CN101051077A - Satellite positioning, remote sensing and geographical in for mation integrating method based on mobile device - Google Patents

Satellite positioning, remote sensing and geographical in for mation integrating method based on mobile device Download PDF

Info

Publication number
CN101051077A
CN101051077A CN 200610025407 CN200610025407A CN101051077A CN 101051077 A CN101051077 A CN 101051077A CN 200610025407 CN200610025407 CN 200610025407 CN 200610025407 A CN200610025407 A CN 200610025407A CN 101051077 A CN101051077 A CN 101051077A
Authority
CN
Grant status
Application
Patent type
Prior art keywords
data
object
gps
gis
layer
Prior art date
Application number
CN 200610025407
Other languages
Chinese (zh)
Inventor
童小华
胡广杰
田根
唐德昌
蔡杰
Original Assignee
上海市闸北区绿化管理局
同济大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Abstract

A method for integrating information of satellite positioning and remote sensing as well as geography based on mobile device utilizes embedded windows CE operation system built in mobile device and its provided-embedded development environment including embedded GIS data model and integration of GPS and GIS as well as integration of GIS and RS to realize position data collection and remote sensed image loading as well as superposition of remote sensed image with vector map.

Description

基于移动设备的卫星定位、遥感及地理信息集成方法 Mobile satellite positioning device, remote sensing and geographic information integration based

技术领域 FIELD

本发明涉及移动空间信息采集领域,特别是涉及基于移动设备的卫星定位、遥感及地理信息集成方法。 The present invention relates to the field of mobile information collecting space, in particular, to satellite-based positioning of a mobile device, remote sensing and geographic information integration method.

背景技术 Background technique

GPS(Global Positioning System)-全球定位系统,主要是通过多个卫星来实现对移动终端的定位。 GPS (Global Positioning System) - a global positioning system, positioning is mainly achieved by a plurality of satellite mobile terminals. 移动终端接收到GPS信息,通过其本身或网络服务中心进行处理,从而确定移动终端所在的实际位置。 The mobile terminal receives GPS information, is processed by itself or a network service center to determine the actual position of the mobile terminal is located. 自从美国前总统克林顿颁布法令2000年5月1日起停止S/A政策,对民用码不加干扰,使民用定位精度大大提高,同时这也加快和扩展了GPS在各行各业的应用。 Ever since former US President Bill Clinton issued a decree since 2000, May 1 stop S / A policy without interference of the civil code, the civil positioning accuracy is improved greatly, which also accelerate and expand the use of GPS in all walks of life. GPS技术的广泛应用与发展,出现了多种不同类型的GPS接收机。 Wide application and development of GPS technology, a variety of different types of GPS receivers. 目前GPS接收机类型主要有二种:测量型、导航型。 GPS receivers currently there are two main types: type of measurement, navigation type. 从测量方式上主要有单点定位、实时动态RTK、静态差分定位、信标差分定位等方式。 From there the main measurement point positioning, the RTK real-time dynamic, static differential positioning, positioning beacon differential manner. 从体积上从较大体积的测量型接收机到适合于掌上电脑的各种CF型GPS接收机,再到现在的与PDA集成的GPS接收机等等。 From the measurement volume from a larger volume of receivers adapted to the various CF handheld GPS receiver, to the current GPS receiver integrated with a PDA and the like. GPS的发展为相关行业的应用提供了强有力的支持。 GPS development provides a strong support for application-related industries. 在绿化调查与管理中,GPS以全天候、高精度、自动化、高效益等显著特点为绿化信息的采集提供了较为成熟的定位技术。 In the Green investigation and management, GPS provides the positioning technology to mature notable feature all-weather, high precision, automation, high efficiency and other green to collect information.

遥感(remote sensing)是60年代初由美国Pruitt提出的名称,1962年美国地理学会正式公开使用。 Remote sensing (remote sensing) is the name of the early 1960s put forward by the United States Pruitt, 1962 American Geographical Society official public use. 1972年美国陆地卫星发射成功,MSS图像获得巨大效益,得到世界范围的认可和支持,使遥感成为一门高新技术并得以长足发展。 In 1972 the United States successfully launched Landsat, MSS images with great benefits, received worldwide recognition and support to become a high-tech remote sensing and to rapid development. 遥感用于实时地或准实时地、快速地提供目标及其环境的语义或非语义信息,发现地球表面上的各种变化,及时地对GIS进行数据更新。 Sensing for real-time or near real time, quickly provide semantic information or semantic target and its environment, it was found that various changes in the earth's surface, in a timely manner for GIS data updates. 遥感技术朝着多传感器、多遥感图像的空间分辨率、多光谱分辨率和多时间分辨率,以及对遥感图像自动判读的精确性、可靠性和定量量测的精度都在不断地提高,使之不仅用于观测和监测地面变化状况,而且将主要用于地表信息的采集和更新,成为地理空间基础框架建设中空间数据获取与更新的基本手段之一。 Sensing Technology towards multi-sensor, multi-spatial resolution remote sensing images, multi-spectral and multi-resolution time resolution, and automatic interpretation of the image sensing accuracy, reliability and accuracy of quantitative measurements are constantly improving the the only ground for observation and monitoring changes in the situation, and will be used to collect and update information on the ground, became one of the basic means of geo-spatial framework for the construction of basic spatial data acquisition and updates. 遥感技术将进一步与GIS和GPS结合,广泛应用于数字城市建设、生态环境保护、自然灾害监测与预报以及资源调查与评估等领域。 Remote sensing technology will be further combined with GIS and GPS, widely used in digital urban construction, environmental protection, natural disaster monitoring and forecasting and resource survey and evaluation, and other fields.

地理信息系统(Geographic Information System,简称GIS)是一门集地球科学、空间科学、环境科学、地理信息学、自动制图技术等最新成就的新兴边缘学科。 GIS (Geographic Information System, referred to as GIS) is an emerging interdisciplinary set of the latest achievements in earth science, space science, environmental science, geographic information science, such as automatic mapping technology. 它以计算机为手段,用于采集,存储、管理、分析、描述和表达空间数据的信息系统。 It is a computer as a means for the acquisition, storage, management, analysis, and expression of spatial information system description data. 自从地理信息系统在20世纪60年代逐步形成以来,随着计算机技术、数据库技术、遥感技术、数字图形图像技术等相关技术的发展,地理信息系统已逐步在测绘、地质、遥感、矿山、环境、水利、农业、林业、土地管理、气象、海洋、城市规划、航空、区域可持续发展、军事、政府办公管理及决策中得到广泛应用。 Since the geographic information system gradually formed in the 1960s, with the development of technology related to computer technology, database technology, remote sensing technology, such as digital graphics technology, geographic information system has been gradually mapping, geology, remote sensing, mining, environment, water conservancy, agriculture, forestry, land management, meteorology, oceanography, urban planning, aviation, regional sustainable development, military, government office management and decision-making has been widely used.

移动GIS:掌上电脑的移动性及便携性,为地理信息系统的发展带来了契机,通过掌上电脑,人们可以突破基于个人电脑的地理信息系统使用的限制,自由地使用获得个性化的地理信息。 Mobile GIS: Pocket PC mobility and portability for the development of geographic information system brings opportunity, through handheld computers, people can break through the limit PC-based geographic information system, and are free to use geographic information to get personalized . 移动地理信息系统把地理信息作为载体,集成了社会、经济、文化等方面的信息,实现了信息的动态更新。 Mobile GIS geographic information as the carrier, an integrated information society, economy, culture and other aspects, to achieve a dynamically updated information. 移动GIS建立在嵌入和无线通讯基础之上,不仅仅指随物理载体移动的GIS系统,也不仅仅指可以提供移动目标信息,也不是常规GIS的精简以便于能够在小计算机上实现GIS操作,它是一个使用根本性不同的事例所构建的系统,与地理信息服务紧密联系在一起,是技术、信息、服务的集成。 GIS mobile and wireless communications based on embedding basis, with the GIS system not only refers to the physical movement of the carrier, may also be provided not only refers to the moving object information, nor a conventional GIS streamlined to facilitate operation of GIS can be achieved on a small computer, it is a fundamentally different system use cases are constructed closely together with the geographic information services, technology, information, integration services.

全球定位系统、遥感、移动GIS都在各自的技术领域中得到了应用,但把三者集成起来解决实际问题的应用尚无报道。 Global positioning systems, remote sensing, mobile GIS has been applied in their respective technical fields, but to integrate the three applications to solve practical problems have not been reported.

发明内容 SUMMARY

本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种基于移动设备的卫星定位、遥感及地理信息集成方法。 The object of the present invention is to solve the problems of the prior art described above and to provide a satellite based positioning of a mobile device, remote sensing and geographic information integration method.

本发明的目的可以通过以下技术方案来实现:基于移动设备的卫星定位、遥感及地理信息集成方法,其特征在于,该方法采用移动设备内置的嵌入式Windows CE操作系统及其提供的内嵌式开发环境,包括基于移动设备的嵌入式地理信息系统(GIS)数据模型、卫星定位(GPS)与移动设备GIS的集成、移动设备与遥感(RS)数据的集成。 The object of the present invention may be achieved by the following technical solution: a mobile satellite positioning device, remote sensing and geographic information integration based, characterized in that the method uses a built-in embedded mobile device embedded Windows CE operating system and provides development environment, including embedded geographic information system for mobile devices based on (GIS) data model, positioning satellite (GPS) and mobile device integration of GIS, integration of mobile devices and remote sensing (RS) data.

所述的基于移动设备的嵌入式GIS数据模型基于面向对象的方法,采用空间实体封装一地物基类,然后在地物类的基础上主要派生出点状地物类、线状地物类和面状地物类,且其它复杂地物类亦在这些类的基础上派生,同时,将对具有同一性质与用途的地物的管理封装为图层类;整个GIS内核由实体对象和图层对象构成;该实体对象对地理实体进行了封装,封装的数据包括图形和属性数据,图形数据分为点、线、面图形,其中线图形又包括多线图形,面图形又包括多面图形,图形数据不仅包括图形的坐标串数据,还包括图形的外界矩形、颜色、线型、填充数据;实体对象下面又派生出点、线、面对象,分别用来管理图形数据的点、线、面图形;所述的图层对象中封装了该图层中所有地理实体的属性字段的字段定义,包括字段名称、类型;所述的图层对 The embedded GIS data model based on the mobile device based on object-oriented approach, a spatial entity feature package base class, then the main feature point derived on the basis of the feature classes based on the class of linear features planar and feature-based, and other complex class also feature on the basis of these derived classes, while having the feature will use the same properties as the encapsulating layer class management; GIS whole kernel objects by an entity and FIG. layer object composition; the entity object of the geographic entity is encapsulated, the encapsulated data including data and attribute data, graphic data into point, line, surface pattern, wherein the line pattern further includes a plurality of line patterns, the surface pattern also includes a polygon pattern, graphics data includes not only the coordinate data of a graphic string, further comprising outside the rectangular pattern, color, line type, fill data; sent birth point, line, plane object following the object entity, for each point management data pattern, line, surface pattern; the layer object encapsulates field definitions in the layer attribute fields all geographical entities, including the field name, type; said pair of layers 包括复合图层。 Including composite layers.

所述的基于移动设备的嵌入式GIS数据模型在逻辑上,是以图层为单位对空间对象进行操作的;首先,获得图层对象集合的大小,然后从中遍历,获得每一图层对象指针;其次,在每一图层中,分别获得点对象集合、线对象集合和面对象集合大小,对点对象的操作,即从点对象集合中遍历,获得每一点对象,对线、面对象的操作,即从线对象集合、面对象集合中遍历,获得每一线对象、面对象指针,并从每一线对象、面对象中获得点结构实体集合大小,从中遍历,获得每一线对象、面对象端点的坐标,达到对每一个空间对象的操作;同时图层对象保存了图形元素的公共信息,包括颜色、线型,图形元素重建时只要取所在图层的这些属性值即可。 The embedded GIS data model based on the movement device logically, the layer is a unit of space objects operate; each layer object pointer First, the size of the layer to obtain a collection of objects, which is then traversed to obtain ; Secondly, in each layer, the object set points respectively, and the surface of the object set line object set size, the operating point of the object, i.e. from the point traversing a collection of objects, each obtained point object, line object plane operation, i.e., from a set of line object, surface object set traversal, obtained for each line object, surface object pointers, and access point configuration entity set size from each line object, surface object, from traverse to obtain each line object, area objects endpoint It coordinates, for each of the operation reaches a space object; the same holds common information layer object graphic elements, including those where the attribute values ​​can be taken as long as when the color layer, the linear graphical elements reconstruction.

所述的基于移动设备的嵌入式GIS数据模型在物理上,包括管理整个空间数据的主文件即GIS工程,该GIS工程包括整个GIS工程的配置、数据库连接信息、影像数据的文件路径,也包括GIS空间数据;在面向地理实体的整体GIS数据组织模型中,图形和属性数据都存放到一个二进制文件中,空间数据按图层依次存放,每个地理实体构成一个相对独立的数据段,在该数据段里,先存放图形数据再存放格式化的属性数据,只需要存放一个文件即能将整个空间数据存储起来;系统也支持对属性的扩展,与图形数据所关联的属性数据可以存储到Pocket Access数据库中,其图形与属性数据通过唯一标识ID号连接,遥感影像数据采用Bmp位图文件管理;对属性数据操作时,利用唯一标识ID的连接对数据库进行访问;在工程文件中,空间数据的存储也是按照概念与逻辑一致的存储 The embedded GIS data model based on physical mobile device, including management of the entire master file data space that is GIS project, the project includes GIS configuration of the entire project GIS, database connection information, the file path of the image data, including GIS spatial data; in the GIS data model for the entire geographic entity, data and attribute data are stored in a binary file, the spatial data are sequentially deposited layers, each composed of a geographic entity independent of the data segment, in which data segment, the first pattern data storing attribute data formatting and then stored, i.e. only one file can store the entire data storage space together; system also supports extended attributes, and attribute data associated with the graphics data may be stored in Pocket access database, its graphical attribute data unique ID number of the connection, remote sensing data using Bmp bitmap file management; when attribute data operation, using the connection unique ID to access the database; in the project file, spatial data storage is in accordance with the same concept of logical storage 构,在空间数据存储部分,按图层个数,将空间数据分成不同的数据段,每一层的空间数据放在同一个数据段内;在同一层空间数据段内,先存储图层对象的数据,图层对象包含了同一图层空间对象的公共信息,再按照空间对象的类型(点、线、面等)分成不同类型空间对象的数据段,属于同一类型的空间对象存储到同一数据段内。 Configuration, in the space data storage section, the number of layers, the spatial data into different data segments, each layer in the spatial data within a same data segment; space within the same layer data segment, the first storage layer object data layer object contains information common to the same layer of the object space, then in accordance with the type (point, line, surface, etc.) of the object space into data segments of different types of spatial objects belonging to the same type of objects are stored in the same data space within the segment.

所述的GPS与移动设备GIS的集成包括:GPS接收机在进行与移动设备连接时,都将接口统一识别为串口COM,GPS接收机可以采用多种方式与移动设备连接,GPS接收机和不同的移动设备,在进行连接时映射不同的串口,移动设备GIS只需要操作移动设备GPS接收机内部输出的数据就能获GPS定位信息;本方法统一将对串口操作的API函数都封装到一个动态链接库中,并在动态链接库中将对串口的操作封装成一个串口类,所有对串口操作的API函数都封装到这个类中。 Said GPS and GIS integrated mobile device comprising: a GPS receiver when making a connection with the mobile device, the interface will identify it as the COM port, the GPS receiver can be used in various ways with the mobile device is connected, a GPS receiver and different mobile device, making different maps serial connection, a mobile device only need to operate GIS data outputted from the GPS receiver inside the mobile device can obtain GPS location information; will present a unified method of operation of the serial port API functions are packaged into a dynamic link library, the dynamic link library and will be packaged into a serial operation of the serial type, all operations on the serial port API functions are packaged into this class.

所述的GPS与移动设备GIS的集成,对于更高精度应用来说,提供了对动态RTK GPS定位模式的支持,利用GPS RTK技术进行实测时,首先在已知控制点上架设GPS基站,在移动点上采用GPS移动站,即GPS接收器,移动设备通过串口与GPS移动站连接,在基站上配备无线电台,实时广播GPS相位差分信息,移动站配备无线电台接收模块,实时接收相位差分信息,GPS移动站在实时差分处理GPS接收数据后,输出符合NMEA-0183导航协议格式的GPS数据;移动设备接收来自GPS移动站的GPS数据,并遵循NMEA-0183协议其进行实时解析,解析后获得WGS84坐标系的大地坐标;根据实际采用的目标坐标系,确定椭球参数,包括椭球长半径;确定投影参数,包括投影中央子午线;确定转换参数,包括四参数;利用这些参数将WGS84坐标转换成实际所采用的坐标系坐标。 When the integrated GPS and GIS mobile device, for a higher accuracy applications, to provide support for dynamic RTK GPS positioning mode, using the measured GPS RTK technique, first erected on a known base station GPS control points, the using the moving point GPS mobile station, i.e. the GPS receiver, the mobile device is connected through the serial port GPS mobile station equipped with a radio station, real-time broadcast of GPS in the base station phase difference information, the mobile station with radio receiving module, receive real-time phase difference information after the mobile station realtime GPS differential GPS reception processing data, the GPS data output corresponds to NMEA-0183 format, the navigation protocol; mobile device receives the GPS data from the GPS of the mobile station, and follow the NMEA-0183 protocol that performs real-time resolved, resolved to obtain geodetic WGS84 coordinate system; the target coordinate system actually used, determines ellipsoid parameters, including ellipsoid major radius; determining the projection parameters, including a projection central meridian; determining conversion parameters including the four parameters; these parameters will WGS84 coordinate transformation the actual coordinates into a coordinate system used.

所述的移动设备与遥感RS数据的集成:只建立原始的图像信息与实际图像信息的映射关系,在文件保存时,也只是附加保存原始的图像信息与实际图像的映射信息;在具体实现图像放缩过程中,运用最优邻近点算法对图像进行重采样处理,该最优邻近点算法的核心思想,就是在图像放大过程中,由于图像的放大而使一些像素没有了颜色值,这些没有颜色值的像素就用与它最近的那个像素的颜色值填充。 The mobile device integrated remote sensing data RS: establishing mapping relationship between the original image is only information of the actual image information, when the file is saved, only the additional information image to save the original mapping information and an actual image; embodied in the image scaling process, the most proximal point algorithm using the image re-sampling process, the core idea of ​​the most proximal point algorithm, the image is enlarged in the process, because some pixels of the enlarged image is not the color values, which do not pixel color values ​​will be filled with color values ​​and the closest pixel.

所述的最优邻近点算法将有关遥感图像的操作封装成一个设备无关图类,图像的颜色设置与显示都在其绘图函数里;在显示图像过程中,判断图像是否在显示区域,如不在显示区域则不显示,在对图像的操作方式上,通过获得图像的对象指针,再利用图像对象类的方法完成图像的操作,在图像类的绘图函数里设置了与矢量图一样的图形变换。 The optimal point adjacent the algorithm operation on remote sensing images packaged into a device-independent graphs, the display color of the image is provided in its function in the drawing; the process in the display image, it is determined whether the image display area, not as the display region is not displayed, in the operation mode of the image, the image obtained by the object pointer, a method of recycling an image of the object class to complete the operation image, provided with graphics transformation vector as a function of drawing an image in the class.

采用以上技术方案实现的基于移动设备的卫星定位、遥感及地理信息集成方法,在数据采集的应用中,减少了资源的消耗,提高了效率,实现了移动设备上GIS图形的快速更新、显示及高效的检索速度,不仅可以进行位置数据的采集,而且还可以基于个人位置的导航、空间信息移动服务等应用;实现了遥感影像的加载、遥感影像与矢量图的叠加。 Using satellite positioning on the mobile device, remote sensing and geographic information integration method above technical solution, the application data acquisition, reducing the consumption of resources and improve the efficiency, to achieve a fast update on the mobile device GIS pattern, display, and efficient retrieval speed, not only position data can be collected, but also the individual location-based navigation, spatial information of the mobile services applications; loading implement superposition image sensing, remote sensing image and vector.

附图说明 BRIEF DESCRIPTION

图1为GIS数据模型的概念模型一;图2为GIS数据模型的概念模型二;图3为GIS数据模型的概念模型三;图4为本发明的嵌入式GIS概念模型;图5为根据图4概念模型所设计的掌上电脑GIS逻辑与物理数据模型;图6为基于移动的嵌入式GIS数据模型;图7为GPS RTK采集实体的GIS表达;图8为最优邻近点算法的示意图。 FIG. 1 is a conceptual model of a GIS data model; FIG. 2 is a conceptual model of two GIS data model; FIG. 3 is a conceptual model of GIS data model III; FIG. 4 embedded GIS conceptual model of the present invention; FIG. 5 is a diagram of handheld GIS logical and physical data models designed conceptual model 4; FIG. 6 is a mobile-based embedded GIS data model; FIG. 8 is a schematic most proximal point algorithm; FIG. 7 is a GIS entity acquired GPS RTK expression.

具体实施方式 detailed description

下面结合附图对本发明作进一步说明。 DRAWINGS The invention will be further described below in connection.

如图1~8所示:GPS坐标转换:在进行GPS定位测量应用中,由于GPS定位结果是基于WGS-84坐标系,而我国测绘成果普遍表示在北京54坐标系中,并且大部分城市为了避免Gauss投影变形带来的不便,而采用地方独立坐标系。 As shown in FIG 1 ~ 8: GPS Coordinate Transformation: performing GPS location measurement applications, because the GPS positioning result is based on WGS-84 coordinates, the mapping results of Beijing generally expressed in the coordinate system 54, and for most cities Gauss projection distortion avoid the inconvenience, while the use of independent local coordinate system. 因此需要将GPS坐标转换到相应的坐标系统中。 It is necessary to convert the GPS coordinates to a corresponding coordinate system. 根据已知控制点的起算数据的不同和应用领域对精度的要求的不同,相应的坐标转换模型也不同。 According to different applications and different known starting control point data of the accuracy required, the corresponding coordinate transformation model is different. 本实施例采用的集成GPS功能的掌上电脑,CPU运算速度低,内存较小,而坐标转换往往需要进行较多的计算。 Employed in the GPS-enabled handheld the present embodiment, the low operation speed CPU, less memory, and the coordinate transformation often requires more calculations. 为了克服硬件平台资源的紧缺,本实施例提出了一种适合于移动环境下的GPS坐标转换模型。 In order to overcome the shortage of the hardware platform resources, the present embodiment proposes a GPS coordinate transformation model which is suitable for a mobile environment. 利用最小二乘法进行了坐标转换参数的求取与平差。 Obtaining the adjustment carried out by the coordinate conversion parameter least squares method.

移动环境下,为了避免在硬件资源有限的掌上电脑上进行大量的计算,本实施例提出了这样的转换步骤,首先将目标坐标系下的大地坐标(B1L1H1)T根据高斯投影原理将目标坐标系下的大地坐标转换为目标坐标系下的高斯坐标,其次将控制点WGS84大地坐标(B2L2H2)T根据高斯投影原理将大地坐标转换为WGS84高斯平面坐标。 Mobile environment, in order to avoid the large number of calculations in the limited hardware resources PDA, the present embodiment proposes a conversion step, first geodetic coordinates in the object coordinate system (B1L1H1) T Gauss projection principle the object coordinate system geodetic coordinates is converted into the coordinates Gauss object coordinate system, the control point followed WGS84 geodetic coordinates (B2L2H2) T in accordance with the principle of converting a Gaussian projection WGS84 geodetic coordinates Gauss plane coordinates. 然后将控制点WGS84高斯平面坐标与控制点在目标坐标系的高斯坐标一一对应,根据四参数平面转换模型求取平面转换参数,然后将该转换参数应用到测区其它移动点的转换。 Then the control point coordinates WGS84 Gauss plane coordinates of the control point in the Gaussian correspondence target coordinate system, the plane is obtained according to the four parameter plane conversion parameter conversion model, and then applying a parameter to the other mobile conversion points survey area. 对于起算数据是控制点在目标坐标系下的高斯坐标或地方坐标的情况,则可省去目标坐标系下的大地坐标(B1L1H1)T投影到目标坐标系下的高斯坐标这一步。 For starting the control point data is Gaussian coordinates or coordinates where the target coordinates, geodetic coordinates can be omitted at the target coordinates (B1L1H1) T is projected onto a target under the Gaussian coordinate system of this step. 在起算数据是目标坐标系下的地方坐标的情况,充分考虑投影变形的影响,合理设定测区的投影中央子午线。 In the case where the starting data are the coordinates of the target coordinates, fully consider the deformation of the projection, a reasonable set of measured projection area of ​​the central meridian. 一般得到的城市或测区的投影中央子午线只是一个近似值,如果近似值也不知道,则可选定在测区中央实测一点,取其经度作为中央子午线。 General resulting projection central meridian of the city or the survey area is only an approximation, if the approximation does not know, can be found in the center of the survey area selected point, whichever is as central meridian longitude. 最后根据控制点在WGS84坐标系下的高斯坐标与在目标坐标系下的高斯坐标或地方坐标之间建立一一对应关系,再根据4参数平面转换模型求取平面转换参数,并将转换步骤与转换参数应用到其它GPS移动点上。 Finally, according to the control point in WGS84 coordinates Gauss coordinate system established between the Gaussian and the coordinates or local coordinates of the object coordinate system one relationship, and then obtains the conversion parameters according to the plane of plane 4 parameter conversion model, and the converting step and conversion parameters are applied to move the other GPS points.

基于PDA和Windows CE环境下嵌入式系统的开发原理:掌上电脑(PDA)是近年来发展迅速的移动式便携计算机,内置强大的嵌入式Windows CE操作系统,提供内嵌式开发环境用以程序设计。 Principle-based development environment under Windows CE PDA and embedded systems: Pocket PC (PDA) is a recently developed mobile portable computer quickly built a powerful embedded Windows CE operating system, providing embedded development environment for programming . 它集中了计算、管理个人信息与一体,可以通过有线或无线方式接入Internet,满足人们随时获得信息的需求,是移动数字化测图的理想平台。 It centralized computing, personal information management and integrated, may access the Internet through a wired or wireless manner, it readily available to meet the demand information is measured over the internet digital moving map. 掌上电脑不仅具备良好的软硬件可扩充能力,同时还具备移动性,这为移动地理信息处理与服务发展提供了良好的支持,WINCE系列的掌上电脑一般的配置有32M的ROM和32M的RAM,处理器的处理能力已经可以相当与PC中奔腾的处理能力,如果需要大范围的城市信息服务,可以通过FLASH或SDK卡来扩展掌上电脑的存储能力。 Pocket PC software and hardware can not only have a good expansion capability, also has mobility, which provides good support for mobile geographic information processing and service development, the general configuration WINCE PDA series has 32M of ROM and 32M of RAM, processing power can already comparable to the PC processing power of the Pentium, if you need information on a wide range of city services, storage capacity can be extended by Pocket PC SDK or FLASH cards.

Windows CE是Microsoft公司Windows家族的新成员。 Windows CE is a new member of Microsoft's Windows family. 它是开放、可升级的32位与处理器无关的嵌入式操作系统,可以满足多种设备的需要。 It is an open, scalable 32-bit embedded processor independent of the operating system, to meet the various needs of the device. Windows CE支持多种外设和网络系统,包括键盘、光笔、触摸屏、串行口、并行口、以太网卡、调制解调器、USB设备、打印机、音频设备和存储设备(如PCMCIA卡)。 Windows CE to support multiple peripherals and network systems, including a keyboard, a light pen, a touch screen, a serial port, parallel port, an Ethernet card, modem, USB devices, printers, audio devices, and storage devices (e.g., PCMCIA card). 本实施例中采用的WindowsCE开发环境包括:(1)Windows CE嵌入式开发工具包(eMbedded VB,eMbedded VC)。 Employed in the present embodiment WindowsCE development environment comprising: (1) Windows CE Embedded Development Kit (eMbedded VB, eMbedded VC).

(2)Windows CE Platform SDK软件包,Windows CE Service软件包。 (2) Windows CE Platform SDK package, Windows CE Service package.

Windows CE支持ATL和MFC,但不支持STL。 Windows CE support ATL and MFC, but does not support STL. 程序开发虽然与普通Windows开发类似,但也有很多不同之处。 Although similar program development and common Windows development, but there are also many differences.

在本实施例开发的PDA GIS中实现了地图的绘制及编辑、地图浏览、图形与属性的连接、以及地理信息查询等功能。 Achieve the map drawing and editing, map browsing, graphics and connection properties, as well as geographic information query in PDA GIS implementation in this case development. GIS绘图功能包括基本矢量元素的绘制与地理要素的绘制,其基本矢量元素包括点、直线、折线、圆、椭圆、矩形等,而地理要素主要包括道路、房屋、树、绿地等。 GIS draw basic drawing functions include drawing and geographic feature vector elements, which element comprises a basic vector points, lines, polylines, circles, ellipses, rectangles and the like, and the geographic features including roads, buildings, trees, and other green spaces. 在本系统中地图的绘制以不同的图层处理,同时能够进行地图编辑与修改。 Map drawing processing in different layers in the present system, the map editing can be performed simultaneously with modification. 图形的编辑与修改包括图形元素的选择、删除、端点移动、元素整体移动、图形元素点的捕捉功能、图形元素拷贝等。 Edit and modify graphics, including selecting a graphic element, delete, move endpoint, overall mobile elements, capture, copy graphic elements graphic elements and other points. 地理要素除了具备基本矢量元素的编辑功能外,还具备地理要素符号的自动生成等特性。 In addition to geographic features includes basic editing functions vector elements, further comprising automatically generating geographic element characteristics such symbols.

基于移动设备的嵌入式GIS数据模型:当前主要存在图1、图2、图3所示的三种GIS数据模型。 Embedded GIS data model based on the mobile device: FIG. 1 is currently mainly three GIS data model shown in FIG 2, FIG 3. 概念模型一如图1所示。 A conceptual model shown in Fig. 将每一个图形元素都看作一个对象,不论是点对象、线对象、面对象或其它,都存放到一个对象集合里。 Each have a graphic element as a target, whether the object is a point, line objects, or other surface of an object, are stored in a collection of objects. 每个对象可记录为唯一标识号、坐标串、图层号、是否显示等属性。 Each object may be recorded as a unique identification number, a coordinate string, the layer number, whether the display attribute. 对每个对象属性的修改,只需要找到需要修改的对象,对其修改就可以了。 To modify the properties of each object, just you need to find the object you want to modify, amend them on it. 对每个对象显示的控制,就是对其“是否显示”属性的控制。 , Is the control of the control of each object displayed their "whether" property. 对对象图层的控制,也是对其图层号属性的控制。 Control of the target layer, the layer number is control over their property.

概念模型二如图2所示。 Two conceptual model shown in Fig. 即点、线、面模型。 I.e. point, line, surface model. 每个图形元素都是一个对象,不过要分别为点、线、面对象建立不同的对象集合。 Each graphic element is an object, but to each point, line, plane objects create a different set of objects. 点元素对象存储到点对象集合中,线元素对象存储到线对象集合中,面元素对象存储到面对象集合中。 Element object storage point in the object set point, the line element object stored in the object set line, face-to-face element object stored in the object set. 这样,将概念模型一的一个对象集合按类别分为三个对象集合。 Thus, the conceptual model of a collection of objects by a collection of objects is divided into three categories.

数据模型三如图3所示。 3 three data model shown in FIG. 即基于图层的数据模型。 That layer-based data model. 这种数据模型以图层为单位对图形进行管理。 This data model layer units of graphics management. 即一个图层是一个对象,现实世界由不同的图层组成,不同的图层叠加在一起构成完整的地理景观。 That is a layer of an object, the real world is made of layers of different composition, different layers stacked together to form a complete geographical landscape. 不同的图层对象由一个图层对象集合管理起来。 Different layer object consists of a collection of objects to manage layers. 每个图层对象下有点对象,线对象,面对象,但不加区分的部将其存放到一个对象集合里。 Each object is a little lower layer object, line object, the object surface, but indiscriminate portion will be stored in it to a collection of objects. 每个图形元素对象不再有“是否显示”这一属性。 Each graphic element objects no longer have this property "is displayed." 取而代之的是图层对象具有“是否显示”以及图层代码等属性。 Instead of having a layer object 'is displayed "layer codes and attributes. 属于这个图层对象的点、线、面对象都存储到这个图层对象的对象集合里。 The points belonging to the object layer, line, plane objects are stored in the object set objects in this layer. 属于另一个图层对象的点、线、面对象都存储到另一个图层对象的对象集合里。 Another point belonging to the object layer, line, objects are stored in the object set objects in another layer.

针对掌上电脑的硬件技术特性,本实施例提出了如图4所示的嵌入式GIS概念模型。 Technical characteristics of the hardware of the PDA, the present embodiment proposes a conceptual model embedded GIS 4 shown in FIG. 采用面向实体对象的概念模型中,人们所看到的地理场景,不是几何意义上的点,线、面等几何图形,而是具有实际意义的河流、旅馆、书店等实体。 The concept model for using physical objects, people see the geographical scene, not a geometric point, line, surface and other geometrical sense, but meaningful river, hotels, bookstores and other entities. 因此,GIS系统所处理的图形元素首先是一个个对象,然后这个对象是具有实在意义的实体。 Therefore, the graphic elements GIS system is handled by a first object, then the object is a real sense of the entity. 用面向实体对象的观点来描述现实世界地理实体或现象(当作对象)的概念抽象和逻辑组织,符合人们对现实世界的认识模式,并且提供了有效的实现机制。 Object-oriented entities with a view to describe the real-world geographic entity or phenomenon (as an object) abstract concepts and logical organization, in line with people's understanding of the real world model, and provide an effective implementation mechanism. 它既可以用来建立GIS概念模型,又可以当作逻辑数据模型,把人们对地理空间的认识模式与计算机内部的地理数据表达自然地统一起来。 It can be used to create a conceptual model GIS, but also as a logical data model, geographic data to the people's understanding of geospatial patterns and internal computer representation naturally unified. 图5为根据图4概念模型所设计的掌上电脑GIS逻辑与物理数据模型。 FIG 5 is a logical and physical Handheld GIS data model according to the conceptual model of Figure 4 designed.

在逻辑上,嵌入式GIS数据模型在程序内部是以图层为单位对空间对象进行操作的。 Logically, GIS data model program embedded inside the layer is a unit of spatial objects operate. 首先,获得图层对象集合的大小,然后从中遍历,获得每一图层对象指针。 First, a collection of objects the size layer, which is then traversed, each layer object pointer is obtained. 其次,在每一图层中,分别获得点对象集合、线对象集合和面对象集合大小。 Then, in each layer, the object set points respectively, and the surface line object set objects set size. 对点对象的操作,即从点对象集合中遍历,获得每一点对象。 Operation of the object point, i.e. from point traversing a collection of objects, the object each point is obtained. 对线、面对象的操作,即从线对象集合、面对象集合中遍历,获得每一线对象、面对象指针,并从每一线对象、面对象中获得点结构实体集合大小,从中遍历,获得每一线对象、面对象端点的坐标,达到对每一个空间对象的操作。 Operation of the line, plane object, i.e. from a set of line object, surface object set traversal, obtained for each line object, surface object pointers, and access point configuration entity set size from each line object, surface object, which traverse obtain each line object end coordinates of the object surface, reaches the operating space for each object. 同时图层对象保存了图形元素的公共信息,如颜色、线型等,图形元素重建时只要取所在图层的这些属性值即可。 Meanwhile layer object holds information common graphic elements, such as color, line type and the like, as long as these attribute values ​​is taken as the graphic element layer reconstruction. 避免了同一图层中所有的图形元素都保存重复信息。 Avoid all the graphic elements are stored in the same layer duplicate information. 同时为了避免针对一种目的的分层,在面对其它目的时,缺乏适应性问题,在嵌入式GIS数据模型中还增加了一个特殊的图层,那就是复合图层。 Meanwhile, in order to avoid stratification is directed to a purpose, in the face of other purposes, lack of adaptability, embedded GIS data model also adds a special layer that is a composite layer. 复合图层允许用户将需要进行特殊用途的地物加到复合图层中,以便进行相应的空间分析与操作。 Composite layer allows the user will need to use a special feature is added to the composite layers, for respective spatial analysis and operation.

如图6所示的基于移动的嵌入式GIS数据模型,整个GIS内核由实体对象和图层对象构成。 FIG GIS data model based embedded movement shown in Figure 6, is constituted by the whole GIS core layer objects and entity objects. 实体对象对地理实体进行了封装,封装的数据包括图形和属性数据。 Geographic entity entity object package, the package includes a graphics data and attribute data. 地理实体中描述其人文、环境等相关信息的属性数据由实体对象封装。 Geographic entity that describes its culture, environment, and other relevant information by the entity attribute data encapsulated object. 点、线、面对象不需要各自建立属性数据,只需从实体对象继承数据即可。 Point, line, surface attribute data objects do not need to establish their own, to simply extend the data from the entity object. 实体对象封装的属性数据根据需要可以动态增减,主要描述的是格式化的数据项,例如对于点实体(树),可以是树的树种、胸径、养护等级等字段项的值。 Encapsulated entity object attribute data can be dynamically increased or decreased according to need, describes the formatted data items, for example, point entity (trees), may be a value field entries species, diameter, etc. tree maintenance level. 实体对象封装的属性数据不是存储在数据库中,而是与实体对象封装的图形数据在一起构成整体的数据块一“地理实体”。 Encapsulated entity object attribute data is not stored in the database, but the graphic objects encapsulate data entity together constitute a whole data block "geographic entity." 这就意味着在进行对地理实体的各项GIS操作时,只要获得了地理实体的对象指针,就可以获得该地理实体的所有数据,包括图形数据与属性数据。 This means that during the GIS geographic entity for operation as long as a geographic entity object pointer, you can get all the data of the geographical entities, including graphics data and attribute data. 这样不需要根据地理实体对象的唯一标识符ID与数据库记录进行关联,避免了每次获取属性数据时都要从数据库中检索。 This eliminates the need to associate with based on the unique identifier ID of the object database records of geographical entities, to be avoided retrieved from the database each time the acquired attribute data. 这对于资源有限的掌上电脑来说,大大减少了系统访问和操作数据库的时间,提高了系统的运行效率。 This limited resources handheld computers, greatly reducing the time to access and manipulate the database system to improve the operating efficiency of the system. 当然为了保持系统的可扩展性,系统也可以根据地理实体对象的唯一标识符ID与外挂数据库记录进行关联,实现属性数据的扩展。 Of course, in order to maintain the scalability of the system, the system can also be based on the unique identifier ID associated with the plug-in object database record geographical entities, to achieve the extended attribute data. 图层对象是具有相同属性字段的地理实体集。 Layer object is an entity set with the same geographical attribute field. 在图层对象中封装了该图层中所有地理实体的属性字段的字段定义,例如字段名称、类型。 It encapsulates the attribute field field definitions for all geographical entities in the layer object layer, for example the field name, type. 因为在实体对象中封装的属性数据项只是具体属性项的值而没有属性项的定义,例如对于点实体(树),实体对象存储字段“树种”的值“银杏”,而不存储字段名称“树种”,即对于动态定义的属性项,实体对象本身并不知道各个属性值的含义。 Because the encapsulated entity object attribute data item is simply the value of the property item specific property item not defined, for example, point entity (tree), the entity object storage field value of "Ginkgo biloba" "species," without storing the field name " trees ", i.e., for the item dynamic attributes defined in the entity object itself does not know the meaning of each attribute value. 但只要知道了地理实体所在层就能根据层中定义的字段名称知道各个属性字段值的含义。 But as long as know the geographic entity where the layer will be able to know the meaning of each attribute field values ​​based on the field names defined in the layer. 在同一图层的地理实体按照图层定义的字段顺序保存字段的具体值,图层对象不仅存储层中对象属性值的字段定义,而且存储层中对象共有的信息,如图层颜色、可见性等,从而避免每个实体都重复存储这些信息,这大大降低了掌上电脑上GIS数据的存储量。 In a specific value of the same layer stored geographic entity fields defined in accordance with the field order of the layers, layer object only field definitions attribute values ​​stored in the object layer, and the object of the shared information storage layer, such as layer color, visibility and the like, so as to avoid repeating each entity storing information, which greatly reduces the amount of storage on the handheld GIS data.

在物理上,在图5所示的嵌入式GIS数据模型中,GIS工程是管理整个空间数据的主文件,其即包含整个GIS工程的配置、数据库连接信息、影像数据的文件路径等工程管理信息,也包括GIS空间数据。 Physically embedded GIS data model shown in FIG. 5, GIS project master file management data of the entire space, i.e. that the whole GIS configuration comprising engineering database connection information, the file path of the image data, etc. Management Information , including GIS spatial data. 由于掌上电脑文件管理比较弱,而且没有数据库操作系统,所以在面向地理实体的整体GIS数据组织模型中,图形和属性数据都存放到一个二进制文件中。 Because Pocket PC file management is relatively weak, and there is no operating system database, so the overall GIS data model for geographic entity, graphics and attribute data are stored in a binary file. 空间数据按图层依次存放,每个地理实体构成一个相对独立的数据段,在该数据段里,先存放图形数据再存放格式化的属性数据。 Spatial data is sequentially stored by layer, each constituting a geographic entity independent of the data segment, the data segment, the first pattern data storing attribute data before storing the formatted. 这样在没有外挂数据库的扩展属性数据的情况下,只需要存放一个文件即能将整个空间数据存储起来,在掌上电脑上操作起来非常方便。 So that in the extended attribute data without plug case database, a file only needs to store the entire space that is capable of storing data up to operate on a handheld very convenient. 为了通用,系统也支持对属性的扩展,与图形数据所关联的属性数据可以存储到Pocket Access数据库中,其图形与属性数据通过唯一标识ID号连接,遥感影像数据采用Bmp位图文件管理。 For general, the system also supports extended attributes, and attribute data associated with the graphics data may be stored in the Pocket Access database, and attribute data via its graphical unique ID number of the connection, using remote sensing data Bmp bitmap file management. 对属性数据操作时,利用唯一标识ID的连接对数据库进行访问。 When attribute data operation, using the connection ID uniquely identifies the access to the database. 在工程文件中,空间数据的存储也是按照概念模型与逻辑模型一致的存储结构。 In the project file, the data storage space is also in accordance with the conceptual model and logical model consistent storage structure. 在空间数据存储部分,按图层个数,将空间数据分成不同的数据段,每一层的空间数据放在同一个数据段内;在同一层空间数据段内,先存储图层对象的数据,图层对象包含了同一图层空间对象的公共信息,再按照空间对象的类型(点、线、面等)分成不同类型空间对象的数据段,属于同一类型的空间对象存储到同一数据段内。 In the space data storage section, the number of layers, the spatial data into different data segments, each layer in the spatial data in the same data segment; space within the same layer data segment, the data previously stored object layer , the layer object contains information common to the same layer of the object space, then in accordance with the type (point, line, surface, etc.) of the object space into data segments of different types of spatial objects belonging to the same type of spatial objects are stored in the same data segment . 在对数据进行访问和操作时,可以避免访问和操作不需要的数据段,大大加快了数据的访问和操作。 When the data access and manipulation, to avoid unwanted access and manipulate data segment, greatly speeding up access to data and operations.

因此,嵌入式GIS数据模型极大地提高了图形检索、绘制、选择的速度并减少了相关数据的存储。 Therefore, the embedded GIS data model greatly improves the graphics retrieval, rendering, select the speed and reduce storage-related data. 对于处理能力有限的掌上电脑来说,这种模型无疑是一种适应性较强的数据模型。 For the limited processing capacity of handheld computers, this model is undoubtedly a strong adaptability data model.

GPS与掌上电脑接口与数据处理目前与掌上电脑进行连接的GPS种类很多,有实时动态RTK GPS接收机、CF卡插槽式GPS、SD卡插槽式GPS、蓝牙GPS、信标差分机等等。 Many types of GPS and GPS handheld data processing interface currently connected to the Pocket PC, real-time dynamic RTK GPS receiver, CF card slot type GPS, the SD card slot-GPS, Bluetooth GPS, differential beacon machine, etc. . 无论用什么型号的GPS接收机,在进行与掌上电脑连接时,都将接口统一识为COM口,所以本实施例在进行与GPS接收机连接时,统一将对串口操作的API函数都封装到一个动态链接库中,并在动态链接库中将对串口的操作封装成一个串口类,所有对串口操作的API函数都封装到这个类中,这样就不需要在进行不同的GPS连接时,重复进行代码的编写,使得软件的代码保持了较高的通用性和灵活性。 No matter what type of GPS receiver used, when connected to the handheld is performed, the uniform interface are identified as COM port, so when making a connection with the embodiment of the GPS receiver, will be unified API function to serial operation of the present embodiment are encapsulated when a dynamic link library, and serial port will be operating in dynamic link library packaged as a serial type, all operations on the serial port API functions are encapsulated in this class, so that no connection during different GPS, repeat write code, making the code for the software to maintain a high versatility and flexibility. 当用到动态链接库时,主程序调用动态链接库中封装的类以及函数,不用时则不调用,减少了系统内存的消耗。 When used in a dynamic link library, the dynamic link library in the main program calls the class and the function of the package, is not called when not, the system reduces the memory consumption.

在GPS模块动态链接库中,主要完成的是对GPS接收机端口数据的读取,而不涉及对端口的写操作。 GPS module in the dynamic link library, mainly to complete the reading of the GPS receiver data port, without involving a write to the port. GPS接收机有通过串口连接线与PDA连接的,也有通过CF卡插槽与PDA连接的。 By a GPS receiver with a serial cable connected to the PDA, but also through the CF card slot and connected to the PDA. 不同的GPS接收机和不同的PDA,在进行连接时映射不同的串口。 Different GPS receiver and various PDA, a different mapping is performed serial connection. 为了方便用户对GPS接收机进行串口的测试,本实施例软件提供了COM口测试界面。 To facilitate the GPS receiver serial testing, the present embodiment provides a software embodiment COM port interface test. 测试好所用的GPS接收机串口,才能正常接收到GPS定位信息,进行GPS定位的相关应用。 Good test used GPS receiver serial port to function properly received GPS positioning information related application GPS positioning. 现在大多数GPS接收机端口输出符合NMEA-0183导航协议格式的GPS数据,因此需要从这些输出数据中解析出GPS定位信息以及其它所需的数据。 Most GPS receivers are now in line with the output port GPS navigation data protocol NMEA-0183 format, it is necessary parsed GPS location information, and other necessary data from the output data.

目前,本实施例实现了GPS接收机与掌上电脑GIS的集成,即不需要在PDA上另外连接GPS,移动设备本身是一个PDA的同时,也是一个GPS接收机,掌上电脑GIS软件只需要操作PDA内部GPS接收机输出的数据就能获GPS定位信息。 Currently, the present embodiment implements a handheld GPS receiver and integrated GIS, i.e., while not required on PDA GPS additionally connected, the mobile device itself is a PDA, is a GPS receiver, handheld PDA GIS software only need to operate internal data outputted from the GPS receiver can obtain GPS location information. 特别是采用了GPS信标机对GPS定位数据进行差分,这样不但减少了移动设备的外围设备,而且不需要另外架设GPS基站,同时GPS的定位精度也得到了很大的提高,也提高了实际绿化调查与更新的作业效率。 In particular the use of GPS beacon differential GPS positioning data, it will not only reduce the peripheral devices of mobile devices, and does not need to erect the GPS base station, while the accuracy of GPS positioning has been greatly improved, but also improves the actual green survey and updated operating efficiency.

对于更高精度应用来说,本系统提供了对动态RTK GPS定位模式的支持。 For higher accuracy applications, the present system provides support for dynamic RTK GPS positioning mode. 图7为GPS RTK采集实体的GIS表达。 7 is acquired GPS RTK expression GIS entity. GPS采集数据是离散的定位点,需要根据实际采集情况构成地理实体,例如树、绿地等。 GPS is a collection of discrete data location point, according to the actual need to collect geographic entities constituting the situation, such as trees, green and the like. 在利用GPS RTK技术进行实测时,首先在已知控制点上架设GPS基站,在移动点上采用GPS移动站,掌上电脑通过串口与GPS移动站连接。 When actual measurement using GPS RTK technology, first set up in the known base station GPS control points, using the mobile station in the mobile GPS point, through the serial port connected to handheld mobile GPS stations. 在基站上配备无线电台,实时广播GPS相位差分信息。 Equipped with radio, GPS real-time broadcasting on the base phase difference information. 移动站配备无线电台接收模块,实时接收相位差分信息。 The mobile radio station with receiving module, the phase difference information received in real time. GPS移动站在实时差分处理GPS接收数据后,输出符合NMEA-0183导航协议格式的GPS数据。 After the GPS mobile station processing real-time differential GPS reception data, outputs a coincidence GPS navigation data protocol NMEA-0183 format. 掌上电脑接收来自GPS移动站的GPS数据,并遵循NMEA-0183协议其进行实时解析,解析后获得WGS84坐标系的大地坐标。 Handheld GPS data from a GPS receiver of the mobile station, and follow the NMEA-0183 protocol that performs real-time parsing parsed to obtain geodetic coordinate system WGS84 coordinates. 根据实际采用的目标坐标系,确定椭球参数,如椭球长半径等;确定投影参数,如投影中央子午线等;确定转换参数,如四参数等。 The actual object coordinate system used to determine the parameters of the ellipsoid, the major radius, such as ellipsoid and the like; determining the projection parameters, such as the central meridian like projection; determining conversion parameters, such as the four parameters. 利用这些参数将WGS84坐标转换成实际所采用的坐标系坐标。 With these parameters to convert WGS84 coordinates into actual coordinates of the coordinate system used.

掌上电脑GIS与GPS集成系统利用GIS操作时,根据采集的实体类型将GPS采集的离散点构成地理实体。 When the handheld GPS and GIS integrated system using the GIS operation, according to the acquired GPS entity type collection discrete dots geographic entity. 在采集点状实体(树)时,首先创建一个点状地理实体对象,然后利用转换后的GPS坐标构造点对象的图形数据,在GPS测量的同时也可以输入这个点地理实体的属性数据。 Entity in the collection point (tree), create a first geographic entity object point, and then using the GPS coordinates of the graphics data structure after conversion point object, attribute data can be entered at this point in the geographic entity GPS measurements simultaneously. 在采集面状实体(绿地)时,有两种方法:一种方法是先按点对象采集,等面状实体上所有的点都采集完所后,执行GIS操作将创建一个以这些点串为图形数据的面状地理实体,然后输入属性数据;另一种方法是在采集面状实体上的第一点时即创建一个面状地理实体,并以这一点为图形数据,在采集面状实体上的其它点时,面状地理实体实时将新采集的点加到其图形数据的坐标串里并更新图形,在采集的同时可以输入属性数据。 When the planar solid collected (green), there are two methods: one method is to press the point of the object acquired, all points on the planar entity like after completion of the acquisition, will create a GIS performs these series of points areal features of graphics data, and attribute data input; another method is the creation of a first areal features points on a planar collection entity, and to this graphic data in the acquisition planar solid when on the other points, the planar geographic entity newly acquired real-time coordinates of the point applied its train's graphics data and graphics update can be entered in the attribute data simultaneously acquired. 在GIS的图形界面里将实时显示所测的地理实体的图形及位置。 In GIS graphical interface in real-time graphical display of the measured position and geographical entity. 地理实体对象创建完成后GIS将其加入到所属的实体图层里,然后在GIS环境里就可以对其进行任何GIS操作,如图形浏览、图形和属性的编辑等。 After completion of GIS geographic entity object is created and added to the layer entity belongs to, and then you can make any GIS operation in the GIS environment, such as image viewer, graphics editing, and attributes.

掌上电脑与遥感(RS)数据的集成及处理为了进行多源数据的共享与融合以及进行基于遥感的相关应用,本实施例实现了遥感影像的加载,遥感影像与矢量图的叠加,以及基于栅格影像的GIS数据数字化等功能。 Pocket PC and remote sensing (RS) and data integration process to be shared with multiple source data integration and correlation-based remote sensing applications, the present embodiment implements a load sensing images superimposed remote sensing image and vector, and a gate based GIS data cell functions such as digital images. 为了保留最原始的图像信息,而不造成图像信息的损失,不对其原始图像信息进行更改,只建立其与实际图像信息的映射关系,在文件保存时,也只是附加保存其与实际图像的映射信息。 In order to preserve most of the original image information, without loss of image information, does not change its original image information, establish only that the mapping relationship and the actual image information when the file is saved, but also save additional maps and the actual image information.

为了使影像与矢量图一体化浏览,以及提高影像放缩过程的显示质量,在具体实现图像放缩过程中,运用最优邻近点法对图像进行重采样处理,大大提高了图像的显示效果。 In order to browse images and vector integration, and improve the display quality of the image scaling process, in particular to achieve image scaling process, using the best neighboring point method for image re-sampling process, greatly improving the display image. 最优邻近点法进行重采样的核心思想,就是在图像放大过程中,由于图像的放大而使一些像素没有了颜色值,这些没有颜色值的像素就用与它最近的那个像素的颜色值填充。 Optimal resampling method core idea adjacent points, the image is enlarged in the process, because some pixels of the enlarged image is not the color values, the color values ​​of these pixels are not filled on the value closest to the color of that pixel . 如图8为该算法的示意图。 8 for a schematic view of the algorithm. 为4个像素的图像,其放大2倍后就变成了16个像素,如图8右图所示。 4 image pixels, which is magnified by 2 times, it becomes 16 pixels, shown on the right in FIG. 8. 如不进行重采样,那么放大后的16个像素的图像就有12个像素没有了颜色值。 The resampling is not, then there are 12 image pixels after enlargement 16 pixels without color values. 如简单地将同一像素放后映射的4个像素赋予同一颜色值,那么在图像放到一定倍数时,显示效果非常差。 As simply put the same pixel mapping four pixels assigned the same color value, the image is placed at a certain multiple, showing very poor. 为了使图像在放大时,像素颜色之间能够平滑地过度,那些在放大后没有颜色值的像素就用离其最近一像素的颜色值,如有多个像素与其离的最近,就用这些像素里的任一像素的颜色值。 In order to enlarge the image at the time, between the pixel can smoothly over color, no color values ​​of those pixels after amplification on a color value closest to a pixel, if a plurality of pixels from the closest thereto, to use these pixels where any color value of a pixel. 这样在图像放大后,例如放大10倍后,对于图8来说,第1行第10列的像素的颜色值就不再用原来第1行第1列的像素的颜色值,而是采用离它最近的颜色值,也即放大后第1行第11列的颜色值,同时也是放大前第1行第2列的颜色值。 This image is magnified, for example, amplified 10 times, for FIG. 8, the color values ​​of the pixels of the first row 10 and then a pixel color value is not the original row 1, column 1, but using from closest color value, i.e., the color values ​​of a first row 11 of the enlarged, but also the color value of the second row of the first column before amplification.

运用这个算法,将有关遥感图像的操作封装成一个设备无关图类,图像的颜色设置与显示都在其绘图函数里。 Using this algorithm, the image sensing operation related to package into a device-independent graphs, and the display color of the image is provided in which in the drawing functions. 在显示图像过程中,判断图像是否在显示区域,如不在显示区域则不显示,这在一定程度上提高了显示速度。 In the process of the display image, it is determined whether the image display area, the display area is not displayed as not, which improves the display speed to a certain extent. 在对图像的操作方式上,与普通的空间对象操作方式一样,通过获得图像的对象指针,再利用图像对象类的方法完成图像的操作。 In the mode of operation of the image, and the ordinary operation mode as the spatial object, the image obtained by the object pointer, a method of recycling an image of the object class to complete the operation image. 为了与矢量图一体化浏览,在图像类的绘图函数里设置了与矢量图一样的图形变换。 To browse and vector integration, the image drawing functions in the class is set up with the same vector graphics transformation. 这样在图像放大缩小时,始终与矢量图叠加在一起。 So that when an image scaling, and always superposed vector.

Claims (8)

  1. 1.基于移动设备的卫星定位、遥感及地理信息集成方法,其特征在于,该方法采用移动设备内置的嵌入式Windows CE操作系统及其提供的内嵌式开发环境,包括基于移动设备的嵌入式地理信息系统(GIS)数据模型、卫星定位(GPS)与移动设备GIS的集成、移动设备与遥感(RS)数据的集成。 1. The mobile satellite positioning device, remote sensing and geographic information integration based, characterized in that the method uses a mobile device built embedded Windows CE operating system and development environment provided by the embedded, based on the mobile device comprises an embedded geographic information system (GIS) data model, positioning satellite (GPS) device and a mobile GIS integration, integration of mobile devices and remote sensing (RS) data.
  2. 2.根据权利要求1所述的基于移动设备的卫星定位、遥感及地理信息集成方法,其特征在于,所述的基于移动设备的嵌入式GIS数据模型基于面向对象的方法,采用空间实体封装一地物基类,然后在地物类的基础上主要派生出点状地物类、线状地物类和面状地物类,且其它复杂地物类亦在这些类的基础上派生,同时,将对具有同一性质与用途的地物的管理封装为图层类;整个GIS内核由实体对象和图层对象构成;该实体对象对地理实体进行了封装,封装的数据包括图形和属性数据,图形数据分为点、线、面图形,其中线图形又包括多线图形,面图形又包括多面图形,图形数据不仅包括图形的坐标串数据,还包括图形的外界矩形、颜色、线型、填充数据;实体对象下面又派生出点、线、面对象,分别用来管理图形数据的点、线、面图形;所述的图层对象中 2. The mobile satellite positioning device, remote sensing and geographic information integration based, wherein according to claim 1, embedded GIS data model of the mobile device based on object-oriented approach, a spatial entity package feature base class, then the class on the basis of the feature point feature mainly derived class, the class of linear features and feature-based planar, and also other complex feature type derived on the basis of these classes, and management feature of the package, and will use the same nature as layer class; whole GIS core layer consists of a solid target and the object; the entity object is encapsulated geographic entity, the data package comprising data and attribute data, pattern data is divided into point, line, pattern, and wherein the line pattern includes a plurality of line patterns, comprising a multi-faceted polygon graphics and graphics, the graphic data includes not only the coordinate data of a graphic string, further comprising outside the rectangular pattern, color, line type, fill transactions; entity objects sent birth following points, lines, faces the object, for each point management data pattern, line, surface pattern; the subject layer 装了该图层中所有地理实体的属性字段的字段定义,包括字段名称、类型;所述的图层对象包括复合图层。 Installed in the layer attribute field field definitions for all geographical entities, including the field name, type; the layer object comprises a composite layer.
  3. 3.根据权利要求1或2所述的基于移动设备的卫星定位、遥感及地理信息集成方法,其特征在于,所述的基于移动设备的嵌入式GIS数据模型在逻辑上,是以图层为单位对空间对象进行操作的;首先,获得图层对象集合的大小,然后从中遍历,获得每一图层对象指针;其次,在每一图层中,分别获得点对象集合、线对象集合和面对象集合大小,对点对象的操作,即从点对象集合中遍历,获得每一点对象,对线、面对象的操作,即从线对象集合、面对象集合中遍历,获得每一线对象、面对象指针,并从每一线对象、面对象中获得点结构实体集合大小,从中遍历,获得每一线对象、面对象端点的坐标,达到对每一个空间对象的操作;同时图层对象保存了图形元素的公共信息,包括颜色、线型,图形元素重建时只要取所在图层的这些属性值即可。 The mobile satellite positioning device based on claim 1 or claim 2, remote sensing and geographic information integration method, wherein the embedded GIS data model of the mobile device based on the logical layer is as unit spatial objects operate; first, a collection of objects the size layer, which is then traversed, each layer object pointer is obtained; Secondly, in each layer, the object set points respectively, and the surface line object set objects set size, the operation of the point object, i.e. traverse from point object set, to obtain each point object, line, the operation plane object, i.e. from a set of line object, surface object set traversal, obtained for each line object, area objects pointer, and the line obtained from each object point in the object plane structural entity set size, which traversed the object is obtained for each line, the endpoint coordinates of the object surface, reaches the operating space for each object; the same layer object holds the graphical element public information, including values ​​of these properties as long as the time is taken as the color layer, the linear graphical elements reconstruction.
  4. 4.根据权利要求1或2所述的基于移动设备的卫星定位、遥感及地理信息集成方法,其特征在于,所述的基于移动设备的嵌入式GIS数据模型在物理上,包括管理整个空间数据的主文件即GIS工程,该GIS工程包括整个GIS工程的配置、数据库连接信息、影像数据的文件路径,也包括GIS空间数据;在面向地理实体的整体GIS数据组织模型中,图形和属性数据都存放到一个二进制文件中,空间数据按图层依次存放,每个地理实体构成一个相对独立的数据段,在该数据段里,先存放图形数据再存放格式化的属性数据,只需要存放一个文件即能将整个空间数据存储起来;系统也支持对属性的扩展,与图形数据所关联的属性数据可以存储到Pocket Access数据库中,其图形与属性数据通过唯一标识ID号连接,遥感影像数据采用Bmp位图文件管理;对属性数据操作时,利用唯一标识 The mobile satellite positioning device based on claim 1 or claim 2, remote sensing and geographic information integration method, wherein embedded GIS data model based on the physical mobile device, including managing the entire data space the master file is GIS project, the GIS project comprises configuring the whole GIS project, database connection information, the file path of the image data, but also GIS spatial data; overall GIS data model for geographic entity, data and attribute data are stored in a binary file, the data is sequentially stored according to the space layers, each composed of a geographic entity independent of the data segment, the data segment, the first pattern data storing attribute data formatting and then stored, only need to store a file i.e., the entire space data can be stored; system also supports extended attribute data, graphic data and associated attributes may be stored in Pocket Access database, with its graphical attribute data via unique ID number, using remote sensing data Bmp bitmap file management; attribute data when operating with a unique identification ID的连接对数据库进行访问;在工程文件中,空间数据的存储也是按照概念与逻辑一致的存储结构,在空间数据存储部分,按图层个数,将空间数据分成不同的数据段,每一层的空间数据放在同一个数据段内;在同一层空间数据段内,先存储图层对象的数据,图层对象包含了同一图层空间对象的公共信息,再按照空间对象的类型(点、线、面等)分成不同类型空间对象的数据段,属于同一类型的空间对象存储到同一数据段内。 Connection ID to access the database; in the project file, data storage space is also consistent with the concept according to the logical storage structure of the space in the data storage section, the number of layers, the spatial data into different data segments, each spatial data layers in the same data segment; space within the same layer data segment, the data storage layer to the object, layer object contains information common to the same layer of the object space, then the space according to the type of object (point , lines, etc.) into different spatial object type data segment, the same type of spatial objects stored in the same data segment.
  5. 5.根据权利要求1所述的基于移动设备的卫星定位、遥感及地理信息集成方法,其特征在于,所述的GPS与移动设备GIS的集成包括:GPS接收机在进行与移动设备连接时,都将接口统一识别为串口COM,GPS接收机可以采用多种方式与移动设备连接,GPS接收机和不同的移动设备,在进行连接时映射不同的串口,移动设备GIS只需要操作移动设备GPS接收机内部输出的数据就能获GPS定位信息;本方法统一将对串口操作的API函数都封装到一个动态链接库中,并在动态链接库中将对串口的操作封装成一个串口类,所有对串口操作的API函数都封装到这个类中。 The satellite-based positioning of the mobile device as claimed in claim 1, remote sensing and geographic information integration method, wherein said GPS and GIS integrated mobile device comprising: when the mobile device is connected to a GPS receiver is performed, the uniform interface are identified as the COM port, GPS receiver can use a variety of connection with the mobile device, the mobile GPS receiver and various devices, performing map different serial connection, a mobile device only need to operate the mobile device GIS GPS receiver internal modem outputted GPS location information can be obtained; the API functions will present a unified method of serial operations are packaged into a dynamic link library, the dynamic link library and will be packaged into a serial operation of the serial type, all of serial API functions are packaged into operation this class.
  6. 6.根据权利要求5所述的基于移动设备的卫星定位、遥感及地理信息集成方法,其特征在于,所述的GPS与移动设备GIS的集成,对于更高精度应用来说,提供了对动态RTK GPS定位模式的支持,利用GPS RTK技术进行实测时,首先在已知控制点上架设GPS基站,在移动点上采用GPS移动站,即GPS接收器,移动设备通过串口与GPS移动站连接,在基站上配备无线电台,实时广播GPS相位差分信息,移动站配备无线电台接收模块,实时接收相位差分信息,GPS移动站在实时差分处理GPS接收数据后,输出符合NMEA-0183导航协议格式的GPS数据;移动设备接收来自GPS移动站的GPS数据,并遵循NMEA-0183协议其进行实时解析,解析后获得WGS84坐标系的大地坐标;根据实际采用的目标坐标系,确定椭球参数,包括椭球长半径;确定投影参数,包括投影中央子午线;确定转换参数,包括四参数; The satellite-based positioning of the mobile device as claimed in claim 5, remote sensing and geographic information integration method, wherein the mobile device is GPS and GIS integration, for higher accuracy applications, to provide a dynamic support RTK GPS positioning mode, when measured using a GPS RTK technique, first set up in the known base station GPS control points, the use of GPS in the mobile station moving point, i.e. the GPS receiver, the mobile GPS device is connected through the serial port of the mobile station, provided on the radio base station, the phase difference GPS real-time broadcast information, the mobile station with a radio receiver module, the phase difference information received in real time, real-time GPS receiver GPS mobile station data difference processing, outputs a coincidence navigation GPS NMEA-0183 protocol format transactions; mobile device receives GPS data from the GPS of the mobile station, and follow the NMEA-0183 protocol that performs real-time parsing obtain geodetic coordinate WGS84 coordinate system parses; the object coordinate system actually used, determines ellipsoid parameters, including ellipsoidal major radius; determining the projection parameters, including a projection central meridian; determining conversion parameters, includes four parameters; 利用这些参数将WGS84坐标转换成实际所采用的坐标系坐标。 With these parameters to convert WGS84 coordinates into actual coordinates of the coordinate system used.
  7. 7.根据权利要求1所述的基于移动设备的卫星定位、遥感及地理信息集成方法,其特征在于,所述的移动设备与遥感RS数据的集成:只建立原始的图像信息与实际图像信息的映射关系,在文件保存时,也只是附加保存原始的图像信息与实际图像的映射信息;在具体实现图像放缩过程中,运用最优邻近点算法对图像进行重采样处理,该最优邻近点算法的核心思想,就是在图像放大过程中,由于图像的放大而使一些像素没有了颜色值,这些没有颜色值的像素就用与它最近的那个像素的颜色值填充。 The satellite-based positioning of the mobile device as claimed in claim 1, remote sensing and geographic information integration method, wherein the mobile device integrated remote sensing data RS: only the original image information to establish the actual image information mapping relationship, when the file is saved, only the additional information stored mapping information of the original image and the actual image; image scaling in the specific implementation process, using the optimal proximal point algorithm for image resampling, near the optimum point the core idea of ​​the algorithm, the image is enlarged process, due to the number of pixels of the enlarged image is not the color values, color values ​​of these pixels are not just filled with the color values ​​of the pixels of it recently.
  8. 8.根据权利要求7所述的基于移动设备的卫星定位、遥感及地理信息集成方法,其特征在于,所述的最优邻近点算法将有关遥感图像的操作封装成一个设备无关图类,图像的颜色设置与显示都在其绘图函数里;在显示图像过程中,判断图像是否在显示区域,如不在显示区域则不显示,在对图像的操作方式上,通过获得图像的对象指针,再利用图像对象类的方法完成图像的操作,在图像类的绘图函数里设置了与矢量图一样的图形变换。 The satellite based positioning of the mobile device as claimed in claim 7, remote sensing and geographic information integration method, wherein said proximal point algorithm will be optimal packaging operations on remote sensing images into a device-independent graphs, images the display color setting function in the drawing in which; process in the display image, it is determined whether the image display area, the display area is not displayed as not, on the operation mode of the image, the image obtained by the object pointer, reuse the method of the image of the object class to complete the operation image, provided with graphics transformation vector as a function of drawing an image in the class.
CN 200610025407 2006-04-03 2006-04-03 Satellite positioning, remote sensing and geographical in for mation integrating method based on mobile device CN101051077A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200610025407 CN101051077A (en) 2006-04-03 2006-04-03 Satellite positioning, remote sensing and geographical in for mation integrating method based on mobile device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200610025407 CN101051077A (en) 2006-04-03 2006-04-03 Satellite positioning, remote sensing and geographical in for mation integrating method based on mobile device

Publications (1)

Publication Number Publication Date
CN101051077A true true CN101051077A (en) 2007-10-10

Family

ID=38782586

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200610025407 CN101051077A (en) 2006-04-03 2006-04-03 Satellite positioning, remote sensing and geographical in for mation integrating method based on mobile device

Country Status (1)

Country Link
CN (1) CN101051077A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101866354A (en) * 2010-06-01 2010-10-20 北京东方飞扬软件股份有限公司 Method and device for achieving geographic information synchronous retrieval by using file catalog
CN101436187B (en) 2007-11-14 2011-05-11 北京农业信息技术研究中心 Information acquisition method based on geographical entity district distribution feature data
WO2011072589A1 (en) * 2009-12-15 2011-06-23 惠州Tcl移动通信有限公司 Method and system for realizing navigation on personal computer by gps mobile phone
CN101452072B (en) 2008-12-26 2011-07-27 东南大学 Electronic information system for earth monitor and method thereof
CN102270277A (en) * 2011-07-08 2011-12-07 福州特力惠电子有限公司 Land and Resources gps system and method for mobile law enforcement surveillance
CN102667707A (en) * 2009-11-17 2012-09-12 Lg电子株式会社 Method for displaying information and display apparatus
CN102722349A (en) * 2012-05-23 2012-10-10 广东威创视讯科技股份有限公司 Image data processing method and system based on geographic information system (GIS)
CN102750142A (en) * 2012-05-14 2012-10-24 中国人民解放军92728部队 Method for applying military aviation electronic map in Windows CE system
CN103217153A (en) * 2013-04-27 2013-07-24 深圳供电规划设计院有限公司 Engineering drawing-based navigation method
CN103293974A (en) * 2013-05-20 2013-09-11 北京农业信息技术研究中心 GNSS (global navigation satellite system) based intelligent flat shovel control system and method and flat shovel device
CN103698791A (en) * 2013-09-26 2014-04-02 武汉中地数码科技有限公司 Terminal processing method for mobile GIS (Geographic Information System) assistant positioning system
CN104219300A (en) * 2014-08-28 2014-12-17 广州市中海达测绘仪器有限公司 Coordinate transformation parameter sharing method and system
CN105376236A (en) * 2015-11-24 2016-03-02 成都微讯云通科技有限公司 Information transfer method of mobile equipment
CN105976314A (en) * 2016-05-10 2016-09-28 福州市勘测院 Reference elliptical projection plane coordinate system converting method based on identical central project longitude

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101436187B (en) 2007-11-14 2011-05-11 北京农业信息技术研究中心 Information acquisition method based on geographical entity district distribution feature data
CN101452072B (en) 2008-12-26 2011-07-27 东南大学 Electronic information system for earth monitor and method thereof
CN102667707B (en) * 2009-11-17 2016-05-18 Lg电子株式会社 And a method for an information display means for displaying
CN102667707A (en) * 2009-11-17 2012-09-12 Lg电子株式会社 Method for displaying information and display apparatus
WO2011072589A1 (en) * 2009-12-15 2011-06-23 惠州Tcl移动通信有限公司 Method and system for realizing navigation on personal computer by gps mobile phone
CN101866354A (en) * 2010-06-01 2010-10-20 北京东方飞扬软件股份有限公司 Method and device for achieving geographic information synchronous retrieval by using file catalog
CN102270277A (en) * 2011-07-08 2011-12-07 福州特力惠电子有限公司 Land and Resources gps system and method for mobile law enforcement surveillance
CN102750142A (en) * 2012-05-14 2012-10-24 中国人民解放军92728部队 Method for applying military aviation electronic map in Windows CE system
CN102750142B (en) * 2012-05-14 2015-09-30 中国人民解放军92728部队 Military aviation electronic map application method in Windows CE system
CN102722349A (en) * 2012-05-23 2012-10-10 广东威创视讯科技股份有限公司 Image data processing method and system based on geographic information system (GIS)
CN102722349B (en) * 2012-05-23 2015-07-29 广东威创视讯科技股份有限公司 The image data processing method and system based on geographic information system
CN103217153A (en) * 2013-04-27 2013-07-24 深圳供电规划设计院有限公司 Engineering drawing-based navigation method
CN103293974A (en) * 2013-05-20 2013-09-11 北京农业信息技术研究中心 GNSS (global navigation satellite system) based intelligent flat shovel control system and method and flat shovel device
CN103293974B (en) * 2013-05-20 2016-01-20 北京农业信息技术研究中心 Control method based on the blade to the intelligent control system gnss
CN103698791A (en) * 2013-09-26 2014-04-02 武汉中地数码科技有限公司 Terminal processing method for mobile GIS (Geographic Information System) assistant positioning system
CN103698791B (en) * 2013-09-26 2016-02-10 武汉中地数码科技有限公司 A mobile terminal gis secondary positioning system processing method
CN104219300A (en) * 2014-08-28 2014-12-17 广州市中海达测绘仪器有限公司 Coordinate transformation parameter sharing method and system
CN104219300B (en) * 2014-08-28 2018-05-01 广州市中海达测绘仪器有限公司 Sharing method and system for coordinate conversion parameters
CN105376236A (en) * 2015-11-24 2016-03-02 成都微讯云通科技有限公司 Information transfer method of mobile equipment
CN105976314A (en) * 2016-05-10 2016-09-28 福州市勘测院 Reference elliptical projection plane coordinate system converting method based on identical central project longitude

Similar Documents

Publication Publication Date Title
Yu et al. Google Earth as a virtual globe tool for Earth science applications at the global scale: progress and perspectives
Zeiler Modeling our world: the ESRI guide to geodatabase design
US20090063424A1 (en) Geographic information system
US20030165254A1 (en) Adapting point geometry for storing address density
EP1426876A1 (en) Geographical information system
McKeown The role of artificial intelligence in the integration of remotely sensed data with geographic information systems
Simon et al. A mobile application framework for the geospatial web
CN101346000A (en) System for providing local mobile geographic information service based on GPS and mobile terminal
US6915310B2 (en) Three-dimensional volumetric geo-spatial querying
Jianya AN OBJECT ORIENTED SPATIO TEMPORAL DATA MODEL IN GIS [J]
Stoter et al. 3D GIS, where are we standing?
Shamsi GIS tools for water, wastewater, and stormwater systems
Kounadi Assessing the quality of OpenStreetMap data
CN101441669A (en) Field investigation system based on PDA, GPS, GIS and GPRS
CN101452072A (en) Electronic information system for earth monitor and method thereof
US20130328862A1 (en) Geospatial representation of data-less map areas
McKeown Jr MAPS: the organization of a spatial database system using imagery, terrain, and map data
CN103177577A (en) Dynamic traffic information service providing method based on map layer overlapping
CN102521273A (en) High-resolution remote-sensing multifunctional urban land spatial information generation method
Thurston et al. Integrated geospatial technologies: a guide to GPS, GIS, and data logging
CN101645078A (en) System and method for integration of change information collection and spatiotemporal data update]
Zhu et al. 3D Terrain visualization for Web GIS
CN1414518A (en) Standardization method of virtual reality data
US7536025B2 (en) Process, system, or method for the determination of the percentage of area of a parcel of land available for development or preservation and the production of a report and map therefor on a fixed tangible medium
CN1838164A (en) Full-digitized field information acquisition, recording and processing method for land survey

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
C02 Deemed withdrawal of patent application after publication (patent law 2001)