CN101063187B - Preparation method of ceramic-metal composite material - Google Patents

Preparation method of ceramic-metal composite material Download PDF

Info

Publication number
CN101063187B
CN101063187B CN 200710107611 CN200710107611A CN101063187B CN 101063187 B CN101063187 B CN 101063187B CN 200710107611 CN200710107611 CN 200710107611 CN 200710107611 A CN200710107611 A CN 200710107611A CN 101063187 B CN101063187 B CN 101063187B
Authority
CN
Grant status
Grant
Patent type
Prior art keywords
material
ceramic
composite
particle
basal
Prior art date
Application number
CN 200710107611
Other languages
Chinese (zh)
Other versions
CN101063187A (en )
Inventor
刘福田
周波
李兆前
李文虎
杜文华
赵正
陈启祥
Original Assignee
济南钢铁股份有限公司;济南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Abstract

The invention discloses a preparing method of ceramic-metallic composite material, which comprises the following steps: 1) allocating basal body alloy material; choosing 2Cr33Ni48WC10MoFe8 nickel base metal as basal body alloy; 2) preparing composite ceramic phase particle; choosing Al2O3 particle coating with Ti powder as composite ceramic phase particle; 3) mixing the basal body alloy material and composite ceramic phase particle with volume ratio at 1:0. 15-0. 45; pelleting; 4) press-forming; 5) vacuum-drying; 6) vacuum-clinkering; getting the product. This invention possesses lower ceramic-metallic composite material heat transfer capacity and predominance high temperature property, which is fit for new type material of rolled steel heater block.

Description

一种陶瓷-金属复合材料的制备方法 A ceramic - metal composite material prepared

技术领域 FIELD

[0001] 本发明涉及一种陶瓷-金属复合材料的制备方法,具体地说,涉及一种轧钢加热炉滑块用陶瓷-金属复合材料的制备方法。 [0001] The present invention relates to a ceramic - preparing a metal composite material, in particular, to a rolling mill furnace slider ceramic - metal composite material preparation.

背景技术 Background technique

[0002] 在轧钢生产中,板坯在轧制前都要在加热炉中加热。 [0002], the slab should be heated prior to rolling in the rolling production in the heating furnace. 支撑被加热板坯的滑块要求既能承受1250-1400°C氧化-硫化气氛的炉气热蚀,又能承受重板坯的高温滑动摩擦。 The slider supporting slab heating requirements to withstand both oxidizing 1250-1400 ° C - thermal etching curing furnace gas atmosphere, and can withstand high temperature slab heavy sliding friction.

[0003] 目前,轧钢加热炉中的滑块使用的是铸造2Cr33Ni48W10Mo高温合金,但它导热系数较高,易在钢坯表层形成“黑带”进而导致所轧制的钢板组织结构和产品性能的不均勻, 影响了中厚板产品的质量。 [0003] Currently, in the rolling mill furnace is cast using a slider 2Cr33Ni48W10Mo superalloy, but it has a higher thermal conductivity, easy to form the steel sheet structure and performance "black stripe" in turn results in the rolling surface layer of the billet is not uniform, affecting the quality plate products.

[0004] 为了解决这一问题,人们期待着一种强度较高、高温性能优越、导热能力较低同时又不显著增加综合成本的新型滑块材料。 [0004] In order to solve this problem, people look forward to a kind of high strength, excellent high temperature performance, low thermal conductivity while not significantly increase the overall cost of the new slider material.

[0005] 由于氧化铝陶瓷具有陶瓷的诸多优点又具有原料来源广、价格便宜等特点,因此, 经常作为金属陶瓷复合材料的首选原料。 [0005] Since alumina ceramics has many advantages but also has a wide source of ceramic raw material, cheap and so, therefore, the preferred starting material is often used as a metal ceramic composite. 但ai203同样也具有陶瓷最大的弱点,就是韧性较差,而这一点又严重阻碍了它在工程上的应用,因此改善其脆性成为其进入更广泛的应用领域所必须解决的问题。 But ai203 also have greatest weakness ceramics, toughness is poor, and this has seriously hindered its application in engineering, thereby improving the brittleness problem it into the broader field of application which must be resolved. 众所周知,金属及其合金具有延展性好,导电、导热性能优良以及其它一些优良性能,如磁性、吸波性等,然而其相对硬度和强度较低,密度相对较高。 Is well known, metals and alloys having a good ductility, conductivity, excellent thermal properties, and other excellent properties, such as magnetic, absorbing and the like, however, its low relative hardness and strength, relatively high density. 如果能把陶瓷和金属结合起来,扬长避短,无疑将有可能得到一种非常理想的材料。 If we can combine ceramic and metal, weaknesses, no doubt it will be possible to obtain a very good material.

[0006] A1203基复合材料可用作切削工具,适于高速切削。 [0006] A1203 based composite material useful as a cutting tool, suitable for high-speed cutting. 用Cr作金属粘结相的A1A基复合材料比A1203陶瓷机械强度高,并随组成中Cr含量增加,抗折和抗张强度有所增加。 With Cr as the binding phase metal matrix composite A1A higher mechanical strength than the ceramic A1203, with the composition and content of Cr increases, the flexural and tensile strength increase. 采用Cr-Mo合金效果更好,可在许多高温条件下应用。 Cr-Mo alloy using better, can be used in many high temperature conditions. 例如作为喷气火焰控制器、导弹喷管的衬套、熔融金属流量控制针、“T”形浇口、炉管、火焰防护杆以及热电偶保护套管和机械密封环等。 For example, as the flame jet controller, missile nozzle liner, molten metal flow control needles, "T" shaped gate, tube, bar and thermocouple flame protection and mechanical protection sleeve seal ring. Al203-Fe复合材料硬度高、耐磨、耐腐蚀、热稳定性高,广泛用作机械密封环以及农用潜水泵机械密封,另外还可以在要求耐高温、导热、导电场合下作为高温部件使用。 Al203-Fe composite material having a high hardness, wear resistance, corrosion resistance, high thermal stability, is widely used as a mechanical seal ring of mechanical seals and agricultural submersible pumps, requiring high temperatures also can be thermally conductive, electrically conductive at high temperature is used as a case member. 该环使用寿命长,而且不会因临时启动产生大量的热而使环破碎。 Long service life of the ring, but will not generate a lot of heat provisional start the break ring.

[0007] 经过多年的研究,已经有多种工艺用来制备A1203-金属复合材料。 [0007] After years of research, there have been a variety of processes for preparing A1203- metal composite material. 常见的有:粉末冶金法、直接氧化法、液态金属注入法、原位复合法、3A法以及湿化学法等。 Common: powder metallurgy method, a direct oxidation method, liquid metal is poured, in situ compounding method, 3A and wet chemical method or the like method. 粉末冶金法操作相对简单,但缺点是基体与第二相材料混合不均勻,以及在烧结过程中由于基体发生体积收缩,易导致复合材料产生裂纹。 Powder metallurgy method is relatively simple, but the disadvantage is the second phase and the matrix material are mixed unevenly, as well as in the sintering process since the base volume shrinkage occurs, cracking easily lead composites.

[0008] A1203基复合材料作为一种具有广泛应用的材料体系,对其研究的主要目的就是通过合理的组元、成分、显微结构及工艺设计,使A1203与金属的性能特点互相补充,充分发挥各自的优点,克服各自的不足,获得具有理想性能的ai203-金属复合材料,提高材料的可靠性,最终实现结构功能一体化,从而进一步扩大其应用范围。 [0008] As a material of A1203 system based composite material having a wide application, its main purpose is to study the reasonable component, composition, process design and microstructure, and performance characteristics A1203 metal complement each other, sufficiently play their respective advantages and overcome their deficiencies, metal composite material obtained ai203- having desirable properties, improve the reliability of the material, structure and function and ultimately integration, to further expand its scope of application.

[0009] 日本关西电力与名古屋大学、日立制作所用镍基单晶超合金共同开发出世界最高水平的具有高温耐热特性的燃气轮机机翼。 [0009] The Kansai Electric Power and Nagoya University in Japan, Hitachi nickel-based single crystal superalloy gas turbine have jointly developed a high-temperature heat-resistant properties of the world's highest level of the wing. 这种合金以镍为主体,通过钴、铬、钨、铝、钛、 钽、铼、铪等合金元素的合理的组成比例实现了性能最佳化。 Such a nickel alloy as the main body, to achieve the best performance of the composition by a reasonable proportion of alloying elements cobalt, chromium, tungsten, aluminum, titanium, tantalum, rhenium, and hafnium. [0010] 有研究采用包覆工艺和热压工艺制备了Al203-Ni复合材料。 [0010] Studies of Al203-Ni composite material prepared by coating process and hot pressing. 在1450°C热压Ni包覆A1203复合粉体得到相对密度> 98%的金属陶瓷复合材料,当温度> 1400°C时,随着Ni 含量的增加致密度下降。 In the 1450 ° C hot A1203 coated Ni composite powders relative density> 98% of the metal-ceramic composite material, when the temperature of> 1400 ° C, the Ni content is decreased with increasing density. M颗粒位于三角晶界,随着含量的增加,断裂方式由沿晶转为穿晶断裂;在A1203基体中引入Ni颗粒能够降低晶粒尺寸,提高强度和韧性。 M particles are located triangular grain boundaries, as the content of the intergranular fracture mode into transgranular fracture; A1203 introduction of Ni particles in the matrix grain size can be reduced, improving the strength and toughness. 与单相A1203的力学性能相比,综合力学性能较好的NA4金属陶瓷复合材料的抗弯强度和断裂韧性分别提高7 19%和35%。 Compared with the mechanical properties of the single-phase A1203, flexural strength and fracture toughness of the excellent mechanical properties of the metal-ceramic composites NA4 increased 719% and 35%, respectively.

发明内容 SUMMARY

[0011] 本发明需要解决的技术问题就在于克服现有技术的缺陷,提供一种轧钢加热炉滑块用陶瓷-金属复合材料的制备方法,本发明制备的陶瓷-金属复合材料导热能力较低、高温性能优越、力学强度能够达到轧钢加热炉滑块的使用要求,是一种适合于轧钢加热炉滑块用的新型材料。 [0011] The present invention technical problem to be solved is to overcome the drawbacks of the prior art, there is provided a rolling mill furnace slider ceramic - metal composite material preparation method, the present invention is prepared by a ceramic - metal composite low thermal conductivity , superior high temperature properties, mechanical strength requirements can be achieved using a heating furnace slider rolling, a new material suitable for reheating furnace with the slider. 本发明制备的新型陶瓷-金属复合材料还可广泛应用于其它抗高温耐磨损部件。 The present invention is prepared by new ceramic - metal composite material can be widely applied to other high-temperature wear-resistant member.

[0012] 为解决上述问题,本发明采用如下技术方案: [0012] In order to solve the above problems, the present invention adopts the following technical solution:

[0013] 本发明涉及一种陶瓷_金属复合材料的制备方法,所述方法包括下列步骤: [0013] The present invention relates to a method for preparing _ ceramic metal composite material, the method comprising the steps of:

[0014] 1)、基体合金料配比:以2Cr33Ni48WC10MoFe8镍基金属作为基体合金,按照2Cr33Ni48WC10MoFe8镍基金属中的成分配比(重量比)将Cr粉2份、Ni粉33份、WC粉48 份、Mo粉10份和Fe粉8份混合均勻制备成基体合金料; [0014] 1), the matrix alloy charge ratio: In 2Cr33Ni48WC10MoFe8 nickel-based metal as the matrix alloy, the ratio (weight ratio) of Cr powder 2 parts according 2Cr33Ni48WC10MoFe8 nickel-based ingredients, Ni powder, 33 parts, the WC powder, 48 parts , Mo powder and 10 parts of Fe powder 8 parts uniformly mixed to prepare a base alloy material;

[0015] 2)、复合陶瓷相颗粒的制备:所述复合陶瓷相颗粒为Ti粉包覆的A1203颗粒; [0015] 2), the ceramic composite particles prepared with: the composite ceramic phase particles are coated Ti powder particles A1203;

[0016] 3)、配料及造粒:按照基体合金料与复合陶瓷相颗粒的体积比为1 : 0. 15〜0. 45 的比例,将基体合金料与复合陶瓷相颗粒混合搅拌均勻;在搅拌过程中,滴加橡胶溶液成型剂,进行造粒;成型剂的加入量为每100克混合料中加入10〜15毫升成型剂; [0016] 3), and the granulation Ingredients: volume ratio of the matrix alloy according to the composite material with ceramic particles is 1: 0. 15~0 45, the matrix alloy composite material and the ceramic particles are mixed with stir; at. stirring, was added dropwise a solution of the rubber forming agents, granulating; forming agent is added in an amount per 100 g of 10 ~ 15 ml of mix was added forming agent;

[0017] 4)、压制成型:采用压力机将造粒料进行坯体的压制成型,成型压力为100〜 200MPa ;保压时间为40〜100秒; [0017] 4), press-forming: The granules were press for press-forming the blank, the forming pressure was 100~ 200MPa; dwell time of 40~100 seconds;

[0018] 5)、真空干燥:成型后的坯体60〜90°C真空干燥; [0018] 5), and dried under vacuum: after forming the green body was dried in vacuo 60~90 ° C;

[0019] 6)、真空烧结:烧结温度1250〜1380°C,烧结真空度为1. OX 10—1〜1. OX 10_3Pa。 [0019] 6), vacuum sintering: sintering temperature of 1250~1380 ° C, degree of vacuum sintering 1. OX 10-1~1 OX 10_3Pa..

[0020] 本发明所述复合陶瓷相颗粒的制备方法为:按照Ti粉与球形A1203颗粒重量比为1 : 0.01〜0.05的比例,将Ti粉加入到A1203颗粒料中,滴入PVB(聚乙烯醇缩丁醛)酒精溶液粘结剂,粘结剂加入量为每100克原料中滴加5〜10毫升,搅拌混合,使Ti粉均勻包覆在氧化铝颗粒表面,制备成粒径为0. 5〜1. 0毫米、Ti粉包覆的A1203复合陶瓷相颗粒。 [0020] The preparation method of the composite ceramic phase particles: Ti powder according to the weight ratio of the spherical particles A1203 1: 0.01~0.05, the Ti powder was added to the feed particles A1203, was added dropwise PVB (polyvinyl butyral) binders alcohol solution, the amount of binder is added per 100 g of starting material was added dropwise 5 to 10 mL, stirring and mixing the Ti powder particles are uniformly coated on the surface of alumina to prepare a particle size of 0 . 5~1. 0 mm, Ti composite ceramic powder coated with A1203 particles.

[0021] 优选的,本发明所述Ti粉与球形A1203颗粒重量比为1 : 0.03。 [0021] Preferably, the present invention is the Ti powder and the spherical particles A1203 weight ratio of 1: 0.03. 所述基体合金料与复合陶瓷相颗粒的体积比为1 : 0.25。 The base alloy material and the volume ratio of the composite ceramic phase particles is 1: 0.25.

[0022] 优选的,本发明所述真空烧结分三步来完成: [0022] Preferably, the present invention is accomplished in three steps Vacuum sintering:

[0023] 1)、脱脂预烧阶段:烧结温度为0〜400°C,升温速度为10°C /分钟; [0023] 1), calcined degreasing stage: the sintering temperature of 0~400 ° C, a heating rate of 10 ° C / min;

[0024] 2)、烧结阶段:烧结阶段由下列步骤完成: [0024] 2), phase sintering: sintering stage is done by the following steps:

[0025] A、保温阶段,温度为400°C,保温时间30分钟; [0025] A, holding stage, a temperature of 400 ° C, holding time of 30 minutes;

[0026] B、预烧结阶段,温度为400°C〜1000°C,升温速度10°C /分钟; [0026] B, the pre-sintering step, a temperature of 400 ° C~1000 ° C, temperature increase rate 10 ° C / min;

[0027] C、保温阶段,温度为1000°C,保温时间30分钟; [0027] C, holding stage, a temperature of 1000 ° C, holding time of 30 minutes;

[0028] D、烧结阶段,温度为1000°C〜烧结温度,升温速度10°C /分钟;[0029] E、烧结温度保温,温度为1250〜1380°C,保温30分钟; [0028] D, sintering step, the sintering temperature is 1000 ° C~ temperature, heating rate 10 ° C / min; [0029] E, the sintering temperature for a temperature of 1250~1380 ° C, for 30 minutes;

[0030] 3)、冷却阶段:随炉冷却。 [0030] 3), cooling phase: furnace cooling.

[0031] 本发明具有以下特点: [0031] The present invention has the following characteristics:

[0032] 1、采用本发明的方法所制备的材料具有较低的导热系数,强度达到使用要求。 [0032] 1, using the materials prepared by the method of the present invention has a lower thermal conductivity, strength achieve the requirements.

[0033] 2、包覆氧化铝陶瓷颗粒与镍基合金基体具有较好的润湿性,两者能够较好的结合 [0033] 2, the alumina ceramic particles coated with nickel-based alloy matrix having good wettability, good binding can be both

在一起。 Together.

[0034] 3、采用本发明的方法所制备材料的高温性能优越。 [0034] 3, excellent high temperature properties of the prepared using the method of the invention material.

[0035] 4、采用本发明的制备方法制备的复合滑块材料,综合性能好,工艺简单,适合于工业化生产。 [0035] 4, the slider composite material produced by the production method of the present invention, good overall performance, simple process, suitable for industrial production.

[0036] 本发明制备的陶瓷-金属复合材料导热能力较低、高温性能优越、力学强度能够达到轧钢加热炉滑块的使用要求,是一种适合于轧钢加热炉滑块用的新型材料。 Preparing ceramic of the present invention [0036] The present - a lower metal composite heat capacity, superior high temperature properties, mechanical strength requirements can be achieved using a heating furnace slider rolling, a rolling mill furnace is adapted to slide with new material. 本发明制备的新型陶瓷_金属复合材料还可广泛应用于其它抗高温耐磨损部件。 Preparation of the new ceramic metal composite material according to the invention _ can be widely applied to other high-temperature wear-resistant member.

[0037] 为了获得高温力学性能优越、导热性能较低的陶瓷-金属复合材料,通常选用耐高温、抗磨性能好的高温合金作为基体材料。 [0037] To obtain excellent high temperature mechanical properties, low thermal conductivity of ceramic - metal composite typically use high temperature, good anti-wear performance superalloys as the base material.

[0038] 陶瓷-金属复合材料的物理化学问题是复合材料研制中的关键问题。 [0038] ceramic - metal composites physicochemical problem is the key issue in the development of composites. 材料组分的选择、工艺过程的控制对材料的最终性能起决定性的作用。 Choice of material composition, process control on the final properties of the material play a decisive role. 相界面的润湿性、化学反应以及组分的溶解对相界面的结合有着重要的影响。 Wettability, chemical reactions and dissolution phase interface components has a significant impact on the interfacial bonding. 相界面的物理和化学相容性决定了陶瓷-金属复合材料在广泛温度范围内的工作性能。 Phase interface determines the physical and chemical compatibility of the ceramic - metal composite performance over a wide temperature range.

[0039] 本发明以相间热膨胀系数的匹配性、润湿性及尽量少的相间反应作为选材的首要原则,以2Cr33Ni48WC10MoFe8镍基金属作为基体合金,以Ti粉包覆的A1203颗粒作为复合陶瓷相颗粒。 [0039] The present invention in matching white thermal expansion coefficient, wettability and phase reaction as little as a selection of the first principle, in order to 2Cr33Ni48WC10MoFe8 Nickel-based metal as the matrix alloy, as Ti powder coated with A1203 particles as composite ceramic phase particles .

[0040] 复合材料中基体金属和复合陶瓷相之间的物理匹配非常重要。 [0040] Composite physical match between the matrix metal and composite ceramic phase is very important. 所谓物理匹配是指两种材料在物理性能上的相容性,主要包括热膨胀系数和弹性模量。 The so-called physical match is the compatibility of the two materials on the physical properties, including the coefficient of thermal expansion and elastic modulus. 不同相之间的物理匹配将对界面应力、载荷传递和整个材料的性能产生很大的影响。 Matching the physical interface between the different phases will stress, load and transfer performance of the overall material a large impact. 材料的热膨胀系数取决于它的化学组成和晶体结构。 Thermal expansion coefficient depends on its chemical composition and crystal structure. 当二者确定以后,很难加以改变和调整。 When both determined to be difficult to change and adjust. 热膨胀系数差异过大会造成基体和复合相在冷却阶段产生应力,降低复合材料的强度,甚至会使材料产生裂纹。 Excessive thermal expansion coefficient difference causes the matrix phase and composite stress is generated in the cooling stage, reducing the strength of the composite material, the material will even crack.

[0041] 实践证明,二元陶瓷基复合材料中两相热膨胀系数的差异不应过大,如对于金属陶瓷复合材料,系统中两相热膨胀系数差值达loxic^r1时,制品会被破坏,而差值为sxio^r1时,制品尚能承受。 [0041] Practice has proved that the binary ceramic matrix composites in thermal expansion coefficients between the phases should not be too large, such as for metal-ceramic composite material, a two-phase system, the difference of thermal expansion coefficients when loxic ^ r1, the article will be destroyed, when the difference is sxio ^ r1, article able to absorb.

[0042] 从降低残余应力、提高材料的强度来说,应使金属基体的弹性模量较小,且与复合相的热膨胀系数接近。 [0042] of reducing the residual stress and improve the strength of the material, the smaller should be the modulus of elasticity of the metal substrate, and is close to the thermal expansion coefficient of the composite phases. 高的弹性模量将使复合相分担更大的载荷,也有助于强度的改善。 High elastic modulus composite phases will share the larger load, also help to improve strength. 因此存在一个最优匹配,可以使材料的强度和韧性同时得到提高。 Thus there is an optimal match, the material can be improved while the strength and toughness.

[0043] 除了极少数的方法外,金属基复合材料都在较高的温度下制造,温度范围通常稍低于或稍高于基体的熔点,因此基体和增强物之间的相互作用不可避免,易于生成严重影响复合材料性能的化合物。 [0043] In addition to a handful of methods, for producing metal matrix composite materials at higher temperatures, the temperature range is generally slightly below or slightly above the melting point of the matrix, and therefore the inevitable interaction matrix and a reinforcing material between, easily generate the compound composite properties seriously affected. 这就是基体和增强物的化学相容性问题。 This is the matrix and a reinforcing material chemical compatibility issues. 它包括热力学相容性和动力学相容性两个方面。 It includes both the compatibility and compatible kinetics of thermodynamics. 因此,在选择基体合金时要充分考虑这两个方面,既能够满足其温度要求,又要尽量避免一些化合物的生成。 Thus, the choice of the matrix alloy to fully consider these two aspects, both to meet the temperature requirements, but also to avoid some of the generated compound.

[0044] 另外,在选择基体合金时,也要充分考虑其对复合相的润湿性。 [0044] Further, when selecting the matrix alloy, giving due consideration to the wettability of the composite phases. 但是,在实际应用中,润湿性有时不能满足要求,这就需要进行一些处理。 However, in practical application, wettability sometimes can not meet the requirements, which requires some processing. 对于金属基复合材料可以采取下列措施来改善金属基体对复合相的润湿性。 For metal matrix composites may take the following measures to improve the wettability of the metal matrix composite phase.

[0045] 1)改变复合相的表面状态与结构以增大表面张力,即对复合相进行表面处理,包括机械、物理和化学清洗,电化学抛光和涂覆。 [0045] 1) changing the surface state of the composite structure to increase the surface tension of the phase, i.e. the phase of the composite surface treatment, including mechanical, physical and chemical cleaning, polishing, and electrochemical coating. 最有效的办法是进行表面涂覆处理。 The most effective way is subjected to a surface coating treatment.

[0046] 2)改变金属基体的化学成分以降低界面张力,最有效的办法是向基体中添加合金元素。 [0046] 2) changing the chemical composition of the metal matrix in order to reduce the interfacial tension, the most effective way is to add alloying elements in the matrix. 如在Ni-Al203系中向Ni中添加Ti、Cr等能改善Ni对A1203的润湿性。 The added to the Ni, Ni-Al203 system Ti, Cr, etc. can improve the wettability of the Ni A1203.

[0047] 3)改变温度,通常升高温度能减小液态基体与固态复合相间的接触角,但温度不能过高,否则将促进基体与增强物间化学反应,严重影响复合材料的性能。 [0047] 3) changing the temperature, generally elevated temperatures can reduce the contact angle of the liquid with the solid composite matrix phases, but the temperature is not too high, otherwise the matrix and the reinforcing promote chemical reaction between the material, seriously affect the properties of the composite.

[0048] 4)改变环境气氛,如在氧化气氛中制造Ni-Al203复合材料时也能降低接触角而提高材料的性能。 [0048] 4) changing the atmosphere, the contact angle can be reduced when manufacturing a Ni-Al203 composites in an oxidizing atmosphere to improve the properties of the material.

[0049] 制备性能良好的复合材料,应根据所要求的材料性能进行最优设计,选择合适的材料组元在使用中承担一定的功能。 [0049] Preparation of good properties of composite materials, the material should be optimally designed according to the required performance, to select the appropriate component materials assume certain functions in use. 首先根据复合材料所需的性能来选择组成复合材料的材料体系,即选择基体粘结相和复合相。 First, according to the desired properties of the composite system composed of a material selected composite material, i.e., selection and composite binder phase matrix phase. 要综合考虑组元之间的物理、化学相容性和润湿性。 To consider the physical connection between the component, chemical compatibility and wettability. 表1为镍基合金和几种可作为基体粘结相的材料的性能比较。 Table 1 is a nickel-based alloy, and several properties of the material can be compared as a matrix binder phase.

[0050] 表1普通镍基合金、Ti3Al和TiAl合金Ti合金性能比较 [0050] Table 1 Common nickel-base alloy, Ti alloy properties Ti3Al and TiAl alloy of Comparative

[0051] 性能Ni基合金Ti3Al基TiAl基合Ti基合[0052] [0051] Properties of Ni-base alloy Ti3Al group TiAl based alloy Ti-based alloy [0052]

[0053] 由表1可见,镍基合金的抗蠕变和抗氧化性比普通钛合金好得多,与TiAl基合金相当,但综合性能更优越,因为其具有更高的高温强度、高温抗氧化性。 [0053], nickel-base alloy creep and oxidation resistance, and TiAl Alloys seen from Table 1 rather than ordinary titanium alloy is much better, but the overall performance is superior because it has a higher high-temperature strength, high-temperature oxidation. 镍基合金的主要应用优势在于: The main advantage of the application of the nickel-base alloy comprising:

[0054] (1)镍基合金比其他常用结构合金的比刚性高约50%。 [0054] (1) Ni-based alloys other than conventional structure rigidity higher than about 50%.

[0055] (2)镍基合金800〜1090°C的良好抗蠕变性能,使其可以更好地作为高温合金部件来使用。 [0055] good creep resistance (2) Ni-based alloy 800~1090 ° C, the better it can be used as a superalloy component.

[0056] (3)镍基合金的高屈服强度、高抗氧化极限、优良的高温塑性以及抗耐磨性都是其他材料不能代替的。 [0056] (3) High yield strength Ni-based alloy, high antioxidant limit, excellent high-temperature ductility and resistance to wear are not a substitute for other materials.

[0057] 但是,和其它金属合金一样,镍基合金也存在导热系数高,而且价格昂贵等问题,因此本发明设计加入氧化铝颗粒做复合相,即可利用氧化铝陶瓷导热系数低的特点,又可降低复合材料的价格。 [0057] However, other metals and other alloys, nickel-based alloys present a high thermal conductivity, and expensive problems, the present invention is thus designed to make a composite with alumina particles was added, to an alumina ceramic with a low thermal conductivity characteristics, but also reduce the price of the composite material.

[0058] 镍、铬是基体合金的主要成分,由镍-铬二元相图1所示:在镍占27. 3%〜53%之间的时候镍铬系统具有低共熔点,且镍的综合性能优于铬,所以在镍和铬的含量分别选取48% 和33%。 [0058] The main component of nickel, chromium alloy is the matrix of a nickel - chromium binary phase diagram shown in FIG 1: a nickel when nickel-chromium system accounts for between 27.3% ~53% of a low eutectic point, and nickel comprehensive performance is better than Cr, the content of nickel and chromium in the selection of 48% and 33%, respectively.

[0059] 钼粉呈银白色,密度10. 22g/cm3,熔点为2610°C。 [0059] The molybdenum powder silvery white, density 10. 22g / cm3, a melting point of 2610 ° C. 钼粉的颗粒均勻,流动性较差。 Molybdenum powder particles uniformly, the fluidity is poor. 钼粉的少量加入主要是为了增加基体合金对陶瓷颗粒的润湿性和提高基体合金的耐高温性能。 Add a small amount of molybdenum powder mainly to increase the wettability of the matrix alloy and increase the temperature resistance of the base alloy of the ceramic particles.

[0060] 选用还原铁粉为原料,因为它相对来说经济便宜,且实验发现对复合材料性能的影响并不大。 [0060] selection of reduced iron powder as raw material, because it is relatively inexpensive economy, and the impact was found on the properties of the composites is not large. 铁粉的加入主要是因为它易与其它金属发生共晶,且有较好的润湿性。 Iron powder mainly because it is easy to eutectic with other metals, and have better wetting.

[0061] 碳化钨由金属钨粉(三氧化钨)在高温下(1400〜1800°C )与炭黑化合而成。 [0061] Tungsten carbide powder of a metal (tungsten trioxide) (1400~1800 ° C) and the compound obtained by the carbon black at an elevated temperature. 碳化钨晶格呈立方体,密度为15. 5〜15. 7克/厘米3,具有高硬度(显微硬度1700公斤/毫米2)和高熔点(2720°C)并能溶介于多种难熔碳化物中。 Tungsten carbide cubic lattice, the density of 5~15 15. 7 g / cm 3, having a plurality of hard high hardness (microhardness of 1700 kg / mm 2) and high melting point (2720 ° C) range and can dissolve melt carbide. 碳化钨作为骨架材料主要用于硬质合金等各类硬面材料之中。 Tungsten carbide is mainly used as reinforcing material in cemented carbide and other hard surface materials. 碳化钨加入基体合金中可以提供材料的硬度和耐磨性,并有效降低高熔点材料的液相烧结温度。 Tungsten carbide may be added to the base alloy to provide hardness and wear resistance material, and to reduce the temperature of the liquid phase sintering of high-melting material.

[0062] 本发明进行的氧化铝包覆和基体合金与氧化铝之间的配比的实验见表2。 [0062] The experiments in Table ratio between the alumina coating and the aluminum base alloy for the present invention and 2. 氧化铝复合相材料选用氧化铝微球(粒径约0. 5〜1mm)。 Alumina composite material selection phase alumina microspheres (particle size of about 0. 5~1mm).

[0063] 实验采用Ti粉作为氧化铝微球表面包覆剂。 [0063] Alumina powder as Ti experiment microsphere surface coating agent. 实验发现Ti粉对Al203-Ni复合材料相界面的润湿及力学性能有更好的影响。 It was found that Ti powder have a better wetting effect on the mechanical properties of composites and the phase interface Al203-Ni.

[0064] 对于以Ni基合金为基体的氧化铝复合材料,由于Ni不润湿A1203,Al203-Ni相界面润湿性不够好,界面结合强度较低,氧化铝颗粒在材料断裂过程中易于拔出,基体合金的增韧作用未得到充分发挥。 [0064] The composite material of alumina with Ni-based alloy matrix, since Ni does not wet A1203, Al203-Ni phase interfacial wettability is not good enough, the interface bonding strength is low, the alumina particles tend to pull in the material fracture process out, toughening the alloy matrix has not been fully realized. 采用对氧具有较高化学活性的Ti粉为添加剂,其作用有以下三点。 Of Ti powder having a high chemical activity of oxygen as an additive, which acts on the following three points. (l)Ti粉添加剂由于对氧具有高的化学活性而在Al203-Ni相界面附近富集,通过改善相界面润湿性而强化了相界面结合,从而显著提高Al203-Ni基合金复合材料的力学性能。 (L) Ti powder additives due to their high chemical activity of oxygen in the vicinity of the interface Al203-Ni-rich phase, by improving interface wettability of the reinforcing phase with the interfacial bonding, thereby significantly improving the Al203-Ni-based alloy composite of mechanical properties. (2)实验的成分范围内,随Ti粉含量增加,复合材料的烧结致密度和三点弯曲强度提高;断裂韧性在Ti粉的包覆量为氧化铝颗粒质量的3%时具有最大值。 (2) the composition range of the experiment, with the increase in the content of Ti powder, the sintered density of the composite material and three-point bending strength is improved; fracture toughness has a maximum of 3% by mass of alumina particles in the coating amount of the Ti powder is. (3)Al203(Ti粉包覆)_Ni 基合金复合材料的增韧机理以桥接机理为主。 (3) Al203 (Ti powder coated) _Ni toughening mechanism based composite alloy mainly bridging mechanism.

[0065] 表2复合材料制备第二部分实验的配料方案 [0065] The second part of the experiment Table 2 composite prepared proportioning

[0066] [0066]

[0067] 在常温下,以规定的装填系数,将混合原料粉末送入模腔中,通过模冲用压力把粉末压实成具有预定形状和尺寸的压坯,并用压力将压坯脱出模具的过程,称为模压成型。 [0067] at room temperature to a predetermined filling factor, the mixed raw material powder into the mold cavity by the punch pressure compacted into a powder compact having a predetermined shape and size, and the pressure compacts the extrusion die process, referred to as molding. 通常由装粉、压制、脱模3个工序完成。 Usually done by means powder, pressing, releasing three processes.

[0068] 采用压力机进行压制成型,成型压力100〜200MPa,选择保压时间为40〜100秒钟。 [0068] A press for press-forming, the molding pressure 100~200MPa, select the dwell time of 40~100 seconds.

[0069] 干燥:成型后的坯体60〜90°C真空干燥。 [0069] Drying: After forming the green body was dried in vacuo 60~90 ° C.

[0070] 在高温环境下金属易氧化,所以采用真空烧结。 [0070] easily oxidized metal at high temperatures, so the use of vacuum sintering. 真空烧结有保护气氛、还原、脱气、 促进液相对固相的润湿、活化烧结等作用,适用于忌避气体作保护气体的场合。 Vacuum sintering atmosphere protection, reduction, degassed, relatively solid phase to promote wetting liquid, activation sintering, suitable for gas as occasion repellent protective gas.

[0071] 本发明真空烧结分三步来完成: [0071] The present invention is accomplished in three steps Vacuum sintering:

[0072] 1.脱脂:这一阶段是脱除成形剂阶段也可称为预烧阶段,在这阶段在某一温度要保温一段时间,其目的:一是使成形剂充分排除,二是进行自身的氧化还原反应。 [0072] 1. Degreasing: This stage is the removal of phase forming agent may also be referred to as a pre-burn stage, at this stage at a certain temperature for a holding time, it is an object: one fully exclude the shaping agent, is two its oxidation-reduction reaction. 通过这一阶段的预烧应使成形剂分解,气体充分排除。 By this stage the pre-firing should decompose the forming agent, gas sufficiently excluded.

[0073] 2.烧结:烧结阶段设定的温度即是烧结所需要的温度。 [0073] 2. Sintering: sintering stage set temperature i.e. the temperature required for sintering. 由于真空烧结具有活化烧结的作用,其烧结温度比气氛烧结要低50°C〜100°C。 Since the vacuum sintering effect with activated sintering, the sintering temperature is lower than the sintering atmosphere 50 ° C~100 ° C.

[0074] 3.冷却:随炉冷却。 [0074] 3. cooling: cooling with the furnace.

[0075] 烧结时,400°C附近有一段平稳区,原因是覆层坯体中加入的有机成形添加剂的分解、挥发、脱除。 [0075] When firing, there is a plateau region near 400 ° C, because the decomposition of the coating formed bodies adding an organic additive, volatilization removal.

[0076] 为了避免由于成形添加剂成分的过于快速的分解、挥发而在坯体内形成气泡、层裂、缝隙,或对坯体造成其它破坏,在此阶段的升温速度不宜过快,实验表明,以10°c /min 为宜。 [0076] In order to avoid too rapid decomposition of the molding additive component, volatilization of the blank body is formed bubble layer crack, slit, or cause other damage to the body, at this stage temperature rise rate of not too fast, experiments show that 10 ° c / min is appropriate. 为了使PVB等料浆添加剂比较充分、完全的分解、挥发,在400°C进行30min的保温。 In order to compare the PVB slurry additives full, complete decomposition, volatilization, incubated for 30min at 400 ° C. 而在1000°C附近许多金属元素在这一温度点开始进行合金化,为了使合金化能够比较充分的进行,所以在这个温度点也保温30分钟,而到1370°C有一个吸热峰,说明在这个温度点液相开始大量出现,因此本实验将烧结温度定在1250-1340°C,这个温度区域为最佳烧结温度。 In many near 1000 ° C at the temperature point metal element alloy starts, in order to compare sufficient alloying proceeds, so it is kept at this temperature point for 30 minutes to 1370 ° C and a heat absorption peak, DESCRIPTION great number at this point the temperature of the liquid phase, and therefore this experiment the sintering temperature set at 1250-1340 ° C, the optimum temperature region sintering temperature. 在烧结温度保温30分钟。 In the sintering temperature for 30 minutes. 附图说明 BRIEF DESCRIPTION

[0077] 图1为本发明复合材料烧结温度示意图。 [0077] FIG sintering temperature of the composite material is a schematic view of the present disclosure.

[0078] 图2为原料的DTA-TG分析曲线图。 [0078] FIG. 2 is a graph showing a DTA-TG analysis of the raw material.

[0079] 图3a、图3b、图3c和图3d为本发明制备的陶瓷-金属复合材料断面的扫描电镜照片,其中:图3a和图3b为断面扫描电镜照片40X ;图3c为断面抛光后的扫描电镜照片40X ;图3d为氧化铝颗粒和基体合金烧结后界面结合情况5000X。 [0079] Figures 3a, 3b, 3c and 3d ceramic prepared in the present invention - SEM image of the metal composite cross section, wherein: FIGS. 3a and 3b is a sectional SEM photograph 40X; Figure 3c is a cross section of the polishing SEM photographs 40X; Fig. 3d binding 5000X the case of alumina particles and the matrix alloy interface after sintering.

具体实施方式 detailed description

[0080] 实施例1陶瓷-金属复合材料的制备 [0080] Ceramic Example 1 - Preparation of Composite Metal

[0081 ] 1)、基体合金料配比:以2Cr33Ni48WC10MoFe8镍基金属作为基体合金,按照2Cr33Ni48WC10MoFe8镍基金属中的成分配比(重量比)将Cr粉2份、Ni粉33份、WC粉48 份、Mo粉10份和Fe粉8份混合均勻制备成基体合金料; [0081] 1), the matrix alloy charge ratio: In 2Cr33Ni48WC10MoFe8 nickel-based metal as the matrix alloy, the ratio (weight ratio) of Cr powder 2 parts according 2Cr33Ni48WC10MoFe8 nickel-based ingredients, Ni powder, 33 parts, the WC powder, 48 parts , Mo powder and 10 parts of Fe powder 8 parts uniformly mixed to prepare a base alloy material;

[0082] 2)、复合陶瓷相颗粒的制备:按照Ti粉与球形A1203颗粒重量比为1 : 0. 03的比例,将Ti粉加入到A1203颗粒料中,滴入PVB (聚乙烯醇缩丁醛)酒精溶液粘结剂,粘结剂加入量为每100克原料中滴加5〜10毫升,搅拌混合,使Ti粉均勻包覆在氧化铝颗粒表面, 制备成粒径为0. 8毫米、Ti粉包覆的A1203复合陶瓷相颗粒。 [0082] 2) Preparation of composite ceramic phase particles: spherical Ti powder according A1203 particle weight ratio of 1: 0.03 ratio of the Ti powder is added to the feed particles A1203, was added dropwise PVB (polyvinyl butyral aldehyde) binders alcohol solution, the amount of binder is added per 100 g of starting material was added dropwise 5 to 10 mL, stirring and mixing the Ti powder particles are uniformly coated on the surface of alumina to prepare a particle size of 0.8 mm , Ti composite ceramic powder coated with A1203 particles.

[0083] 3)、配料及造粒:按照基体合金料与复合陶瓷相颗粒的体积比为1 : 0. 25的比例, 将基体合金料与复合陶瓷相颗粒混合搅拌均勻;在搅拌过程中,滴加橡胶溶液成型剂,进行造粒;成型剂的加入量为每100克混合料中加入12毫升成型剂; [0083] 3), ingredients and granulated: in accordance with the base alloy material and composite ceramic phase particles in a volume ratio of 1: 0.25, and the base alloy material and composite ceramic phase particles uniform mixing; during stirring, rubber solution was added dropwise forming agents, granulating; forming agent is added in an amount of 100 g per 12 ml mix forming agent;

[0084] 4)、压制成型:采用压力机将造粒料进行坯体的压制成型,成型压力为150MPa ;保压时间为70秒; [0084] 4), press-forming: The granules were press for press-forming the blank, a molding pressure of 150MPa; dwell time of 70 seconds;

[0085] 5)、真空干燥:成型后的坯体80°C真空干燥; [0085] 5), and dried under vacuum: after forming the green body was dried in vacuo 80 ° C;

[0086] 6)、真空烧结:烧结真空度为1. 0X 10_2Pa,烧结过程为: [0086] 6), vacuum sintering: sintering degree of vacuum 1. 0X 10_2Pa, the sintering process is:

[0087] a、脱脂预烧阶段:烧结温度为0〜400°C,升温速度为10°C /分钟; [0087] a, skim calcined stages: the sintering temperature of 0~400 ° C, a heating rate of 10 ° C / min;

[0088] b、烧结阶段:烧结阶段由下列步骤完成: [0088] b, phase sintering: sintering stage is done by the following steps:

[0089] A、保温阶段,温度为400°C,保温时间30分钟; [0089] A, holding stage, a temperature of 400 ° C, holding time of 30 minutes;

[0090] B、预烧结阶段,温度为400°C〜1000°C,升温速度10°C /分钟; [0090] B, the pre-sintering step, a temperature of 400 ° C~1000 ° C, temperature increase rate 10 ° C / min;

[0091] C、保温阶段,温度为1000°C,保温时间30分钟; [0091] C, holding stage, a temperature of 1000 ° C, holding time of 30 minutes;

[0092] D、烧结阶段,温度为1000°C〜1300°C,升温速度10°C /分钟; [0092] D, phase sintering temperature of 1000 ° C~1300 ° C, temperature increase rate 10 ° C / min;

[0093] E、烧结温度保温,温度为1300°C,保温30分钟; [0093] E, the sintering temperature for a temperature of 1300 ° C, for 30 minutes;

[0094] c、冷却阶段:随炉冷却。 [0094] c, a cooling stage: furnace cooling.

[0095] 实施例2陶瓷-金属复合材料的制备 [0095] Example 2 Ceramic - Preparation of Composite Metal

[0096] 1)、基体合金料配比:以2Cr33Ni48WC10MoFe8镍基金属作为基体合金,按照2Cr33Ni48WC10MoFe8镍基金属中的成分配比(重量比)将Cr粉2份、Ni粉33份、WC粉48 份、Mo粉10份和Fe粉8份混合均勻制备成基体合金料; [0096] 1), the matrix alloy charge ratio: In 2Cr33Ni48WC10MoFe8 nickel-based metal as the matrix alloy, the ratio (weight ratio) of Cr powder 2 parts according 2Cr33Ni48WC10MoFe8 nickel-based ingredients, Ni powder, 33 parts, the WC powder, 48 parts , Mo powder and 10 parts of Fe powder 8 parts uniformly mixed to prepare a base alloy material;

[0097] 2)、复合陶瓷相颗粒的制备:按照Ti粉与球形A1203颗粒重量比为1 : 0. 01的比例,将Ti粉加入到A1203颗粒料中,滴入PVB (聚乙烯醇缩丁醛)酒精溶液粘结剂,粘结剂加入量为每100克原料中滴加5毫升,搅拌混合,使Ti粉均勻包覆在氧化铝颗粒表面,制备成粒径为1. 0毫米、Ti粉包覆的A1203复合陶瓷相颗粒。 [0097] 2) Preparation of composite ceramic phase particles: spherical Ti powder according A1203 particle weight ratio of 1: 0.01 ratio of the Ti powder is added to the feed particles A1203, was added dropwise PVB (polyvinyl butyral aldehyde) alcohol solution binder, the binder is added in an amount of raw material per 100 grams of 5 ml was added dropwise, stirring and mixing the Ti powder particles are uniformly coated on the surface of alumina to prepare a particle diameter of 1.0 mm, Ti A1203 powder coated composite ceramic phase particles.

[0098] 3)、配料及造粒:按照基体合金料与复合陶瓷相颗粒的体积比为1 : 0. 15的比例, 将基体合金料与复合陶瓷相颗粒混合搅拌均勻;在搅拌过程中,滴加橡胶溶液成型剂,进行造粒;成型剂的加入量为每100克混合料中加入15毫升成型剂; [0098] 3), ingredients and granulated: in accordance with the base alloy material and composite ceramic phase particles in a volume ratio of 1: 0.15, and the base alloy material and composite ceramic phase particles uniform mixing; during stirring, rubber solution was added dropwise forming agents, granulating; forming agent is added in an amount per 100 g of mix 15 mL forming agent;

[0099] 4)、压制成型:采用压力机将造粒料进行坯体的压制成型,成型压力为lOOMPa ;保压时间为100秒; [0099] 4), press-forming: The granules were press-press molding body, the molding pressure was Loompa; dwell time of 100 seconds;

[0100] 5)、真空干燥:成型后的坯体60°C真空干燥; [0100] 5), and dried under vacuum: after forming the green body was dried in vacuo 60 ° C;

[0101] 6)、真空烧结:烧结真空度为1. 0X 10_中3,烧结升温如下: [0101] 6), vacuum sintering: sintering degree of vacuum 1. 0X 10_ 3, heating the sintered follows:

[0102] a、脱脂预烧阶段:烧结温度为0〜400°C,升温速度为10°C /分钟; [0102] a, skim calcined stages: the sintering temperature of 0~400 ° C, a heating rate of 10 ° C / min;

[0103] b、烧结阶段:烧结阶段由下列步骤完成: [0103] b, phase sintering: sintering stage is done by the following steps:

[0104] A、保温阶段,温度为400°C,保温时间30分钟; [0104] A, holding stage, a temperature of 400 ° C, holding time of 30 minutes;

[0105] B、预烧结阶段,温度为400°C〜1000°C,升温速度10°C /分钟; [0105] B, the pre-sintering step, a temperature of 400 ° C~1000 ° C, temperature increase rate 10 ° C / min;

[0106] C、保温阶段,温度为1000°C,保温时间30分钟; [0106] C, holding stage, a temperature of 1000 ° C, holding time of 30 minutes;

[0107] D、烧结阶段,温度为1000°C〜1250°C,升温速度10°C /分钟; [0107] D, phase sintering temperature of 1000 ° C~1250 ° C, temperature increase rate 10 ° C / min;

[0108] E、烧结温度保温,温度为1250,保温30分钟; [0108] E, the sintering temperature for a temperature of 1250, for 30 minutes;

[0109] c、冷却阶段:随炉冷却。 [0109] c, a cooling stage: furnace cooling.

[0110] 实施例3陶瓷-金属复合材料的制备 Preparation of metallic composite material - [0110] Example 3 Ceramic embodiment

[0111] 1)、基体合金料配比:以2Cr33Ni48WC10MoFe8镍基金属作为基体合金,按照2Cr33Ni48WC10MoFe8镍基金属中的成分配比(重量比)将Cr粉2份、Ni粉33份、WC粉48 份、Mo粉10份和Fe粉8份混合均勻制备成基体合金料; [0111] 1), the matrix alloy charge ratio: In 2Cr33Ni48WC10MoFe8 nickel-based metal as the matrix alloy, the ratio (weight ratio) of Cr powder 2 parts according 2Cr33Ni48WC10MoFe8 nickel-based ingredients, Ni powder, 33 parts, the WC powder, 48 parts , Mo powder and 10 parts of Fe powder 8 parts uniformly mixed to prepare a base alloy material;

[0112] 2)、复合陶瓷相颗粒的制备:按照Ti粉与球形A1203颗粒重量比为1 : 0.05的比例,将Ti粉加入到A1203颗粒料中,滴入PVB (聚乙烯醇缩丁醛)酒精溶液粘结剂,粘结剂加入量为每100克原料中滴加10毫升,搅拌混合,使Ti粉均勻包覆在氧化铝颗粒表面,制备成粒径为0. 5毫米、Ti粉包覆的A1203复合陶瓷相颗粒。 [0112] 2) Preparation of composite ceramic phase particles: spherical Ti powder according A1203 particle weight ratio of 1: 0.05 ratio, the Ti powder was added to the feed particles A1203, was added dropwise PVB (polyvinyl butyral) binders alcohol solution, the amount of binder is added per 100 g of starting material was added dropwise 10 ml, stirring and mixing the Ti powder particles are uniformly coated on the surface of alumina to prepare a particle size of 0.5 mm, Ti powder packets coated composite ceramic phase particles of A1203.

[0113] 3)、配料及造粒:按照基体合金料与复合陶瓷相颗粒的体积比为1 : 0. 45的比例, 将基体合金料与复合陶瓷相颗粒混合搅拌均勻;在搅拌过程中,滴加橡胶溶液成型剂,进行造粒;成型剂的加入量为每100克混合料中加入10毫升成型剂; [0113] 3), ingredients and granulated: in accordance with the base alloy material and composite ceramic phase particles in a volume ratio of 1: 0.45, and the base alloy material and composite ceramic phase particles uniform mixing; during stirring, rubber solution was added dropwise forming agents, granulating; forming agent is added in an amount of 100 g per 10 ml of mix forming agent;

[0114] 4)、压制成型:采用压力机将造粒料进行坯体的压制成型,成型压力为200MPa ;保压时间为40秒; [0114] 4), press-forming: The granules were press molded body press-molding pressure of 200MPa; dwell time is 40 seconds;

[0115] 5)、真空干燥:成型后的坯体90°C真空干燥; [0115] 5), and dried under vacuum: after forming the green body was dried in vacuo 90 ° C;

[0116] 6)、真空烧结:烧结真空度为1.0X10_3Pa,烧结升温过程如下: [0116] 6), vacuum sintering: sintering degree of vacuum 1.0X10_3Pa, heating the sintering process is as follows:

[0117] a、脱脂预烧阶段:烧结温度为0〜400°C,升温速度为10°C /分钟; [0117] a, skim calcined stages: the sintering temperature of 0~400 ° C, a heating rate of 10 ° C / min;

[0118] b、烧结阶段:烧结阶段由下列步骤完成: [0118] b, phase sintering: sintering stage is done by the following steps:

[0119] A、保温阶段,温度为400°C,保温时间30分钟; [0119] A, holding stage, a temperature of 400 ° C, holding time of 30 minutes;

[0120] B、预烧结阶段,温度为400°C〜1000°C,升温速度10°C /分钟; [0120] B, the pre-sintering step, a temperature of 400 ° C~1000 ° C, temperature increase rate 10 ° C / min;

[0121] C、保温阶段,温度为1000°C,保温时间30分钟; [0121] C, holding stage, a temperature of 1000 ° C, holding time of 30 minutes;

[0122] D、烧结阶段,温度为1000°C〜1380°C,升温速度10°C /分钟; [0122] D, phase sintering temperature of 1000 ° C~1380 ° C, temperature increase rate 10 ° C / min;

[0123] E、烧结温度保温,温度为1380°C,保温30分钟;[0124] c、冷却阶段:随炉冷却。 [0123] E, the sintering temperature for a temperature of 1380 ° C, for 30 minutes; [0124] c, the cooling stage: cooling with the furnace.

[0125] 实施例4试验例 Test Example 4 [0125] Embodiment

[0126] 1、抗弯强度的测试 [0126] 1, the bending strength test

[0127] 将烧结试样磨平抛光后,再将试样切割成尺寸为4mmX20mmX40mm的规则试条, 倒角约0. 3mm,材料的室温抗弯强度采用三点弯曲法测定,跨距约15mm,抗弯强度实验在INSTR0N电子万能材料试验机上进行,压头下移速度为0. 5mm/min,每组试样测5根材料的抗弯强度计算公式如下: [0127] After polishing the sintered sample was polished, and then the sample was cut into a size of rules strip 4mmX20mmX40mm chamfering about 0. 3mm, at room temperature the flexural strength was determined by three-point bending span of about 15mm flexural strength INSTR0N experiments were performed on an electronic universal testing machine, ram down rate of 0. 5mm / min, each sample was measured five bending strength is calculated as follows:

[0128] of = 3PL/ (2bh2) [0128] of = 3PL / (2bh2)

[0129] 式中:o f-弯曲强度,MPa ;L-支点的跨距,mm ;P-断裂的载荷,N ;b_试样的宽度, mm ;h-试样的厚度,mm [0129] wherein: o f- bending strength, MPa; L- fulcrum span, mm; the P-breaking load, N; b_ sample width, mm; h- sample thickness, mm

[0130] 根据表4-表6测试数据,氧化铝颗粒加入后复合材料的抗弯强度有比较明显的降低,但还是可以控制在使用允许的抗弯强度范围内。 [0130] 4- test data table in Table 6, the addition of alumina particles flexural strength of the composite decreased more obvious, but still allow the use can be controlled within the range of the bending strength.

[0131] 表4物料配方1 :0. 25的抗弯强度测试数据 [0131] Table 4 Material Formulation 1: flexural strength test data 025

[0132] [0132]

(MPa) (MPa)

[0133] [0133]

[0134] [0134]

[0135] [0136] 表6基体合金的抗弯强度测试数据 [0135] [0136] Table 6 flexural strength test data base alloy

[0137] [0137]

[0138] 复合材料试样的抗弯强度随着基体合金的含量增加而增加,随着氧化铝颗粒含量的增加而减小。 [0138] The flexural strength of the composite sample with increasing content of the matrix alloy increases with increasing alumina content of the particles is reduced. 纯合金的抗弯强度明显高于复合材料;纯合金的强度测试数据波动比较小, 表明粒度分布比较均勻,在烧结合金体内留有的空隙比较少。 Flexural strength is significantly higher than pure alloy composite material; pure alloy strength testing data fluctuation is relatively small, uniform particle size distribution showed that, in the sintered alloy body leaving less voids. 而含有氧化铝颗粒的复合材料,强度测试数据波动比较大,则说明了烧结的材料均勻性还不够好。 And a composite material comprising alumina particles, large fluctuations in the intensity of the test data, then the uniformity of the sintered material is not good enough. 造成这种情况的主要原因是基体合金和氧化铝颗粒的润湿及结合情况不够好,在它们的界面结合中还存在着相当部分的机械结合,而溶解和润湿结合以及反应结合不够理想。 Main reason for this is that wetting and binding of the base alloy and alumina particles is not good enough, in the bonding interface thereof, there are still considerable mechanical binding moiety, binding and wetting dissolved and not over the binding reaction. 在以后的试验中,还需进一步改善润湿性。 In subsequent tests, the need to further improve the wettability. 复合材料是通过压制成型再经烧结制成,但该法的缺点是基体原料与复合相材料混合不够均勻,会影响材料的强度;镍基合金和复合相之间的热膨胀系数有差异,在冷却阶段会产生一定的界面应力,从而影响复合材料的强度。 Composite is then formed by sintering press-formed, but the disadvantage of this method is that the base material is mixed with the composite phase material is not uniform enough, will affect the strength of the material; thermal expansion coefficient between the Ni-based alloys and composite phase difference, cooling It would produce a certain phase interfacial stress, thus affecting the strength of the composite.

[0139] 2、硬度测试 [0139] 2, hardness test

[0140] 表7为复合材料的硬度测试结果。 [0140] Table 7 shows the results of hardness test composite.

[0141] 表7复合材料的硬度(HRB)测试数据 [0141] Table 7 Composite hardness (HRB) of test data

[0143] 注:HRB测试中采用1. 588mm钢球压头,总负荷为100kg [0143] Note: HRB used in the test 1. 588mm steel ball indenter, a total load of 100kg

[0144] 测试数据表明,同一种复合材料试样硬度值变化比较大,这主要是因为试样的密度不均勻所致。 [0144] Test data show that a composite sample with relatively large changes in the hardness value of the material, mainly because of the density unevenness due to the sample. 而纯合金的硬度值变化幅度比较小,说明纯合金密度较均勻。 Hardness value change width smaller pure alloy, pure alloy described the density is uniform. 对于含有颗粒的复合材料,当压头压在空隙上时,硬度值比较小;而压在氧化铝颗粒上时,硬度值将变大。 For the composite contains particles, when the ram is pressed against the gap, the hardness value is relatively small; while pressed against the alumina particles, the hardness value becomes large.

[0145] 3、抗氧化性测试 [0145] 3, the oxidation resistance test

[0146] 抗氧化性试验在电阻炉中空气气氛下通过加热氧化增重进行,升温制度为:每分钟5°C,最高1250°C,保温1小时,随炉冷却。 [0146] Trials between oxidation resistance furnace in an air atmosphere by heating and oxidation, heating system as: 5 ° C per minute up to 1250 ° C, for 1 hour, cool with the furnace. 表8为复合材料的抗氧化性测试结果。 Table 8 shows the test results of the oxidation resistance of the composite material.

[0147] 所制备的复合材料的高温抗氧化性的规律如下:同一温度下的复合材料,高温抗氧化性随基体合金百分比含量的增加而增强,随氧化铝颗粒含量的增加而降低。 [0147] The law of high temperature oxidation resistance of the composite material prepared as follows: a composite material at the same temperature, high temperature oxidation resistance with increasing percentage content of the matrix alloy enhanced with increasing alumina content of the particles is reduced. 实验现象表明,随着氧化铝颗粒复合相的增多,复合材料的配料均勻性不是太好,烧结致密度情况不够好,烧结体内有更多空隙,给了氧气与合金基体更多的接触面积,导致复合材料抗高温氧化性能下降。 Experimental results show that with the increase in the alumina particle composite phase, the composite ingredients uniformity is not very good, the situation is not good enough the sintered density, the sintered body has a more open, to the additional oxygen and the alloy matrix contact area, composite results in high-temperature oxidation performance.

[0148] 表8复合材料的抗氧化性测试数据 [0148] antioxidant composite material test data in Table 8

[0149] [0149]

[0150] 4、复合材料导热系数的分析 [0150] 4. Analysis of Thermal Conductivity

[0151] 镍基合金与氧化铝的导热率如表9所示: [0151] nickel-based alloy with a thermal conductivity of alumina as shown in Table 9:

[0152] 表9镍基合金与氧化铝陶瓷的导热率(W/m. k)[0153] [0152] Table 9 nickel-based alloy with alumina ceramic thermal conductivity (W / m. K) [0153]

[0154]经计算氧化铝陶瓷/高温合金复合材料在1000°C与1100°C时的热导率如表10所示。 [0154] Alumina calculated / alloy thermal conductivity of the composite material at high temperature 1000 ° C and 1100 ° C as shown in Table 10.

[0155] 表10氧化铝陶瓷/高温合金复合材料导热率(W/m. k) [0155] Table 10 alumina ceramic / composite thermal conductivity of superalloys (W / m. K)

[0156] [0156]

[0157] 由表9与表10可以看出,随着氧化铝颗粒加入量的增加,氧化铝陶瓷/高温合金复合材料的热导率不断降低,复合材料的热导率高于氧化铝的热导率;但低于镍基合金的热导率,呈明显的线性变化。 [0157] As can be seen from Table 9 and Table 10, as the added amount of alumina particles, alumina ceramic / alloy thermal conductivity of the high-temperature composite materials continue to reduce thermal high thermal conductivity composites of alumina conductivity; nickel-based alloys but less than the thermal conductivity, was a significant linear.

[0158] 5、相关因素对复合材料力学性能的影响 [0158] 5, the influence factors on the mechanical properties of the composite material

[0159] 氧化铝陶瓷的影响 [0159] Effect of Alumina Ceramics

[0160] 测试表明,镍基合金试样抗弯强度的平均值可以达到2065. 56,而加入氧化铝颗粒的复合材料试样的强度分别是993. 55MPa和904. 36MPa。 [0160] Tests showed that the average flexural strength of the Ni-based alloy samples may reach 2,065.56, while the strength of the composite samples were added alumina particles 993. 55MPa and 904. 36MPa. 可以看出氧化铝颗粒的加入显著降低了镍基合金材料的抗弯强度。 As can be seen the addition of alumina particles significantly reduces the bending strength nickel based alloy material.

[0161] 镍基合金试样的HRB平均值可以达到79,而加入氧化铝颗粒的试样的HRB的2个平均值分别是67和62,可以看出氧化铝颗粒的加入降低了镍基合金材料的硬度。 [0161] nickel-based alloy samples HRB average value can reach 79, while the average of two samples HRB added alumina particles 67 and 62 respectively, it can be seen that the addition of alumina particles lowered the nickel-base alloy of hardness of the material.

[0162] 氧化铝颗粒的加入对镍基烧结合金材料力学性能方面的影响主要有以下几点: [0162] Effect of addition of alumina particles sintered nickel-base alloy mechanical properties in terms of the following main points:

[0163] 1.氧化铝颗粒的加入使混合的难度增加,混合不均勻对成型和烧结后的材料强度的影响都很大; [0163] 1. The alumina particles were added to make the difficulty of mixing is increased, the influence of non-uniform mixing and molding strength of the material after sintering are great;

[0164] 2.Ni 的膨胀系数(15X10_7°C )要比Al203(8. 4X 10_7°C )大,冷却时会在A1203/ Ni界面形成空隙,降低高温烧结材料的力学性能; Formation of voids in the A1203 / Ni interface upon expansion coefficient [0164] 2.Ni of (15X10_7 ° C) than Al203 (8 4X 10_7 ° C.) Large, cooling, reducing the high temperature mechanical properties of the sintered material;

[0165] 3.因M的含量较多,在烧结过程中M会通过短程扩散,导致M颗粒团聚、长大, 不利于烧结,也会降低和ai203颗粒的润湿性,降低材料强度; [0165] 3. due to the higher content of M, in the sintering process will be by short diffusion M, M resulting in particle agglomeration, growing up, is not conducive to sintering, and also reduce the wettability ai203 particles decrease the material strength;

[0166] 4.氧化铝金属陶瓷复合材料在真空烧结过程中,由于坯体发生不均勻体积收缩, 会导致复合材料产生裂纹,进而影响材料的强度; [0166] 4. A metal-ceramic composite material of alumina in a vacuum sintering process, since the volume shrinkage unevenness body, cause the composite material to crack, thereby affecting the strength of the material;

[0167] 5.粘结剂的加入在高温烧结后留下气孔,也会影响材料的强度。 [0167] The binder is added after the high temperature sintering pores left, will also affect the strength of the material.

[0168] 虽然氧化铝颗粒的加入降低了镍基合金材料的力学性能。 [0168] While the addition of the alumina particles decreases the mechanical properties of nickel-base alloy material. 但这些性能的降低是在材料使用允许范围内的降低。 However, these properties are reduced in the materials allows to reduce the range. 本研究是通过实验得到金属陶瓷复合材料的高温力学性能和低导热性能的之间的最佳匹配点。 This experimental study was best matching point between the high temperature mechanical properties of metal-ceramic composites and low thermal conductivity.

[0169] 烧结温度的影响 [0169] Effect of sintering temperature

[0170] 烧结温度对复合材料性能有比较重要的影响。 [0170] The sintering temperature has a more important effect on the properties of the composite. 当烧结温度低于1300°C时,真空烧结后的试样的金属光泽很差,基体烧结不完全;而当温度达到1330°C时,基体的大部分就已经开始熔化,可见这种氧化铝/镍基合金复合材料的烧结温度范围不是很宽。 When the sintering temperature is below 1300 ° C, the metallic gloss of the sample after vacuum sintering is poor, the base body is not completely sintered; and when the temperature reaches 1330 ° C, most of the substrate had already started to melt, this visible alumina / Ni composite sintering temperature range is not very wide.

[0171] 烧结真空度的影响 [0171] Influence of the degree of vacuum sintering

[0172] 本研究在前期进行时,烧结炉真空度不够高,坯体容易被氧化,对复合材料的烧结质量产生了很大的不利影响。 [0172] This study was performed at the time of the early, vacuum sintering furnace is not high enough, the blank is easily oxidized, the sintered mass of the composite material had a significant adverse effect. 后期实验,烧结炉的高真空改造已经完成,所烧结试样的性能得到显著提高。 End of the experiment, the transformation of high vacuum sintering furnace has been completed, the sintered samples significantly improved performance.

[0173] 粘结剂的影响 [0173] Effect of binder

[0174] 粘结剂的作用,在于使合金粉末与合金粉末之间及合金粉末与氧化铝颗粒之间能够互相牢固的粘结在一起。 Effect [0174] of the binder, so that between the alloy powder and the alloy powder capable of strong bonding between each alloy powder and the alumina particles together. 在材料烧结后能燃烧、气化,不留残渣,不形成孔洞。 After sintering the material can burn, vaporized, leaving no residue, without forming voids. 粘结剂加入量不宜过多,以能粘结增强体颗粒,使基体具有一定粘结性和干坯强度为宜。 The amount of the binder added is not too much to be able to enhance the bonding particles, the matrix having a certain adhesion and dry green strength is appropriate. 若加入量过多,易在合金粉末和氧化铝颗粒上包覆一层厚厚的粘结剂膜,从而影响相互之间的接触反应,以至影响合金的质量。 If the amount is too large, easily coated with a thick layer of adhesive film on the alloy powder and alumina particles, thus affecting the mutual contact reaction, as well as affect the quality of the alloy. 另外,过多的粘结剂也会使原料在压制成型时产生的气体量增加,从而在高温状态下,极大地增加了气体在合金内部的体积,气泡不能及时排除,形成较多的孔洞,影响了合金的质量。 Further, the binder also causes excessive amount of gas generated during material compression molding increases so that at high temperatures, which greatly increases the volume of the gas within the alloy, the bubbles can not rule, more holes are formed, affecting the quality of the alloy.

[0175] 实施例5复合材料显微组织结构分析 EXAMPLE 5 Structural Analysis of the microstructure of a composite material [0175] Embodiment

[0176] 材料,特别是复合材料的性能与其成分、组织结构有着十分密切的关系。 [0176] materials, particularly composites performance of its composition, organizational structure has a very close relationship. 一般地, 材料的成分决定其组织结构,而组织结构又决定其性能。 Generally, the composition of the material determines its structure while the tissue structure and to determine its performance. 因此,在进行材料设计的过程中, 首先要选择合适的成分,才有可能形成理想的组织结构;同样,只有对组成成分和组织结构进行合理设计,才能使复合材料的性能达到设计要求。 Therefore, during the design process of the material, first select suitable ingredients, possible to form the desired structure; the same, only on the composition and structure of rational design, the performance of the composite material can meet the design requirements.

[0177] 扫描电镜主要采用二次电子成像。 [0177] SEM mainly secondary electron imaging. 二次电子对试样表面特征比较敏感。 Secondary electron characteristics are sensitive to the sample surface. 可以利用扫描电镜结合能谱分析观察材料断口的微观组织形貌、晶粒大小、晶粒间的结合状态、夹杂物和气孔的分布特点等。 Microstructure can morphology by scanning electron microscopy analysis of binding energy observed fracture material, grain size, bonding state between the crystal grains, like inclusions and distribution of pores.

[0178] 图3a、图3b、图3c和图3d为本发明制备的陶瓷-金属复合材料断面的扫描电镜照片。 [0178] Figures 3a, 3b, 3c and 3d prepared in the present invention, the ceramic - SEM image of cross section of the metal composite material. 从图3a、图3b中可以看出,氧化铝颗粒和基体合金之间还是具有一定的润湿性结合, 但是基体中也还存在着一定量的气孔和裂痕。 From Figures 3a, 3b can be seen, still have a certain wettability bond between the alumina particles and the matrix alloy, the matrix but also there is a certain amount of pores and cracks. 从图3c断面抛光照片可以看到圆形、颜色较深的氧化铝颗粒和颜色较浅的基体材料之间的结合性较好,其间较大的、可见的缝隙很少, 但基体上还有明显的气孔存在。 3c can be seen from a sectional photograph showing a circular polishing, binding between the matrix material darker and lighter particles of the alumina is preferably, between a large, visible gap is small, but also on the substrate obvious pores. 由3d可以看出氧化铝颗粒和基体合金之间具有较好的润湿性结合,两者可以比较紧密地粘结在一起。 3d it can be seen having a good wetting between the alumina particles and the binding matrix alloy, both may be bonded together more closely.

[0179] 本发明不局限于上述最佳实施方式,任何人在本发明的启示下得出的其他任何与本发明相同或相近似的产品,均落在本发明的保护范围之内。 [0179] The present invention is not limited to the preferred embodiments, and any resulting in light of the present invention, the present invention any other substantially identical or similar products, are within the scope of the present invention.

Claims (4)

  1. 一种陶瓷-金属复合材料的制备方法,其特征在于所述方法包括下列步骤:1)、基体合金料配比:以2Cr33Ni48WC10MoFe8镍基金属作为基体合金,按照2Cr33Ni48WC10MoFe8镍基金属中的成分配比(重量比)将Cr粉2份、Ni粉33份、WC粉48份、Mo粉10份和Fe粉8份混合均匀制备成基体合金料;2)、复合陶瓷相颗粒的制备:按照Ti粉与球形Al2O3颗粒重量比为1∶0.01~0.05的比例,将Ti粉加入到Al2O3颗粒料中,滴入PVB(聚乙烯醇缩丁醛)酒精溶液粘结剂,粘结剂加入量为每100克原料中滴加5~10毫升,搅拌混合,使Ti粉均匀包覆在氧化铝颗粒表面,制备成粒径为0.5~1.0毫米、Ti粉包覆的Al2O3复合陶瓷相颗粒;3)、配料及造粒:按照基体合金料与复合陶瓷相颗粒的体积比为1∶0.15~0.45的比例,将基体合金料与复合陶瓷相颗粒混合搅拌均匀;在搅拌过程中,滴加橡胶溶液成型剂,进行造粒;成型剂的 A ceramic - preparing a metal composite material, characterized in that the method comprises the following steps: 1), the ratio of the matrix alloy material: Ni-based metal to 2Cr33Ni48WC10MoFe8 as the matrix alloy, nickel-based blend ratios 2Cr33Ni48WC10MoFe8 ingredients ( weight ratio) of Cr powder 2 parts, Ni powder, 33 parts of the WC powder, 48 parts, 10 parts of Mo powder and Fe powder 8 parts uniformly mixed to prepare a base alloy material; 2), preparation of the composite ceramic phase particles: Following the Ti powder and spherical particle weight ratio of Al2O3 1:0.01 to 0.05, the Ti powder was added to the feed Al2O3 particles, added dropwise PVB (polyvinyl butyral) binder is alcohol solution, the amount of binder is added per 100 g of feed added dropwise 5 to 10 ml, stirring and mixing the Ti powder particles are uniformly coated on the surface of alumina to prepare a particle diameter of 0.5 to 1.0 mm, coated Ti powder with Al2O3 composite ceramic particles; 3), ingredients and granulation: volume ratio of the matrix alloy composite material with a proportion of the ceramic phase particles 1:0.15 to 0.45, the base alloy material and composite ceramic phase particles uniformly mixing; during stirring, was added dropwise a solution of the rubber forming agent, for granulating; forming agent 加入量为每100克混合料中加入10~15毫升成型剂;4)、压制成型:采用压力机将造粒料进行坯体的压制成型,成型压力为100~200MPa;保压时间为40~100秒;5)、真空干燥:成型后的坯体60~90℃真空干燥;6)、真空烧结:烧结温度1250~1380℃,烧结真空度为1.0×10-1~1.0×10-3Pa。 An amount per 100 g of the mix was added 10 to 15 ml forming agent; 4), press-forming: The granules were press molded body of the press-molding pressure of 100 ~ 200MPa; dwell time of 40 ~ 100 seconds; 5), and dried in vacuo: green body forming 60 ~ 90 ℃ dried in vacuo; 6), vacuum sintering: sintering temperature of 1250 ~ 1380 ℃, sintering degree of vacuum was 1.0 × 10-1 ~ 1.0 × 10-3Pa.
  2. 2.如权利要求1所述的陶瓷-金属复合材料的制备方法,其特征在于:所述Ti粉与球形A1203颗粒重量比为1 : 0.03。 2. The ceramic according to claim 1 - Preparation of a metal composite material, wherein: the Ti powder and the spherical particles A1203 weight ratio of 1: 0.03.
  3. 3.如权利要求2所述的陶瓷-金属复合材料的制备方法,其特征在于:所述基体合金料与复合陶瓷相颗粒的体积比为1 : 0.25。 The ceramic of claim 2 - Preparation of a metal composite material, comprising: a volume ratio of the base alloy material and the composite ceramic phase particles is 1: 0.25.
  4. 4.如权利要求1-3之任一所述的陶瓷-金属复合材料的制备方法,其特征在于:所述真空烧结分三步来完成:1)、脱脂预烧阶段:烧结温度为0〜400°C,升温速度为10°C /分钟;2)、烧结阶段:烧结阶段由下列步骤完成:A、保温阶段,温度为400°C,保温时间30分钟;B、预烧结阶段,温度为400°C〜1000°C,升温速度10°C /分钟;C、保温阶段,温度为1000°C,保温时间30分钟;D、烧结阶段,温度为1000°C〜烧结温度,升温速度10°C /分钟;E、烧结温度保温,温度为1250〜1380°C,保温30分钟;3)、冷却阶段:随炉冷却。 4. The ceramic according to any one of claims 1-3 - Preparation of a metal composite material, characterized in that: said vacuum sintering is done in three steps: 1), calcined degreasing stage: sintered at 0~ 400 ° C, a heating rate of 10 ° C / min; 2), sintering step: sintering phase is completed by the following steps: A, holding stage, a temperature of 400 ° C, holding time of 30 minutes; B, pre-sintering stage, the temperature is 400 ° C~1000 ° C, temperature increase rate 10 ° C / min; C, holding stage, a temperature of 1000 ° C, holding time of 30 minutes; D, sintering step, the sintering temperature is 1000 ° C~ temperature, heating rate 10 ° C / min; E, the sintering temperature for a temperature of 1250~1380 ° C, for 30 minutes; 3), the cooling stage: cooling with the furnace.
CN 200710107611 2007-05-23 2007-05-23 Preparation method of ceramic-metal composite material CN101063187B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200710107611 CN101063187B (en) 2007-05-23 2007-05-23 Preparation method of ceramic-metal composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200710107611 CN101063187B (en) 2007-05-23 2007-05-23 Preparation method of ceramic-metal composite material

Publications (2)

Publication Number Publication Date
CN101063187A true CN101063187A (en) 2007-10-31
CN101063187B true CN101063187B (en) 2010-10-13

Family

ID=38964469

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200710107611 CN101063187B (en) 2007-05-23 2007-05-23 Preparation method of ceramic-metal composite material

Country Status (1)

Country Link
CN (1) CN101063187B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103418790B (en) * 2012-05-17 2016-08-03 枣阳秦鸿新材料有限公司 Metal-ceramic composite articles and methods of wear
CN104646662A (en) * 2014-06-19 2015-05-27 周萌 Optimization method for performances of titanium-based composite material
CN104057086B (en) * 2014-07-10 2016-04-20 哈尔滨工业大学 Titanium aluminum - Preparation of hexagonal boron nitride conductive ceramic cathode material
CN104178652B (en) * 2014-08-12 2016-06-22 天津大学 Nickel-cobalt alloy / polycrystalline tetragonal zirconia composite ceramic material and method
CN106312074B (en) * 2016-08-25 2018-02-02 苏州赛特锐精密机械配件有限公司 Preparation of ultrafine cemented carbide tool body is integrally preformed sipe

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1198780A (en) 1995-10-02 1998-11-11 陶氏化学公司 Singal step synthesis and densification of ceramic-ceramic and ceramic-metal composite materials
EP1245314A2 (en) 2001-03-29 2002-10-02 Ngk Insulators, Ltd. Production method of composite material and composite material produced by the production method
CN1569732A (en) 2004-05-11 2005-01-26 山东轻工业学院 Rare earth reinforced alumina ceramic composite materials and production method thereof
EP1525330B1 (en) 2002-08-10 2006-06-21 DaimlerChrysler AG Method for producing a component, component and use thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1198780A (en) 1995-10-02 1998-11-11 陶氏化学公司 Singal step synthesis and densification of ceramic-ceramic and ceramic-metal composite materials
EP1245314A2 (en) 2001-03-29 2002-10-02 Ngk Insulators, Ltd. Production method of composite material and composite material produced by the production method
EP1525330B1 (en) 2002-08-10 2006-06-21 DaimlerChrysler AG Method for producing a component, component and use thereof
CN1569732A (en) 2004-05-11 2005-01-26 山东轻工业学院 Rare earth reinforced alumina ceramic composite materials and production method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JP昭61-124549A 1986.06.12

Also Published As

Publication number Publication date Type
CN101063187A (en) 2007-10-31 application

Similar Documents

Publication Publication Date Title
Stoloff An overview of powder processing of silicides and their composites
Tiegs et al. Ceramic composites with a ductile Ni3Al binder phase
US2753261A (en) Sintering process for forming a die
CN1827817A (en) Hard alloy sintered by high-entropy alloy binder and compound carbide and preparation method thereof
US7776255B1 (en) Hollow shell and method of manufacture
CN1472354A (en) Particle reinforced aluminium-based composite material and workpiece therefrom and its forming process
CN102199033A (en) Functionally graded material shape and method for producing such a shape
CN101265079A (en) Nano composite ceramic cutter material and preparation method thereof
CN1644276A (en) Method for producing high-volume fractional silicon-carbide particle reinforced aluminium-base composite material member
Lemster et al. Activation of alumina foams for fabricating MMCs by pressureless infiltration
CN101070577A (en) Super-fine TiC0.7N0.3 base metal ceramic and preparing method
CN1271706A (en) High-antiwear composite ceramet material for cutting tools
CN1482265A (en) Pressure casting method for controllable volume percent SiCp/Al composite material
JP2009108338A (en) Cermet and manufacturing method thereof
CN101758236A (en) Preparing method of Ti Al-based alloy plate
CN1210097A (en) Iron-aluminum intermetallic compound-aluminum oxide ceramic composite material and preparation thereof
CN101524754A (en) Rapid thermal pressed sintering molding process for titanium-aluminum alloy targets
Xü et al. Synthesis of Al–Mn–Ce alloy by the spark plasma sintering
Wang et al. Fabrication and characterization of nano-SiC particles reinforced TiC/SiCnano composites
CN1398819A (en) Intermetallic Fe-Al compound/zirconia ceramic composite material and its prepn process
CN1961090A (en) Wearing part consisting of a diamantiferous composite
US20090011266A1 (en) Intermetallic Composite Formation and Fabrication from Nitride-Metal Reactions
JPH0578762A (en) Tial-based composite material having excellent strength and its production
CN101003901A (en) Composite material of metal / ceramic metal, manufacturing method and application
JP2004176136A (en) Method of producing corrosion resistant and wear resistant material

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C14 Grant of patent or utility model
CF01