Connect public, paid and private patent data with Google Patents Public Datasets

Soluble material and process for three-dimensional modeling

Info

Publication number
CN101027170A
Authority
CN
Grant status
Application
Patent type
Prior art keywords
composition
polymer
comprises
soluble
dimensional
Prior art date
Application number
CN 200580031972
Other languages
Chinese (zh)
Inventor
威廉姆·R·小普列德埃曼
安德烈·L·布罗斯
Original Assignee
斯特拉塔西斯公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUSE OF INORGANIC OR NON-MACROMOLECULAR ORGANIC SUBSTANCES AS COMPOUNDING INGREDIENTS
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0016Plasticisers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE, IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/02Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • B29C41/08Coating a former, core or other substrate by spraying or fluidisation, e.g. spraying powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE, IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/34Component parts, details or accessories; Auxiliary operations
    • B29C41/36Feeding the material on to the mould, core or other substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE, IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/34Component parts, details or accessories; Auxiliary operations
    • B29C41/50Shaping under special conditions, e.g. vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE, IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE, IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/40Structures for supporting 3D objects during manufacture and intended to be sacrificed after completion thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE, IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS
    • B29K2055/00Use of specific polymers obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in a single one of main groups B29K2023/00 -  B29K49/00, e.g. having a vinyl group, as moulding material
    • B29K2055/02ABS polymers, i.e. acrylonitrile-butadiene-styrene polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE, IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0005Condition, form or state of moulded material or of the material to be shaped containing compounding ingredients
    • B29K2105/0008Anti-static agents

Abstract

The present invention is a composition for making a three-dimensional object. The composition comprises a plasticizer and a base polymer, where the base polymer comprises a carboxylic acid, where the composition is soluble in an alkaline solution.

Description

可溶性材料和用于三维造型的方法 Soluble materials and methods for three-dimensional modeling

技术领域 FIELD

本发明涉及利用添加法造型技术制造三维物体。 The present invention relates to producing three-dimensional objects using additive process modeling techniques. 更具体地,本发明涉及在构建物体时通过将可固化材料沉积成预定图案并向三维物体的支撑部提供支撑结构来形成这种三维物体。 More particularly, the present invention relates to build the object by depositing a curable material to a predetermined pattern to provide three-dimensional object supporting portion to support structures forming such three-dimensional object.

背景技术 Background technique

添加法造型机基于从计算机辅助设计(CAD)系统提供的设计数据,通过构建造型介质制造三维模型。 Add Method molding machine based on the design data provided from a computer aided design (CAD) system, media manufactured by constructing a three-dimensional model molding. 三维模型用于的功能包括审美判断、验证数学CAD模型、形成坚硬的工具、研究干扰及空间分配、以及测试功能性。 Features include three-dimensional model for aesthetic judgments, verification of mathematical CAD model, forming hard tool for studying interference and space allocation, and testing functionality. 一个技术是根据从CAD系统提供的设计数据,通过构建形成模型的多层将可固化的造型材料沉积成预定图案。 One technique is based on the design data provided from a CAD system, is formed by constructing a multi-layer model of the curable molding material is deposited in a predetermined pattern.

Crump的美国专利第5,121,329号、Batchelder等人的美国专利第5,303,141号、Crump的美国专利第5,340,433号、Batchelder等人的美国专利第5,402,351号、Danforth等人的美国专利第5,738,817号、Batchelder等人的美国专利第5,764,521号以及Swanson等人的美国专利第6,004,124号中描述了用于通过从挤出头沉积多层可固化造型材料来制造三维模型的设备和方法的实例,所述的所有专利都转让给作为本发明受让人的明尼苏达州的Eden Prairie的斯特拉塔西斯公司。 US Patent No. 5,121,329 Crump's, Batchelder et al., US Pat. No. 5,303,141, US Patent No. 5,340,433 Crump's, Batchelder et al., US Patent No. 5,402,351, Danforth et al., US Patent No. 5,738,817, Batchelder et al. U.S. Patent No. 5,764,521 and U.S. Patent No. 6,004,124 Swanson et al., described for example by depositing a multilayer extrusion head from the curable molding material manufacturing apparatus and method of the three-dimensional model, all of said patents are assigned to Minnesota Eden Prairie Xstrata Francisco company as assignee of the present invention. 造型材料可以以固体形式(例如,以缠绕在供带盘(supply reel)上的柔性纤丝形式或者以实心杆形式)供应到挤出头,如美国专利第5,121,329号中所披露。 Molding material may be in solid form (e.g., in the form of a flexible filament wound on a supply reel (supply reel) or in the form of a solid rod) to the extrusion head, as in U.S. Patent No. 5,121,329 disclosed. 如美国专利第4,749,347号中所述,造型材料可以可供选择地以液体形式从蓄液池抽出。 As described in U.S. No. Patent No. 4,749,347, modeling material may alternatively be withdrawn in liquid form from the reservoir. 在任何情况下,挤出头都会从喷嘴将熔融的造型材料挤出到基底上。 In any case, the extrusion head will be from the nozzle the molten molding material extruded onto the substrate. 挤出的材料一层接一层地沉积在CAD模型所限定的区域中。 The extruded material is deposited layer by layer in a region defined by the CAD model. 在固化时通过充分的粘结粘附到前一层的可固化材料用作造型材料。 When cured layer adhered to the front sufficient adhesion by the curable material is used as the modeling material. 己发现热塑性材料尤其适用于这些沉积造型技术。 It has been found particularly suitable for the thermoplastic material deposition modeling techniques.

例如,在Helinski的美国专利第5,136,515号、Masters的美国专利第4,665,492号和Masters的美国专利第5,216,616号中描述了用于通过沉积来自喷头的可固化材料来制造三维模型的设备和方法的实例。 For example, in U.S. Pat. No. 5,136,515 Helinski, U.S. Patent No. 4,665,492 and U.S. Pat. No. 5,216,616 Masters Masters are described for example by depositing the curable material from the nozzle apparatus and method for manufacturing the three-dimensional model. 颗粒以CAD模型所限定的预定图案被引导至特定位置处并沉积及构建,以构造所需物体。 Particles in a predetermined pattern defined by the CAD model is directed to and deposited at a particular location and construction, to construct the desired object.

在通过添加法技术产生三维物体中,例如,通过沉积多层可固化材料产生三维物体中,这是惯例但不排除支撑层或结构在构造中必须用于悬空部分下或用于物体的凹槽内,从而不直接由造型材料本身进行支撑。 In the three-dimensional object is generated by adding art method, e.g., by depositing a multilayer curable material produced three-dimensional object, as is customary, but do not preclude the support structure or layer must be configured in a recess or a portion of the floating object within, so as not to be directly supported by the modeling material itself. 例如,如果物体为地下洞穴内部的模型,并且洞穴原型是从地板朝着天花板进行构造的,则钟乳石将需要临时支撑直到完成天花板为止。 For example, if the object is a model of the interior of the underground caverns, and the cave prototype is constructed from the floor towards the ceiling, then a stalactite require a temporary support until the ceiling is completed so far. 支撑层或结构因其它原因还需要,例如,使模型可以从基底移走、抵抗模型在部分完成时发生变形的趋势、以及通过构造过程抵抗施加到部分完成的模型的力。 The support layer structure or for other reasons need, for example, so that the model may be removed from the substrate, trend model deformation resistance at the time of partially completed, and resistance to the force applied to a partially completed model by the construction process.

支撑结构可以利用与沉积造型材料相同的沉积技术和设备进行构建。 The support structure may be deposited by the same deposition techniques and molding materials for constructing the device. 该设备,在适当的软件控制下,制造用作用于正形成的物体的悬空或自由空间区段的支撑结构的另外几何形状。 The apparatus, under appropriate software control, as a further manufacturing geometry of the support structure suspended or free-space segments of the object being formed. 支撑材料(support material)从造型设备内的单独的分配头进行沉积,或者通过与沉积造型材料相同的分配头进行沉积。 Support material (support material) is deposited from a separate dispensing head within the modeling apparatus, or deposited by the same deposition modeling material dispensing head. 选择支撑材料,以使其可粘附到造型材料上。 Support material selected, so that it can adhere to the modeling material. 将模型固定到这种支撑结构上解决了构建模型中的问题,但是产生了在不造成模型损坏的情况下将支撑结构从完成的模型移走的另外的问题。 This model is fixed to a support structure solves the problem of constructing the model, but creates additional problems without causing damage to the support structure of the model is removed from the completed model.

通过在模型与支撑结构之间形成不牢固且可破坏的粘结已解决移走支撑结构的问题,例如在Crump等人的美国专利第5,503,785号中所述。 Problem has been removed by forming a support structure and a weak breakable bond between the model and the support structure, such as described in U.S. Patent No. 5,503,785 Crump et al. ′785专利披露一种方法,由该方法,将与造型材料形成不坚固且可破坏的粘结的材料选择为释放材料(release material)。 '785 patent discloses a process, is not strong and can damage the material forming the bond with the molding material by the method chosen to release material (release material). 释放材料以层状方式或作为涂层沿着在物体与其支撑结构之间的界面沉积,使得支撑结构在物体成形之后可以脱离。 Release material or a layered manner as a coating deposited along the interface between the object and its support structure, the support structure so that the object can be detached after molding. 支撑结构可以由造型材料形成,或者所述支撑结构可以由释放材料形成。 The support structure may be formed of a molding material, or the support structure may be formed by the release material.

′785专利披露可以用作造型及释放材料的各种材料组合。 '785 patent discloses and release material can be used as various molding materials combinations. 例如,′785专利披露了可以使用可溶性释放材料,使得保持在模型上的任何这种材料在支撑脱离之后可以通过将模型放置在浴槽内进行移除。 For example, the '785 patent discloses the release of soluble materials can be used, so that any such material remaining on the model may be removed by placing in a bath model support after detachment. 披露了水溶性蜡、聚环氧乙烷和二醇基聚合物、聚烯吡咯烷酮基聚合物、甲基乙烯基醚、马来酸基聚合物、聚噁唑啉基聚合物和聚季鎓II(polyquaternium II)以及可溶于溶剂的丙烯酸酯以及硬脂酸类和壬二酸类。 Discloses a water-soluble wax, polyethylene oxide and glycol based polymers, polyolefin-based polymer pyrrolidone, methyl vinyl ether, maleic acid-based polymer, a polyoxazoline polymers and quaternary onium group II (polyquaternium II) and a solvent-soluble acrylate and azelaic and stearic acids. 可溶性支撑件可以消除在模型表面上形成伤痕,并且可以消除利用力来移除支撑件的需要。 Soluble support may eliminate the formation of scratches on the surface of the model, and may eliminate the need to remove the force to the support member.

在基于挤出的系统中,己实现在层中施加释放材料的一个变化,其中释放材料在构造中以短珠粒片段(称作“穿孔”)施加到支撑结构与模型之间。 Based extruded in a system, has achieved a change in the release material layer is applied, wherein the material is configured to release the beads short fragment (referred to as "perforations") between the support structure and applied to the model. 该穿孔通过限制与模型的接触而积减小支撑层的粘附性,以帮助移除脱离的支撑件。 The perforations reduce adhesion of the product support layer by limiting the contact with the model, in order to help remove the support member disengaged.

持续地需要提供一种支撑结构,所述支撑结构无需施加力就从三维模型中脱离,并且将不会损坏模型的表面光洁度,并且进一步具有良好的机械强度并可与造型过程和造型材料相容。 Continuing need to provide a support structure, the support structure is free from the force from the 3D model, and will not damage the surface finish of the pattern, and further has good mechanical strength and are compatible with the shape without the application process and the molding material .

发明内容 SUMMARY

本发明涉及一种用于制造三维物体的组合物。 The present invention relates to a composition for producing a three-dimensional object. 所述组合物包括增塑剂和基础聚合物,其中所述基础聚合物包括羧酸,并且其中所述组合物可溶于碱性溶液中。 The composition comprises a plasticizer and a base polymer wherein the base polymer comprises a carboxylic acid, and wherein said composition is soluble in an alkaline solution.

本发明进一步涉及一种用于制造三维物体的组合物,其中所述组合物包括含有羧酸的聚合物。 The present invention further relates to a composition for manufacturing a three-dimensional object, wherein said composition comprises a carboxylic acid-containing polymer. 所述组合物可溶于碱性溶液中,并且在230℃在1.2千克的负载下根据ASTM D1238进行测试时表现出约10克/10分钟或更小的熔体流动指数。 The composition is soluble in alkaline solution, and exhibits approximately 10 g / 10 min or less, a melt flow index test at 230 deg.] C under a load of 1.2 kilograms according to ASTM D1238.

本发明进一步涉及一种制造三维物品的方法。 The present invention further relates to a method of manufacturing three-dimensional object. 所述方法包括将组合物沉积到基底上,其中所述组合物包括从羧酸获得的基础聚合物并使所述组合物可固化。 Said method comprising the composition is deposited onto a substrate, wherein the composition comprises a base polymer obtained from a carboxylic acid and the composition is curable. 所述组合物可溶于碱性溶液中,并且在230℃在1.2千克的负载下根据ASTM D1238进行测试时表现出约10克/10分钟或更小的熔体流动指数。 The composition is soluble in alkaline solution, and exhibits approximately 10 g / 10 min or less, a melt flow index test at 230 deg.] C under a load of 1.2 kilograms according to ASTM D1238.

附图说明 BRIEF DESCRIPTION

图1是将本发明的碱溶性材料用作支撑结构,通过纤丝供给挤出设备所形成的模型的示意图;以及图2是图1的模型在实施本发明的方法中所使用的碱浴槽中的透视图(部分被剥离)。 FIG 1 is an alkali-soluble material of the present invention is used as a support structure, a schematic model of the device formed by the filaments extruded feed; FIG. 2 and FIG. 1 is an alkali bath model in the method of the present embodiment of the invention used in a perspective view (partially peeled).

具体实施方式 detailed description

采用碱溶性热塑性材料的本发明的方法适用于三维造型系统中,其中所述三维造型系统沉积熔融造型材料,所述的熔融造型材料固化以形成物体。 The method of the present invention employs an alkali-soluble thermoplastic materials suitable for three-dimensional modeling system, three-dimensional modeling system wherein the modeling material is deposited molten, the molten molding material is solidified to form the object.

通过参考美国专利第5,121,329号和美国专利第6,004,124号中所披露类型的沉积造型系统来描述本发明,所述的专利通过引用而结合在此,如同全部列于本说明书中一样。 The present invention will be described with reference to U.S. Pat. No. 5,121,329 and U.S. Patent No. 6,004,124 in deposition modeling system of the type disclosed by said patent is incorporated herein by reference, as if fully as listed in the present specification. 在所述的实施例中,造型材料和支撑材料从挤出头一层接一层地沉积为大体连续的线料,并且以柔性纤丝的形式供应到挤出头。 In the illustrated embodiment, the support material and modeling material is deposited layer by layer from the extrusion head to a generally continuous strand, and is supplied as a flexible filament to an extrusion head. 本领域普通技术人员将会理解,本发明具有的优势为可以各种其它类型的造型机中实施,并且材料可以以可供选择的形式供应,例如液体、实心杆、粒料或粒状形式。 Those of ordinary skill in the art will appreciate that the present invention has the advantage that various other types of embodiments may molding machine, and the material may be supplied in alternative forms, such as a liquid, a solid rod, pellet or granular form.

图1显示构建根据本发明的由支撑结构28支撑的模型26的挤出设备10。 FIG. 1 shows the construction of an extrusion apparatus 10 according to the present invention by a supporting structure 28 supporting the model 26. 挤出设备10包括挤出头12、材料接收基底14、纤丝供应绕线轴16以及控制器18。 Extrusion apparatus 10 includes an extrusion head 12, a material receiving substrate 14, filament supply spool 16 and a controller 18. 用于挤出设备10的适当系统的实例包括Stratasys FDM系统,例如,Stratasys FDM1650、Stratasys FDM2000、Stratasys FDMTitan、Stratasys FDMVantage以及Stratasys FDMMaxum;以及“DimensionSST 3D Printer”;所有系统均可从明尼苏达州的Eden Prairie的斯特拉塔西斯公司。 Examples of suitable extrusion apparatus 10 includes a system Stratasys FDM systems, e.g., Stratasys FDM1650, Stratasys FDM2000, Stratasys FDMTitan, Stratasys FDMVantage and Stratasys FDMMaxum; and "DimensionSST 3D Printer" ; all systems are available from Eden Prairie, Minnesota Xstrata Sith companies.

挤出头12相对于在通直或Z方向上移动的基底14在X和Y方向上移动。 An extrusion head 12 with respect to the straight moving in the Z direction of the substrate 14 or moved in the X and Y directions. 供应绕线轴16将柔性纤丝20供应到挤出头12。 The supply spool 16 the flexible filaments 20 supplied to the extrusion head 12. 纤丝20典型地遵循相当曲折的路径穿过挤出设备10,并且通过步进电机驱动的压紧辊(pinch roller)朝着挤出头12前进。 Typically filament 20 that follows a quite tortuous path through the extrusion apparatus 10, and by the stepping motor is driven pinch roller (pinch roller) moving in the extrusion head 12. 纤丝20在液化器22内熔化、由挤出头22运送。 Filaments 20 melted in the liquefier 22, 22 carried by the extrusion head. 液化器22将纤丝加热到略高于其凝固点的温度、使纤丝还原到熔融状态。 The liquefier 22 is heated filaments to a temperature slightly above its freezing point, so that a molten state to restore the filaments. 熔融材料经由液化器22的孔口24被挤出到基底14上。 Molten material through the orifice 24 of the liquefier 22 is extruded onto the substrate 14.

所披露的实施例的挤出设备10不具有用于使熔融材料穿过孔口24的流动在完成一层或一段时停止的正压截止阀(positive cut-off valve)。 Extrusion apparatus of the disclosed embodiment 10 does not have a molten material flow through the apertures 24 is stopped upon completion of a period of one or more positive shut-off valve (positive cut-off valve). 该流动是通过使纤丝20停止前进到挤出头12内而停止的。 The flow is stopped by the filaments 20 proceeds to the extruder head 12 is stopped. 将熔融材料分配到基底14上的流动速率通过结合孔口尺寸和纤丝20前进到挤出头12内的速率来确定。 The dispensing flow rate of molten material to the substrate 14 is advanced through the aperture size and binding filament 20 to the extrusion head 12 in a rate determined.

挤出头12的运动由控制器18控制,以便以多段和多层的形式将材料沉积到基底14上,以构建具有由所储存的CAD数据所确定的形状的三维模型26,并进一步随着构建所述三维模型而构建限定为物理支撑模型26的支撑结构28。 Movement of the extrusion head 12 controlled by the controller 18 so as to form a multi-stage and multi-layer deposition material onto the substrate 14, to construct a three-dimensional model from the CAD data having the determined shape storage 26, and further with defining constructed three-dimensional model constructing a physical model of the support structure 26 of the support 28. 在具有受到控制以促进固化的环境的构建围护(build envelope)内,模型26及其支撑结构28在基底14上构建。 The model 26 and its support structure 28 is built on a substrate 14 having a controlled environment to facilitate curing envelope construct (build envelope) inside. 第一层沉积材料粘附到基底上以形成基础,而后续材料层互相粘附。 Depositing a first layer of material adhered to the substrate to form a base, and the subsequent layer of material adhere to one another. 已成功使用的基底为以可移走方式安装到工作台上的聚合物泡沫。 It has been successfully used as a substrate in a removable manner mounted to workbench polymer foam. 可以用作基底的其它材料包括由涂敷有砂的细线筛网形成并粘附到工作台上的砂纸、可溶于水的蜡、泡沫塑料材料、以及安装到真空压平板上的聚丙烯酸酯片材。 Other materials may be used as the substrate comprises sand coated with a thin wire mesh is formed and adhered to a work table sandpaper, water-soluble wax, foam materials, polyacrylic acid and mounted on vacuum pressure plate esters sheet.

分配造型材料A以形成模型26。 A dispensing modeling material 26 to form the model. 碱溶性支撑材料B配合造型材料A的分配进行分配以形成支撑结构28。 The alkali-soluble support material B with the dispensing of modeling material A is dispensed to form a support structure 28. 为了方便起见,挤出设备10仅显示具有一个提供单纤丝20的纤丝供应绕线轴16。 For convenience, the extrusion apparatus 10 having filaments display only provides a supply spool 20 of 16 monofilaments. 然而,应该理解的是在使用诸如在此所披露的纤丝供给设备的本发明的实施中,将造型材料A和碱溶性支撑材料B通过单独的纤丝供应绕线轴提供给挤出设备10。 However, it should be appreciated that the use of such filaments in the embodiment of the present invention, the supply device disclosed herein, the modeling material A and the alkali-soluble support material B is supplied to the extrusion device via a separate supply bobbin 10 filaments. 挤出设备10因而可以容纳通过以下设置进行分配的两种不同的材料:(1)提供两个挤出头12,一个供应有造型材料A,一个供应有造型材料B(例如′124专利中所披露);(2)提供单个挤出头,所述单个挤出头通过用于分配两种材料的单一喷嘴供应有造型材料A和碱溶性支撑材料B两种材料(例如,′329专利的图6中所示);或者(3)提供供应有两种材料的单一挤出头,其中经由单独的喷嘴分配每种材料(例如′785专利的图6中所示)。 Extrusion apparatus 10 may thus accommodate dispensing two different materials is provided by the following: (1) providing two extrusion heads 12, one supplied with modeling material A, it is supplied with a molding material B (e.g. '124 patent disclosure); (2) providing a single extrusion head, said extrusion head supplied with a single through a single nozzle for dispensing both materials modeling material a and the alkali-soluble support material B of the two materials (e.g., '329 patent in Figure 6); or (3) providing a single extrusion head supplied with both materials, wherein (e.g. 'shown) in FIG. 6 785 patent each material via a separate dispensing nozzle.

造型材料A典型地为热塑性材料,其可以相对快速地被从固态加热到高于材料的固化温度的预定温度,并且优选地具有相对较高的抗拉强度。 A molding material is typically a thermoplastic material, which may be from a solid state relatively quickly heated to a predetermined temperature above the curing temperature of the material, and preferably has a relatively high tensile strength. 丙烯腈-丁二烯-苯乙烯(ABS)组合物为一种特别适当的造型材料。 Acrylonitrile - butadiene - styrene (ABS) composition is particularly suitable as a molding material. 可以用于造型材料A的其它材料包括各种蜡、石蜡、各种热塑性树脂、金属和金属合金。 Other materials may be used for the modeling material A include various waxes, paraffin wax, various thermoplastic resins, metals and metal alloys. 包括两部分(two-part)环氧的玻璃和化学固化材料也将适用。 It comprises two parts (two-part) and chemically curing epoxy glass material are also suitable.

本发明的碱溶性支撑材料B为可溶于碱性溶液的热塑性塑料,如以下更详细地说明。 The alkali-soluble support material B of the present invention is soluble in an alkaline solution thermoplastics, described in more detail below. 碱溶性支撑材料B同样可以优选从固态纤丝相对快速地加热到高于材料固化温度的预定温度,并且当分配后通过温度下降而固化。 The alkali-soluble support material B may also be preferably relatively rapidly heating filaments from a solid to a predetermined temperature above the curing temperature of the material, and when dispensed through the curing temperature decrease.

通过支撑材料B产生的可溶解性支撑结构28可以以己知的方式形成,例如美国专利第5,503,785号中所披露,所述的专利通过引用而结合在此,如同全部列于本说明书中一样。 The support structure may be produced by the soluble support material B 28 may be formed in a known manner, for example, U.S. Pat. No. 5,503,785 disclosed in said patents is incorporated herein by reference, as if fully as listed in the present specification. ′785专利的图3-5说明了一种可移除的支撑结构。 '785 patent FIG 3-5 illustrates the structure of a removable support. 如在此图1中所示,支撑结构28可以整体从支撑材料B中构建。 As shown in this figure, the support structure 28 may be integrally constructed from the supporting material B, respectively. 或者,如′785专利中所示及说明,碱溶性支撑材料B可以在由造型材料A形成的模型与由相同材料A形成的支撑结构之间形成可溶解的连接。 Alternatively, as' described and alkali-soluble support material B in soluble form may be connected between the model and the support structure is formed of the same material A is formed of a molding material A 785 patent. 该连接可以为一层或多层释放层(release layer)或者薄涂层。 The connection may be one or more release layer (release layer) or a thin coating.

在完成模型26之后,通过将模型26与其连接的支撑结构28一起浸泡在含有碱性溶液C的浴槽40内,将支撑结构28从模型26移除。 After completion of the model 26, the support structure 28 is removed from the mold 26 by the support structure 26 connected thereto the model 28 immersed in a bath containing an alkaline solution of C 40 together. 在图2中所示的实施例中,浴槽40为含有用于保持模型26的可移走的网筐42的超声波的、温度受控槽。 In the embodiment shown in FIG. 2, for holding a bath containing 40 Model 26 ultrasonic removable mesh basket 42, temperature-controlled tank. 使用温度控制器44设定浴槽40的温度。 Temperature controller 44 set temperature bath 40. 碱性溶液C为可以从排液管冲掉以进行处理的水溶液。 C is an aqueous alkaline solution may be processed from the drain pipe flush. 可以加热浴槽40中的溶液C的温度以加快支撑材料B的溶解。 C bath temperature of the solution may be heated in order to accelerate dissolution of the support material 40 of the B. 具有通/断开关的超声波频率产生器46开始及停止超声波传输。 Ultrasonic having an on / off switch of the frequency generator 46 of ultrasonic transmission start and stop. 超声波频率传输产生气泡,所述的气泡通过使模型振动帮助溶解掉支撑材料B。 Ultrasonic frequency transmission bubbles, the bubbles by Shaking help dissolve away the support material B.

模型26保持在浴槽40内直到支撑材料B溶解。 Model 26 maintained in the bath 40 until the support material B were dissolved. 网筐42接着被从浴槽40移走。 Mesh basket 42 is then removed from the bath 40. 可以将网筐42可以在水槽中,并且用水将溶液C从模型26冲洗掉并从排液管冲掉。 The mesh basket 42 may be in a water bath, the solution was washed with water and flushed from the model 26 C off and flushed from the drain pipe. 浴槽40具有排液管48,从排液管48中除去插塞以将溶液C从浴槽40排掉。 Bath 40 having a drain tube 48 is removed from the drain pipe 48 to the plugs out of solution from the bath 40 C discharge.

作为用于通过在浴槽内溶解碱溶性支撑材料B将支撑结构28从模型26移除的可供选择例,可以使用用手或自动操作的喷水器溶解支撑材料。 As for the water jet by dissolving the alkali-soluble support material B in the bath for the support structure 28 is removed from the model selection Example 26, may be used manually or automatically operated to dissolve the support material.

基底14可以在将模型放置在浴槽40内之前从模型26移走。 The substrate 14 may be placed within the model before the model 26 removed from the bath 40. 可供选择地,基底14在将模型26放置在浴槽40内时可以保持粘附在模型26上。 Alternatively, the substrate 14 is in the model 26 is placed in the bath 40 can remain adhered on the model 26. 在后一种情况中,可能需要碱溶性基底,例如,碱溶性泡沫。 In the latter case, an alkali-soluble base may be required, for example, an alkali-soluble foam.

碱溶性支撑材料B必须满足用于使用其的特定造型系统的大量造型标准,大致涉及热性质、强度、粘度和粘附性。 The alkali-soluble support material B must satisfy a large number of modeling criteria for the particular modeling system using the same, and relates generally to thermal properties, strength, viscosity and adhesiveness. 对于热性质,碱溶性支撑材料B在构建围护中的温度下不变形,以保持其支撑的模型的结构保真度。 For the thermal properties, alkali-soluble support material B is not deformed at a temperature of the envelope is constructed to maintain structural fidelity of the model supported. 因此需要碱溶性支撑材料B具有比构建围护温度至少高10℃的玻璃化转变温度(Tg)。 Requiring alkali-soluble support material B has a transition temperature of at least higher than the build envelope 10 deg.] C of glass transition temperature (Tg). 进一步而言,如果碱溶性支撑材料B的玻璃化转变温度低于造型材料A的玻璃化转变温度,则通过温度控制,可以提高碱溶性支撑材料B的溶解速率。 Further, if the glass of the alkali-soluble support material B transition temperature below the glass transition temperature of the modeling material A, through temperature control, can increase the dissolution rate of the alkali-soluble support material B.

碱溶性支撑材料B必须具有适用于造型过程的熔体粘度。 The alkali-soluble support material B must have a melt viscosity suitable for the modeling process. 在此处所述类型的造型系统中,熔体粘度在液化器的温度下必须足够低,使得所述支撑材料可以经由液化器的孔口作为大致连续的线料或珠粒挤出,使得沉积的碱溶性支撑材料B的线料或珠粒具有很小的熔体强度,从而可以将所述支撑材料平放而非卷起。 In the modeling system of the type described herein, the melt viscosity must be low enough at the temperature of the liquefier, so that the support material can be extruded as a substantially continuous beads or strands through orifices liquefier, so that the deposition alkali-soluble support material B in strand or beads have little melt strength, so that the support material may be flat, rather than rolled up. 熔体粘度通过增加液化器中的温度而降低。 The melt viscosity is reduced by increasing the temperature of the liquefier. 然而,液化器的温度过高可以造成空闲搁置在液化器中的材料分解。 However, the temperature too high can cause liquefier material decomposition in the rest idle liquefier. 如果分解,在挤出头不具有正压截止机构的情况下,支撑材料B将不受控制地从液化器排出到构建围护中,这种状态称作“渗漏”。 If decomposed, in the case of the extrusion head does not have a pressure cutoff mechanism, support material B will not be controlled to be discharged from the liquefier build envelope, this state is referred to "blow." 实际上,可以通过所述支撑材料的逆参数(熔体流动)测量粘度。 In fact, the viscosity may be measured by reverse parameters (melt flow) of the support material. 如在230℃在1.2kg的负载下根据ASTM D1238所测量的,对于碱溶性支撑材料B所需的熔体流动指数在约1g/10分钟与约10克/10分钟之间,并且优选在约5克/10分钟与约10克/10分钟之间。 As at 230 ℃ 1.2kg load measured according to ASTM D1238, the desired alkali-soluble support material B has a melt flow index of between about 1g / 10 minutes and about 10 g / 10 min, and preferably from about 5 g / 10 min and about 10 g / 10 min.

为了在构建中适当地支撑模型,碱溶性支撑材料B必须粘结到其本身上(自层压(self-laminate))并较弱地粘结到造型材料A上(共层压(co-laminate))。 To properly support the model constructed, the alkali-soluble support material B must bond to itself thereto (from the laminate (self-laminate)) and weakly bonded to the modeling material A (co laminate (co-laminate )). 在从基底构建支撑结构的情况下,碱溶性支撑材料B必须另外粘结到基底14上。 In the case of constructing the support structure from the substrate, alkali-soluble support material B must be further bonded to the substrate 14. 本发明的碱溶性支撑材料B中的酸含量使材料相当粘,使得所述支撑材料将会充分地粘附到由任何数量的材料制成的基底上。 Acid alkali-soluble support material B of the present invention is that the relatively viscous material, so that the support material will be sufficiently adhered to the substrate made of any number of materials. 例如,已成功地uqf聚氨酯泡沫基底用于本发明的实施中。 For example, a polyurethane foam has been successfully uqf substrate used in the practice of the present invention.

为了生产准确的模型,碱溶性支撑材料B在构建围护的条件中通过冷却还必须表现出很小的收缩,或者,收缩特征必须与造型材料A的收缩特征相匹配。 In order to produce accurate model, the alkali-soluble support material B is in the condition for building envelope by cooling must also exhibit little shrinkage, or contraction characteristics must match the shrinkage characteristic of the molding material A. 材料中的收缩差别将会沿着模型/支撑结构的连接处造成应力和粘结失效。 The difference in shrinkage of the material will cause stress and cohesive failure along the model / support structure joint.

碱溶性支撑材料B在固体形式下必须具有足够的机械强度,以在模型的成形期间向模型提供支撑。 The alkali-soluble support material B must have sufficient mechanical strength in solid form to provide support to a model during the forming of the model. 碱溶性支撑材料B必须抵抗造型材料A的力,否则模型将会表现出不受欢迎的卷曲和变形。 The alkali-soluble support material B must resist the force of the modeling material A, or the model will exhibit undesirable curling and deformation. 另外,碱溶性支撑材料B在以纤丝或杆的形式进行供应时必须坚固到足以不会断开地进行运送。 Further, the alkali-soluble support material B must be strong enough to not be transported in the OFF when supplied in filament or rod. 当以纤丝形式供应时,碱溶性支撑材料B必须进一步具有强度和柔性,以形成缠绕和退绕并经由挤出设备供给而不会断开的纤丝。 When supplied in filament form, alkali-soluble support material B must further have the strength and flexibility, so as to form a winding and unwinding device and supplied via extrusion without breaking filaments. 同样地,以纤丝形式供应的碱溶性支撑材料B必须具有足够的刚性,以便在经由挤出设备供给期间不会因压缩力而变形。 Similarly, filament supplied in the form of an alkali-soluble support material B must have sufficient rigidity so as not deformed by the compression force supplied via the apparatus during extrusion. 大约为1000-5000psi的抗拉强度典型地适于沉积造型应用中。 A tensile strength of about 1000-5000psi typically adapted deposition modeling applications.

碱溶性支撑材料B所需的溶解性特征为,所述支撑材料容易溶解在不会不利地影响造型材料A的碱性溶液(pH7或更高)中。 Solubility characteristics required for the alkali-soluble support material B, the support material is easily dissolved in the molding material without adversely affecting A basic solution (pH 7 or later). 如在此所使用,如果材料大体溶解和/或分散在具有约7或更高的pH以及范围从约25℃至约80℃的温度的溶液中,则材料为“可溶于碱性溶液中”。 As used herein, if the material is substantially dissolved and / or dispersed in a pH of about 7 or higher and a solution temperature ranging from about 25 deg.] C to about 80 deg.] C, the material is then "soluble in an alkaline solution, . " 另外还需要溶液无毒且不易燃,使得不需要使用者特别处理或处置。 Also we need not flammable, non-toxic solution, so that the user does not need special treatment or disposal.

本发明的碱溶性支撑材料B由基础聚合物组成,所述基础聚合物可以包括第一共聚单体(含有羧酸)、以及与第一共聚单体聚合(例如,通过自由基聚合)以提供适用于沉积造型的热性质和韧性性质的第二共聚单体。 The alkali-soluble support material B of the present invention is composed of a base polymer, the base polymer may comprise a first comonomer (containing carboxylic acid), and a first comonomer (e.g., by free radical polymerization) to provide second comonomer suitable for deposition modeling thermal and toughness properties. 合适的第二共聚单体是甲基丙烯酸烷基酯(包括甲基丙烯酸甲酯、甲基丙烯酸乙酯、甲基丙烯酸丙酯和甲基丙烯酸丁酯)、或多种甲基丙烯酸烷基酯的组合。 Suitable second comonomer is methacrylic acid alkyl ester (including methyl acrylate, methyl methacrylate, ethyl methacrylate, propyl methacrylate and butyl methacrylate), alkyl methacrylate, or more The combination. 可获得其中将使用碱溶性支撑材料B的造型系统所需的热特征和韧性特征的其它单体也可以用作第二共聚单体。 Other monomers can be obtained wherein the desired thermal characteristics of the alkali-soluble support material B of the molding system and toughness features may also be used as the second comonomer. 优选的基础聚合物由作为第一共聚单体的甲基丙烯酸和作为第二共聚单体的甲基丙烯酸甲酯组成。 It preferred as the base polymer composed of a first comonomer and a second comonomer methacrylic acid methyl methacrylate monomer.

含酸的第一共聚单体的所需量为基础聚合物的15-60重量百分比。 The desired amount of the first acid-containing comonomer is from 15 to 60 weight percent of the base polymer. 碱溶性支撑材料B的溶解性是由于基础聚合物中的羧酸。 The solubility of the alkali-soluble support material B, since the base polymer is a carboxylic acid. 当基础聚合物的酸含量增加时,用于溶解所述支撑材料的碱性溶液的所需碱度(pH)减小。 When the base polymer to increase the acid content, the alkalinity required for dissolving the supporting material, an alkaline solution (pH) decreases. 可选择地,另外的单体可以结合到基础聚合物中。 Alternatively, additional monomers may be incorporated into the base polymer.

本发明的碱溶性支撑材料B还可以包括增塑剂,以获得造型过程所需的流变性质。 The alkali-soluble support material B of the present invention may further comprise a plasticizer, to obtain the desired rheological properties of the molding process. 适当的增塑剂的选择取决于许多因素。 The proper choice of plasticizers depends on many factors. 增塑剂必须将干燥的基础聚合物增塑成符合所需标准的适合加工的热塑性塑料。 Plasticizers must be dried by molded thermoplastic base polymer suitable for processing conform to the required standards. 另外,增塑剂必须与基础聚合物相容。 Further, the plasticizer must be compatible with the base polymer. 相容性由极性、分散性和氢键合力决定,如8.0或更高(优选8.5或更高)的Small溶解度参数所示(利用Small摩尔吸引常数方法),或者如17.0(优选17.5或更高)的Hansen溶解度参数所示(来自CRCPress(1991)出版的Handbook of Solubility Parameters中所述的Hansen法)。 Compatibility is determined by the polar forces, and hydrogen bonding dispersibility, solubility parameter as Small 8.0 or more (preferably 8.5 or more) as shown in (molar attraction constant method using Small), or, as 17.0 (preferably 17.5 or more H) Hansen solubility parameter as shown in the Handbook (from CRCPress (1991) published by of solubility parameters in the method of Hansen). 增塑剂不能表现出以油膜形式渗漏到增塑的聚合物上。 Plasticizers not exhibit leakage of oil film to form the plasticized polymer. 增塑剂在材料加工及造型温度下必须具有低蒸气压,优选地,其蒸气压在200℃小于10毫米汞柱而在250℃小于20毫米汞柱。 Plasticizer must have a low vapor pressure, preferably at a molding temperature and material processing, at 200 ℃ vapor pressure of less than 10 mm Hg but less than 20 mm Hg at 250 ℃. 增塑剂另外必须可水解、可溶解、可乳化或可分散在为pH7或更高的碱溶剂化浴中。 Additionally plasticizers may be hydrolyzable, soluble, emulsifiable or dispersible in an alkali to pH7 or more solvated bath.

增塑剂会减小粘度(即,增加熔体流动指数),还降低聚合物的玻璃化转变温度。 Plasticizer reduce the viscosity (i.e., increase the melt flow index), but also lower the glass transition temperature of the polymer. 同样地,碱溶性支撑材料B中的增塑剂的浓度理想地提供如上所述的所需的玻璃化转变温度和熔体流动指数。 Similarly, the concentration of the plasticizer in the alkali-soluble support material B desirably provide the desired glass transition temperature as described above and melt flow index. 例如,热塑性可溶支撑材料B理想地表现出比构建围护温度至少高10℃的玻璃化转变温度。 For example, a soluble thermoplastic material B over the support surface exhibits a temperature at least higher than the build envelope 10 deg.] C of glass transition temperature. 同样地,碱溶性支撑材料B理想地表现出范围从约1克/10分钟至约10克/10分钟内(优选在5克/10分钟与10克/10分钟之间)的熔体流动指数。 Likewise the alkali-soluble support material B range exhibit over from about 1 g / 10 min to about 10 g / 10 min (preferably 5 g / 10 min and 10 g / 10 minutes between) a melt flow index .

碱溶性支撑材料B中的增塑剂的浓度可以取决于各种因素,例如用于造型材料A的材料、用于基础聚合物和碱溶性支撑材料B增塑剂的材料、构建围护温度、以及造型材料A和碱溶性支撑材料B所需的流动速率。 Concentration of the alkali-soluble plasticizer support material B may depend on various factors, such as the material used for the modeling material A, the material of the base polymer and an alkali-soluble support material B plasticizer used to build envelope temperature, a molding material and the desired alkali-soluble support material B and the flow rate. 碱溶性支撑材料B中的增塑剂的适当浓度的实例的范围基于碱溶性支撑材料B的总重量为约0.01重量%至约50重量%。 Examples of suitable concentration range of the alkali-soluble support material B of the plasticizer based on the total weight of the alkali-soluble support material B is from about 0.01 wt% to about 50 wt%. 碱溶性支撑材料B中的增塑剂的特别适当的浓度实例的范围基于碱溶性支撑材料B的总重量从约5.0重量%至约25重量%。 Examples of particularly suitable range of concentrations of the alkali-soluble support material B of the plasticizer based on the total weight of the alkali-soluble support material B is from about 5.0 wt.% To about 25 wt%.

发现可相容的增塑剂包括以下通类的增塑剂:邻苯二甲酸二烷基酯、邻苯二甲酸环烷基酯、邻苯二甲酸苄酯和芳酯、邻苯二甲酸烷氧基酯、磷酸烷基酯/芳基酯、羧酸酯、聚乙二醇酯、己二酸酯、柠檬酸酯以及甘油酯。 Found compatible plasticizers include the following general classes of plasticizers: dialkyl phthalates, phthalic acid cycloalkyl esters, benzyl phthalate, and aromatic phthalate, alkyl alkoxy phosphate ester alkyl / aryl esters, carboxylic acid esters, polyethylene glycol esters, adipate esters, citrate esters, and glycerides. 具有发现可相容的特定结构的可商购增塑剂包括:乙酸酯:乙酸枯基苯酯;甘油三乙酸酯、三醋精;己二酸酯:己二酸二(丁氧基乙氧基乙)酯己二酸二(丁氧基乙)酯己二酸二异丁酯柠檬酸酯:柠檬酸三正乙酯乙酰柠檬酸三正乙酯柠檬酸三正丙酯乙酰柠檬酸三正丙酯柠檬酸三正丁酯; Having a specific structure is found to be compatible with commercially available plasticizers include: ethyl acetate: acetic acid cumyl phenyl; triacetin, triacetin; adipate: adipate, di (butoxyethyl ester ethoxyethyl) adipate, di (butoxyethyl) adipate, diisobutyl adipate, citric acid esters: ethyl tri-n-acetyl tri-n-propyl-acetyl tri-n-ethyl citrate tri-n-propyl tri-n-butyl;

乙酰柠檬酸三正丁酯;邻苯二甲酸酯:DBP,邻苯二甲酸二丁酯(部分相容性);BBP,邻苯二甲酸丁苄酯(完全相容性);DBEP邻苯二甲酸二丁氧基乙酯(部分相容性);邻苯二甲酸二乙基己苄酯;邻苯二甲酸四甲基氧杂壬(onononyl)苄酯;苯甲酸酯:二苯甲酸二丙二醇酯;二苯甲酸二乙二醇酯;50/50混合的二苯甲酸二丙二醇酯与二苯甲酸二乙二醇酯;二苯甲酸-1,4-环己烷二甲醇酯甘油三苯甲酸酯;苯甲酸枯基苯酯;二苯甲酸新戊二醇酯;季戊四醇四苯甲酸酯;磷酸酯:磷酸丁苯二苯酯;TCP,磷酸三甲苯酯;磷酸二(乙基己)二苯酯;磷酸异癸二苯酯;磷酸C12、C16烷二苯酯;异丙基化的磷酸三苯酯;聚二醇:聚乙二醇类;聚丙二醇类; Acetyl Tributyl Citrate; phthalate: DBP, dibutyl phthalate (partial compatibility); BBP, phthalate, Ding Bian phthalate (fully compatible); phthalic DBEP dicarboxylate butoxyethyl acetate (partially compatible); diethylhexyl phthalate, benzyl ester; methyl phthalate four oxanonyl (onononyl) benzyl; benzoate: dibenzoate dipropylene glycol; diethylene glycol dibenzoate; 50/50 dibenzoate, dipropylene glycol dibenzoate mixed with ethylene glycol; 1,4-cyclohexane dimethanol dibenzoate esters of glycerol tri benzoate; cumyl phenyl benzoate; neopentyl glycol dibenzoate; pentaerythritol benzoate; phosphate: butylbenzene diphenyl phosphate; TCP, tricresyl phosphate; di (ethyl hexyl) diphenyl; isobutyl sebacic acid phenyl ester; phosphoric C12, C16 alkyl diphenyl; isopropylated triphenyl phosphate; polyethylene glycol: polyethylene glycol; polypropylene glycols;

特别优选的增塑剂具有高热稳定性,并且包括:磷酸对叔-丁基苯二苯酯;邻苯二甲酸丁苄酯;邻苯二甲酸-7-(2,6,6,8-四甲基-4-氧杂-3-氧代壬)苄酯;邻苯二甲酸C7/C9烷苄酯;磷酸2-乙基己二苯酯;以及磷酸异癸二苯酯。 Particularly preferred plasticizers having high thermal stability, and comprising: a phosphoric acid tert - butyl phenyl diphenyl phosphate; phthalate, Ding Bian phthalate; phthalate-7- (2,6,6,8- four methyl-4-oxa-3-oxo-nonyl) benzyl; phthalic C7 / C9 alkyl benzyl ester; 2-ethylhexyl diphenyl phosphate; and iso sebacic acid phenyl ester.

可选择地,碱溶性支撑材料B可以含有其它成分,例如填充材料。 Alternatively, the alkali-soluble support material B may contain other ingredients such as filler. 例如,惰性填料可以从由碳酸钙、碳酸镁、玻璃球体、石墨、炭黑、碳纤维、玻璃纤维、滑石、硅灰石、云母、氧化铝、硅石、高岭土、晶须和碳化硅构成的聚合物填料组中进行选择。 For example, inert fillers can be from a polymer consisting of calcium carbonate, magnesium carbonate, glass spheres, graphite, carbon black, carbon fibers, glass fibers, talc, wollastonite, mica, alumina, silica, kaolin, silicon carbide whiskers, and filler selected group. 也可以使用无机填料,例如可溶性盐。 The inorganic filler may be used, for example soluble salts thereof.

聚合物化学中的传统技术用于将组成材料混合成碱溶性支撑材料B。 Polymer chemistry conventional techniques for mixing the constituent material into an alkali-soluble support material B. 该配方可以成型为杆状、粒料或其它形状以用于挤出设备中,或者可以直接用于所述设备中而无需进行之前的固化。 The formulation may be shaped as a rod, pellets or other shapes for use in the extrusion device, prior to curing or may be used directly in the device without the need for. 可供选择地,混合物可以固化并接着成粒状,用以以粒状形式供应到挤出设备。 Alternatively, the mixture may be cured and then granulated to granular form supplied to the extrusion apparatus. 为了用于在本说明书所示及说明的造型过程中,将粒状进料组合物通过传统的挤出设备进行加工以形成连续的柔性纤丝。 In order for the molding process shown and described in this specification, the granular feed composition is processed by conventional extrusion equipment to form a continuous flexible filaments. 理想地,这些纤丝以连续长度缠绕在卷绕轴上并进行干燥。 Ideally, these continuous filaments wound on the winding shaft length and dried. 将呈纤丝形式的碱溶性支撑材料B供应到如上所述的挤出设备10。 Will show filaments in the form of an alkali-soluble support material B is supplied to the extrusion apparatus 10 described above. 纤丝20典型地为大约0.070英寸的非常小的直径,并且直径可以小到0.001英寸。 Filament 20 is typically a very small diameter of about 0.070 inches, and the diameter may be as small as 0.001 inches.

实例在以下实例中更具体地说明本发明,其中由于在本发明的范围内的许多修改和变更对本领域普通技术人员是显而易见的,因此所述实例仅是作为说明。 Examples more specifically in the following examples of the present invention, wherein since numerous modifications and variations within the scope of the present invention will be apparent to those of ordinary skill in the art, and therefore the examples are as described below. 除非另外注释,以下实例中所提出的所有份、百分比和比率都是以重量为基础的,并且实例中所使用的所有试剂均从一般的化学制品供应商(例如,密苏里州的圣路易斯的Sigma-Aldrich Chemical Company)获得或可购得,或者可以通过传统技术合成。 Unless otherwise noted, all parts, percentages and ratios set forth in the following examples are on a weight basis, and all reagents used in the examples are from general chemical suppliers (e.g., of St. Louis, Missouri Sigma- Aldrich Chemical Company) or can be obtained commercially or can be synthesized by conventional techniques.

实例I碱溶性热塑性材料含有74%的基础聚合物和26%的磷酸丁苯二苯酯增塑剂。 I Examples of the alkali-soluble thermoplastic material contains 74% of base polymer and 26% butylbenzene diphenyl phosphate plasticizer. 基础聚合物由甲基丙烯酸和甲基丙烯酸甲酯的较高及较低分子量共聚物的组成。 Base polymer of lower molecular weight and higher copolymers of methacrylic acid and methyl methacrylate in the composition. 基础聚合物大致含有50%的较高分子量共聚物和50%的较低分子量共聚物,每一个加上或减去5%。 A base polymer containing approximately 50% of the higher molecular weight copolymer and 50% of the lower molecular weight copolymers, each of plus or minus 5%. 各共聚物含有1∶2重量百分比的甲基丙烯酸与甲基丙烯酸甲酯。 Each copolymer contains 1:2 weight percent of methacrylic acid and methyl methacrylate. 较高分子量共聚物的特征为高粘度(低熔体流动),较低分子量共聚物的特征为低粘度(高熔体流动)。 Higher molecular weight copolymer is characterized by a high viscosity (low melt flow), wherein the lower molecular weight copolymer has a low viscosity (high melt flow). 通过分别对具有26重量百分比的磷酸丁苯二苯酯增塑剂的各共聚物进行增塑,测量共聚物的熔体流动。 Styrene-butadiene copolymers by separately for each diphenyl phosphate having 26 weight percent of a plasticizer plasticized, measuring the melt flow of the copolymer. 如在230℃在1.2千克的负载下根据ASTM D1238所测量,已增塑的高分子量共聚物的熔体流动指数在0.4克/10分钟至0.8克/10分钟的范围内。 As measured at 230 deg.] C according to ASTM D1238 at a load of 1.2 kg, was plasticized high molecular weight copolymer has a melt flow index in the range of 0.4 g / 10 to 0.8 minutes / 10 minutes. 已增塑的低分子量共聚物的熔体流动指数在28克/10分钟至35克/10分钟的范围内。 It has a melt flow index of the plasticized low molecular weight copolymer in the range of 28 g / 10 to 35 minutes / 10 minutes. 所得到的热塑性组合物具有5克/10分钟至6.5克/10分钟的熔体流动指数以及约90℃的玻璃化转变温度。 The resulting thermoplastic composition having 5 g / 10 to 6.5 minutes / 10 minutes melt flow index and a glass transition temperature of about 90 deg.] C.

碱溶性热塑性材料被加工成0.070英寸直径的纤丝并缠绕在卷绕轴上。 The alkali-soluble thermoplastic material is processed into a diameter of 0.070 inches and filament wound winding shaft. 纤丝被供给到Stratasys FDM1650或Stratasys FDM2000台式造型机。 It is supplied to the filaments or Stratasys FDM2000 Stratasys FDM1650 desktop molding machine. 将熔融的碱溶性热塑性材料从具有200℃温度的液化器挤出到70℃的构建围护内至聚氨酯泡沫基底上。 Within the molten alkali-soluble thermoplastic material is extruded from the liquefier having a temperature of 70 deg.] C to 200 ℃ construct envelope onto a polyurethane foam substrate. 挤出的碱溶性热塑性材料具有约0.020英寸至约0.040英寸的路宽(road width)和约0.007英寸至约0.020英寸的路高(薄片间隔)。 The extruded alkali-soluble thermoplastic material has about 0.020 inches to about 0.040 inches lane (road width) high and about 0.007 inches to about 0.020 inches passage (sheet interval). 通过使用用于形成支撑件的碱溶性热塑性材料,由具有104℃的玻璃化转变温度的ABS热塑性塑料构建模型。 The alkali-soluble thermoplastic material is formed by using a support member, having a glass transition temperature of 104 deg.] C ABS thermoplastic building the model. 具有连接的支撑件的模型被放置在超声波清洗浴槽(具有25-27赫兹的扫描频率)内,其中所述超声波清洗浴槽容纳有约98.7重量百分比的水、0.85重量百分比的水软化剂、0.30重量百分比的pH调节剂以及0.15重量百分比的表面活性剂的碱性水溶液,从而得到11至13的pH。 A support member having a connection model is placed in an ultrasonic cleaning bath (having a scanning frequency of 25-27 Hertz) inside, wherein said ultrasonic cleaning bath accommodating water of about 98.7 weight percent, 0.85 weight percent water softeners, 0.30 wt. the percentage of the pH adjusting agent and 0.15 weight percent of an alkaline aqueous solution of a surfactant to obtain pH. 11 to 13. 浴槽的温度被设定成70℃(浴槽的温度必须保持低于造型材料A的玻璃化转变温度)。 Bath temperature is set to (bath temperature must remain below the glass transition temperature of the modeling material A) 70 ℃. 在两个小时或更少的时间内,支撑件被溶解。 Within two hours or less time, the support is dissolved.

可供选择的基础聚合物配方将甲基丙烯酸和甲基丙烯酸甲酯的较高分子量的1∶2共聚物与含有40%的甲基丙烯酸和60%的甲基丙烯酸丁酯的较低分子量共聚物相组合。 Alternatively lower molecular weight base polymer formulation will 1:2 higher molecular weight copolymer of methacrylic acid and methyl methacrylate and methacrylic acid containing 40% and 60% butyl methacrylate copolymer It was combined. 进一步可供选择的基础聚合物配方将丙烯酸用作第一共聚单体。 Further alternative base polymer formulation will be used as the first acrylic comonomers. 然而,所述进一步可供选择被发现对于应用于StratasysFDM造型机中是不能接受的,这是因为其会造成基础聚合物具有低于机器的构建围护温度的较低玻璃化转变温度。 However, the choice was found to be further applied StratasysFDM molding machine is unacceptable, because it will result in a base polymer having a lower glass transition temperature is lower than the build envelope machine transition temperature.

实例II Example II

碱溶性热塑性材料含有79%(+/-5%)的基础聚合物和21%(+/-5%)的磷酸丁苯二苯酯增塑剂。 The alkali-soluble thermoplastic material contains 79% (+/- 5%) of base polymer and 21% (+/- 5%) of phosphoric acid diphenyl ester plasticizers butylbenzene. 基础聚合物由1∶1重量百分比的甲基丙烯酸与甲基丙烯酸甲酯组成,并具有135,000克/摩尔的分子量。 1:1 a base polymer weight percent of methacrylic acid and methyl methacrylate, and having a 135,000 grams / mole. 在基础聚合物与增塑剂相混合之前,基础聚合物在220℃炉内以低压进行加热以除去聚合物中的水。 Before the base polymer is mixed with a plasticizer, the base polymer is heated in an oven at 220 deg.] C at low pressure to remove water in the polymer. 发现以低压加热10-15小时足以干燥基础聚合物。 We found a low pressure heat sufficient to dry 10 to 15 hours base polymer. 获得的干燥聚合物呈粒状形式,从而以己知的方式与增塑剂一起供给到配混机内。 The polymer obtained was dried in particulate form, thereby known manner together with a plasticizer fed to the compounder. 如在230℃在1.2千克的负载下根据ASTM D1238所测量,获得的可溶于碱性热塑性材料具有在5克/10分钟至6.5克/10分钟的范围内的熔体流动指数。 As measured at 230 deg.] C according to ASTM D1238 at a load of 1.2 kg, the obtained alkaline soluble thermoplastic material has a melt flow index in the range of 5 g / 10 to 6.5 minutes / 10 minutes are. 碱溶性热塑性材料的玻璃化转变开始温度约为101.5℃,而玻璃化转变峰值温度约为111℃。 The alkali-soluble glass transition starting temperature of the thermoplastic material is about 101.5 ℃, while the peak glass transition temperature of about 111 ℃.

如上述的实例I中,碱溶性热塑性材料被加工成0.070英寸直径的纤丝并缠绕在卷绕轴上。 As described above in Example I, the alkali-soluble thermoplastic material is processed into a diameter of 0.070 inches and filament wound winding shaft. 纤丝被供给到Stratasys FDM1650或Stratasys FDM2000台式造型机。 It is supplied to the filaments or Stratasys FDM2000 Stratasys FDM1650 desktop molding machine. 将熔融的碱溶性热塑性材料从具有235℃温度的液化器挤出到70℃至80℃的构建围护内至聚氨酯泡沫基底上。 Within the molten alkali-soluble thermoplastic material is extruded from the liquefier has a temperature of 235 deg.] C to 70 deg.] C to 80 deg.] C to construct the envelope on a polyurethane foam substrate. 挤出的碱溶性热塑性材料具有约0.020英寸至0.040英寸的路宽和约0.007英寸至约0.020英寸的路高(薄片间隔)。 Lane extruded alkali-soluble thermoplastic material has about 0.020 inches to 0.040 inches and about 0.007 inches to about 0.020 inches tall path (sheet interval). 通过使用用于形成支撑件的碱溶性热塑性材料由具有104℃的玻璃化转变温度的ABS热塑性塑料构建模型。 The alkali-soluble thermoplastic material forming the support member by using a glass transition temperature of 104 ℃ having an ABS thermoplastic building the model. 为了使支撑件溶解,模型被放置在设定为70℃且具有25-27赫兹的扫描频率的超声波清洗浴槽内,其中所述超声波清洗浴槽容纳有约98.7%的水、0.85%的水软化剂、0.30%的pH调节剂以及0.15%的表面活性剂的碱性水溶液。 In order to dissolve the support member, the model is placed in a set of 70 ℃ having a scanning frequency of 25-27 Hz and an ultrasonic cleaning bath, wherein the ultrasonic cleaning bath accommodating water of about 98.7%, 0.85% water softener , 0.30% aqueous solution of an alkaline pH adjusting agent and 0.15% of a surfactant. 在两个小时或更少的时间内,支撑件被溶解。 Within two hours or less time, the support is dissolved. 根据这个实例的碱溶性热塑性材料表现出适用于在Stratasys纤丝供给台式机上进行三维造型的热性质、机械强度、粘度、粘附性、可溶性以及加工特征。 The alkali-soluble thermoplastic material of this example exhibits thermal properties suitable for the supply desktop Stratasys filaments in the three-dimensional modeling, mechanical strength, viscosity, adhesiveness, solubility and processing characteristics.

实例III碱溶性热塑性材料与上述的实例II具有相同的组成,但是在这个实例中,基础聚合物未被加热来释放湿气。 Example III with alkali-soluble thermoplastic material of Example II described above have the same composition, but in this example, the base polymer is not heated to release moisture. 碱溶性热塑性材料如在实例II中被加工并从Stratasys FDM机器挤出,并且沉积以形成用于ABS热塑性塑料所构建的模型的支撑结构。 The alkali-soluble thermoplastic material is processed and extruded in Example II from Stratasys FDM machine, and depositing a support structure to form a model for ABS thermoplastics constructed. 在这个实例中,碱溶性热塑性材料表现出自挤出头比理想更大量的“渗漏”,但是另外表现出适用于三维造型的特征。 In this example, the performance of the alkali-soluble thermoplastic material from the extrusion head over a larger amount than the "leakage", but additionally exhibit features suitable for three-dimensional modeling. “渗漏”可归因于组合物中存在的水。 "Leakage" of water attributable present in the composition. 如果应用于其中材料分配器具有正压截止机构的造型系统中,则Stratasys FDM机器中所表现出的“渗漏”效果将不会发生,并且可以有效地利用根据这个实例III的材料。 If the applied pressure wherein the material dispenser having a cut-off mechanism of the molding system, the machine Stratasys FDM exhibited "leakage" effect will not occur, and the material can be effectively utilized in accordance with this Example III.

实例IV通过改变增塑剂的浓度产生本发明的碱溶性热塑性材料的样品,以比较增塑剂对玻璃化转变温度和熔体流动指数的影响。 Examples IV to produce the samples of the present invention the alkali-soluble thermoplastic material by varying the concentration of the plasticizer, the plasticizer to compare transition temperature and melt flow index of the glass. 所使用的基础聚合物和增塑剂与实例I中所述的相同。 We used the same base polymer and a plasticizer in Example I above. 表1提供实例IV(A)-实例IV(M)的碱溶性热塑性材料的重量百分比浓度。 Table 1 provides the Example IV (A) - Weight percent concentrations of Example IV (M) of the alkali-soluble thermoplastic material. 如所示,增塑剂的浓度在所述样品之间进行变化。 , The concentration of plasticizer varies between the sample, such as. 表1还提供实例IV(A)-实例IV(M)的碱溶性热塑性材料的相应的玻璃化转变温度(Tg)和熔体流动指数(MFI)。 Table 1 also provides Example IV (A) - Examples of corresponding glass IV (M) of the alkali-soluble thermoplastic material transition temperature (Tg) and melt flow index (MFI). 在160℃、230℃或270℃在1.2千克的负载下根掘ASTM D1238测试熔体流动指数。 At 160 ℃, 230 ℃ deg.] C, or 270 at a load of 1.2 kilograms roots dug melt flow index ASTM D1238 test.

表1 Table 1

(*)基于碱溶性热塑性材料的总重量。 (*) An alkali-soluble thermoplastic material based on the total weight.

表1中的数据说明增塑剂浓度对碱溶性热塑性材料的玻璃化转变温度和熔体流动指数的影响。 Data in Table 1 described transition temperature and the plasticizer concentration in the melt flow index of the glass of the alkali-soluble thermoplastic material. 通常,当碱溶性热塑性材料中的增塑剂的浓度增加时,玻璃化转变温度降低而熔体流动指数增加。 Typically, when the concentration of the alkali-soluble thermoplastic material plasticizer, the glass transition temperature is lowered and the melt flow index increases. 同样地,改变增塑剂的浓度提供玻璃化转变温度与熔体流动指数之间的平衡。 Similarly, varying the concentration of plasticizer to provide Ping Heng between the glass transition temperature and the melt flow index.

对于用于实例IV(A)-实例IV(M)的基础聚合物和增塑剂,范围从约49℃(45%增塑剂)至约160℃(无增塑剂)的玻璃化转变温度通常与增塑剂的浓度成反向线性。 For Examples IV (A) - Examples IV (M) of the base polymer and a plasticizer, ranging from about 49 ℃ (45% plasticizer) to about 160 ℃ (no plasticizer) a glass transition temperature generally inversely linear with the concentration of the plasticizer. 如上所述,本发明的碱溶性支撑材料理想地表现出比构建围护温度至少高10℃的玻璃化转变温度。 As described above, the alkali-soluble material over the support surface of the present invention exhibit higher than building envelope temperature of at least 10 deg.] C of glass transition temperature. 同样地,当使用高构建围护温度(例如,100℃或更高)时,具有低浓度的增塑剂的碱溶性热塑性材料是优选的(例如,25%或更少),使碱溶性热塑性材料表现出较高的玻璃化转变温度。 The alkali-soluble thermoplastic material Likewise, when using high build envelope temperatures (e.g., 100 deg.] C or higher), having a low concentration of plasticizer are preferred (e.g., 25% or less), the alkali-soluble thermoplastic materials exhibit higher glass transition temperatures.

就230℃所测试的熔体流动指数而言,表1中的数据显示熔体流动指数大致以指数方式相对于增塑剂的浓度增加。 The melt flow index deg.] C to 230 tested, the data in Table 1 show a melt flow index substantially exponentially with respect to increasing the concentration of plasticizer. 增塑剂从25%增加到35%造成熔体流动指数从约6克/10分钟增加到约35克/10分钟。 Plasticizers cause a melt flow index from 25% to 35% to from about 6 g / 10 min to about 35 g / 10 min. 如上所述,优选范围从约1克/10分钟至约10克/10分钟的熔体流动指数。 As described above, preferably in the range from about 1 g / 10 min to about 10 g / 10 min of melt flow index. 同样地,约6克/10分钟的熔体流动指数认为是用于挤出材料的可接受的条件。 Similarly, from about 6 g / 10 min melt flow index that is acceptable for extruding the material condition. 然而,约35克/10分钟的熔体流动指数可能造成所需的物理性质潜在地下降。 However, about 35 g / 10 min of melt flow index of desired physical properties can cause potentially decreases.

如表1中所示,约25%或更少的增塑剂浓度(实例IV(A)-实例IV(K))提供约100℃或更高的玻璃化转变温度,以及提供在230℃的约6克/10分钟的熔体流动指数。 As shown in Table 1, concentration or less of a plasticizer (Example IV (A) - Examples IV (K)) to provide about 25% or higher glass transition temperature of about 100 deg.] C, and at 230 deg.] C to provide about 6 g / 10 min of melt flow index. 这种增塑剂浓度为本发明的碱溶性热塑性材料提供可接受的物理特征。 Acceptable physical characteristics such alkali-soluble thermoplastic materials of the present invention provide a concentration of the plasticizer.

尽管已参考优选实施例说明了本发明,然而本领域普通技术人员将会意识到在不偏离本发明的本质和范围的前提下可以做形式及细节上的变更。 While the preferred embodiment has been described with reference to embodiments of the present invention, however, those of ordinary skill in the art will appreciate without departing from the spirit and scope of the present invention and alterations may be made in the form and detail. 例如,将理解可以对造型过程进行无数修改。 For example, numerous modifications can be made to understand the modeling process. 将进一步理解可以对组合物进行各种修改。 It will be further appreciated that various modifications may be made to the composition. 同样,本发明的热塑性材料可以用于产生在各种造型过程中均有效的碱溶性三维物体。 Also, the thermoplastic material of the present invention may be used to produce a variety of shapes are effective in the process of the alkali-soluble three-dimensional object. 例如,碱溶性材料在流延或注射过程中可以形成可溶解的主芯体。 For example, alkali-soluble material or the casting may be formed during the injection of soluble core main body. 碱溶性材料同样可以用于产生模型(通过沉积造型或其它方式),该模型稍后可以从造型过程中所形成的物体中溶解出。 The alkali-soluble material can be also used for generating a model (by deposition modeling or otherwise), the object model may be formed later from the molding process by dissolving out.

Claims (38)

1.一种用于制造三维物体的组合物,所述组合物包括增塑剂和基础聚合物,所述基础聚合物包括羧酸,其中所述组合物可溶于碱性溶液中。 1. A composition for manufacturing a three-dimensional object, the composition comprising a plasticizer and a base polymer, the base polymer comprises a carboxylic acid, wherein the composition is soluble in an alkaline solution.
2.根据权利要求1所述的组合物,其中所述增塑剂基于所述组合物的总重量占所述组合物的重量的约0.01%至约50.0%。 2. The composition according to claim 1, wherein the plasticizer based on the total weight of the composition comprises from about 0.01% to about 50.0% by weight of the composition.
3.根据权利要求2所述的组合物,其中所述增塑剂基于所述组合物的总重量占所述组合物的重量的约5.0%至约25.0%。 3. The composition of claim 2, wherein the plasticizer based on the total weight of the composition comprises from about 5.0% to about 25.0% by weight of the composition.
4.根据权利要求1所述的组合物,其中所述增塑剂选自:由磷酸对-叔丁基苯二苯酯;邻苯二甲酸丁苄酯;邻苯二甲酸-7-(2,6,6,8-四甲基-4-氧杂-3-氧代壬)苄酯;邻苯二甲酸C7/C9烷苄酯;磷酸-2-乙基己二苯酯;磷酸异癸二苯酯及其组合组成的组中。 4. The composition of claim 1, wherein said plasticizer is selected from claim: phosphoric acid to - t-butyl phenyl diphenyl phosphate; phthalate, Ding Bian phthalate; phthalate-7- (2 , 6,6,8- tetramethyl-4-oxa-3-oxo-nonyl) benzyl; phthalic C7 / C9 alkyl benzyl ester; diphenyl phosphate, 2-ethylhexyl acrylate; isodecyl diphenyl group, and combinations thereof.
5.根据权利要求1所述的组合物,其中所述羧酸包括甲基丙烯酸。 5. A composition according to claim 1, wherein the carboxylic acid comprises methacrylic acid.
6.根据权利要求5所述的组合物,其中所述羧酸基于所述基础聚合物的总重量占所述基础聚合物的重量的约15.0%至约60.0%。 6. The composition according to claim 5, wherein said carboxylic acid based on the total weight of the base polymer comprises from about 15.0% to about 60.0% by weight of the base polymer.
7.根据权利要求1所述的组合物,其中所述基础聚合物进一步包括甲基丙烯酸烷基酯。 7. A composition according to claim 1, wherein the base polymer further comprises an alkyl methacrylate.
8.根据权利要求7所述的组合物,其中所述甲基丙烯酸烷基酯包括甲基丙烯酸甲酯。 8. The composition of claim 7, wherein the alkyl methacrylate comprises methyl methacrylate.
9.根据权利要求1所述的组合物,其中所述组合物表现出范围从约49℃至约160℃的玻璃化转变温度。 9. The composition of claim 1, wherein the composition exhibits a range from the glass transition temperature to about 49 deg.] C to about 160 ℃.
10.根据权利要求1所述的组合物,其中当在230℃在1.2千克的负载下根据ASTM D1238进行测试时,所述组合物表现出范围从约1克/10分钟至约10克/10分钟的熔体流动指数。 10. The composition according to claim 1, wherein when at 230 deg.] C according to ASTM D1238 when tested in the composition was 1.2 kg load exhibits ranging from about 1 g / 10 minutes to about 10 g / 10 the melt flow index minutes.
11.根据权利要求10所述的组合物,其中当在230℃在1.2千克的负载下根据ASTM D1238进行测试时,所述组合物表现出范围从约5克/10分钟至约10克/10分钟的熔体流动指数。 11. The composition of claim 10, wherein when at 230 deg.] C according to ASTM D1238 when tested, the combination of 1.2 kg load exhibits a range of from about 5 g / 10 minutes to about 10 g / 10 the melt flow index minutes.
12.一种用于制造三维物体的组合物,所述组合物包括含有羧酸的聚合物,其中所述组合物可溶于碱性溶液中,并且其中当在230℃在1.2千克的负载下根据ASTM D1238进行测试时,所述组合物表现出约10克/10分钟或更小的熔体流动指数。 12. A composition for manufacturing a three-dimensional object, the composition comprising a carboxylic acid containing polymer, wherein the composition is soluble in an alkaline solution, and wherein when at 230 ℃ 1.2 kg load when tested in accordance with ASTM D1238, the composition exhibits from about 10 g / 10 min or less, a melt flow index.
13.根据权利要求12所述的组合物,进一步包括增塑剂。 13. The composition according to claim 12, further comprising a plasticizer.
14.根据权利要求13所述的组合物,其中所述增塑剂基于所述组合物的总重量占所述组合物的重量的约25.0%或更少。 14. The composition according to claim 13, wherein the plasticizer based on the total weight of the composition comprises about 25.0% by weight of the composition or less.
15.根据权利要求12所述的组合物,其中所述组合物表现出约100℃或更高的玻璃化转变温度。 15. The composition according to claim 12, wherein said composition exhibits a higher or a glass transition temperature of about 100 ℃.
16.根据权利要求12所述的组合物,其中当在230℃在1.2千克的负载下根据ASTM D1238进行测试时,所述组合物表现出范围从约5克/10分钟至约10克/10分钟的熔体流动指数。 16. The composition according to claim 12, wherein when at 230 deg.] C according to ASTM D1238 when tested, the combination of 1.2 kg load exhibits a range of from about 5 g / 10 minutes to about 10 g / 10 the melt flow index minutes.
17.根据权利要求12所述的组合物,其中所述羧酸包括甲基丙烯酸。 17. The composition according to claim 12, wherein the carboxylic acid comprises methacrylic acid.
18.根据权利要求12所述的组合物,其中所述基础聚合物进一步包括甲基丙烯酸烷基酯。 18. The composition according to claim 12, wherein the base polymer further comprises an alkyl methacrylate.
19.根据权利要求18所述的组合物,其中所述甲基丙烯酸烷基酯包括甲基丙烯酸甲酯。 19. The composition according to claim 18, wherein the alkyl methacrylate comprises methyl methacrylate.
20.根据权利要求18所述的组合物,其中所述羧酸基于羧酸和甲基丙烯酸烷基酯的总重量占羧酸和甲基丙烯酸烷基酯重量的约15.0%至约60.0%。 20. The composition according to claim 18, wherein said carboxylic acid and carboxylic acid based on the total weight of the alkyl methacrylate comprises about 15.0% to about 60.0% acid and alkyl methacrylate by weight.
21.根据权利要求18所述的组合物,其中所述羧酸和所述甲基丙烯酸烷基酯被聚合。 21. The composition according to claim 18, wherein said carboxylic acid and said alkyl methacrylate is polymerized.
22.一种制造三维物品的方法,所述方法包括:沉积包括从羧酸获得的基础聚合物的组合物,其中所述组合物可溶于碱性溶液,并且其中当在230℃在1.2于克的负载下根据ASTM D1238进行测试时,所述组合物表现出约10克/10分钟或更小的熔体流动指数;以及使所述组合物固化。 22. A method of manufacturing a three-dimensional object, the method comprising: depositing a composition comprising a base polymer obtained from a carboxylic acid, wherein the composition is soluble in an alkaline solution, and wherein when at 1.2 deg.] C to 230 g under a load according to ASTM D1238 test time, the composition exhibits from about 10 g / 10 min or less, a melt flow index; and curing the composition.
23.根据权利要求22所述的方法,其中以多个步骤沉积及固化所述组合物以制造多层,其中所述层限定所述三维物品。 23. The method according to claim 22, wherein the plurality of deposition and the step of curing the composition to produce a multilayer, wherein the layers defining said three-dimensional article.
24.根据权利要求22所述的方法,其中所述组合物进一步包括增塑剂。 24. A method according to claim 22, wherein said composition further comprises a plasticizer.
25.根据权利要求24所述的方法,其中所述增塑剂基于所述组合物的总重量占所述组合物重量的约25.0%或更少。 25. The method of claim 24, wherein the plasticizer based on the total weight of the composition comprises about 25.0% by weight of the composition or less.
26.根据权利要求24所述的方法,其中所述组合物沉积在表现出构建围护温度的构建围护内,并且其中所述增塑剂在所述组合物中被浓缩成有效水平,以使所述组合物表现出高于所述构建围护温度的玻璃化转变温度。 26. The method according to claim 24, wherein said composition is deposited constructed exhibits build envelope temperature inside the enclosure, and wherein the plasticizer is concentrated to effective levels in the composition to the composition exhibits above the glass transition temperature of the building envelope temperature.
27.根据权利要求24所述的方法,其中所述增塑剂基于所述组合物的总重量占所述组合物重量的约25.0%或更少。 27. The method according to claim 24, wherein the plasticizer based on the total weight of the composition comprises about 25.0% by weight of the composition or less.
28.根据权利要求27所述的方法,其中所述组合物表现出约100℃或更高的玻璃化转变温度。 28. The method according to claim 27, wherein said composition exhibits a glass or higher transition temperature of about 100 deg.] C.
29.根据权利要求27所述的方法,其中当在230℃在1.2千克的负载下根据ASTM D1238进行测试时,所述组合物表现出范围从约5克/10分钟至约10克/10分钟的熔体流动指数。 29. The method of claim 27, wherein when at 230 deg.] C according to ASTM D1238 when tested, the combination of 1.2 kg load exhibits a range of from about 5 g / 10 min to about 10 g / 10 min the melt flow index.
30.根据权利要求22所述的组合物,其中所述羧酸包括甲基丙烯酸。 30. The composition according to claim 22, wherein the carboxylic acid comprises methacrylic acid.
31.根据权利要求22所述的组合物,其中进一步从甲基丙烯酸烷基酯获得所述基础聚合物。 31. The composition according to claim 22, further wherein the base polymer is obtained from an alkyl methacrylate.
32.根据权利要求31所述的组合物,其中所述甲基丙烯酸烷基酯包括甲基丙烯酸甲酯。 32. The composition according to claim 31, wherein the alkyl methacrylate comprises methyl methacrylate.
33.在一种用于制造三维物体的方法中,所述方法是通过将可固化造型材料分配成预定图案以限定所述三维物体,结合分配可固化支撑材料以限定用于所述三维物体的支撑结构,来制造所述三维物体,所述支撑结构从而具有与所述物体相接触的部分,其改进包括:至少所述支撑结构与所述物体接触的部分由包括含有羧酸的聚合物的热塑性材料形成,其中所述组合物可溶于碱性液体,并且其中当在230℃在1.2千克的负载下根据ASTM D1238进行测试时,所述组合物表现出约10克/10分钟或更小的熔体流动指数。 33. A method for producing a three-dimensional object, the method is assigned to a predetermined pattern by applying a curable molding material to define the three-dimensional object, dispensing a curable binding material to define a support for said three-dimensional object a support structure, producing a three-dimensional object, whereby the support structure has a portion in contact with said object, the improvement comprising: at least a portion of the support structure in contact with the object comprises a carboxylic acid containing polymers forming a thermoplastic material, wherein said composition is soluble in alkaline liquids, and wherein when at 230 deg.] C according to ASTM D1238 when tested at the 1.2 kg composition exhibits a load of about 10 g / 10 minutes or less the melt flow index.
34.根据权利要求33所述的方法,其中所述热塑性材料进一步包括基于所述热塑性材料的总重量占所述热塑性材料重量的约0.01%至约50.0%的增塑剂。 34. The method according to claim 33, wherein the thermoplastic material further comprises from about 0.01% to about 50.0% by weight of the plasticizer comprises a thermoplastic material based on total weight of the thermoplastic material.
35.一种用于制造三维物体的添加方法,该方法包括:将碱溶性造型材料分配成预定图案,以限定具有在成形期间需要支撑的悬空部的三维物体;以及将支撑材料分配到所述三维物体的悬空部下方的空间内,结合所述造型材料的分配,以形成用于所述物体的三维支撑结构,所述支撑材料包括含有羧酸的聚合物,其中所述组合物可溶于碱性溶液,并且其中当在230℃在1.2千克的负载下根据ASTM D1238进行测试时,所述组合物表现出约10克/10分钟或更小的熔体流动指数;由此使所述支撑材料通过施加碱性溶液从所述三维物体溶解掉。 35. A method for manufacturing a three-dimensional object is added, the method comprising: assigning an alkali-soluble mold material into a predetermined pattern to define a floating portion having a three-dimensional object to be supported during forming; and assigned to the support material three-dimensional object space portion dangling below, in conjunction with the dispensing of modeling material, to form a support structure for the three-dimensional object, said support material comprising a polymer containing a carboxylic acid, wherein the composition is soluble an alkaline solution, and wherein when at 230 deg.] C according to ASTM D1238 when tested at the 1.2 kg composition exhibits a load of about 10 g / 10 min or less, a melt flow index; whereby the support material by applying an alkaline solution to dissolve away from the three-dimensional object.
36.根据权利要求35所述的方法,其中所述支撑材料进一步包括增塑剂。 36. The method according to claim 35, wherein the support material further comprises a plasticizer.
37.根据权利要求35所述的方法,其中所述支撑材料表现出约100℃或更高的玻璃化转变温度。 37. The method according to claim 35, wherein the support material or exhibit a higher glass transition temperature of about 100 deg.] C.
38.在一种通过将可固化材料沉积到基底上制造三维物体的方法中,其改进包括:提供含有羧酸的聚合物作为所述可固化材料,其中所述组合物可溶于碱性溶液中,并且其中当在230℃在1.2千克的负载下根据ASTM D1238进行测试时,所述组合物表现出约10克/10分钟或更小的熔体流动指数。 38. In one curable material by depositing a method of manufacturing the three-dimensional object on a substrate, the improvement comprising: providing a polymer containing a carboxylic acid as the basic solution of the curable material, wherein said composition is soluble and wherein when at 230 deg.] C according to ASTM D1238 when tested at the 1.2 kg composition exhibits a load of about 10 g / 10 min or less, a melt flow index.
CN 200580031972 1999-04-20 2005-07-15 Soluble material and process for three-dimensional modeling CN101027170A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10898814 US7754807B2 (en) 1999-04-20 2004-07-26 Soluble material and process for three-dimensional modeling

Publications (1)

Publication Number Publication Date
CN101027170A true true CN101027170A (en) 2007-08-29

Family

ID=35907994

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200580031972 CN101027170A (en) 1999-04-20 2005-07-15 Soluble material and process for three-dimensional modeling

Country Status (4)

Country Link
US (2) US7754807B2 (en)
JP (1) JP5039549B2 (en)
CN (1) CN101027170A (en)
WO (1) WO2006020279A3 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102548738A (en) * 2009-09-30 2012-07-04 斯特拉塔西斯公司 Consumable materials having topographical surface patterns for use in extrusion-based digital manufacturing systems
CN103189187A (en) * 2010-11-01 2013-07-03 株式会社其恩斯 Modeling material for forming photoshaped article by ink-jet photoshaping method, support material for shape supporting during formation of photoshaped article by the photoshaping method, and process for producing photoshaped article by the photoshap
CN103395209A (en) * 2013-08-08 2013-11-20 西安非凡士机器人科技有限公司 Large 3D printer based on FDM principles
CN104582971B (en) * 2012-08-16 2017-03-08 斯特拉塔西斯公司 A print head nozzles for use with additive manufacturing system

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7754807B2 (en) * 1999-04-20 2010-07-13 Stratasys, Inc. Soluble material and process for three-dimensional modeling
US7658603B2 (en) * 2005-03-31 2010-02-09 Board Of Regents, The University Of Texas System Methods and systems for integrating fluid dispensing technology with stereolithography
US7780897B2 (en) * 2005-04-22 2010-08-24 Board Of Regents, The University Of Texas System Hydrogel constructs using stereolithography
FR2893018B1 (en) * 2005-11-09 2008-03-14 Commissariat Energie Atomique Media Training Method presenting reasons, such as lithography masks.
US7896209B2 (en) * 2008-04-30 2011-03-01 Stratasys, Inc. Filament drive mechanism for use in extrusion-based digital manufacturing systems
US7897074B2 (en) * 2008-04-30 2011-03-01 Stratasys, Inc. Liquefier assembly for use in extrusion-based digital manufacturing systems
US8155775B2 (en) * 2008-10-02 2012-04-10 Stratasys, Inc. Support structure packaging
US8246888B2 (en) * 2008-10-17 2012-08-21 Stratasys, Inc. Support material for digital manufacturing systems
US8981002B2 (en) 2009-03-19 2015-03-17 Stratasys, Inc. Biodegradable polymer compositions
JP2011005667A (en) * 2009-06-23 2011-01-13 Altech Co Ltd Support material removing device
JP2011005666A (en) * 2009-06-23 2011-01-13 Altech Co Ltd Circulation type support material removing device
US20100327479A1 (en) * 2009-06-23 2010-12-30 Stratasys, Inc. Consumable materials having customized characteristics
JP2011005668A (en) * 2009-06-23 2011-01-13 Altech Co Ltd Support material removing device
US9592539B2 (en) * 2010-01-05 2017-03-14 Stratasys, Inc. Support cleaning system
US8983643B2 (en) 2010-01-15 2015-03-17 Stratasys, Inc. Method for generating and building support structures with deposition-based digital manufacturing systems
US8801990B2 (en) 2010-09-17 2014-08-12 Stratasys, Inc. Method for building three-dimensional models in extrusion-based additive manufacturing systems using core-shell semi-crystalline consumable filaments
US8920697B2 (en) 2010-09-17 2014-12-30 Stratasys, Inc. Method for building three-dimensional objects in extrusion-based additive manufacturing systems using core-shell consumable filaments
US9227366B2 (en) 2010-10-27 2016-01-05 File2Part, Inc. Process for fabrication of three-dimensional objects
EP2447292B1 (en) * 2010-10-29 2017-03-29 BellandTechnology AG Water soluble copolymer which disintegrates in water
US8512024B2 (en) 2011-01-20 2013-08-20 Makerbot Industries, Llc Multi-extruder
US8460755B2 (en) 2011-04-07 2013-06-11 Stratasys, Inc. Extrusion-based additive manufacturing process with part annealing
KR20140009442A (en) 2011-04-20 2014-01-22 에보니크 룀 게엠베하 Maleic anhydride copolymers as soluble support material for fused deposition modelling (fdm) printer
WO2012151494A3 (en) 2011-05-05 2013-02-21 Interfacial Solutions Ip, Llc Radiation curable polymers
US8459280B2 (en) 2011-09-23 2013-06-11 Stratasys, Inc. Support structure removal system
US9364986B1 (en) 2012-05-22 2016-06-14 Rapid Prototype and Manufacturing LLC Method for three-dimensional manufacturing and high density articles produced thereby
US9708457B2 (en) 2012-06-28 2017-07-18 Stratasys, Inc. Moisture scavenger composition
US9308690B2 (en) * 2012-07-31 2016-04-12 Makerbot Industries, Llc Fabrication of objects with enhanced structural characteristics
US9592530B2 (en) 2012-11-21 2017-03-14 Stratasys, Inc. Additive manufacturing with polyamide consumable materials
US9744722B2 (en) 2012-11-21 2017-08-29 Stratasys, Inc. Additive manufacturing with polyamide consumable materials
US20140232035A1 (en) * 2013-02-19 2014-08-21 Hemant Bheda Reinforced fused-deposition modeling
US20140363532A1 (en) * 2013-06-10 2014-12-11 Kirk W. Wolfgram Multiple color extrusion type three dimensional printer
US9023566B2 (en) * 2013-07-17 2015-05-05 Stratasys, Inc. ABS part material for electrophotography-based additive manufacturing
US9523934B2 (en) 2013-07-17 2016-12-20 Stratasys, Inc. Engineering-grade consumable materials for electrophotography-based additive manufacturing
US9714318B2 (en) 2013-07-26 2017-07-25 Stratasys, Inc. Polyglycolic acid support material for additive manufacturing systems
US9745458B2 (en) 2013-07-26 2017-08-29 Hewlett-Packard Development Company, L.P. Composite support material for three-dimensional printing
US9669586B2 (en) 2013-10-01 2017-06-06 Autodesk, Inc. Material dispensing system
USD749157S1 (en) * 2014-01-05 2016-02-09 Makerbot Industries, Llc Three-dimensional printer extruder carriage
US9102099B1 (en) 2014-02-05 2015-08-11 MetaMason, Inc. Methods for additive manufacturing processes incorporating active deposition
WO2015175682A1 (en) * 2014-05-16 2015-11-19 Stratasys, Inc. High-temperature soluble support material for additive manufacturing
US9533449B2 (en) 2014-06-19 2017-01-03 Autodesk, Inc. Material deposition systems with four or more axes
KR101680334B1 (en) * 2015-06-15 2016-11-29 주식회사 퓨쳐캐스트 A Manufacturing method of Mold using 3-dimensional Printing method
DE102015115821A1 (en) * 2015-09-18 2017-03-23 Dyemansion Gmbh A method for manufacturing and for surface treatment of a molding
WO2017094709A1 (en) * 2015-12-01 2017-06-08 株式会社リコー Water-disintegrable resin composition, and three-dimensional modeling material set and method for producing three-dimensional model using same

Family Cites Families (107)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE553136A (en) 1955-12-08
US3016451A (en) * 1957-06-04 1962-01-09 Auto Arc Weld Mfg Co Electrode feed roll means
BE632939A (en) * 1962-08-08
US3381812A (en) * 1966-08-04 1968-05-07 Anaconda Wire & Cable Co Weathertight reel for pipe-type cable
GB1418901A (en) * 1972-03-30 1975-12-24 Simon W H Outlet bodies for reel housings
US3917090A (en) * 1973-11-02 1975-11-04 Pitney Bowes Inc Postage meter tape recepticle system
US4152367A (en) * 1977-08-04 1979-05-01 Bayer Aktiengesellschaft Branched polyaryl-sulphone/polycarbonate mixtures and their use for the production of extruded films
US4469728A (en) * 1980-01-09 1984-09-04 Belz Roland Karl Composite foil, particularly a toilet seat support, as well as process
US4671982A (en) * 1980-01-09 1987-06-09 Rb Kunststoffpatent-Verwertungs Ag Composite foil
US4397986A (en) * 1982-03-03 1983-08-09 Ethyl Corporation Thermoplastic polyester blends
DE3335954A1 (en) * 1983-10-04 1985-04-04 Belz Roland Dipl Kaufm Method for carrying out chemical reactions, in particular for the production of plastics with the help of extruders and investment purpose
US4665492A (en) * 1984-07-02 1987-05-12 Masters William E Computer automated manufacturing process and system
US4749347A (en) * 1985-08-29 1988-06-07 Viljo Valavaara Topology fabrication apparatus
DE3750709D1 (en) * 1986-06-03 1994-12-08 Cubital Ltd Apparatus for processing three-dimensional models.
US4886856A (en) * 1986-08-21 1989-12-12 The Dow Chemical Company Functionalized elastomers blended with polar copolymers of styrene and acrylic acid methacrylic acid or maleic anhydride
US5322878A (en) * 1987-10-28 1994-06-21 Belland Ag Carboxylated molding copolymers
US4844373A (en) * 1987-12-18 1989-07-04 Fike Sr Richard A Line storage and dispensing device
US4928897A (en) * 1988-01-18 1990-05-29 Fuji Photo Film Co., Ltd. Feeder for feeding photosensitive material
US5169548A (en) * 1988-04-13 1992-12-08 Ausimont S.R.L. Antirust additives for lubricants or greases based on perfluoropolyethers
US5141680A (en) * 1988-04-18 1992-08-25 3D Systems, Inc. Thermal stereolighography
US4898314A (en) * 1988-10-20 1990-02-06 International Business Machines Corporation Method and apparatus for stitcher wire loading
GB2229702B (en) * 1989-02-04 1992-09-30 Draftex Ind Ltd Strip handling apparatus
JP2738017B2 (en) * 1989-05-23 1998-04-08 ブラザー工業株式会社 Three-dimensional molding apparatus
GB2233928B (en) * 1989-05-23 1992-12-23 Brother Ind Ltd Apparatus and method for forming three-dimensional article
US5134569A (en) * 1989-06-26 1992-07-28 Masters William E System and method for computer automated manufacturing using fluent material
US5216616A (en) * 1989-06-26 1993-06-01 Masters William E System and method for computer automated manufacture with reduced object shape distortion
JPH0336019A (en) * 1989-07-03 1991-02-15 Brother Ind Ltd Three-dimensional molding method and device thereof
US5121329A (en) * 1989-10-30 1992-06-09 Stratasys, Inc. Apparatus and method for creating three-dimensional objects
US5136515A (en) * 1989-11-07 1992-08-04 Richard Helinski Method and means for constructing three-dimensional articles by particle deposition
US5204055A (en) * 1989-12-08 1993-04-20 Massachusetts Institute Of Technology Three-dimensional printing techniques
US5257657A (en) * 1990-07-11 1993-11-02 Incre, Inc. Method for producing a free-form solid-phase object from a material in the liquid phase
ES2093659T3 (en) * 1990-07-27 1997-01-01 Belland Ag Process for the recovery of soluble polymers or acid aqueous alkaline medium.
JP2597778B2 (en) * 1991-01-03 1997-04-09 ストラタシイス,インコーポレイテッド Three-dimensional object assembly system and assembly method
US5594652A (en) * 1991-01-31 1997-01-14 Texas Instruments Incorporated Method and apparatus for the computer-controlled manufacture of three-dimensional objects from computer data
US6175422B1 (en) * 1991-01-31 2001-01-16 Texas Instruments Incorporated Method and apparatus for the computer-controlled manufacture of three-dimensional objects from computer data
US5474719A (en) * 1991-02-14 1995-12-12 E. I. Du Pont De Nemours And Company Method for forming solid objects utilizing viscosity reducible compositions
US5217795A (en) * 1991-08-13 1993-06-08 Kimberly-Clark Corporation Polymeric web compositions having improved alkaline solubility for use as fibers
EP0553683B1 (en) * 1992-01-28 1997-06-25 Belland Ag Process for the recovery of polymers dissolved in an aqueous alkaline or acid medium
US5263585A (en) * 1992-05-07 1993-11-23 Myriadlase, Inc. Package for an elongated flexible fiber
US5293996A (en) * 1992-05-14 1994-03-15 Motorola, Inc. Container having an observation window
US5304433A (en) * 1992-09-28 1994-04-19 Gnb Battery Technologies Inc. Capacity indicator for lead-acid batteries
JP2558431B2 (en) * 1993-01-15 1996-11-27 ストラタシイス,インコーポレイテッド How to operate the system for producing a three-dimensional structure and three-dimensional structure manufacturing apparatus
US5312224A (en) * 1993-03-12 1994-05-17 International Business Machines Corporation Conical logarithmic spiral viscosity pump
ES2110127T3 (en) * 1993-04-02 1998-02-01 Huels Chemische Werke Ag Multilayer plastic tube.
US5765740A (en) * 1993-12-30 1998-06-16 Ferguson; Patrick J. Suture-material-dispenser system for suture material
JPH07256764A (en) * 1994-03-25 1995-10-09 Sekisui Chem Co Ltd Manufacture of ultraviolet setting image forming sheet
US5503785A (en) * 1994-06-02 1996-04-02 Stratasys, Inc. Process of support removal for fused deposition modeling
JPH0827305A (en) * 1994-07-13 1996-01-30 Fuji Photo Film Co Ltd Color masterbatch resin composition for photographic photosensitive material packaging material, preparation thereof, photographic photosensitive material packaging material, and production thereof
US5622216A (en) * 1994-11-22 1997-04-22 Brown; Stuart B. Method and apparatus for metal solid freeform fabrication utilizing partially solidified metal slurry
US5830087A (en) * 1995-06-26 1998-11-03 Lisco, Inc. Multi-layer golf ball
US5653925A (en) * 1995-09-26 1997-08-05 Stratasys, Inc. Method for controlled porosity three-dimensional modeling
US6133355A (en) * 1995-09-27 2000-10-17 3D Systems, Inc. Selective deposition modeling materials and method
US6270335B2 (en) * 1995-09-27 2001-08-07 3D Systems, Inc. Selective deposition modeling method and apparatus for forming three-dimensional objects and supports
US5943235A (en) * 1995-09-27 1999-08-24 3D Systems, Inc. Rapid prototyping system and method with support region data processing
US5764521A (en) * 1995-11-13 1998-06-09 Stratasys Inc. Method and apparatus for solid prototyping
US5738817A (en) * 1996-02-08 1998-04-14 Rutgers, The State University Solid freeform fabrication methods
US6085957A (en) * 1996-04-08 2000-07-11 Stratasys, Inc. Volumetric feed control for flexible filament
JP2001500916A (en) 1996-09-25 2001-01-23 ベラント アーゲー Two-phase polymer combination and the method of preparation soluble in an aqueous alkaline solution
EP0937135B1 (en) * 1996-10-24 2002-04-03 Unilever N.V. Pack containing a dry alkaline solid
US6228923B1 (en) 1997-04-02 2001-05-08 Stratasys, Inc. Water soluble rapid prototyping support and mold material
US6070107A (en) * 1997-04-02 2000-05-30 Stratasys, Inc. Water soluble rapid prototyping support and mold material
US6067480A (en) * 1997-04-02 2000-05-23 Stratasys, Inc. Method and apparatus for in-situ formation of three-dimensional solid objects by extrusion of polymeric materials
JPH10307402A (en) * 1997-05-09 1998-11-17 Fuji Photo Film Co Ltd Negative photosensitive material
US5866058A (en) * 1997-05-29 1999-02-02 Stratasys Inc. Method for rapid prototyping of solid models
US6119567A (en) * 1997-07-10 2000-09-19 Ktm Industries, Inc. Method and apparatus for producing a shaped article
US5932055A (en) * 1997-11-11 1999-08-03 Rockwell Science Center Llc Direct metal fabrication (DMF) using a carbon precursor to bind the "green form" part and catalyze a eutectic reducing element in a supersolidus liquid phase sintering (SLPS) process
US5939008A (en) * 1998-01-26 1999-08-17 Stratasys, Inc. Rapid prototyping apparatus
US6022207A (en) * 1998-01-26 2000-02-08 Stratasys, Inc. Rapid prototyping system with filament supply spool monitoring
US5968561A (en) * 1998-01-26 1999-10-19 Stratasys, Inc. High performance rapid prototyping system
US6004124A (en) * 1998-01-26 1999-12-21 Stratasys, Inc. Thin-wall tube liquifier
US6027068A (en) * 1998-03-19 2000-02-22 New Millennium Products, Inc. Dispenser for solder and other ductile strand materials
KR100620767B1 (en) * 1998-05-13 2006-09-06 스미또모 가가꾸 가부시키가이샤 Thermoplastic resin composition and heat-resistant tray for IC
US6095323A (en) * 1998-06-12 2000-08-01 Ferguson; Patrick J. Suture-material-dispenser system for suture material
US6322728B1 (en) * 1998-07-10 2001-11-27 Jeneric/Pentron, Inc. Mass production of dental restorations by solid free-form fabrication methods
US6129872A (en) * 1998-08-29 2000-10-10 Jang; Justin Process and apparatus for creating a colorful three-dimensional object
US6161077A (en) * 1999-01-05 2000-12-12 Hubbell Incorporated Partial discharge site location system for determining the position of faults in a high voltage cable
US6054077A (en) * 1999-01-11 2000-04-25 Stratasys, Inc. Velocity profiling in an extrusion apparatus
US6261077B1 (en) 1999-02-08 2001-07-17 3D Systems, Inc. Rapid prototyping apparatus with enhanced thermal and/or vibrational stability for production of three dimensional objects
US6162378A (en) * 1999-02-25 2000-12-19 3D Systems, Inc. Method and apparatus for variably controlling the temperature in a selective deposition modeling environment
US6645412B2 (en) 1999-04-20 2003-11-11 Stratasys, Inc. Process of making a three-dimensional object
EP1194274B1 (en) * 1999-04-20 2017-03-22 Stratasys, Inc. Process for three-dimensional modeling
US6776602B2 (en) * 1999-04-20 2004-08-17 Stratasys, Inc. Filament cassette and loading system
US7754807B2 (en) * 1999-04-20 2010-07-13 Stratasys, Inc. Soluble material and process for three-dimensional modeling
US7314591B2 (en) 2001-05-11 2008-01-01 Stratasys, Inc. Method for three-dimensional modeling
US6165406A (en) * 1999-05-27 2000-12-26 Nanotek Instruments, Inc. 3-D color model making apparatus and process
US6722872B1 (en) * 1999-06-23 2004-04-20 Stratasys, Inc. High temperature modeling apparatus
JP3995933B2 (en) 1999-06-23 2007-10-24 ストラタシス・インコーポレイテッドStratasys, Inc. High temperature model production unit
US6257517B1 (en) * 1999-08-10 2001-07-10 Sandvik Steel Co. Method and apparatus for feeding welding wire
US6214279B1 (en) 1999-10-02 2001-04-10 Nanotek Instruments, Inc. Apparatus and process for freeform fabrication of composite reinforcement preforms
JP4296691B2 (en) * 2000-06-01 2009-07-15 コニカミノルタホールディングス株式会社 The image forming method
US6730252B1 (en) * 2000-09-20 2004-05-04 Swee Hin Teoh Methods for fabricating a filament for use in tissue engineering
US6572807B1 (en) * 2000-10-26 2003-06-03 3D Systems, Inc. Method of improving surfaces in selective deposition modeling
US7568445B2 (en) * 2000-11-17 2009-08-04 Lockheed Martin Corporation System and method for the holographic deposition of material
US6866807B2 (en) * 2001-09-21 2005-03-15 Stratasys, Inc. High-precision modeling filament
US6814907B1 (en) * 2001-12-18 2004-11-09 Stratasys, Inc. Liquifier pump control in an extrusion apparatus
US7255821B2 (en) * 2002-04-17 2007-08-14 Stratasys, Inc. Layered deposition bridge tooling
ES2357228T3 (en) * 2002-04-17 2011-04-20 Stratasys, Inc. Straightening method to layered deposition modeling.
US6907307B2 (en) * 2002-07-02 2005-06-14 3D Systems, Inc. Support volume calculation for a CAD model
US6869559B2 (en) * 2003-05-05 2005-03-22 Stratasys, Inc. Material and method for three-dimensional modeling
DE10348222A1 (en) 2003-10-10 2005-05-04 Belland Ag Biberist Adhesive and its use
US7546841B2 (en) * 2003-11-19 2009-06-16 David Jonathan Tafoya Apparatus and method of removing water soluble support material from a rapid prototype part
KR100626955B1 (en) 2004-08-27 2006-09-20 주식회사 엘지화학 Styrene-based Thermoplastic Resin Compositions with Very Low Gloss and High Impact Strength
US7384255B2 (en) * 2005-07-01 2008-06-10 Stratasys, Inc. Rapid prototyping system with controlled material feedstock
US7604470B2 (en) 2006-04-03 2009-10-20 Stratasys, Inc. Single-motor extrusion head having multiple extrusion lines
US7891964B2 (en) 2007-02-12 2011-02-22 Stratasys, Inc. Viscosity pump for extrusion-based deposition systems
US7625200B2 (en) 2007-07-31 2009-12-01 Stratasys, Inc. Extrusion head for use in extrusion-based layered deposition modeling
US8246888B2 (en) 2008-10-17 2012-08-21 Stratasys, Inc. Support material for digital manufacturing systems

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102548738A (en) * 2009-09-30 2012-07-04 斯特拉塔西斯公司 Consumable materials having topographical surface patterns for use in extrusion-based digital manufacturing systems
CN103189187A (en) * 2010-11-01 2013-07-03 株式会社其恩斯 Modeling material for forming photoshaped article by ink-jet photoshaping method, support material for shape supporting during formation of photoshaped article by the photoshaping method, and process for producing photoshaped article by the photoshap
CN103189187B (en) * 2010-11-01 2015-09-02 株式会社其恩斯 A method for manufacturing a support material for the ink jet printing method forming a three-dimensional modeling material photofabrication model for a shape model to support the light when the light processing and processing models photofabrication
CN105111380A (en) * 2010-11-01 2015-12-02 株式会社其恩斯 Modeling material for light processing model, supporting material for shape of light processing model, and production method of light processing model
CN104582971B (en) * 2012-08-16 2017-03-08 斯特拉塔西斯公司 A print head nozzles for use with additive manufacturing system
CN103395209A (en) * 2013-08-08 2013-11-20 西安非凡士机器人科技有限公司 Large 3D printer based on FDM principles

Also Published As

Publication number Publication date Type
US20100270707A1 (en) 2010-10-28 application
US20050004282A1 (en) 2005-01-06 application
WO2006020279A2 (en) 2006-02-23 application
US7754807B2 (en) 2010-07-13 grant
US8227540B2 (en) 2012-07-24 grant
JP5039549B2 (en) 2012-10-03 grant
WO2006020279A3 (en) 2007-04-05 application
JP2008507619A (en) 2008-03-13 application

Similar Documents

Publication Publication Date Title
US6238732B1 (en) Method for making hot melt adhesive pellet comprising continuous coating of pelletizing aid
US6132665A (en) Compositions and methods for selective deposition modeling
US6120899A (en) Hot melt adhesive pellet comprising continuous coating of pelletizing aid
US20030004600A1 (en) Material and method for three-dimensional modeling
US6869559B2 (en) Material and method for three-dimensional modeling
US3720540A (en) Production of glass fiber-reinforced plastic articles
US5521232A (en) Molding composition and process for low pressure molding of composite parts
US6645412B2 (en) Process of making a three-dimensional object
US3959209A (en) Curable solid polyester resins
US20010050031A1 (en) Compositions for three-dimensional printing of solid objects
US20120258250A1 (en) Extrusion-based additive manufacturing process with part annealing
US6060445A (en) Polymer cleaning compositions and methods
US5972272A (en) Unsaturated polyester resin composition and process for molding the composition
JP2003531220A (en) Compositions for printing solid objects three-dimensional
JP2009091426A (en) Aqueous dispersion, its manufacturing method and layered product
JP2005074896A (en) In-mold-coated transparent molded body
US3967004A (en) Method for the production of fiber-reinforced resin compounds
JP2002284886A (en) Manufacturing method of ethylene/vinyl alcohol copolymer resin composition
US5063095A (en) Expandable powder coating composition, method of coating a substrate with heat-insulating foam and composite material obtained thereby
US6790403B1 (en) Soluble material and process for three-dimensional modeling
US7754807B2 (en) Soluble material and process for three-dimensional modeling
US20110060445A1 (en) Use and provision of an amorphous vinyl alcohol polymer for forming a structure
US20140141166A1 (en) Additive manufacturing with polyamide consumable materials
JP2007177211A (en) Polyvinyl acetal powder and powder coating
US3862064A (en) Moulding compositions containing unsaturated and saturated polyesters, cellulose ester and monomeric material

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)