CN101042261B - Method and apparatus for converting solar energy into fuel chemical energy - Google Patents

Method and apparatus for converting solar energy into fuel chemical energy Download PDF

Info

Publication number
CN101042261B
CN101042261B CN2006100115369A CN200610011536A CN101042261B CN 101042261 B CN101042261 B CN 101042261B CN 2006100115369 A CN2006100115369 A CN 2006100115369A CN 200610011536 A CN200610011536 A CN 200610011536A CN 101042261 B CN101042261 B CN 101042261B
Authority
CN
China
Prior art keywords
solar
energy
reactor
reaction
heat
Prior art date
Application number
CN2006100115369A
Other languages
Chinese (zh)
Other versions
CN101042261A (en
Inventor
王志峰
郑丹星
金红光
隋军
Original Assignee
中国科学院工程热物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院工程热物理研究所 filed Critical 中国科学院工程热物理研究所
Priority to CN2006100115369A priority Critical patent/CN101042261B/en
Publication of CN101042261A publication Critical patent/CN101042261A/en
Application granted granted Critical
Publication of CN101042261B publication Critical patent/CN101042261B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10General improvement of production processes causing greenhouse gases [GHG] emissions
    • Y02P20/12Energy input
    • Y02P20/133Renewable energy sources
    • Y02P20/134Sunlight

Abstract

It relates to a method and device of changing solar energy to chemical energy. It accumulates the solar energy and changing it to heat energy ranging from 150deg.C-300deg.C, providing reaction heat for the liquid fuels, allowing the middle and low level solar energy changing and stored into high level chemical energy, with the liquid being carbinol or dimethyl ether synthetic fuel, with the catabolite being hydrogen and monoxide formed gas. It can be used for multi purposes, providing fine synthetic fuel and material for customers.

Description

将太阳能转换为燃料化学能的方法及装置 The conversion of solar energy to chemical energy in the fuel apparatus and method

技术领域 FIELD

[0001] 本发明涉及太阳能和化学能技术领域,是一种将太阳能转换为燃料化学能的新方 [0001] The present invention relates to a solar energy and chemical technical field, a new way to convert solar energy into chemical energy of the fuel

法及装置。 Method and apparatus.

背景技术 Background technique

[0002] 能源是人类发展生存的根本保证,随着经济的发展、人口增长,能源的消耗量与日剧增,化石能源的大量开采,使之将面临枯竭,与此同时,大量污染物的排放,严重地污染了环境,恶化了人类的生存状况,威胁到今后的可持续发展。 [0002] Energy is the fundamental guarantee for the survival of human development, along with economic development, population growth, energy consumption and the Japanese surge, a lot of exploitation of fossil fuels, so that the drying up at the same time, a large number of pollutants emissions, seriously polluted the environment, the deterioration of the human condition, threatening the future of sustainable development. 寻找新的、可再生的、清洁的能源引起了世界各国科技界的广泛关注。 Looking for new, renewable and clean energy attracted wide attention from the scientific community around the world. 太阳能以其独特的储量“无限性”、存在的普遍性、开发利用的清洁性,必将在未来的能源结构中占有重要之地。 Solar reserves for its unique "infinity", there is universality, the development of the use of clean, will occupy an important place in the future energy mix. 但是,太阳能的不连续、能流密度低等缺点制约了自身的发展。 However, solar energy is not continuous, energy density and low defects restrict their development. 因此,寻找新的能源利用方式,特别是化石能源与太阳能互补利用成为各国科技界的焦点,同时甲醇、二甲醚等液体清洁合成燃料逐渐得到广泛应用,成为未来替代常规能源的最有希望的主流能源。 Therefore, the search for new energy use patterns, in particular the use of fossil energy and solar hybrid become a national focus of the scientific community, while methanol, dimethyl ether and other liquid clean synthetic fuels becoming more prevalent, the future alternative to conventional energy sources the most promising mainstream energy. 甲醇作为化工的“万能中间体”,可以从煤、天然气、生物质等能源合成,是除合成氨以外惟一可以由煤气化和天然气重整大规模合成的简单化学品。 Methanol as a chemical "versatile intermediate", energy can be synthesized from coal, natural gas, biomass, etc., are the only large-scale synthesis by the reforming gas and ammonia gas addition to simple chemicals. 甲醇和二甲醚作为重要的清洁合成燃料,具有类似油品的燃烧特性和便于携带和运输的优点,在能源、动力方面将得到越来越广泛的应用,开展甲醇和二甲醚燃料高效利用研究势在必行。 Methanol and dimethyl ether as an important clean synthetic fuel, oil having similar combustion characteristics and advantages of easy to carry and transport, energy, power aspects will be more widely applied, methanol and dimethyl ether to carry out efficient use of the fuel Research is imperative. 通常意义上的燃烧就是利用锅炉或炉灶,发生甲醇与氧气的直接氧化放热反应-即直接燃烧,这是目前甲醇和二甲醚燃料的主要利用方式。 Combustion in the usual sense is the use of a boiler or stove, direct oxidation exothermic reaction of methanol and oxygen - i.e. direct combustion, the use of which is the main mode of methanol and DME.

[0003] 太阳能在利用时通常需要将其转换成其它形式的能源,目前最广泛应用的转换方式是光热转换。 [0003] In the solar energy utilizing generally need to be converted into other forms of energy conversion system is currently the most widely used is the photothermal conversion. 太阳能的收集一般采用各种聚光器,从平板式、真空管式等低温集热器到槽式、碟式、塔式等高温集热器,将太阳能提升到更高的品位加以利用。 Collecting solar energy concentrator various general, the flatbed, other low-temperature vacuum tube collector to the trough, dish, tower high temperature collectors, the solar energy to a higher grade utilized. 一般集热温度越高,相应的成本也越高,效率越低。 Generally, the higher the temperature of the collector, the corresponding higher cost, the lower the efficiency. 解决能量不连续的问题,可以采用蓄热的手段,不过如何减小蓄热装置体积始终是一个难题,还有不可避免的热损失,应用受到限制。 Solve the energy problem of discontinuity, thermal storage means can be used, but how to reduce the heat accumulator volume is always a problem, there is the inevitable heat losses, the application is limited. 因此太阳能与常规能源综合互补使用的途径也因此受到更大地关注。 Therefore, solar energy and conventional energy pathways complementary use of integrated and therefore subject to greater attention. 目前一般的做法是在太阳能与燃料(包括电力)在各自独立基础上的功能互补,即在太阳能达不到所需温度或无太阳能可用的时候(阴天、夜晚)由燃料供给,这类简单物理意义上的互补系统在太阳能供热、制冷,以及太阳能热发电系统中广泛使用。 The general practice is to function independently on the basis of complementary and solar fuels (including power), i.e. reach a desired temperature, or when no solar energy available (cloudy night) in the fuel supplied from solar energy, such simple complementary system widely used in the physical sense solar heating, cooling, and solar thermal power generation system. 这种互补系统仅是太阳能与化石燃料的简单叠加,或者仅局限于物理能的梯级利用,不能从根本上提高太阳能的利用效率。 This hybrid system just a simple superposition of the solar energy and fossil fuels, or is limited to the physical energy cascade utilization, can improve the utilization efficiency of the solar fundamentally. 目前太阳能热化学及其反应装置主要以高温集热方式为主,如用于天然气重整的系统,需要的集热温度一般在800°C 以上,大大增加了太阳能向化学能的转换成本。 Currently solar thermal chemical reaction and high temperature heat collecting apparatus mainly based manner, such as for natural gas reforming system required collector temperature above 800 ° C, significantly increasing the cost of the conversion of solar energy to chemical energy.

发明内容 SUMMARY

[0004] 本发明的目的在于提供一种将太阳能转换为燃料化学能的方法,该方法中,太阳能直接为吸热化学反应供热,无需热介质,系统流程简单,可以减少采用热介质带来的费用,同时可以避免热介质储存、传递产生的热损失。 [0004] The object of the present invention is to provide a method of converting solar energy into chemical energy of a fuel, in this method, the solar heating endothermic chemical reaction directly, without the heat medium, the system process is simple, it can reduce the thermal medium to bring costs and avoid the heat storage medium, heat transfer losses arising.

[0005] 本发明的又一目的在于提供一种用于实现上述方法的能量转换装置,该装置是首次研制的有别于高温集热热化学过程的一种抛物槽式太阳能吸收器与代用液体燃料分解催化反应设备的一体化集成装置,以此为核心连同进料、产物分离等辅助系统构成了太阳能热化学转换装置。 [0005] A further object of the present invention to provide a power conversion apparatus for implementing the above method, the device is a parabolic temperature different from the first set of hot developed chemical processes trough solar absorber liquid and Replacement It means the integration of the fuel decomposition catalytic reaction apparatus, as the core, together with the feed, the product separation system including an auxiliary solar thermochemical conversion means.

[0006] 本发明的再一目的在于提供一种能量转换装置,能够实现太阳能与常规能源的互补,利用太阳能将液体燃料转变为高热值清洁气体合成燃料,可以实现包括甲醇或二甲醚等燃料化学能的梯级利用和低品位太阳热能向高品位燃料化学能的品位提升和化学储存。 [0006] A further object of the present invention is to provide an energy conversion device can be realized with conventional solar energy is complementary to, the use of solar heat into the liquid fuel cleaning gas synthetic fuel value, may be implemented include fuels such as methanol or dimethylether chemical cascade utilization of energy and low-grade solar thermal and chemical storage to enhance the quality of high-grade chemical energy of fuel.

[0007] 为了实现上述目的,本发明的技术解决方案是提供一种将太阳能转换为燃料化学能的方法,使用太阳能集热/反应一体化系统,将太阳能直接收集、照射在吸收/反应器上, 将太阳能转换为150°C -300°C的热能,为反应器中液体燃料的分解反应供热,将中低温太阳能转换、储存为高品位的分解产物化学能,再通过燃烧分解产物释放高品位热能; [0007] To achieve the above object, the technical solution of the invention is to provide a method of converting solar energy into chemical energy of a fuel, the use of solar collectors / integrated reaction system, the solar energy collected directly irradiated absorption / on the reactor , to convert solar energy to 150 ° C -300 ° C, the decomposition reaction in the reactor in the heating of liquid fuel, the low-temperature solar energy conversion, storage of the decomposition products of high-grade energy, and then released by the combustion of the decomposition products of high grade heat;

[0008] 其中,液体燃料为甲醇或二甲醚合成液体燃料;分解产物为以氢和一氧化碳为主要成分的合成气。 [0008] wherein the liquid fuel is methanol or dimethyl ether synthesis liquid fuel; decomposition products of hydrogen and carbon monoxide synthesis gas is a main component.

[0009] 所述的方法,其所述液体燃料的分解反应产生的分解产物,先进入冷凝器中冷却降温,使未反应物冷凝,然后气液混合物进入分离器实现气液分离,氢和一氧化碳的合成气输出供使用或储存,未反应物返回混合器,再经原料泵送至冷却蒸发器中循环使用。 [0009] The method, decomposition products of the decomposition reaction of the liquid fuel produced, first into the condenser to cool down the unreacted was condensed, and then the gas-liquid mixture enters the separator to achieve gas-liquid separation, hydrogen and carbon monoxide the output of syngas for use or storage, does not return to the reaction mixer was then pumped to the cooling by the evaporator recycled material.

[0010] 一种所述的方法所使用的装置,包括原料罐、抛物槽式太阳能聚光装置、冷却蒸发器、冷凝冷却器、分离器、混合器、原料泵和管道,其中,抛物槽式太阳能聚光装置为线型聚光装置,冷却蒸发器和冷凝冷却器为间壁式换热设备,各部件按行业内的常规由管道密封连通;其还包括一吸收/反应器,吸收/反应器为长管状设备,与抛物槽式太阳能聚光装置的长度相匹配,放置在抛物槽式太阳能聚光装置的焦线处,具有对太阳光高吸收率,低发射率和低反射率的强化选择性吸收镀膜表面,外套减小对流和导热损失的高透过率玻璃套管;其长管状设备内填充反应所需的催化剂;吸收/反应器入口由管道密封连接冷却蒸发器,出口由管道密封连接冷凝冷却器。 Means method [0010] A said use, including the feed tank, parabolic trough solar concentration device, a cooling evaporator, condenser cooler, a separator, a mixer, pumps and piping material, wherein the parabolic trough means a linear concentrating solar concentrating means and cooled by the evaporator condensate cooler is a recuperative heat exchanger device, the components of a conventional duct within the industry sealed communication; further comprising an absorber / reactor, absorber / reactor an elongated tubular device, the length of parabolic trough solar concentration device match, placed at the focal line of the parabolic trough solar concentration device, select with enhanced high sunlight absorption, low emissivity and low reflectivity absorbent coating surface, reducing the convective and conductive heat loss coat high transmission glass tube; desired catalyst filling apparatus in its long tubular reactor; absorber / reactor inlet is connected by a duct seal cooled by the evaporator, the outlet is sealed by a duct condensate cooler connected.

[0011] 所述的装置,其所述冷却蒸发器,其外部热源为80〜120°C热源。 Said means [0011] that the cooling evaporator, which is an external heat source is 80~120 ° C. 冷却蒸发器利用更低温度热源预热原料,可以节能,但出于简化设备目的可以被太阳能集热器取代。 Cooling the evaporator with a lower temperature heat source preheating raw materials, energy savings, but for simplification purposes the device may be substituted by a solar collector.

[0012] 所述的装置,其所述热源,为抛物槽式太阳能聚光装置,真空管式或平板式太阳能集热器,外部锅炉,或本装置反应产物的余热。 Apparatus [0012] according to which the heat source is a parabolic trough solar concentration device, a vacuum tube or a flat plate solar collectors, external boiler or heat reaction product of the present apparatus.

[0013] 所述的装置,其所述本装置反应产物的余热,是吸收/反应器出口反应产物过热混合气的回热利用,将反应产物过热混合气通入冷却蒸发器的加热管道,作为原料预热的部分热源,不足部分由80〜120°C的外部热源补充,放热后降温的混合反应产物,再通入冷凝冷却器进一步冷凝处理。 Apparatus [0013] according to, the present apparatus which heat reaction product, the absorption / reaction reactor outlet product back to the thermal overheating of the gas mixture, the reaction product mixture superheated air cooled by the evaporator into the heat pipe, as preheating source material portion, the outer part by the lack of supplemental heat source 80~120 ° C, the exothermic reaction product mixture to cool, and then condensed into condensate cooler further processing.

[0014] 所述的装置,其所述催化剂,为固体金属氧化物催化剂。 Apparatus [0014] according to which the catalyst, a solid catalyst is a metal oxide.

[0015] 所述的装置,其所述长管状设备,是铜管;镀膜表面,是含铝金属陶瓷膜;玻璃套管,是高硼硅玻璃管。 Apparatus [0015] according to which the length of the tubular apparatus, brass; the coated surface, aluminum-containing metal is a ceramic membrane; glass sleeving, borosilicate glass tube.

[0016] 本发明能量转化方法具有以下三个特征: [0016] The energy conversion process of the present invention has the following three characteristics:

[0017] ①太阳能聚光装置的集热温度和反应温度一体化:太阳能聚光装置所能提供的温度水平和分解反应所需要的温度一致,实现了温度对口,品位协调,中低温太阳能的合理利用; [0017] The reaction temperature and the temperature of the collector concentrating solar energy device integrated ①: uniform temperature level solar concentration device and can provide a decomposition reaction required to achieve the temperature counterparts, taste coordination, reasonable low temperature solar use;

[0018] ②太阳能吸收器与反应器设备一体化:置于太阳能聚光装置的焦斑上的一体化设备既是太阳能吸收器,也是反应器,聚集的高能流密度的太阳光直接照射在吸收/反应器上,直接为吸热化学反应供热,无需热介质; [0018] ② solar absorber integrated with the reactor apparatus: integration equipment placed on both solar absorber focal solar concentration device, the reactor is directly irradiated with a high energy density of sunlight stream in the absorption aggregate / on the reactor, heat to endothermic chemical reaction directly, without the heat medium;

[0019] ③反应吸收器结构特征一体化:吸收/反应器的管径宽度和聚光装置的焦线宽度协调匹配,不仅有利于减少散热损失,提高集热效率,而且有利于分解反应的进行,实现传热和反应的耦合。 [0019] ③ Reaction absorber integrated structural features: absorption / focal line width of the reactor diameter and the width of the condensing means to coordinate match, not only helps to reduce heat loss and improve the collection efficiency, but also to the decomposition reaction, coupled heat transfer and to achieve reaction.

[0020] 本发明装置具有以下三个方面优点: [0020] The apparatus of the present invention has the following three advantages:

[0021] 1)装置设计运用了一体化方法,实现了太阳能集热温度与甲醇、二甲醚等液体燃料催化分解温度协调匹配,降低了太阳能集热器成本,也减小了整个系统热利用过程的可用能损失,优于采用高温太阳能集热器的热化学方法;吸收器与反应器一体化;系统中的太阳能吸收器和反应器一体化,实现了设备减少,无需热介质可避免由此带来的传热、输送热量损失;通过吸收/反应器结构特征一体化不仅有利于减少散热损失,提高集热效率,而且有利于分解反应的进行,实现传热和反应的耦合,获得良好的太阳能转换效果。 [0021] 1) the use of a device designed integrated process, to achieve solar collector temperature and the methanol, dimethyl ether and catalytic decomposition temperature of the liquid fuel such coordination match, reducing the cost of solar collectors, but also reduces the overall heat utilization system exergy loss processes, superior chemical methods using high temperature thermal solar collector; absorber integrated with the reactor; solar absorber system and reactor integration, to achieve a reduction device, without the heating medium can be avoided by the this brings heat, deliver heat loss; absorbent structure characterized by an integrated reactor / heat not only help reduce losses and improve the collection efficiency, but also to the decomposition reaction, and heat to achieve the coupling reaction, to obtain a good solar energy conversion effect.

[0022] 2)能量转换及利用方面:分解后甲醇、二甲醚的燃料化学能转换为吐和⑶的燃料化学能,同时太阳热能也转换为H2和CO的化学能。 [0022] 2) energy conversion and utilization: decomposition of methanol, DME fuel chemical energy into chemical fuel ⑶ spit and energy, but also solar thermal energy is converted to chemical energy of CO and H2. 本发明系统在热力学第一定律层面的效果是增加了甲醇、二甲醚燃料的热值,增加的部分等于分解反应吸收的太阳热能;在热力学第二定律层面上的效果体现在太阳热能品位的提升,通过甲醇、二甲醚等燃料分解反应,使得低品位的太阳热能提升为高品位的H2和CO的化学能,增加了太阳热能的做功能力。 The system of the present invention results in the first law of thermodynamics is to increase the level of methanol, DME fuel heating value, increasing portion is equal to the decomposition reaction of the absorbed solar heat; effect on the level of the second law of thermodynamics embodied in solar thermal grade lift, the decomposition reaction of methanol and dimethyl ether fuels, such as low-grade solar thermal lifting high-grade chemical energy of CO and H2, increased power capability of solar thermal energy. 总的效果是减少传统燃烧过程中燃料化学能向热能转换过程的损失,提高了能源利用效率。 The overall effect is to reduce the energy loss during conventional combustion of fuel to heat the chemical conversion process, to improve the energy efficiency.

[0023] 3)对下列用户具有更大优势:需要气体燃料而没有燃气接入条件的用户(如城市周边,天然气管网覆盖不到的地区,山区、岛屿等地形条件不利于送气的地区);太阳辐照资源良好(我国的大部分地区,尤其是西部地区);甲醇、二甲醚燃料消费具备一定规模(分布式能源站、甲醇、二甲醚供热或动力、发电系统),以甲醇、二甲醚为原料制备合成气的用户。 [0023] 3) have a greater advantage for the following user: The user does not need gas fuel gas access conditions (such as peri-urban natural gas pipeline network coverage area is less than the terrain, mountainous, island and so is not conducive to the aspirated) ; solar irradiance good resources (most of our areas, especially in the western region); methanol, dimethyl ether fuel consumption of a certain size (distributed energy stations, methanol, dimethyl ether, heating or power generation system) to methanol, dimethyl ether as a raw material for preparing synthesis gas users.

[0024] 本发明可用于多种用途,如供热、制冷、燃料-太阳能联合发电、太阳能与燃料互补的冷热电联供以及燃气生产等,利用太阳能为用户提供优质的合成气燃料或原料。 [0024] The present invention can be used for various applications, such as heating, cooling, fuel - Combined solar power, solar energy and the fuel is complementary to CCHP and gas production, the use of solar energy to provide users with high-quality syngas fuel or feedstock .

附图说明 BRIEF DESCRIPTION

[0025] 图1为本发明方法或装置的工作原理图; [0025] FIG 1 operating principle of a method or apparatus of the present invention;

[0026] 图2为本发明能量品位转换示意图; [0026] Fig 2 a schematic view of the present invention, the energy conversion grade;

[0027] 图3为本发明装置结构及流程示意图。 [0027] Fig 3 a schematic view of the device structure and process of the present invention.

具体实施方式 Detailed ways

[0028] 本发明提供的一种将太阳能转换为燃料化学能的方法,如图1所示,其中,经集热器聚集的高能流密度的太阳光照射在吸收/反应器上,直接为燃料的分解反应提供热量, 得到分解产物合成气;从而太阳热能被转换、储存在分解产物的化学能中,低温太阳能的品位得以提升,转化为高品位的合成气化学能,进一步作燃料使用。 [0028] A present invention provides a method of converting solar energy into chemical energy of a fuel, shown in Figure 1, wherein, the current density of high-energy sunlight collector accumulated in absorption / reactor fuel directly provide heat decomposition reaction to give the synthesis gas decomposition product; thus the solar heat is converted, stored chemical energy in a decomposition product, the low temperature can be improved solar grade, into high-grade chemical synthesis gas can be further used as fuel.

[0029] 上述过程中,能量品位转换如图2所示:图中,横坐标为过程焓变,纵坐标为能量品位A,其定义为过程可用能变化与焓变之比。 [0029] The above-described process, the energy conversion grade 2: diagram, the abscissa is the enthalpy change process, the ordinate is the energy grade A, which can be defined as the process can change the ratio of the enthalpy change. 因此可知图中abcda围成的面积为甲醇直接燃烧一损失,图中efgde围成的面积为分解产物燃烧_损失,图中cgnmc围成的面积代表新机理中太阳热能品位提升产生的收益。 Thus abcda seen in FIG area surrounded a loss of direct combustion of methanol, FIG efgde enclosed area _ decomposition products of combustion loss, FIG cgnmc area surrounded Representative new mechanism of solar heat gains improve quality of produced. 燃料分解过程在图中可理解为热值为|ab|,品位约A1 = 1.02 ;甲醇吸收热量(太阳热能)为I mn I,品位约A2 = 0.44;分解产物燃料热值为ef|,品位约A3 = 0.95。 The fuel decomposition process as understood in FIG calorific value | ab |, grade of about A1 = 1.02; methanol absorb heat (solar heat) of I mn I, grade of about A2 = 0.44; heat value of the fuel decomposition products ef |, taste about A3 = 0.95.

[0030] 所述的燃料为甲醇或二甲醚液体; [0030] The fuel fluid is methanol or dimethyl ether;

[0031] 所述的分解产物为以H2和CO为主要成分的合成气。 Decomposition products according to [0031] of H2 and CO in the synthesis gas as a main component.

[0032] 本发明提供了一种用于实现上述方法的能量转换装置,该装置的工作原理图请参阅图1。 [0032] The present invention provides an energy conversion apparatus for implementing the above method, the working principle of the apparatus of FIG. 1, see FIG. 本发明装置是利用150°c〜300°C的中低温太阳能对原料甲醇或二甲醚吸热分解反应提供热能,生产主要成分为氢(H2)和一氧化碳(CO)的合成气,将中低温太阳能转变为合成气的化学能,提高了燃料的热值,提升了太阳能的品位,增大了太阳能的做功能力。 Apparatus of the present invention is the use of 150 ° c~300 ° C in a low temperature decomposition of the feedstock solar methanol or dimethylether to provide the endothermic reaction heat, producing mainly composed of hydrogen (H2) and carbon monoxide synthesis gas (CO) in the low temperature solar energy into chemical energy of the synthesis gas, the heat value of the fuel is increased to enhance the solar grade, increasing the power capability of solar energy.

[0033] 如图3所示,本发明装置主要包括: [0033] FIG. 3, the present invention is shown in FIG main apparatus comprising:

[0034] 抛物槽式太阳能聚光装置5 :选择采用线聚焦方式,聚光比在60〜150左右,集热温度可以达到200°C〜400°C的抛物槽式太阳能聚光装置5,为反应温度范围在150°C〜 300°C之间的液体燃料分解反应供热,以实现太阳能聚光装置的集热温度和反应温度一体化; [0034] The parabolic trough solar concentration device 5: opt line-focus mode, the concentration ratio is about 60~150, temperature can reach the collector parabolic trough solar concentration device 5 200 ° C~400 ° C, in order to the reaction temperature in the liquid fuel range between 150 ° C~ 300 ° C decomposition reaction heat, to effect the reaction temperature and the temperature of the solar collector concentration device integration;

[0035] 吸收/反应器6 :是放置在抛物槽式太阳能聚光装置5的焦线处的管式设备,既是太阳能吸收器,又是热化学反应器。 [0035] The absorber / reactor 6: is placed in a parabolic trough solar concentration device focal line of the tubular device 5, both the solar absorber, and a thermochemical reactor. 作为吸收器,它具有对太阳光高吸收率,低发射率和低反射率的强化选择性吸收镀膜表面,还具有为减小对流和导热损失而设置的高透过率的玻璃套管;作为反应器,管内填充反应所需的催化剂;吸收/反应器6连接冷却蒸发器4和冷凝冷却器7。 As the absorber, a glass sleeve having a selectivity for strengthening high solar absorptance, low emissivity and a low reflectance coating absorbing surface, also has a high transmittance to reduce convective and conductive heat loss are provided; as reactor, the reaction tube filled with the catalyst required; absorber / reactor is cooled by the evaporator 6 is connected to the condensate cooler 4 and 7.

[0036] 冷却蒸发器4,为间壁式换热设备,分别连接吸收/反应器6和原料泵3,接收来自混合器2中的原料,该原料在此被预热、蒸发、过热为气态反应物;冷却蒸发器4的热源可以是任意高于80°C的热源,比如上述各类聚光型太阳能装置或真空管式太阳能集热器,以及其它外部热源; [0036] cooled by the evaporator 4, the device is a recuperative heat exchanger, are connected to absorber / reactor 6 and the feed pump 3, the raw material received from a mixer 2, the feedstock is preheated Here, evaporation, superheated gaseous reaction thereof; cooled by the evaporator 4 can be of any heat source than the heat source to 80 ° C, such as the above-described various types of solar concentrator means or vacuum tube solar collectors, and other external heat source;

[0037] 冷凝冷却器7,为间壁式换热设备,连接吸收/反应器6和分离器8,冷凝来自吸收/反应器6的分解产物。 [0037] Condensing Refrigerator 7, for the recuperative heat transfer equipment, connecting absorber / reactor 6 and the separator 8, the condensate from the absorber / reactor 6 decomposition products.

[0038] 分离器8,为气液分离装置,将冷凝冷却器7中冷却下来的混合物,进行气液分离, 分别连接冷凝冷却器7和混合器2,气相的反应产物作为产品,液相组分回到混合器2。 [0038] The separator 8, is a gas-liquid separator, condensed in a cooler 7 to cool down the mixture, vapor-liquid separation, are connected to the condensing cooler 7 and the mixer 2, the reaction product gas as a product, the liquid components Back mixer for 2 minutes.

[0039] 混合器2,接受并混合来自原料罐1中的新鲜原料和分离器8分离出来的未反应物,由与之相连的原料泵3为吸收/反应器6提供原料。 [0039] 2 mixer, and mixed for receiving fresh feedstock and separated from the separator feed tank 8 of the unreacted materials, the raw materials thereto is connected to the pump 3 absorber / reactor 6 provides the raw material.

[0040] 本发明装置的流程是:原料罐1中的原料经混合器2、原料泵3送至冷却蒸发器4 中预热、蒸发、过热后,形成的原料气进入吸收/反应器6,在吸收/反应器6内吸收150°C〜 300°C太阳热能,同时在催化剂作用下进行吸热分解反应,反应产出氢(H2)和一氧化碳(CO) 的合成气后,先进入冷却蒸发器4中冷却降温,使未反应物冷凝,然后气液混合物进入分离器8实现气液分离,氢(H2)和一氧化碳(CO)的合成气输出供使用或储存,未反应物返回混合器2,再经原料泵3送至冷却蒸发器4中循环使用。 [0040] The process of the present invention, the device is: in a raw material tank 2, the pump 3 to the material cooled by the evaporator 4 via a mixer preheated, evaporated and superheated after the raw material gas is formed into the absorption / reactor 6, absorption 150 ° C~ 300 ° C in a solar heat absorber / reactor 6, while an endothermic decomposition reaction in the catalyst, the reaction yield synthesis gas hydrogen (H2) and carbon monoxide (CO), the first evaporator into the cooling 4 to cool the cooling, condensing unreacted, then the gas-liquid mixture enters the separator 8 to achieve gas-liquid separation, hydrogen (H2) and carbon monoxide synthesis gas output (CO) of for use or storage, the mixer 2 is returned unreacted and then recycling the feed pump 4 via the evaporator 3 to the cooling.

[0041] 本发明装置中,聚光装置5是各种抛物槽式太阳能线型聚光装置。 [0041] The apparatus of the present invention, the converging means 5 is various linear parabolic trough solar concentration device.

[0042] 本发明装置中,冷凝冷却器7连接有循环冷却水。 [0042] The apparatus of the present invention, the condensate cooler 7 is connected to the circulating cooling water.

[0043] 本发明装置中,原料罐1下游连接一化学计量泵,原料罐1经化学计量泵与混合器2连通(图中没示出)。 [0043] The apparatus of the present invention, the raw material tank 1 is connected to a downstream chemical metering pump, a raw material tank 1 via a metering pump in communication with the chemical mixer 2 (not shown in FIG.). [0044] 本发明装置也包括实现吸收/反应器6出口反应产物过热混合气的回热利用,即将产物过热混合气通入冷却蒸发器4作为原料预热的部分热源,不足部分由任意高于80°C 的外部热源补充,放热后降温的混合产物,再通入冷凝冷却器7进一步冷凝。 [0044] The present invention also includes a device implemented absorber / reactor 6 by using the product outlet of the regenerator superheated reaction mixture, the product coming into the hot gas mixture through a cooling heat source of the evaporator 4 preheated material, than from any shortfall supplemental heat source external to 80 ° C, the cooling after the exothermic mixing the product, pass into condensate cooler 7 further condensed.

[0045] 请结合图3,太阳能分解代用液体燃料装置,由太阳能聚光装置5、一体化吸收/反应器6及其它辅助设备组成。 [0045] Please conjunction with FIG. 3, the liquid fuel alternative solar decomposition means by the solar concentration device 5, integrated absorber / reactor 6 and other auxiliary equipment.

[0046] 原料罐1中的液体甲醇或二甲醚原料经过管道9输进混合器2中,再经过管道10, 由原料泵3按500〜10000ml/h的流量,经管道11送入冷却蒸发器4,经过预热、蒸发、过热后,过热原料气经管道12进入吸收/反应器6 ;在常压、150〜300°C反应温度及催化剂作用下,利用来自太阳能聚光装置5收集的太阳能量,在吸收/反应器6中发生分解反应,生成含有H2、C0和未反应原料及少量副产品的混合产物,该混合产物经管道13先进入冷却蒸发器4预热原料,补充热源由管道18进,管道19出,同时混合产物自身温度下降,部分冷凝, 随后由管道14进入冷凝冷却器7,冷却至25°C以下经管道15进入分离器8,其中的主要成分H2和CO是性能良好的气体合成燃料,由管道17排出,送往下游直接利用或储存。 In [0046] the raw material tank 1 liquid methanol or dimethyl ether raw materials through the mixer input duct 9 2, and then through the conduit 10, the flow rate 500~10000ml press 3 / h, the feedstock via line 11 from the pump into the cooling evaporator 4, preheated, evaporated and superheated after superheated feed gas through line 12 into the absorber / reactor 6; reaction temperature and catalyst at atmospheric pressure, 150~300 ° C, the use of the device 5 from the solar concentrator collected solar energy, / reactor 6 in the absorption decomposition reaction, generating containing H2, C0 product mixture and small amounts of unreacted raw materials and by-products, the mixed product via a conduit 13 to the evaporator 4 into the cooling preheat the feed, supplemented by a heat pipe inlet 18, conduit 19, the temperature drop while mixing product itself, partially condensed, and then into the conduit 14 is condensed by the cooler 7, cooled to below 25 ° C via line 15 into the separator 8, wherein the main components are CO and H2 performance good gas synthetic fuel, discharged from the duct 17, sent to downstream storage or direct use. 未反应的原料和少量液体副产物从分离器8出来,通过管道16返回混合器2中,与来自原料罐1经管道9进入2的新鲜原料混合后继续使用。 Unreacted starting material and small amounts of byproducts from the liquid out of the separator 8, 16 return to the mixer through line 2, and via line 1 from the raw material tank 2 into the mixing continued use of fresh feed 9. 冷凝冷却器7的冷却介质由管道20入,自管道21出,对反应产物进行冷却,冷却介质可以循环利用。 Condensing Refrigerator 7 into the coolant duct 20, from the line 21, the reaction product is cooled, the cooling medium can be recycled.

[0047] 本发明装置中的各种设备均为公知技术,如: [0047] The apparatus of the present invention, various devices are well-known techniques, such as:

[0048] 本发明采用的太阳能聚光装置5可以是各种抛物槽式聚光装置。 [0048] The solar concentrator device 5 of the present invention may be employed in a variety of parabolic trough concentrating apparatus.

[0049] 本发明的冷却蒸发器4或冷凝冷却器7可以是各种间壁式换热器。 [0049] cooled by the evaporator 4 of the invention, or condensation cooler 7 may be various recuperative heat exchangers.

[0050] 本发明采用的催化剂可以是公知的用于甲醇或二甲醚分解反应的催化剂,如固体金属氧化物催化剂等。 [0050] The catalyst may be employed in the present invention are well-known for the decomposition reaction of methanol or dimethyl ether catalyst, such as a solid metal oxide catalyst and the like.

[0051] 由于本发明讨论的重点是通过太阳能热化学过程将太阳能转变为燃料产品的化学能,所以对上述属于公知技术的具体设备不作详细描述。 [0051] Since the present invention is focused on the chemical process by solar thermal solar energy into chemical energy of fuel products, so the above specific devices belonging to the known technique not described in detail.

[0052] 以下的实施例可以说明本发明的效果: [0052] The following examples illustrate the effect of the present invention may be:

[0053] 用一个聚光比为70,最大输出热功率为4kW的抛物槽式太阳能聚光装置5,采用外径35毫米的长铜管作为吸收/反应器6,铜管外表面镀有吸收率为0. 9,发射率为0. 085的含铝金属陶瓷膜,外套直径为56毫米的高硼硅玻璃管;原料为常温常压下99. 9%浓度的液体工业甲醇,催化剂为Cu/Zn0/Al203系列固体金属氧化物催化剂。 [0053] with a concentration ratio of 70, the maximum output power of 4kW thermal parabolic trough solar concentration device 5, an outer diameter of 35 mm using the absorption reactor as copper tube 6, the outer surface of the plated brass / absorption was 0.9, the emission rate of the ceramic aluminum-containing metal film is 0.085, the outer diameter of 56 mm borosilicate glass tube; feed concentration of 99.9% at normal temperature and pressure of liquid industrial methanol catalyst is Cu / Zn0 / Al203 series of solid metal oxide catalyst.

[0054] 从分离器8下端分离出来的液相产品,主要是未反应的原料和少量液体副产物, 分离器8上端分离出来的气相产品是90%以上的H2和⑶,加上少量可燃的原料及二氧化碳(CO2)组成的合成气。 [0054] separated from the separator 8, the lower end of the liquid product, by-products and a small amount of the liquid material mainly unreacted, separated from the upper end of the vapor separator 8 of the product is more than 90% H2 and ⑶, plus a small amount of combustible feedstock and carbon dioxide (CO2) in the synthesis gas composition.

[0055] 本实施例的管道流程参数,如表1所示。 [0055] The present embodiment of the pipe flow parameter embodiment, as shown in Table 1.

[0056] 在本实施例中,当太阳辐照700W/m2,液体甲醇进料量5升/小时条件下,甲醇转化率达到80%,太阳热能利用效率达到77%。 [0056] In the present embodiment, when the solar irradiance 700W / m2, liquid methanol feed rate 5 liters / hour condition, the methanol conversion rate of 80%, the utilization efficiency of solar energy of 77%.

[0057] 本实施例从能量品位的角度,优点更加明显。 [0057] Examples of the present embodiment from the perspective of quality of energy, more obvious advantages. 能量品位的概念,对于热能其值等于卡诺循环效率。 Grade energy concept for its energy value is equal to the Carnot cycle efficiency. 在上述反应条件下,260°C太阳热能经过甲醇分解反应转换为分解产物混合气体的化学能,能量品位由0. 443被提升到0. 923,大大增加了其做功能力,同时可以使能量利用系统在燃料燃烧环节相对直接燃烧过程中,损失减少30. 8%。 Under the above reaction conditions, 260 ° C after methanol decomposition reaction of the solar thermal conversion of mixed gas decomposition products of chemical energy, the energy grade is lifted by a 0.443 to 0.923, greatly increasing its power capability, while the energy the system is relatively straightforward use of combustion of fuel in the combustion process, reducing the loss of 30.8%.

[0058] 表1本发明实施例管道流程参数 Example pipe flow parameter Embodiment [0058] Table 1 Invention

Claims (8)

  1. 一种将太阳能转换为燃料化学能的方法,使用太阳能集热/反应一体化系统,其特征在于:太阳能集热/反应一体化系统将太阳能直接收集、照射在吸收/反应器上,将太阳能转换为150℃-300℃的热能,为反应器中液体燃料的分解反应供热,将中低温太阳能转换、储存为高品位的分解产物化学能,再通过燃烧分解产物释放高品位热能;其中,液体燃料为甲醇或二甲醚合成液体燃料;分解产物为以氢和一氧化碳为主要成分的合成气。 A method of solar energy conversion of chemical energy of a fuel, the use of solar collectors / integrated reaction system, wherein: the solar collector / reaction system integrated solar collector directly irradiated on the absorber / reactor, the solar energy conversion thermal energy of 150 ℃ -300 ℃, the decomposition reaction in the reactor in the heating of liquid fuel, the low-temperature solar energy conversion, storage of high-grade energy decomposition products, high-grade heat is released again by combustion decomposition products; wherein, the liquid the fuel is methanol or dimethyl ether synthesis liquid fuel; decomposition products of hydrogen and carbon monoxide synthesis gas as a main component.
  2. 2.如权利要求1所述的方法,其特征在于:所述液体燃料的分解反应产生的分解产物, 先进入冷凝器中冷却降温,使未反应物冷凝,然后气液混合物进入分离器实现气液分离,氢和一氧化碳的合成气输出供使用或储存,未反应物返回混合器,再经原料泵送至冷却蒸发器中循环使用。 2. The method according to claim 1, wherein: the decomposition reaction of the decomposition products produced by liquid fuel, before entering the condenser to cool down the unreacted was condensed, and then enters the liquid-gas mixture to achieve gas separator liquid separation, hydrogen and carbon monoxide synthesis gas output for use or storage, does not return to the reaction mixer was then pumped to the cooling by the evaporator recycled material.
  3. 3. —种如权利要求1所述的方法所使用的装置,包括原料罐、抛物槽式太阳能聚光装置、冷却蒸发器、冷凝冷却器、分离器、混合器、原料泵和管道,其中,抛物槽式太阳能聚光装置为线型聚光装置,冷却蒸发器和冷凝冷却器为间壁式换热设备,各部件管道密封连通;其特征在于:还包括一吸收/反应器,吸收/反应器为长管状设备,与抛物槽式太阳能聚光装置的长度相匹配,放置在抛物槽式太阳能聚光装置的焦线处,具有镀膜表面,外套玻璃套管;其长管状设备内填充反应所需的催化剂;吸收/反应器入口由管道密封连接冷却蒸发器,出口由管道密封连接冷凝冷却器。 3. - The method of species apparatus as claimed in claim 1 to be used, comprising a feed tank, parabolic trough solar concentration device, a cooling evaporator, condenser cooler, a separator, a mixer, pumps and piping material, wherein parabolic trough solar concentration device is a linear focusing means, an evaporator and a cooling cooler to condense recuperative heat transfer equipment, each communicating duct seal member; characterized by: further comprising an absorber / reactor, absorber / reactor an elongated tubular device, the length of parabolic trough solar concentration device match, placed at the focal line of the parabolic trough solar concentration device having a coating surface, the outer glass tube; the long tubular devices within the desired reactor fill catalyst; absorber / reactor inlet is connected by a duct seal cooled by the evaporator, the outlet is connected by a duct seal condensate cooler.
  4. 4.如权利要求3所述的装置,其特征在于:所述冷却蒸发器,其外部热源为80〜120°C 热源。 The apparatus as claimed in claim 3, wherein: the cooling evaporator, which is an external heat source heat 80~120 ° C.
  5. 5.如权利要求4所述的装置,其特征在于:所述热源,为抛物槽式太阳能聚光装置,真空管式或平板式太阳能集热器,外部锅炉,或本装置反应产物的余热。 5. The apparatus according to claim 4, wherein: said heat source is a parabolic trough solar concentration device, a vacuum tube or a flat plate solar collectors, external boiler, waste heat, or the reaction product of the present apparatus.
  6. 6.如权利要求5所述的装置,其特征在于:所述本装置反应产物的余热,是吸收/反应器出口反应产物过热混合气的回热利用,将反应产物过热混合气通入冷却蒸发器的加热管道,作为原料预热的部分热源,不足部分由80〜120°C的外部热源补充,放热后降温的混合反应产物,再通入冷凝冷却器进一步冷凝处理。 6. The apparatus according to claim 5, wherein: said heat recovery apparatus of the present reaction product, the absorption / reaction reactor outlet product back to the thermal overheating of the gas mixture, the reaction product was cooled superheated gas mixture into the evaporator the heating pipe is, as a raw material source preheated portion, the external heat source part by the lack of 80~120 ° C added, the exothermic reaction product mixture to cool, and then condensed into condensate cooler further processing.
  7. 7.如权利要求3所述的装置,其特征在于:所述催化剂,为固体金属氧化物催化剂。 7. The apparatus according to claim 3, wherein: said catalyst is a solid metal oxide catalyst.
  8. 8.如权利要求3所述的装置,其特征在于:所述长管状设备,是铜管;镀膜表面,是含铝金属陶瓷膜;玻璃套管,是高硼硅玻璃管。 8. The apparatus according to claim 3, wherein: the length of the tubular apparatus, brass; the coated surface, aluminum-containing metal is a ceramic membrane; glass sleeving, borosilicate glass tube.
CN2006100115369A 2006-03-22 2006-03-22 Method and apparatus for converting solar energy into fuel chemical energy CN101042261B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2006100115369A CN101042261B (en) 2006-03-22 2006-03-22 Method and apparatus for converting solar energy into fuel chemical energy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2006100115369A CN101042261B (en) 2006-03-22 2006-03-22 Method and apparatus for converting solar energy into fuel chemical energy

Publications (2)

Publication Number Publication Date
CN101042261A CN101042261A (en) 2007-09-26
CN101042261B true CN101042261B (en) 2010-10-06

Family

ID=38807947

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2006100115369A CN101042261B (en) 2006-03-22 2006-03-22 Method and apparatus for converting solar energy into fuel chemical energy

Country Status (1)

Country Link
CN (1) CN101042261B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014075219A1 (en) * 2012-11-13 2014-05-22 中国科学院工程热物理研究所 Medium-low temperature solar energy and fossil fuel thermochemical and complementary power generation system and method

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8318131B2 (en) 2008-01-07 2012-11-27 Mcalister Technologies, Llc Chemical processes and reactors for efficiently producing hydrogen fuels and structural materials, and associated systems and methods
US9188086B2 (en) 2008-01-07 2015-11-17 Mcalister Technologies, Llc Coupled thermochemical reactors and engines, and associated systems and methods
CN102844107B (en) * 2010-02-13 2015-01-21 麦卡利斯特技术有限责任公司 Chemical reactors with annularly positioned delivery and removal devices, and associated systems and methods
WO2011100699A2 (en) 2010-02-13 2011-08-18 Mcalister Roy E Reactor vessels with transmissive surfaces for producing hydrogen-based fuels and structural elements, and associated systems and methods
US8441361B2 (en) * 2010-02-13 2013-05-14 Mcallister Technologies, Llc Methods and apparatuses for detection of properties of fluid conveyance systems
CN101907075B (en) * 2010-06-25 2014-04-09 中山大学 Multistage coupling heat accumulating type solar heat-power cogeneration system
CN102287923B (en) * 2011-06-24 2013-05-22 中国科学院广州能源研究所 Solar heat-electricity-gas three-supply system and method
US8734546B2 (en) 2011-08-12 2014-05-27 Mcalister Technologies, Llc Geothermal energization of a non-combustion chemical reactor and associated systems and methods
US8669014B2 (en) 2011-08-12 2014-03-11 Mcalister Technologies, Llc Fuel-cell systems operable in multiple modes for variable processing of feedstock materials and associated devices, systems, and methods
US8911703B2 (en) 2011-08-12 2014-12-16 Mcalister Technologies, Llc Reducing and/or harvesting drag energy from transport vehicles, including for chemical reactors, and associated systems and methods
US8673509B2 (en) 2011-08-12 2014-03-18 Mcalister Technologies, Llc Fuel-cell systems operable in multiple modes for variable processing of feedstock materials and associated devices, systems, and methods
US8888408B2 (en) 2011-08-12 2014-11-18 Mcalister Technologies, Llc Systems and methods for collecting and processing permafrost gases, and for cooling permafrost
WO2013025644A1 (en) 2011-08-12 2013-02-21 Mcalister Technologies, Llc Systems and methods for extracting and processing gases from submerged sources
US9522379B2 (en) 2011-08-12 2016-12-20 Mcalister Technologies, Llc Reducing and/or harvesting drag energy from transport vehicles, including for chemical reactors, and associated systems and methods
US8821602B2 (en) 2011-08-12 2014-09-02 Mcalister Technologies, Llc Systems and methods for providing supplemental aqueous thermal energy
US8826657B2 (en) 2011-08-12 2014-09-09 Mcallister Technologies, Llc Systems and methods for providing supplemental aqueous thermal energy
WO2013025650A1 (en) 2011-08-12 2013-02-21 Mcalister Technologies, Llc Mobile transport platforms for producing hydrogen and structural materials and associated systems and methods
CN103194285A (en) * 2012-01-05 2013-07-10 东莞市久能二甲醚应用技术专利有限公司 Industrial combustion method of dimethyl ether used for replacing natural gas through conversion
CN103245087A (en) * 2012-02-14 2013-08-14 中国科学院工程热物理研究所 Indirect intermediate-temperature chemical energy storage device for solar heat on basis of chemical-looping combustion
CN103372413B (en) * 2012-04-11 2015-08-12 中国科学院工程热物理研究所 A kind of metallic foam support catalytic bed solar absorption reaction unit
CN102721312B (en) * 2012-07-06 2013-10-16 中山大学 Solar energy thermochemistry hybrid energy storage device and method
CN102787993B (en) * 2012-08-06 2015-05-13 上海合既得动氢机器有限公司 Power generation and supply system and method
CN103807009B (en) * 2012-11-13 2016-01-06 中国科学院工程热物理研究所 The distributed internal-combustion engine cool and thermal power system and method for solar energy and alternative fuel complementation
CN103134213B (en) * 2013-03-12 2014-08-20 北京化工大学 Method for converting and storing solar energy with low-hydration magnesium chloride as energy storage working medium
US8926719B2 (en) 2013-03-14 2015-01-06 Mcalister Technologies, Llc Method and apparatus for generating hydrogen from metal
CN103353180B (en) * 2013-05-15 2015-02-18 山东大学 Modular solar chemical adsorption heat storage and release and temperature-raising system and method
CN105776135A (en) * 2016-02-02 2016-07-20 广东工业大学 Exergy pump type natural gas modification system
CN106642734B (en) * 2016-12-08 2018-10-26 沈阳建筑大学 Solar energy combines energy supply water heater with natural gas
CN107634109A (en) * 2017-09-13 2018-01-26 哈尔滨工业大学(威海) It is a kind of that solar concentrating photovoltaic and the chemical combined generating systems of middle Low Temperature Thermal and method are realized by spectrum frequency dividing
CN108151359A (en) * 2018-01-02 2018-06-12 重庆大学 A kind of two level heat accumulating type domestic solar utilizes system
CN108540090A (en) * 2018-04-19 2018-09-14 中国科学院工程热物理研究所 Solar energy and residual heat complementary power generator and its regulation and control operation method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1503850A (en) 1975-08-19 1978-03-15 Us Energy Method and apparatus for thermal energy storage
CN1049641A (en) 1989-07-21 1991-03-06 三井东压化学株式会社 Process for decomposition of methanol
DE3933285A1 (en) 1989-10-05 1991-04-18 Steinmueller Gmbh L & C Continuous prodn. of synthesis gas - by reforming methane using carbon di:oxide as fuel gas
CN1085522A (en) 1993-10-18 1994-04-20 李宗英 Processing method for preparing hydrogen with solar energy from bioplasm and water and its equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1503850A (en) 1975-08-19 1978-03-15 Us Energy Method and apparatus for thermal energy storage
CN1049641A (en) 1989-07-21 1991-03-06 三井东压化学株式会社 Process for decomposition of methanol
DE3933285A1 (en) 1989-10-05 1991-04-18 Steinmueller Gmbh L & C Continuous prodn. of synthesis gas - by reforming methane using carbon di:oxide as fuel gas
CN1085522A (en) 1993-10-18 1994-04-20 李宗英 Processing method for preparing hydrogen with solar energy from bioplasm and water and its equipment

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
US 3859230 A,全文.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014075219A1 (en) * 2012-11-13 2014-05-22 中国科学院工程热物理研究所 Medium-low temperature solar energy and fossil fuel thermochemical and complementary power generation system and method

Also Published As

Publication number Publication date
CN101042261A (en) 2007-09-26

Similar Documents

Publication Publication Date Title
CN101413719B (en) Tower type solar heat power generation system with double-stage thermal storage
CN101539123B (en) Groove-tower combined two-stage heat-storage solar-heat power generation system
CN102660339B (en) Gas-steam efficient cogeneration process and system based on biomass gasification and methanation
CN101392736B (en) Solar low-temperature thermal power generation and cold- thermal co-feeding system
CN101949369B (en) Low temperature solar energy-biomass energy combined heat and power system
CN101597025B (en) Biomass supercritical water gasification hydrogen production absorption reactor thermally driven by solar energy
US7537750B2 (en) Method for producing hydrogen gas by steam methane reforming using solar energy
Ozalp et al. Solar decomposition of fossil fuels as an option for sustainability
CN101105342A (en) Convergence type condensation high temperature energy-concentrated heat-stored double loop driven solar energy heat power device
RU2599697C1 (en) Complementary heat energy system using solar energy and biomass
CN102852742A (en) Tower type solar thermal power generation system for heat absorber of vacuum heat absorption pipes
KR101648976B1 (en) Process and equipment for converting carbon dioxide in flue gas into natural gas by using dump power energy
CN1776322A (en) Binary medium solar high temperature heat absorption/storage device
CN101994569A (en) Distributed energy comprehensive utilization system for biomass energy and solar energy
CN101825072A (en) Trough-dish combined solar thermal power generation system with fixed focus
CN101208264B (en) Compact reforming reactor
CN102979588A (en) Photovoltaic and organic Rankine cycle coupling combined heat and power supply system
CN101586879B (en) Solar thermal utilization system combined with gas-steam combined cycle
Hong et al. Operational performance of the development of a 15 kW parabolic trough mid-temperature solar receiver/reactor for hydrogen production
Liu et al. Performance analysis of a mid‐and low‐temperature solar receiver/reactor for hydrogen production with methanol steam reforming
CN102072115B (en) Slotted concentrating solar power device
CN2384176Y (en) Heat pipe solar heat collector
CN101435089B (en) System and method for utilizing residual heat of electrolyzer low temperature flue gas
CN101042261B (en) Method and apparatus for converting solar energy into fuel chemical energy
CN102562504A (en) Wind energy-solar energy combined energy storage generating system

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C14 Grant of patent or utility model
CF01