improving the cost performance of the magnetic powder core.
本发明解决其技术问题所采用的技术方案是:The technical solution adopted by the present invention to solve its technical problems is:
一种高性能磁粉芯用超细羰基铁粉的制备方法,其特征在于该方法是将纯净一氧化碳与铁原料于合成釜内,在3~15MPa的压力和100~200℃的温度下合成生成五羰基铁,经冷凝、气液分离,液体五羰基铁送进贮槽;在分解炉内同时通入五羰基铁、羰基镍、氮气、氨气,控制分解炉内温度在160~350℃之间,生成复合均匀,具有特殊电磁性能的超细羰基铁粉。A method for preparing ultra-fine carbonyl iron powder for high-performance magnetic powder cores, characterized in that the method is to synthesize pure carbon monoxide and iron raw materials in a synthesis kettle under a pressure of 3-15 MPa and a temperature of 100-200 ° C to form five Iron carbonyl, after condensation and gas-liquid separation, the liquid iron pentacarbonyl is sent to the storage tank; iron pentacarbonyl, nickel carbonyl, nitrogen, and ammonia are fed into the decomposition furnace at the same time, and the temperature in the decomposition furnace is controlled between 160 and 350 °C , to generate ultra-fine carbonyl iron powder with uniform composite and special electromagnetic properties.
上述五羰基铁的流量控制为12-22L/H、羰基镍0.5-4L/H、氮气30-80L/min、氨气1-6L/min.The flow control of the above iron pentacarbonyl is 12-22L/H, nickel carbonyl 0.5-4L/H, nitrogen 30-80L/min, ammonia 1-6L/min.
对生成的羰基铁粉表面进行钝化处理。具体是将分解后的复合羰基铁粉置于密闭的集粉仓内,通如含氧气0.1-0.5%的氩气或氮气进行处理,使得表面生成一层极薄的钝化膜,以防止遇空气进一步氧化或自燃。The surface of the generated carbonyl iron powder is passivated. Specifically, the decomposed composite carbonyl iron powder is placed in a closed powder collection bin, and treated with argon or nitrogen containing 0.1-0.5% oxygen, so that a very thin passivation film is formed on the surface to prevent it from being encountered. Air further oxidizes or spontaneously ignites.
上述分解炉包括炉体,炉体上部设置有原料气进口,炉内从上至下依次设置有加热I区、加热II区、加热III区、冷却区和集粉仓。The above-mentioned decomposition furnace includes a furnace body. The upper part of the furnace body is provided with a raw material gas inlet. The furnace is sequentially provided with a heating zone I, a heating zone II, a heating zone III, a cooling zone and a powder collection bin from top to bottom.
本发明的有益效果是:本发明的生产方法具有流程短、能耗低、生产成本低等特点,生产的产品应用领域广,提高了产品附加值,使国内高性能磁粉芯的性价比得到大幅度提高。用本发明工艺生产的羰基铁粉,制成Φ26.9*14*11.1(mm)的磁芯,可以获得在2.65MHz频率下,绕Φ0.6mm漆包线30匝,用WY-2851D高频Q表测得有效磁导率μe10-15,Q值300-350。The beneficial effects of the present invention are: the production method of the present invention has the characteristics of short process, low energy consumption, low production cost, etc., the products produced have a wide range of applications, the added value of products is improved, and the cost performance of domestic high-performance magnetic powder cores is greatly improved. improve. The carbonyl iron powder produced by the process of the present invention is used to make a magnetic core of Φ26.9*14*11.1 (mm), which can be obtained by winding Φ0.6mm enameled wire for 30 turns at a frequency of 2.65MHz, and using a WY-2851D high-frequency Q meter Measured effective permeability μe10-15, Q value 300-350.
附图说明Description of drawings
下面结合附图和实施例对本发明进一步说明。The present invention will be further described below in conjunction with the accompanying drawings and embodiments.
图1是本发明分解炉的结构示意图。Fig. 1 is the structural representation of the decomposition furnace of the present invention.
具体实施方式Detailed ways
图1是分解炉的结构示意图,如图所示,分解炉包括炉体1,炉体1上部设置有五羰基铁、羰基镍、氮气、氨气等原料气进口2、3、4,炉内从上至下依次设置有加热I区5、加热II区6、加热III区7、冷却区8和集粉仓9。Fig. 1 is a structural schematic diagram of the decomposition furnace. As shown in the figure, the decomposition furnace includes a furnace body 1, and the upper part of the furnace body 1 is provided with raw
实施例Example
将纯净一氧化碳与铁原料于合成釜内,在3~9.5MPa的压力和100~200℃的温度下合成生成五羰基铁,经冷凝、气液分离,液体五羰基铁送进贮槽;将五羰基铁粉加热至100~135℃,使其汽化,向分解炉内同时通入五羰基铁蒸气、羰基镍蒸气、氮气、氨气,原料流量控制为五羰基铁14-16L/H、羰基镍0.5-0.6L/H、氮气30-40L/min、氨气1-3L/min.Put pure carbon monoxide and iron raw materials in a synthesis kettle, synthesize iron pentacarbonyl under the pressure of 3-9.5 MPa and temperature of 100-200 ° C, and send the liquid iron pentacarbonyl into the storage tank after condensation and gas-liquid separation; Carbonyl iron powder is heated to 100-135°C to make it vaporized, and simultaneously feed pentacarbonyl iron vapor, carbonyl nickel vapor, nitrogen, and ammonia into the decomposition furnace, and the flow rate of raw materials is controlled as pentacarbonyl iron 14-16L/H, carbonyl nickel 0.5-0.6L/H, nitrogen 30-40L/min, ammonia 1-3L/min.
分段控制分解炉内温度,加热I区温度180-240℃、加热II区220-260℃、加热III区240-280℃,冷却区100-120℃和集粉仓50-70℃,使原料在分解炉内生成复合均匀,具有特殊电磁性能的超细羰基铁粉,并对生成的羰基铁粉表面进行钝化处理,具体是将分解后的复合羰基铁粉置于密闭的集粉仓内,通如含氧气0.1-0.2%的氩气或氮气进行处理,使得表面生成一层极薄的钝化膜,获得平均粒径2.5-3.5微米的羰基铁粉。The temperature in the decomposition furnace is controlled in sections, the temperature in the heating zone I is 180-240°C, the heating zone II is 220-260°C, the heating zone III is 240-280°C, the cooling zone is 100-120°C and the powder collecting bin is 50-70°C, so that the raw materials In the decomposition furnace, the superfine carbonyl iron powder with uniform composite and special electromagnetic properties is generated, and the surface of the generated carbonyl iron powder is passivated. Specifically, the decomposed composite carbonyl iron powder is placed in a closed powder collection bin. , by treating with argon or nitrogen containing 0.1-0.2% oxygen, so that a very thin passivation film is formed on the surface, and carbonyl iron powder with an average particle size of 2.5-3.5 microns is obtained.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2007100292033A CN100522424C (en) | 2007-07-13 | 2007-07-13 | A preparation method of ultrafine carbonyl iron powder for high-performance magnetic powder core |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2007100292033A CN100522424C (en) | 2007-07-13 | 2007-07-13 | A preparation method of ultrafine carbonyl iron powder for high-performance magnetic powder core |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101091990A true CN101091990A (en) | 2007-12-26 |
CN100522424C CN100522424C (en) | 2009-08-05 |
Family
ID=38990527
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2007100292033A Active CN100522424C (en) | 2007-07-13 | 2007-07-13 | A preparation method of ultrafine carbonyl iron powder for high-performance magnetic powder core |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100522424C (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102909392A (en) * | 2011-08-05 | 2013-02-06 | 陕西兴化化学股份有限公司 | Atomization and pyrolysis equipment for carbonyl iron powders |
CN103357866A (en) * | 2013-07-19 | 2013-10-23 | 江西悦安超细金属有限公司 | Carbonyl iron powder high-heat treatment method for metal magnetic powder cores |
CN105967242A (en) * | 2016-05-11 | 2016-09-28 | 江油核宝纳米材料有限公司 | Preparation method of nano carbonyl iron powder |
CN105965033A (en) * | 2016-05-23 | 2016-09-28 | 江油核宝纳米材料有限公司 | Preparation method for micron-size carbonyl iron and nickel alloy powder |
CN113059183A (en) * | 2020-01-02 | 2021-07-02 | 吉林卓创新材料有限公司 | Preparation method of carbonyl iron powder special for iron powder core |
CN113059182A (en) * | 2020-01-02 | 2021-07-02 | 吉林卓创新材料有限公司 | Preparation method of carbonyl iron powder special for magnetic grinding fluid |
CN114171278A (en) * | 2020-12-31 | 2022-03-11 | 昆山卡德姆新材料科技有限公司 | Metal-ferrite composite magnetic material with core-shell structure and method for making the same |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2884319A (en) * | 1956-11-27 | 1959-04-28 | Budd Co | Acicular metal particles from metal carbonyls and method of preparation |
DE2418235A1 (en) * | 1974-04-13 | 1975-11-20 | Kloeckner Werke Ag | METAL FIBER MANUFACTURING PROCESS AND DEVICE |
CN85100669A (en) * | 1985-04-01 | 1986-07-16 | 冶金部钢铁研究总院 | The reparation technology of superfine iron carbonyl powder |
CN2675302Y (en) * | 2003-12-30 | 2005-02-02 | 金川集团有限公司 | Decomposer for producing carbonyl metal powder |
CN2858132Y (en) * | 2005-12-20 | 2007-01-17 | 江苏天一超细金属粉末有限公司 | Five-carbonyl iron pyrolysis furnace with mixing device |
CN1947901A (en) * | 2006-11-24 | 2007-04-18 | 金川集团有限公司 | Method for producing nano-iron powder |
-
2007
- 2007-07-13 CN CNB2007100292033A patent/CN100522424C/en active Active
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102909392A (en) * | 2011-08-05 | 2013-02-06 | 陕西兴化化学股份有限公司 | Atomization and pyrolysis equipment for carbonyl iron powders |
CN103357866A (en) * | 2013-07-19 | 2013-10-23 | 江西悦安超细金属有限公司 | Carbonyl iron powder high-heat treatment method for metal magnetic powder cores |
CN103357866B (en) * | 2013-07-19 | 2015-12-23 | 江西悦安超细金属有限公司 | A kind of carbonyl iron dust high-temperature heat treatment method for metal magnetic powder core |
CN105967242A (en) * | 2016-05-11 | 2016-09-28 | 江油核宝纳米材料有限公司 | Preparation method of nano carbonyl iron powder |
CN105967242B (en) * | 2016-05-11 | 2018-02-06 | 江油核宝纳米材料有限公司 | The preparation method of nanometer carbonyl iron dust |
CN105965033A (en) * | 2016-05-23 | 2016-09-28 | 江油核宝纳米材料有限公司 | Preparation method for micron-size carbonyl iron and nickel alloy powder |
CN105965033B (en) * | 2016-05-23 | 2018-02-06 | 江油核宝纳米材料有限公司 | The preparation method of micron order carbonyl iron, nickel alloy powder |
CN113059183A (en) * | 2020-01-02 | 2021-07-02 | 吉林卓创新材料有限公司 | Preparation method of carbonyl iron powder special for iron powder core |
CN113059182A (en) * | 2020-01-02 | 2021-07-02 | 吉林卓创新材料有限公司 | Preparation method of carbonyl iron powder special for magnetic grinding fluid |
CN113059183B (en) * | 2020-01-02 | 2023-05-19 | 吉林卓创新材料有限公司 | Preparation method of carbonyl iron powder special for iron powder core |
CN114171278A (en) * | 2020-12-31 | 2022-03-11 | 昆山卡德姆新材料科技有限公司 | Metal-ferrite composite magnetic material with core-shell structure and method for making the same |
Also Published As
Publication number | Publication date |
---|---|
CN100522424C (en) | 2009-08-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100522424C (en) | A preparation method of ultrafine carbonyl iron powder for high-performance magnetic powder core | |
CN104209526B (en) | A kind of preparation method of superfine spherical titanium alloy powder | |
CN104550940B (en) | The method of a kind of soft magnetic ferrite cladding metallic magnetic powder and soft-magnetic composite material preparation method thereof | |
CN103262183A (en) | Composite soft magnetic powder, composite soft magnetic powder core and their preparation method | |
CN100558923C (en) | A kind of high specific gravity tungsten alloy material and its preparation method of nano crystal block | |
CN104192815B (en) | A kind of dendritic iron nitride powder and preparation method thereof | |
CN108687339B (en) | Titanium or titanium alloy spherical powder of low oxygen content and its preparation method and application | |
CN104475745A (en) | Spherical brass alloy powder manufacture method | |
CN101323917B (en) | A method for preparing nanocrystalline bulk iron-based alloy materials by four-field coupled sintering | |
CN104036899B (en) | Preparing method of core-shell structure soft-magnetism composite material | |
KR100733331B1 (en) | Manufacturing method of nano MPP powder by RF plasma combustion technology | |
CN117809925A (en) | Nanocrystalline magnetic core material of high-frequency transformer and preparation method thereof | |
Zhen et al. | Effect of main operating parameters on Al2O3 spheroidization by radio frequency plasma system | |
CN101345108B (en) | Preparation method of fully dense nanocomposite rare earth permanent magnet material | |
CN105385966A (en) | Aluminum-based amorphous alloy, preparation method and applications thereof | |
CN112222416A (en) | Preparation method of high-nitrogen non-magnetic nickel-free stainless steel ultrafine powder and metal powder | |
CN107190206A (en) | A kind of Fe Ni P alloys and preparation method thereof | |
Wang et al. | Precise regulation of the phase transformation for pyrolusite during the reduction roasting process | |
CN104131184B (en) | A kind of preparation method of copper aluminum nitride composite material | |
CN113458406B (en) | Method for quickly producing superfine iron powder | |
CN101445276B (en) | Method of producing low selenium and high specific surface area manganomanganic oxide by using carbon-manganese alloy one-step method | |
Ordoukhanian et al. | One step paired electrochemical synthesis of iron and iron oxide nanoparticles | |
CN104319053B (en) | Device and method for preparing iron nitride magnetic liquid by barometric-pressure dielectric barrier discharge | |
Lee et al. | Effect of powder synthesis atmosphere on the characteristics of iron nanopowder in a plasma arc discharge process | |
CN108405874A (en) | A kind of preparation method of micron-size spherical iron powder |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
EE01 | Entry into force of recordation of patent licensing contract |
Assignee: Jiangxi Yuean Superfine Metal Co., Ltd. Assignor: Li Shangkui Contract fulfillment period: 2009.8.5 to 2024.8.5 Contract record no.: 2009360000061 Denomination of invention: Method for preparing superfine carbonyl iron powder in use for high performance magnetic powder core Granted publication date: 20090805 License type: Exclusive license Record date: 2009.9.29 |
|
LIC | Patent licence contract for exploitation submitted for record |
Free format text: EXCLUSIVE LICENSE; TIME LIMIT OF IMPLEMENTING CONTACT: 2009.8.5 TO 2024.8.5; CHANGE OF CONTRACT Name of requester: JIANGXI YUEAN ULTRA-FINE METAL CO., LTD. Effective date: 20090929 |
|
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20180710 Address after: 341500 new century industrial city, Dayu County, Ganzhou, Jiangxi Patentee after: Jiangxi Yuean Superfine Metal Co., Ltd. Address before: 528429 Yuet long superfine Pioneer Metals Corporation, South Causeway Road, Daqin Industrial Zone, Huangpu town, Zhongshan, Guangdong Patentee before: Li Shangkui |
|
CP03 | Change of name, title or address | ||
CP03 | Change of name, title or address |
Address after: 341000 Dayu new century industrial city, Dayu County, Jiangxi, Ganzhou Patentee after: Jiangxi Yue'an New Materials Co., Ltd. Address before: 341500 Dayu new century industrial city, Dayu County, Jiangxi, Ganzhou Patentee before: Jiangxi Yuean Superfine Metal Co., Ltd. |