CN101060420A - Adaptive optical transmission network connecting performance optimization method and equipment - Google Patents

Adaptive optical transmission network connecting performance optimization method and equipment Download PDF

Info

Publication number
CN101060420A
CN101060420A CN 200610011761 CN200610011761A CN101060420A CN 101060420 A CN101060420 A CN 101060420A CN 200610011761 CN200610011761 CN 200610011761 CN 200610011761 A CN200610011761 A CN 200610011761A CN 101060420 A CN101060420 A CN 101060420A
Authority
CN
Grant status
Application
Patent type
Prior art keywords
performance
step
node
connection
route
Prior art date
Application number
CN 200610011761
Other languages
Chinese (zh)
Other versions
CN100531050C (en )
Inventor
王加莹
赵继军
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0084Quality of service aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0088Signalling aspects

Abstract

The disclosed adaptive connection performance optimization method for OEN comprises: routing and analyzing the transmission performance and optical feature of received link message, determining the route validity, building connection with the efficient route for transmission, monitoring and regulating route nodes on transmission path. This invention overcomes defects in prior art.

Description

自适应光传送网连接性能优化方法及设备 Adaptive optical transport network connectivity optimization methods and apparatus

技术领域 FIELD

本发明涉及通信设备领域的传送网技术,尤其涉及一种光交换网络自适应连接性能优化方法及设备。 The present invention relates to the field of transport network technology communication devices, and particularly to an optical switching network connected to the adaptive method and apparatus for performance optimization.

背景技术 Background technique

传送网的发展呈现智能化的发展趋势。 Development of transport networks present trend of development of intelligence. 目前存在的具有智能化特征的传送网体系概念包括智能交换光网络(ASON)、光突发交换(OBS)网络、光分组交换(OPS)网络等。 The concept of existing transport network system with intelligent features include intelligent switched optical network (of ASON), optical burst switching (OBS) networks, optical packet switching (OPS) networks. 这些网络体系的实现将为未来动态化的数据业务提供服务平台。 Achieve these network systems will be the future of dynamic data services platform to provide services. 其中,智能交换光网络正处在逐渐实现商用化的过程中。 Wherein the optical network is in the intelligent switching is gradually commercialized process.

高容量的光传输和交叉连接的相关技术,为智能化网络的实现提供了物理的基础。 And high-capacity optical transmission of the related art cross-connect, there is provided a physical basis for the intelligent network. 目前长距离、超长距离的光传输技术得到发展,实用化设备的传输容量可以达到Tbps量级,无电中继传输距离不断延长;出现了40Gbps的时分复用(TDM)处理电路;Tbps量级交换装置也已经出现;大容量的光交叉器件和设备可以实现多达上千个波长通道之间的信号交换。 Currently long distance, ultra-long haul optical transmission technology has been developed, and practical transmission capacity of the apparatus can reach the order of Tbps, radio relay transmission distance continue to extend; appeared 40Gbps time division multiplexing (TDM) processing circuitry; amount Tbps stage switching apparatus has occurred; large-capacity optical cross-device and device can be implemented up to thousands of signal exchange between the wavelength channels. 所有这些技术都为通道数量巨大的业务流实现广域路由和自由交换创造了基础条件。 All of these technologies are a huge number of channels to achieve wide-area routing of traffic flows and the free exchange of creating basic conditions.

设备的智能化还有赖于光学器件和信号处理器件的进步。 Intelligent devices also depends on the progress of the optics and signal processing devices. 目前出现了较多动态元件和电路,包括光学的和电子的,有些器件可以适用于较高的信号速率。 Currently there are more dynamic components and circuits, including optical and electronic, some devices may be adapted to a higher signal rate. 例如动态增益均衡器件(DGE,ITU-T G.671)、动态偏振模色散补偿器件(PMDC,ITU-T G.666)、动态色散补偿器件(ADC,ITU-T G.667)和前向纠错技术(FEC,ITU-T G.709、G.975)等,其使得光信号的发射、传送、接收性能都可以得到调整和提高。 Device such as a dynamic gain equalizer (DGE, ITU-T G.671), dynamic polarization mode dispersion compensation device (PMDC, ITU-T G.666), the dynamic dispersion compensation device (ADC, ITU-T G.667) and the forward error correction (FEC, ITU-T G.709, G.975) and the like, such that the emitted light signal, the transmission, reception performance can be adjusted and improved. 同时,作为调整传输线路光学性能的依据,不但可以使用标准体制信号的开销,例如ITU-T G.707所定义的同步数字体系(SDH)信号开销,或ITU-T G.709规定的光传输网络(OTN)信号开销,也可以使用光学性能检测指标(ITU-T G.697)。 Meanwhile, as the basis for adjusting the optical properties of the transmission line, not only can use the standard system overhead signals, such as ITU-T G.707 signaling overhead as defined synchronous digital hierarchy (the SDH), ITU-T G.709 or a predetermined light transmission network (OTN) overhead signal, it may be detected using optical performance indicators (ITU-T G.697).

目前标准的自动交换光网络设备是初步具有智能性的一种传送设备,可以为端到端的业务自动建立连接,满足运营商快速开通业务的需求。 The current standard is automatically switched optical network equipment to have a preliminary transmission equipment intelligence, it can establish a connection automatically for end to end service to meet the needs of business operators to quickly open. 在自动连接建立功能的基础上,还形成了有吸引力的故障恢复能力。 On the basis of automatic connection establishment function on, also formed an attractive resiliency. 以自动连接建立为核心目的,在体系架构、数据通信网、分布式呼叫和连接管理、自动资源发现、路由恢复/连接准许控制、控制平面管理等方面已经在ITU-T G.8080和G.771x系列建议书中得到标准化。 To automatically establish a connection to the core object, in architecture, a data communication network, and distributed call connection management, automatic resource discovery, routing recovery / connection admission control, the control plane management has ITU-T G.8080 and G. 771x series recommendations been standardized.

这一类智能化设备的一般体系结构如图1所表示,主要包括传送平面装置1、控制平面装置2、管理平面装置3、以及管理和控制信息通道(例如综合数据通信网(DCN)及嵌入控制信道(ECC)),并由相关的信息接口相连接。 Usually this type of architecture of the intelligent device represented in FIG. 1, including means a transport plane, a control plane device 2, device 3, the management plane, control and management, and channel information (e.g., integrated data communication network (the DCN) and fitted control channel (ECC)), by the relevant information connected to the interface. 以图1中的接口标志为例,其中图形用户界面(GUI)完成管理控制用户和网络的交互;控制管理接口(CMI)实现网元控制功能单元和管理功能单元之间的信息交互;控制传输接口(CTI)执行控制功能单元和传送平面的交互,主要执行控制平面对传送平面命令的下发;管理信息接口(S)实现网元管理功能单元和传送平面的信息交互,进行相关设置命令的下发和传送平面性能和故障告警的上报。 Flag to the interface in FIG. 1 as an example, wherein the graphical user interface (GUI) to complete the network management and control of the user interaction; Management Control Interface (CMI) for NE control information exchange between functional units and managing function unit; transmission control Interface (CTI) execution control functional unit and a transport plane interactions, mainly performs a control plane of the issued conveying plane command; management information interface (S) can manage the function unit, and transmitting the interactive plane information related setting command issued transport plane and performance and fault alarm reporting.

目前,该标准化设备中存在的问题是,为了提供高质量的服务,需要确保在所建立的连接上进行高质量的信号传输。 Currently, the standardization of equipment problems, in order to provide high quality services, the need to ensure high-quality signal transmission over the established connection. 首先,必须在连接建立过程中尽量避免因传输限制导致所建立的连接无效;其次,在所建立的连接上传输性能应该可以进行改变以适应不同路由条件的需要;第三,要在传输通道的性能发生劣化而不能恢复时可以自动进行重路由而建立新的可靠连接。 First of all, must be avoided during connection establishment due to an invalid connection results in transfer limit established; secondly, the transmission performance of the established connection should be changed to accommodate the needs of different route condition; third, to the transmission channel can automatically reroute time performance deterioration can not be restored to establish a new secure connection. 由于这三个方面的需要,未来的传送设备需要具备以下功能特点:传输功能具有自适应性,在传送平面中具有光性能检测、及动态控制功能;并与控制平面路由和连接建立过程相协调,在建立新的连接之前可以对传输性能进行预测,在连接建立之后可以对传输性能进行调整。 Since these three areas need future transfer device requires the following features: having a transfer function of adaptability, a light detecting performance, and dynamic control function in the transport plane; and establishes a control plane routing and connection coordination , before a new connection can be predicted transmission performance, transmission performance can be adjusted after the connection is established. 在目前已公开的设备标准和实用设备中,均不具有以上功能。 In practical devices and standard equipment has been disclosed, not having the above function.

发明内容 SUMMARY

本发明所要解决的技术问题是提供一种光交换网络自适应连接性能优化设备和方法,以克服现有技术在连接建立过程中对传送平面性能评估和控制不充分的缺点。 The present invention solves the technical problem is to provide an optical switching network connected to the adaptive performance optimization apparatus and method to overcome the prior art connection establishment procedure for performance evaluation and control of the transport plane inadequate disadvantages.

本发明所述的光交换网络自适应性能优化设备,包括:一路由控制器22,用于进行路由选择,并发送链路信息;一链路分析器23,用于分析所接收的链路信息的传输性能和光特性,以确定该路由的有效性;一连接控制器24,用于对上述有效的路由建立连接。 Adaptive optical switching network of the present invention optimizes the performance of the device, comprising: a routing controller 22 for routing, and transmits the link information; a link analyzer 23 for analyzing the received information of the link and the light transmission performance characteristic to determine the validity of the route; 24 a connection controller for establishing a connection to the effective route.

本发明所述的光交换网络自适应性能优化设备还包括:一传送控制器,用于接收所述链路信息,并经所建立的路由进行信号传送;一性能监测器,用于对信号传送的路由节点进行性能监测;一性能分析器,用于判断上述节点是否可进行调节;其中,上述传送控制器调节上述可进行调节的节点。 Adaptive optical switching network performance optimization apparatus of the present invention further comprises: a transmission controller for receiving the link information, and transmits the signal via the established route; a performance monitor, for transmitting a signal routing node performance monitoring; a performance analyzer, for determining whether or not the node can be regulated; wherein the controller adjusts the transfer can be adjusted to the above-described node.

其中,所述控制平面装置还包括:一信令处理器,用于接收连接请求并产生连接请求信息,以及向传送控制器发送链路信息。 Wherein said apparatus further comprises a control plane: a signaling processor adapted to receive connection requests and generating connection request information, and transmitting the link information to the transmission controller.

本发明所述的光交换网络自适应性能优化设备还包括:一链路资源管理器,用于提供链路信息,并更新所述链路信息。 Adaptive optical switching network to optimize the performance of the apparatus of the present invention further comprises: a link resource manager, for providing link information, and updating the link information.

其中,所述路由控制器根据信令处理器所发送的连接请求信息进行路由选择。 Wherein the controller requests the routing information for routing the connection in accordance with the transmitted signaling processor.

其中,所述性能监测器还包括:一输入信号性能监测单元和/或输出信号性能监测单元,其根据监测信号或业务信号对节点进行性能监测。 Wherein the performance monitor further comprising: a performance monitoring unit signal input and / or output signal performance monitoring unit that monitors the nodes according to performance monitoring signals or traffic signals. 所述性能分析器将所监测的性能与节点额定的性能进行比较,以判断需要进行调节的节点和调节量。 Performance Analyzer monitored the performance and compare the performance rating node, a node needs to determine the amount of adjustment and adjustment.

本发明还涉及一种自适应连接性能优化方法,包括:步骤一、响应连接请求信息来进行路由选择,并发送链路信息;步骤二、分析上述链路信息的传输性能和光特性,以确定路由的有效性;步骤三、对上述有效的路由建立连接。 The present invention further relates to an adaptive performance optimization connector, comprising: a step of, in response to the connection request information for routing, and transmits the link information; two step, analysis of the transmission characteristic of the optical properties and the link information to determine the routing effectiveness; step three, to establish a connection to the effective route.

本发明还涉及一种自适应连接性能优化方法还包括:步骤四、经所建立的路由进行信号传送;步骤五、对信号传送的路由节点进行性能监测;步骤六、判断上述节点是否可进行调节;步骤七、对可进行调节的节点进行调节。 The present invention further relates to a method of adaptive performance optimization connector further comprising: a step four, the established routed signal transmission; Step 5 routing node performance monitoring signal transmitted; Step 6 determines whether said node can be adjusted ; step 7 to adjust the node may be adjusted.

本发明还涉及一种自适应连接性能优化方法还包括:步骤八、反馈路由建立失败消息;其中,在步骤一中:若存在可选择的空闲路由,执行步骤二,否则执行步骤八。 The present invention further relates to a method of adaptive performance optimization connector further comprising: a step eight, the feedback route setup failure message; wherein, in step one: if there is an alternative route idle, step two is performed, otherwise step VIII.

其中,在步骤二中:若该路由是有效的,执行步骤三,否则返回步骤一。 Wherein, in step II: If the route is valid, step three, otherwise it returns to step a.

其中,在步骤五中:若性能监测的结果为节点性能正常,返回步骤四,否则执行步骤六。 Wherein, in step 5: If the result is normal node performance monitoring performance, return to Step Four, otherwise step VI.

其中,在步骤六中:若节点可实施调节,执行步骤七,否则返回步骤一。 Wherein, in the Sixth Step: If the node may adjust the embodiment, step seven, otherwise it returns to step a.

采用本发明所述设备和方法,与现有技术相比,由于采取了在建立新的连接时对传输性能进行预测,取得了重路由和连接建立过程的进步,提高了网络重路由和连接的有效性,确保在所建立的连接上进行高质量的信号传输。 Using the apparatus and method of the present invention, as compared with the prior art, thanks to the establishment of a new connection when the transmission performance prediction, and progress made rerouting the connection establishment procedure, and improves the network connection rerouting effectiveness, to ensure high-quality signal transmission on the established connection.

附图说明 BRIEF DESCRIPTION

图1为本发明光交换网络自适应性能优化设备结构图;图2为传送平面装置的结构图;图3为控制平面装置的结构图;图4为本发明光交换网络自适应性能优化方法流程图;图5为网络应用环境下的连接请求建立过程示意图;图6为本发明的一个具体应用示意图;图7为本发明的一个具体实施方式;图8为本发明的另一个具体实施方式。 FIG optical switch 1 of the present invention to optimize the performance of adaptive network device configuration; Figure 2 is a structural diagram of a plane of the device; FIG. 3 is a block diagram of a control plane of the device; FIG. 4 is an optical switching network performance optimization process adaptive to the invention ; Figure 5 is a network environment connected to the requesting process to establish a schematic diagram; FIG. 6 a schematic view of the particular application of the present invention; FIG. 7 a specific embodiment of the present invention; FIG. 8 another specific embodiment of the present invention.

具体实施方式 detailed description

下面结合附图对本发明技术方案的实施例作进一步的详细描述。 Drawings, embodiments of the technical solutions of the present invention will be further described in detail below in conjunction.

图1为本发明光交换网络自适应性能优化设备结构图,该光交换网络自适应性能优化设备包括传送平面装置1、控制平面装置2、管理平面装置3、以及管理和控制信息通道(例如DCN及ECC),并由相关的信息接口相连接。 Figure 1 of the present invention an optical switching device to optimize the performance of adaptive network configuration diagram of the optical switching network of adaptive performance optimization device comprises a device transport plane, the control plane device 2, device 3, the management plane, control and management, and channel information (e.g. DCN and ECC), by the relevant information connected to the interface. 其中图形用户界面(GUI)完成管理控制用户和网络的交互,由于智能交换光网络(ASON)具备客户发起和操作功能,所以包括客户管理系统的GUI;控制管理接口(CMI)实现控制平面装置2和管理平面装置3之间的信息交互;控制传输接口(CTI)执行控制平面装置2和传送平面装置1的交互,主要执行控制平面装置2对传送平面装置1命令的下发;管理信息接口(S)实现管理平面装置3和传送平面装置1的信息交互,进行相关设置命令的下发和传送平面性能和故障告警的上报。 Wherein the graphical user interface (GUI) to complete the management and control of users and networks interact, because intelligent switched optical network (ASON) includes a customer initiates and operation function, includes a GUI client management system; Control Management Interface (CMI) control plane means 2 and the interaction between the information management apparatus 3 plane; controlling transmission interface interaction (CTI) performs a control plane and a transport plane 2 means an apparatus mainly performs a control plane device 2 transmits a command issued plane of the device; management information interface ( S) 3 realize the information exchange apparatus and a management plane transport plane device 1 related setting command issued transport plane and performance and fault alarm reporting.

下面结合图2,对传送平面装置1进行详细说明。 Below in connection with FIG. 2, the plane of the conveying apparatus 1 described in detail. 传送平面装置1包括传送控制器14、性能监测器12、性能分析器13以及传送信号处理部分11,其中性能监测器12包括输入信号性能监测单元121和/或输出信号性能监测单元122。 1 comprises a conveying device transport plane controller 14, performance monitor 12, performance analyzer 13 and a transmitting signal processing section 11, wherein the performance monitor 12 includes an input unit 121, signal performance monitoring and / or performance monitoring unit 122 outputs a signal. 其中传送信号处理部分11用于对网元设备的所发送的信号进行解析适配,包含传统的终端设备、或线路设备、或交换设备的核心信号处理功能,例如在线路放大节点,是由放大器和相关驱动和控制电路构成;再例如在光交叉节点,是由光交叉单元及相关驱动和控制电路构成;再例如电路交换节点,是由时分复用(TDM)交叉单元或时空分(STS)交换单元及相关驱动电路构成。 Wherein the transfer function of the core signal processing section 11 for processing a signal transmitted signal NE device is adapted to parse, comprising the conventional terminal device, or line devices, or switching equipment, for example, in the line amplifier node by the amplifier and associated drive and control circuit; for example, another optical cross-node optical cross section is made, and associated drive and control circuit; another example circuit-switched node, by time division multiplexing (TDM) unit or spatiotemporal cross points (STS) switching means and associated drive circuit. 性能监测器12是对网元设备输入和/或输出信号进行监测的装置,其根据监测信号或业务信号对节点进行性能监测,提取监测结果T。 Performance monitor 12 is a device for network elements and an input / output signal or monitor, which monitors the performance of the nodes according to the monitoring signal or the traffic signal, extracting monitoring results T. 并根据设备所传送的业务来配置监测功能器件,例如可以是在光通道层(OCH)检测其误码率、功率、光信噪比、中心波长、色散等一种或多种光学性能的相关装置;再例如是在SDH-n、Ethernet、OTU-k/ODU-k等业务种类条件下检测反映其信号质量的开销字节的相关装置。 And configure the device monitoring apparatus according to the transmitted traffic, for example, may be the detection of one bit error rate, power, optical signal noise, center wavelength, dispersion, or more optical properties in the optical channel layer (OCH) associated means; another example is under the operational condition of the kind of SDH-n, Ethernet, OTU-k / ODU-k other detection means associated overhead bytes to reflect its signal quality. 性能分析器13是对监测结果进行判断和实施控制策略的装置,具有计算和逻辑处理能力,其判断上述节点是否可进行调节。 13 is a performance analyzer for monitoring results and determination means control strategy implementation, a computing and logic processing capability, it is determined whether or not the above-described nodes can be adjusted. 相应的,本说明书中图8所表示的实施例反映了对光功率进行判断和实施增益优化的方法,图9所表示的实施例反映了对信号质量进行判断和实施色散优化的方法。 Accordingly, the present specification the embodiment represented in FIG. 8 reflected optical power and a method of determining the gain optimized embodiment, the embodiment represented in FIG. 9 represents the way of the signal quality determination and optimization of dispersion embodiment. 传送控制器14接收所述链路信息,并经所建立的路由进行信号的传送,并对是对可实施调整的节点进行调节,所发出的控制信号C包含交叉连接/线路倒换(光交叉或电交叉)以及光学性能调整(例如调制相关特征、增益/衰减、波长、功率、色散、接收机相关属性等)控制信号。 Transfer controller 14 receives the link information, and transmits the signal via the established route, and the node embodiment is adjusted to adjust the control signal C emitted by comprising cross-connect / switching lines (or light cross electrical cross), and the optical properties adjustment (e.g. modulation related features, gain / attenuation, wavelength, power, dispersion properties, etc. associated receiver) control signal. 该传送控制器14通过管理信息接口S与管理平面装置3进行信息交互、通过控制传输接口(CTI)与控制平面装置2进行信息交互。 The transfer controller 14 via the interface S management information and management information interaction plane device 3, the control plane information interaction device 2 via the control transmission interface (CTI) with.

下面结合图3,对控制平面装置2进行详细说明。 Below in connection with FIG. 3, the control plane of the device 2 described in detail. 控制平面装置2包括路由控制器22、链路分析器23、连接控制器24、链路资源管理器25以及信令处理器21。 2 comprises a control plane routing device controller 22, link analyzer 23, the controller connector 24, link resource manager 25 and signaling processor 21. 其中,信令处理器21接收连接请求并产生连接请求信息,以及向传送控制器14发送链路信息。 Wherein the signaling processor 21 receives the connection request and generates the connection request information, and transmits the link information to the transmission controller 14. 其通过对来自管理和控制信息通道(DCN)的连接请求信令信息的接收响应,并通过对信令信息的解析获取连接请求相关的信息,为路由控制器22的路由选择提供相关链路信息,同时接收连接控制器24反馈的连接状态信息并向客户反馈。 Receiving a response to the request by the signaling information from the connection information management and control channels (the DCN) and acquires the connection information by parsing the signaling information related to the request, provide information about the link routing controller for routing 22 while receiving the connection state information feedback controller 24 back to the customer. 路由控制器22接收来自信令处理器21的连接请求信息,并进行路由选择,路由控制器22还对等路由控制器间的信息交互,维护全网路由信息;同时路由控制器还将查询链路资源管理器25获得的连接路由经过的链路信息向连接控制器下发,实施对传送平面装置连接的操作。 The routing controller 22 receives the connection request information 21 from the signaling processor, and routing, the routing controller 22 further peer information exchange between the route controller, by the maintenance of the entire network information; the same time the controller will route the query chain connection route path resource manager 25 obtained through the link information issued to the connection controller, the operation of the embodiment of the transport plane connected. 链路分析器23对连接请求要求的连接路由经过的链路信息进行传输性能和光特性的分析,评估,以便从性能方面确定连接路由的可实施性。 Link analyzer 23 pairs of link information required connection request is routed through the connection performance analysis and optical transmission characteristics, evaluated to determine a connection route can be implemented in terms of performance. 连接控制器24对上述可实施的路由建立连接,并负责通过协调对等的或者下层的连接控制器24、路由控制器22以及链路资源管理器25,来管理和监控连接的建立、释放以及修改已建立的连接参数。 Connection controller 24 may establish the above-described embodiment the connection route, and for 24, the routing controller 22 and link resource manager 25, to manage and monitor the connection established by the coordination of the lower layer or the like connected to the controller, and the release of modify the connection parameters have been established. 链路资源管理器25向路由控制器22提供链路信息,并对链路信息进行更新维护。 Link resource manager 25 provides routing information to the link controller 22, and link information is updated maintenance. 链路资源管理器25除包含链路信息管理器(LRM,ITU-T G.8080)的全部功能之外,所维护的链路信息应该包括链路的光层传输性能(一般以网元和传输段信号转移特征形式来表达)。 Link information in the link resource manager 25 contains all the functions other than the link information manager (LRM, ITU-T G.8080), and maintained should include a light transmission performance of a link layer (and generally NE transmission segment is expressed in the form of the signal transfer characteristic).

图4为本发明光交换网络自适应性能优化方法的流程图。 Optical switching network flowchart of adaptive performance optimization method of the present invention in FIG. 4.

步骤S100:发送连接请求,处理该连接请求产生连接请求信息。 Step S100: transmitting a connection request, the connection request process generates connection request information. 连接请求的发生可以包含以下几种情况:自客户设备经UNI接口发生连接请求;自网络管理系统经CMI接口发生连接请求;以及自异地网元从DCN经NNI接口发生连接请求。 The connection request may include the following situations occurs: since the client device via the interface UNI connection request occurs; from the network management system via the interface occurs CMI connection request; and a connection request from the remote network element of the DCN via the NNI interface. 在以上几种情况下,信令处理器21根据所使用的协议(例如GMPLS协议,或使用其他私有协议),解析连接请求信令报文,获得连接请求信息;步骤S200:判断是否存在空闲资源,并响应连接请求信息来进行路由选择,并发送链路信息;若存在可选择的空闲资源,则选择一条未确认无效的路由,然后进入步骤S300;若不存在可使用的路由时,执行步骤S900。 In the above circumstances, the signaling protocol used by the processor 21 (e.g. GMPLS protocol, or other proprietary protocols), parsing a connection request signaling message, a connection request to obtain information; Step S200: determining whether there is a free resource If there can be used when the route, step; and in response to the connection request routing information, and transmits the link information; alternatively if free resources exists, select an invalid unacknowledged route, and then proceeds to step S300 S900. 路由控制器22基于空闲资源中的可用部分来选择路由,链路信息存在于链路资源管理器25,该数据库的一个实施例是自动交换光网络标准(ITU-T G.8080)所定义的资源管理器及相关辅助装置,其信息需要使用某种信令协议周期性地在全网进行同步更新,以使网络中任何一网元设备的数据库中都包含全网资源状态信息;步骤S300:判断所选择的路由是否有效,通过分析上述链路信息的传输性能和光特性,以确定路由的有效性;根据网元及路由的光性能转移特征评估所选择的链路,在经计算后发现接收信号质量的劣化程度将超过预定的门限,则表明所选择的路由无效,此时返回步骤S200;相反,经计算后发现接收信号质量的劣化程度将不超过预定的门限,则表明所选择的路由预测有效,此时进入步骤S400;链路分析器23根据网元及传输段的光性能转移特征评估所 The routing controller 22 selects free resources based on the available part of the route, link information is present in the link resource manager 25, an embodiment of the database is automatically switched optical network standard (ITU-T G.8080) defined resource manager and related auxiliary devices, which need some information about the signaling protocol periodically updated simultaneously in the entire network, so that the network database network element of any device are included in the whole network resource status information; step S300: analyzing the selected route is valid, and the light transmission performance by analyzing the characteristics of the link information to determine the validity of the route; optical transfer performance characteristics and route evaluation NE a selected link, after receiving calculated found degree of deterioration of signal quality more than the predetermined threshold, it indicates that an invalid route selected, then returns to step S200; the contrary, was calculated that the degree of degradation of received signal quality will not exceed a predetermined threshold, it indicates that the route selected predict effective, then proceeds to step S400; link analyzer 23 evaluates the performance in accordance with the transfer characteristics of the light transmission section and the NE 择的路由,全网任何一个网元或传输段的光性能转移特征,即输入端口信号属性和输出端口信号属性之间的关系,反映了信号传输经过该网元后的性能降级或改善的程度,是该网元的固有特征,虽然可能因为网元节点内装置工作状态的改变而有所改变,但仍然可以以额定工作点为标准预先测试或估算其一般特征,或者也可以对降级性能做最大估计的方法,经解析或统计等理论手段概括其转移特征(例如ITU-T G.otf所规定的网元或传输段光学转移特征,包含光放大器链路的增益特性、沿传输线路逐渐积累的噪声特性、色散及其斜率的累积、时钟或信号的转移函数,光纤非线性转移函数等)。 Route selection, wherein a network element or the transfer performance of any optical transmission segment of the entire network, i.e., the relationship between the input port and an output port signal properties signal properties, reflects the degree of the signal transmitted through the network element performance after degradation or improved , it is a characteristic of the network element, although it may change as the operational state of the node NE apparatus change, but still may be nominal operating point or standard pre-test to estimate their general characteristics, or may be made of degraded performance a method of estimating the maximum, by means of other analytical or statistical theory outlined transferred wherein (NE or optical transfer characteristic of the transmission period specified in ITU-T G.otf e.g., optical amplifier gain characteristics comprising the link, the gradual accumulation along the transmission line noise characteristics, its accumulated dispersion slope, or the transfer function of the clock signal, the optical fiber nonlinear transfer functions, etc.). 这些网元或传输段的转移特征,应保存于链路资源管理器25中,并且可以随着网络的变化而随时更新。 Transfer characteristics of these network elements or the transport section, to be stored in the link resource manager 25, and may change as the network being updated. 链路分析器23根据全路由所经过的网元及传输段物理性能,经级联计算出业务信号自路由输入点至路由输出点的信号变化,完成对该路由有效性的评估;步骤S400:根据信令协议对有效的路由建立连接;连接控制器24通过信令协议经所选择的路由建立连接。 Link analyzer 23 NE and the physical properties of the whole transmission segment along the route, traffic signal is calculated from the cascaded input signal is routed to the route change point output point, to complete the evaluation of the effectiveness of the route; Step S400: establishing a connection according to the efficient routing signaling protocol; connection controller 24 establishes a connection via the selected route through the signaling protocol. 连接建立的过程,可以遵循一般的信令协议,例如如ITU-T G.7713.1或G.7713.2所规定的连接信令过程等。 The process of establishing the connection may follow the general signaling protocol, such as connection signaling procedures defined in other ITU-T G.7713.1 or G.7713.2. 连接信令所到达的节点,需要经过控制平面装置的信令处理器21解析后传递到该节点的连接控制器24根据节点交换模型计算输入输出端口资源指配要求,再经控制传输接口(CTI)接口进入传送控制器14控制交叉倒换发生;步骤S500:经所建立的路由进行信号传送,并可以反馈连接成功和/或连接保持消息;传送控制器14启动信号的发送。 Signaling nodes connected reached, after 21 need to pass the analysis control plane signaling processor means to claim 24 with a connection controller of the node according to the node input and output ports exchanging model calculation resource assignment, and then transmitted via a control Interface (CTI ) into the transfer controller 14 controls the interface cross switchover; step S500: transmitting a signal via the established route, and feedback can be successfully connected to and / or maintaining the connection message; transmitting controller 14 transmits an activation signal. 所发出的信号,可以是业务信号,也可以是用于验证链路性能和完整性为目的临时发出的检测信号。 The emitted signal may be a traffic signal, a detection signal may be used to verify the performance and integrity link for the purpose of temporary emitted. 如果只是一种检测信号,需要在步骤S600所执行的结果正常情况下更换为业务信号。 If only a detection signal needs to be replaced at service signals normally result of step S600 is performed. 正在发送端节点持续正常工作时,可以反馈连接成功和/或连接保持消息;步骤S600:判断节点性能是否正常,通过对信号传送的路由节点进行实时性能监测来判断节点性能是否正常,当性能监测的结果为节点性能正常,返回S500,当发现性能异常时,则执行S700;性能检测器12用于在信号所经过的节点进行实时性能检测,进行实时性能检测时,可以使用发送端的检测信号,也可以使用发送端的业务信号,所检测的信息可以是带外的,也可以是带内的;既可以检测信号模拟特征(例如功率、波长、信噪比),也可以检测信号的数字特征,例如误码率;可以直接采样信号波形,也可以提取所传输的特定业务信号的开销字节,例如同步数字体系(SDH)信号的B1,B2等字节,再例如光传输网络(OTN)信号的OUTk、ODUk等帧结构性能监测字节; Is being sent end node continue normal operation, can feed a successful connection and / or connection maintaining message; Step S600: determination node performance is normal, by the routing node of the signal transmitted in real time performance monitoring to determine node performance is normal, when the performance monitoring the result is a normal node performance, return S500, when abnormal performance is performed S700; when the performance of the detector 12 is used for real-time performance testing at node signal passes, real-time performance testing, can detect a signal transmitting side, the transmitting end can also use traffic signals, information can be detected outside the band, the band may be; may be an analog detection signal characteristics (e.g. power, wavelength, signal to noise ratio), a digital signature can be detected signals, For example bit error rate; direct signal can be sampled waveform may be extracted specific traffic overhead bytes of the transmitted signal, e.g. signal B1 byte synchronous digital hierarchy (SDH), B2, etc., then for example, optical transport network (OTN) signal performance monitoring frame structure byte OUTk, ODUk and the like;

步骤S700:判断上述节点是否可进行调节,以确定路由调节对象;性能分析器13确定路由调节对象。 Step S700: determining whether the node can be adjusted, the adjustment object to determine a route; Performance Analyzer 13 determines the routing adjustment object. 在分析时将所检测的性能状态与设备额定的性能状态相对比,以判断在路由中需要进行调节的节点和调节量。 When analyzing the performance of the detected state of the device as opposed to the nominal performance state, a node needs to determine and adjust the amount of adjustment in the route. 当发现对所有被调节对象进行控制不能实现信号质量改善时,则表明目前所使用的路由已经无效,返回步骤S200;否则进入步骤S800;当信号质量不能得到改善时,除非系统需要保持目前的劣化信号继续服务时才可以回归步骤S500(图中未示出);步骤S800:对可实施调节的节点进行调节;传送控制器14控制链路中的可调节点,按照预定的优化原则和控制算法,逐步使信号质量得到改善,完成调节后进入步骤S600。 When they find a control signal failed and quality of all the adjustment object improve the results, the route currently in use no longer valid, returns to step S200; otherwise, proceed to step S800; when the signal quality can not be improved unless the system needs to keep the current deterioration when the signal continues to return to step S500 service (not shown); step S800: the node to be adjusted to adjust embodiment; variable node 14 controls downlink transmission controller, and the predetermined control algorithm according to the principles of optimization , so that the signal quality is improved gradually, after the completion of adjustment enters to step S600. 当一次调整不能达到优化目标时,可采用通用的工程优化方法分步调整,或迭代调整,使系统性能逐渐趋向理想的范围;步骤S900:反馈路由建立失败消息;信令处理器21反馈路由建立失败消息。 When the time adjustment can not reach the optimization target may be employed conventional engineering optimization method stepwise adjustment, adjustment or iteration, the system performance over a range of gradually moving; Step S900: establishing a feedback route fails; signaling processor 21 to establish a feedback route failure message. 通过以上过程,建立失败是在连接建立过程中没有找到空闲且经验证无有效的资源时发生。 Occurs through the above process, the failure to establish the connection establishment is not found idle and no proven effective resource.

图5是网络应用环境下的连接请求建立过程的一个示意图,主要涉及图4中的步骤S200、S300、S400和S700,用来说明在不同情况下路由选择的变化。 FIG 5 is a connection request to the network environment to establish a schematic process, mainly related to steps in FIG. 4 S200, S300, S400 and S700, to account for variations in different situations routing. 在一个网络域,控制平面装置和传送平面装置通过控制传输接口(CTI)相连接,在图中,链路资源管理器25,包含了网络域所有节点的资源信息及节点和传输段转移特征,其通过控制传输接口(CTI)与传送平面装置相连接,在传送平面节点发生物理变化时可以得到更新。 In a network domain, the control plane and the transfer device is connected via a control transmission interface (CTI) device plane, in the figure, link resource manager 25, the resource information comprises a feature node and the transfer and transport network domains segments all nodes, which is connected via a control transmission interface (CTI) with plane conveying means can be updated when changes in the physical transport plane node occurs. 当存在一个从源节点客户端设备a到目标节点客户端设备z的连接请求时,图6中的例子中路由1表示基于空闲资源选择的路由,经过节点NA,NB,NZ。 When there is a connection request z client device, in the example of FIG. 6 represents a route from a source node to a target client device node is idle resources based on the selected route through the nodes NA, NB, NZ. 当上述方法的步骤3中通过调用链路资源管理器25中的转移特征对此路由条件下的连接进行性能预测,发现该路由不可用时,则需要重新计算路由,直到性能预测的结果合格,例如得到了经过节点NA,NC,ND,NZ的新的路由(路由2)。 When the 3 steps of the above method, the performance predicted by the link resource manager call transfer features 25 are connected in this route condition, the route found unavailable, recalculate routes, until the results of performance prediction qualified, e.g. after the obtained new routing node NA, NC, ND, NZ of (route 2). 然后源节点客户对连接发起请求S1,经过控制平面装置及综合数据通信网(DCN)达到目的节点后,返回连接请求确认S2,最后向NA、NC、ND、NZ各节点对应的传送平面装置发出连接建立控制S3,完成整个连接的建立过程。 Then the source node customer connection initiation request Sl, via the control plane devices and integrated data communication network (the DCN) reaches the destination node, returns the connection request acknowledgment S2, finally NC, ND, NZ each node corresponding to the conveying plane of the device sent to the NA, connection establishment control S3, to complete the establishment of the connection. 在运营过程中,此连接发生了不可恢复的性能劣化并超过门限时,则需要重新计算路由。 During operations, the performance degradation in the connection, and unrecoverable exceeds a threshold, then the need to recalculate the route. 假设经过性能监测结果合格的一条新的路由经过NA、NF、NC、ND、NZ各节点(路由3),需要源节点客户再次发起连接/变更请求S4,经过控制平面装置及综合数据通信网(DCN)达到目的节点后,返回连接请求/变更确认S5,最后向NA、NF、NC、ND、NZ各节点对应的传送平面装置发出连接建立控制S3,完成整个连接的建立过程,例如在先建后拆策略下,尤其涉及NA、NF、NC三个节点的连接控制。 Suppose after the performance monitoring results are satisfactory in a new route through the NA, NF, NC, ND, NZ nodes (Route 3), requires the source node client initiates a connection re / change request S4, after the control plane devices and integrated data communication network ( DCN) after reaching the destination node returns a connection request / change confirmation S5, and finally to the NA, NF, NC, ND, NZ conveying plane corresponding to each node issues a connection establishment control means S3, to complete the establishment of the connection, for example, built prior after the demolition of the strategy, in particular, it relates to a connection control NA, NF, NC three nodes.

图6是特定路由条件下的应用示意图,主要涉及图4中的步骤S300。 FIG 6 is a schematic view of the application of a specific route condition, mainly related to steps in FIG. 4 S300. 在a到z的路由中可以存在1个或多个电再生节点N1,1个或多个无电再生节点N2,及1个或多个光纤段F。 There may be one or more electrical regeneration or more nodes N1,1 electroless regenerating nodes N2, and one or a plurality of optical fibers to the route segments in the z F. 在光传输段1和光传输段2,需要使用每个节点和光纤段的光学转移特征级联来计算整个传输段的信号演变。 In the optical transmission section 1 and the optical transmission section 2, it is necessary to calculate the evolution of the entire signal transmission using an optical transfer section of each node and wherein cascaded fiber segment. 在经过电再生节点时,需要使用电信号的转移特征。 When electropolished regenerating nodes, it requires the use of transfer characteristics of the electrical signal. 电再生节点和无电再生节点的差别记录在链路资源管理器25中。 Electrical difference regenerating nodes and electroless regenerating nodes is recorded in the link resource manager 25.

图7是在特定路由条件下光交换网络自适应性能优化设备的示意图,主要涉及图4中的步骤S500、S600、S700、S800。 FIG 7 is an adaptive optical switched network performance under certain conditions a schematic view of the routing device optimization, relates FIG step 4 S500, S600, S700, S800. 节点设备使用可调光放大(TOA)和可调光衰减(TOL)装置,或者具有动态增益均衡装置(DGE)作为传送信号处理部分11的实施方式。 A tunable optical amplifying node device (TOA) and a variable optical attenuator (TOL) means, or means having a dynamic gain equalizer (DGE) as the transmission signal processing section 11 of the embodiment. 在每个节点的光处理装置存在监测信号T接口和控制信号C接口。 Monitor the presence of T interface signal and a control signal light processing apparatus C interface of each node. 使用光性能监测器(OPM)作为性能监测器12的一个实施例,在一个或多个节点设备的接口T进行检测。 Using an optical performance monitor (the OPM) as a performance monitor of Example 12, to detect one or more nodes in the interface of the device T. 商用的光性能监测器(OPM)可以完成功率监测、波长监测、及光信噪比监测等功能。 Commercial optical performance monitor (the OPM) to complete power monitoring, monitoring wavelength, and optical signal-monitoring functions. 与OPM及节点光处理装置接口C相连接的自适应控制系统A,至少包含图2和图3所示的性能分析器13,传送控制器14,控制平面装置2,和控制信息通道(DCN)。 OPM adaptive control system A and the optical processing means and the node C is connected to an interface, comprising at least FIGS. 2 and 3 performance analyzer 13, transfer controller 14, the control means 2 plane, and the control channel information (the DCN) . 发送端(X1,...,XN)信号持续发送时,当通过光性能检测器(OPM)检测确认沿整个传输线的信号功率分布偏离正常时,将通过自适应系统A逐渐调节沿线可调光放大(TOA)、可调光衰减(TOL)装置、和/或动态增益均衡(DGE)装置,使信号功率分布趋近于正常,只有在调节后不能使信号正常时,放弃对此线路的调整,通过包含在图中所示自适应系统A内的控制平面装置中的路由控制器22选择其他路由。 The transmitting end (X1, ..., XN) continues to send the signal, when the performance of the detector by the light (the OPM) detects deviation from the normal confirmation, the adaptive system gradually adjusted along A tunable optical signal along the power distribution of the entire transmission line when the zoom (the TOA), variable optical attenuator (TOL) devices, and / or a dynamic gain equalizer (DGE) means that the signal power distribution close to normal only after a signal is not properly adjusted, this adjustment line abandon , by including the route shown in the drawings within the plane of the device controller controls the adaptive system a 22 to select another route.

图8是特定路由条件下(信号质量控制)的应用举例,主要涉及图4中的步骤S500、S600、S700、S800,实现信号谱域控制优化的装置和系统实施例。 FIG 8 is an application specific route condition (signal quality control) For example, the main steps involved in FIG. 4 S500, S600, S700, S800, optimized for signal spectral domain control apparatus and system embodiments. 发射端节点设备具有可变功率激光器L和可变性能调制装置(MOD),接收端节点具有自适应色散调节装置(ADC)。 Transmitting end node apparatus having a variable power laser L and a variable performance of the modulation means (MOD), the receiving end node has an adaptive dispersion adjustment means (ADC). 发射端包括合波器M,激光源L,调制器(MOD),驱动器(DRI),功率控制器P,是传送信号处理部分11的一个实施方式。 The transmitting end comprising a multiplexer M, the laser source L, the modulator (MOD), the driver (DRI), a power controller P, is an embodiment of the transmission signal processing portion 11. 在接收端包括分波器D,自适应色散补偿(ADC),接收机R,也是传送信号处理部分的一个实施方式。 At the receiving end comprises a demultiplexer D, adaptive dispersion compensation (ADC), a receiver R, is a transfer mode signal processing section of the embodiment. 在每个节点的光处理装置存在检测信号T接口和控制信号C接口。 T interface presence detection signal and a control signal light processing apparatus C interface of each node. 使用信号质量检测器Q作为性能检测器12的一个实施例,在接收端节点设备的接口T进行检测。 Use Q signal quality detector performance as a detector 12 embodiment, the interface is detected in the receiving node apparatus T side. 商用的信号质量检测器可以是仪表或芯片,可以完成误码检测或Q值检测。 Commercial signal quality detector may be a meter or chips, or the error detection can be accomplished Q value detected. 与Q及节点光处理装置接口C相连接的自适应控制系统A,至少包含图2和图3所示实施例的性能分析器13,传送控制器14,控制平面装置2,和控制信息通道(DCN)。 Adaptive control system A and the node Q and the optical processing means connected to the interface C, FIGS. 2 and 3 comprising at least the embodiment shown in performance analyzer 13, transfer controller 14, the control means 2 plane, and the control channel information ( DCN). 发送端光源L信号持续发送时,当通过信号质量检测器Q检测确认信号的质量偏离正常教大时,将通过自适应系统A逐渐调节发射端激光器功率、调制器驱动信号、或改变调制方式,和/或逐渐调节接收端自适应色散补偿(ADC)使接收端信号质量趋近于正常,只有在调节后不能使信号正常时,放弃对此线路的调整,通过包含在图中所示自适应系统A内的控制平面装置中的路由控制器22选择其他路由。 The light source L when the transmitting end continuously transmits a signal, when departing from the mass by the signal quality detector detects an acknowledgment signal Q normal to teach large, the laser power is gradually adjusted by the adaptive transmission side system A, the modulator drive signal, or changing the modulation mode, and / or gradual adjustment of adaptive dispersion compensation receiver side (ADC) the reception quality close to a normal end signal only when a signal is not adjusted to normal, abandon this adjustment line, as shown in FIG adaptation by comprising the routing controller in the control system a plane means 22 to select another route.

本说明书所附实施例是体现本发明构思的一些典型例子,本领域的技术人员可意识到,在不脱离本发明的主要思想的情况下可以对本发明做出修改和变更。 The present embodiment is embodied appended Some typical examples of the inventive concept, those skilled in the art can appreciate that modifications and variations may be made in the present invention without departing from the main idea of ​​the present invention.

Claims (13)

  1. 1.一种光交换网络自适应性能优化设备,在建立连接时对传输性能进行预测,其特征在于,包括:一路由控制器,用于进行路由选择,并发送链路信息;一链路分析器,用于分析所接收的链路信息的传输性能和光特性,以确定该路由的有效性;一连接控制器,用于对上述有效的路由建立连接。 An optical switching network to optimize the performance of adaptive equipment, predict transmission performance when establishing the connection, wherein, comprising: a routing controller for routing, and transmits the link information; a Link Analysis devices for optical transmission performance characteristics of the link and analyzes the received information to determine the validity of the route; a connection controller for establishing a connection to the effective route.
  2. 2.根据权利要求1所述的光交换网络自适应性能优化设备,其特征在于,还包括:一传送控制器,用于接收所述链路信息,并经所建立的路由进行信号传送;一性能监测器,用于对信号传送的路由节点进行性能监测;一性能分析器,用于判断上述节点是否可进行调节;其中,上述传送控制器调节上述可进行调节的节点。 2. The optical switching network of adaptive performance optimization apparatus according to claim 1, characterized in that, further comprising: a transmission controller for receiving the link information, and transmits the signal via the established route; a performance monitor, for signaling routing nodes for performance monitoring; a performance analyzer, for determining whether or not the node can be regulated; wherein the controller adjusts the transfer can be adjusted to the above-described node.
  3. 3.根据权利要求1或2所述的光交换网络自适应性能优化设备,其特征在于,所述控制平面装置还包括:一信令处理器,用于接收连接请求并产生连接请求信息,以及向传送控制器发送链路信息。 The optical switching network of adaptive performance optimization apparatus of claim 1 or claim 2, wherein said apparatus further comprises a control plane: a signaling processor adapted to receive connection requests and generating connection request information, and sending link information to the transmission controller.
  4. 4.根据权利要求1或2所述的光交换网络自适应性能优化设备,其特征在于,还包括:一链路资源管理器,用于提供链路信息,并更新所述链路信息。 The adaptation or the performance of an optical switching network 12 optimizing apparatus as claimed in claim, characterized in that, further comprising: a link resource manager, for providing link information, and updating the link information.
  5. 5.根据权利要求3所述的光交换网络自适应性能优化设备,其特征在于,所述路由控制器根据信令处理器所发送的连接请求信息进行路由选择。 The performance of the adaptive claim 3, the optical switching network optimization device, characterized in that the routing controller according to the connection request information transmitted signaling processor routing.
  6. 6.根据权利要求2所述的光交换网络自适应性能优化设备,其特征在于,所述性能监测器还包括:一输入信号性能监测单元和/或输出信号性能监测单元,其根据监测信号或业务信号对节点进行性能监测。 The optical switching network of adaptive performance optimization apparatus according to claim 2, wherein the performance monitor further comprising: an input signal performance monitoring unit and / or performance monitoring means output signal, or based on the monitoring signal traffic signal node performance monitoring.
  7. 7.根据权利要求2所述的光交换网络自适应性能优化设备,其特征在于,所述性能分析器将所监测的性能与节点额定的性能进行比较,以判断需要进行调节的节点和调节量。 7. The optical switching network of adaptive performance optimization apparatus according to claim 2, wherein the Performance Analyzer node performance monitoring rated performance compared to determine the need for adjustment of the adjustment amount and node .
  8. 8.一种光交换网络自适应性能优化方法,在建立连接时对传输性能进行预测,其特征在于,包括:步骤一、响应连接请求信息来进行路由选择,并发送链路信息;步骤二、分析上述链路信息的传输性能和光特性,以确定路由的有效性;步骤三、对有效的路由建立连接。 An optical switching network of adaptive performance optimization, the transmission performance prediction establish connection, characterized in that it comprises: a step of, in response to the connection request information for routing, and transmits the link information; Step II analysis of characteristics of the optical transmission performance and link information to determine the validity of the route; step three, to establish a connection to the efficient routing.
  9. 9.根据权利要求8所述的光交换网络自适应性能优化方法,其特征在于,还包括:步骤四、经所建立的路由进行信号传送;步骤五、对信号传送的路由节点进行性能监测;步骤六、判断上述节点是否可进行调节;步骤七、对可进行调节的节点进行调节。 The optical switching network of adaptive performance optimization method according to claim 8, characterized in that, further comprising: a step four, a signal transmitted via the established route; Step 5 routing node performance monitoring signal transmitted; step six, it is determined whether or not the node can be adjusted; step seven, the nodes can be adjusted to be adjusted.
  10. 10.根据权利要求8所述的光交换网络自适应性能优化方法,其特征在于,还包括:步骤八、反馈路由建立失败消息;其中,在步骤一中:若存在可选择的空闲路由,执行步骤二,否则执行步骤八。 The optical switching network of adaptive performance optimization method according to claim 8, characterized in that, further comprising: a step of eight, a feedback route setup failure message; wherein, in step one: when the presence of a selectable idle route is performed step two, otherwise step VIII.
  11. 11.根据权利要求8所述的光交换网络自适应性能优化方法,其特征在于,在步骤二中:若该路由是有效的,执行步骤三,否则返回步骤一。 The optical switching network of adaptive performance optimization method according to claim 8, wherein, in step two: If the route is valid, step three, otherwise returns to step a.
  12. 12.根据权利要求9所述的光交换网络自适应性能优化方法,其特征在于,在步骤五中:若性能监测的结果为节点性能正常,返回步骤四,否则执行步骤六。 12. The optical switching network of adaptive performance optimization method according to claim 9, wherein, in step 5: If the result of the normal node performance monitoring capability, processing returns to step four, otherwise step six.
  13. 13.根据权利要求9或12所述的光交换网络自适应性能优化方法,其特征在于,在步骤六中:若节点可实施调节,执行步骤七,否则返回步骤一。 The optical switching network of adaptive performance optimization claim 9 or claim 12, wherein, in the Sixth Step: If the node may adjust the embodiment, step seven, otherwise returns to step a.
CN 200610011761 2006-04-21 2006-04-21 Adaptive optical transmission network connecting performance optimization method and equipment CN100531050C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200610011761 CN100531050C (en) 2006-04-21 2006-04-21 Adaptive optical transmission network connecting performance optimization method and equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN 200610011761 CN100531050C (en) 2006-04-21 2006-04-21 Adaptive optical transmission network connecting performance optimization method and equipment
PCT/CN2007/000654 WO2007121651A1 (en) 2006-04-21 2007-03-01 A connection performance optimize method of the adaptive optical transmission network and device thereof

Publications (2)

Publication Number Publication Date
CN101060420A true true CN101060420A (en) 2007-10-24
CN100531050C CN100531050C (en) 2009-08-19

Family

ID=38624541

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200610011761 CN100531050C (en) 2006-04-21 2006-04-21 Adaptive optical transmission network connecting performance optimization method and equipment

Country Status (2)

Country Link
CN (1) CN100531050C (en)
WO (1) WO2007121651A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010028586A1 (en) * 2008-09-12 2010-03-18 中兴通讯股份有限公司 Barrier boundary node and method for establishing connection between barrier bound ary nodes
CN101577844B (en) 2009-06-05 2012-05-23 中兴通讯股份有限公司 Wave division multiplexing (WDM) network path search method and system
CN103107943A (en) * 2013-02-22 2013-05-15 中国人民解放军国防科学技术大学 Self-adaption routing method for no-cache optical switching network
CN102006270B (en) 2009-08-28 2013-06-26 华为技术有限公司 Negotiation method of link capability information, network equipment and communication system
CN103369060A (en) * 2013-07-10 2013-10-23 华为技术有限公司 Management method and device for virtual port
CN103843360A (en) * 2013-11-15 2014-06-04 华为技术有限公司 Service deployment method, apparatus and network equipment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105141477A (en) * 2015-08-20 2015-12-09 中国人民解放军西安通信学院 Optical network information security monitoring system based on optical fiber sensing and monitoring method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6680912B1 (en) 2000-03-03 2004-01-20 Luminous Networks, Inc. Selecting a routing direction in a communications network using a cost metric
US6744984B1 (en) 2000-05-24 2004-06-01 Nortel Networks Limited Method and system for alternative transmission traffic routing in dense wavelength division multiplexing optical networks
JP3823837B2 (en) 2002-01-31 2006-09-20 日本電気株式会社 Optical communication network and optical network design method for use therein
CN100499434C (en) * 2002-02-21 2009-06-10 阿尔卡特公司 Spectrum route determining method for given connection in optical communication network

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010028586A1 (en) * 2008-09-12 2010-03-18 中兴通讯股份有限公司 Barrier boundary node and method for establishing connection between barrier bound ary nodes
CN101360349B (en) 2008-09-12 2011-01-19 中兴通讯股份有限公司 Resistant boundary node and establishing method for connection between resistant boundary nodes
US8832282B2 (en) 2008-09-12 2014-09-09 Zte Corporation Barrier boundary node and method for establishing connection between barrier boundary nodes
CN101577844B (en) 2009-06-05 2012-05-23 中兴通讯股份有限公司 Wave division multiplexing (WDM) network path search method and system
US8705409B2 (en) 2009-06-05 2014-04-22 Zte Corporation Wavelength division multiplexing network path search method and system
CN102006270B (en) 2009-08-28 2013-06-26 华为技术有限公司 Negotiation method of link capability information, network equipment and communication system
US8824888B2 (en) 2009-08-28 2014-09-02 Huawei Technologies Co., Ltd. Method for negotiating link capability information, network device, and communication system
CN103107943B (en) 2013-02-22 2014-04-16 中国人民解放军国防科学技术大学 Self-adaption routing method for no-cache optical switching network
CN103107943A (en) * 2013-02-22 2013-05-15 中国人民解放军国防科学技术大学 Self-adaption routing method for no-cache optical switching network
CN103369060A (en) * 2013-07-10 2013-10-23 华为技术有限公司 Management method and device for virtual port
CN103369060B (en) * 2013-07-10 2017-07-14 华为技术有限公司 A management method and apparatus for virtual port
CN103843360A (en) * 2013-11-15 2014-06-04 华为技术有限公司 Service deployment method, apparatus and network equipment
WO2015070435A1 (en) * 2013-11-15 2015-05-21 华为技术有限公司 Service deployment method, apparatus and network device
CN103843360B (en) * 2013-11-15 2017-10-03 华为技术有限公司 Service deployment method, apparatus and network equipment

Also Published As

Publication number Publication date Type
CN100531050C (en) 2009-08-19 grant
WO2007121651A1 (en) 2007-11-01 application

Similar Documents

Publication Publication Date Title
Martínez et al. Challenges and requirements for introducing impairment-awareness into the management and control planes of ASON/GMPLS WDM networks
US5991264A (en) Method and apparatus for isolating network failures by applying alarms to failure spans
US6621621B1 (en) Line amplification system for wavelength switched optical networks
US5986783A (en) Method and apparatus for operation, protection, and restoration of heterogeneous optical communication networks
US6088141A (en) Self-healing network
US6272154B1 (en) Reconfigurable multiwavelength network elements
US7171124B2 (en) Wavelength routing and switching mechanism for a photonic transport network
Zhang et al. A review of fault management in WDM mesh networks: basic concepts and research challenges
US20120224851A1 (en) Bandwidth variable communication method, bandwidth variable communication apparatus, transmission bandwidth determination apparatus, transmission bandwidth determination method, node apparatus, communication path setting system, communication path setting
US20020191241A1 (en) Network operating system with topology autodiscovery
US20030120983A1 (en) System and method for performing pre-emptive protection switching
US5495471A (en) System and method for restoring a telecommunications network based on a two prong approach
US20020063915A1 (en) Method and apparatus for validating a path through a switched optical network
US20040218525A1 (en) Protection scheme for a communications network under multiple failures
US20040052526A1 (en) Connection optimization and control in agile networks
US20100220996A1 (en) Path Computation Element Protocol (PCEP) Operations to Support Wavelength Switched Optical Network Routing, Wavelength Assignment, and Impairment Validation
US20110116790A1 (en) Wavelength path communication node apparatus, wavelength path communication control method, program, and recording medium
US20060268944A1 (en) Method for migration between a permanent connection and a switched connection in a transmission network
US7477843B1 (en) Method of and system for routing in a photonic network
US6304347B1 (en) Optical power management in an optical network
US20050019031A1 (en) Single-fiber protection in telecommunications networks
US20060188258A1 (en) Method and system for time-sharing transmission frequencies in an optical network
US6816461B1 (en) Method of controlling a network element to aggregate alarms and faults of a communications network
US20040196783A1 (en) Method of and apparatus for determining alternative communication path
US6414595B1 (en) Method and system for processing alarm objects in a communications network

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
C14 Granted