CN101011664A - Method for preparing metal phosphide hydrogenation refining catalyst by using hydrogen plasma reduction mehtod - Google Patents

Method for preparing metal phosphide hydrogenation refining catalyst by using hydrogen plasma reduction mehtod Download PDF

Info

Publication number
CN101011664A
CN101011664A CN 200710010082 CN200710010082A CN101011664A CN 101011664 A CN101011664 A CN 101011664A CN 200710010082 CN200710010082 CN 200710010082 CN 200710010082 A CN200710010082 A CN 200710010082A CN 101011664 A CN101011664 A CN 101011664A
Authority
CN
China
Prior art keywords
method
catalyst
hydrogen plasma
metal
metal phosphide
Prior art date
Application number
CN 200710010082
Other languages
Chinese (zh)
Other versions
CN100479918C (en
Inventor
王安杰
秦明磊
郭洪臣
王丽
李翔
Original Assignee
大连理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大连理工大学 filed Critical 大连理工大学
Priority to CN 200710010082 priority Critical patent/CN100479918C/en
Publication of CN101011664A publication Critical patent/CN101011664A/en
Application granted granted Critical
Publication of CN100479918C publication Critical patent/CN100479918C/en

Links

Abstract

The invention discloses a solid catalyst in the oil distill hydrogenating course, which comprises the following steps: adopting metal oxide and phosphate salt to make oxide primer; placing the primer in the plasma reactor; aerating hydrogen at 10-600h-1; loading 10-20kV to generate plasma; reducing for 10-180 min; obtaining deep solid as phosphate catalyst.

Description

氢等离子体还原法制备金属磷化物加氢精制催化剂的方法 Hydrogen plasma Reduction Method hydrorefining catalyst metal phosphide method

技术领域 FIELD

本发明属于煤加工、石油加工和石油化工技术领域,涉及石油馏分油(汽油、煤油和柴油等)加氢精制工艺中所使用的固体催化剂。 The present invention belongs to the processing of coal, petroleum processing and petrochemical technologies, and relates to a solid catalyst hydrofining of petroleum distillates (gasoline, kerosene and diesel, etc.) used.

技术背景随着我国经济的持续快速发展和汽车保有量的迅猛增加,我国的石油消费量近年来快速增加。 BACKGROUND With the rapid development of rapid and sustained increase in car ownership in China's economy, China's oil consumption increased rapidly in recent years. 石油馏分油中的硫和氮元素在燃烧后产生的大量SOx和NOx会严重污染大气环境,不仅会损害大众的身体健康,而且会引起酸雨等灾害,破坏生态环境。 Petroleum distillate sulfur and nitrogen in the combustion of large quantities of SOx and NOx will seriously pollute the atmosphere, will not only harm the public's health, but also causes acid rain and other disasters, damage the ecological environment. 为了从源头上消减含硫化合物和含氮化合物的污染,世界各国近年来都制定了日益严格的燃油标准。 To pollution abatement sulfur and nitrogen compounds from the source countries in the world in recent years we have developed increasingly stringent fuel standards. 目前,我国石油炼制原料中进口量已超过我国石油的开采量,而进口的石油多为含硫和高硫原油,因而我国炼油企业面临着更为严峻的挑战。 Currently, imports of petroleum refining raw materials, China has more than exploitation of oil and imports of oil, mostly sulfur and high-sulfur crude oil, so China's oil refining enterprises are faced with more severe challenges.

燃料油中的有机含硫化合物和含氮化合物是通过加氢精制工艺在同一催化剂上同时脱除的,传统的加氢精制催化剂为负载型Co-Mo、Ni-Mo或Ni-W硫化物。 Organic sulfur-containing compounds and nitrogen compounds in the fuel are removed by hydrofinishing processes simultaneously on the same catalyst, a conventional hydrotreating catalyst is a supported Co-Mo, Ni-Mo or Ni-W sulphide. 六十多年来,硫化物催化剂虽经不断改进,但其活性仍无法满足日益严格的环保法规的要求。 More than sixty years, despite the continuous improvement sulfide catalyst, but its activity is still unable to meet the increasingly stringent requirements of environmental regulations. 因此,人们在继续设法提高硫化物催化剂的同时,也在探寻新的活性相,如过渡金属氮化物、碳化物和磷化物。 Thus, while it continues to try to improve the sulfide catalyst, but also to explore new active phase, such as transition metal nitrides, carbides and phosphides. 其中,氮化物和碳化物催化剂虽然初活性很高但其活性稳定性很差,且这两类活性相都不耐硫。 Wherein, nitrides and carbides Although the initial activity of the catalyst activity is high, but stability is poor, and these two phases are active sulfur intolerance.

Robinson等人1996年报道了Ni2P对喹啉的加氢脱氮反应活性高于工业Ni-Mo/Al2O3硫化物催化剂。 Robinson et al reported in 1996 on the Ni2P / Al2O3 sulfide catalyst hydrodenitrogenation quinoline reactive than industrial Ni-Mo. 过渡金属(如Ni、Mo和W)磷化物不仅具有很高的活性,而且具有优良的活性稳定性。 Transition metals (e.g., Ni, Mo, and W) phosphide only has high activity and excellent activity stability. 虽然制备金属磷化物的方法有多种,但磷化物加氢精制催化剂一般采用氢气还原过渡金属氧化物和磷氧化物的方法制备。 While there are several methods for preparing metal phosphide, but the general phosphide hydrorefining catalyst preparation and hydrogen reduction of transition metal oxides of phosphorus oxides employed. 由于过渡金属磷化物遇水会被氧化,而加氢还原的反应产物中有水生成,磷化物的制备必须采用高氢气流速和低的升温速率。 Since the transition metal phosphide with water will be oxidized, and the hydrogenation reaction product in the production of water, prepared phosphide hydrogen flow rate must be high and low heating rate. 因而,过渡金属磷化物的制备所需时间长,且消耗大量氢气。 Thus, a long time is required for the preparation of a transition metal phosphides, and consume large amounts of hydrogen.

发明内容 SUMMARY

本发明的目的是提供一种新的过渡金属磷化物制备方法,所制备的的金属磷化物是一种炼油厂加氢精制反应催化剂,可以有效脱除石油馏分油中的含硫化合物和含氮化合物,从而经济高效地实现深度脱硫和脱氮,生产清洁燃料。 Object of the present invention is to provide a novel method for preparing a transition metal phosphides, metal phosphides produced is an oil refinery hydrotreating catalyst may be effective to remove sulfur and nitrogen-containing compounds in petroleum distillate compound, cost-effectively achieve deep desulfurization and denitrification, the production of clean fuels.

本发明的技术方案是采用氢等离子体法还原金属和磷氧化物前体制备金属磷化物,反应30分钟以上可以得到结构完整的金属磷化物晶体,从而节约能源和氢气资源。 Aspect of the present invention to use reducing metal phosphorus oxide precursors and metal phosphide hydrogen plasma method, the reaction can be complete 30 minutes or more metal phosphide crystal structure, thereby saving energy resources and hydrogen.

所使用的金属是指Ni、Mo、W、Co、Fe、Ti和Mn中的一种过渡金属或几种金属的组合。 Metals refers Ni Mo, W, Co, Fe, Ti and Mn, a transition metal, or a combination of several metals. 所发明的方法既可以制备负载型过渡金属磷化物,也可以制备非负载型(又称体相)过渡金属磷化物。 The method of the invention may be prepared either supported transition metal phosphides, may also be prepared unsupported (also called phase) transition metal phosphide.

本发明的效果和益处是所制各的过渡金属磷化物催化剂在典型工业应用条件下对石油馏分中的稠环含硫化合物和含氮化合物具有很高的催化反应活性,可经济高效地实现石油馏分油的深度脱硫和脱氮,从而生产清洁燃料油,在石油炼制企业具有广泛应用前景。 Effects and benefits of the present invention is prepared for each transition metal phosphide catalyst has high catalytic activity for sulfur compounds and nitrogen-containing fused ring compounds in petroleum fractions in a typical industrial application conditions, the oil can be a cost effective way deep desulfurization and denitrification distillates to produce clean fuel, petroleum refining enterprise has broad application prospects.

具体实施方式 Detailed ways

以下详细叙述本发明的具体实施方式。 DETAILED DESCRIPTION The following description of the present invention in detail.

催化剂前体的制备以共浸渍法制备二氧化硅担载的钼硫磷催化剂前体为例,MoO3的负载量为40%(质量)。 An Example of the Preparation of a co-catalyst precursor prepared by impregnation of silica supported molybdenum catalyst precursor parathion, MoO3 loading of 40% (by mass). 称取3.65克钼酸铵((NH4)6Mo7O24.4H2O)和2.729克磷酸氢二铵((NH4)2HPO4),加入10毫升去离子水,溶解制成浸渍溶液。 Weigh 3.65 g of ammonium molybdate ((NH4) 6Mo7O24.4H2O) and 2.729 g of diammonium hydrogen phosphate ((NH4) 2HPO4), was added 10 ml of deionized water, dissolved by impregnation solution. 称取3克多孔二氧化硅,加入浸渍溶液,室温浸渍12小时。 3 g of porous silica was weighed, added to the impregnation solution, immersion for 12 hr at room temperature. 浆状物于120℃烘干12小时,然后于500℃空气中焙烧5h,得到氧化物前体。 The slurry was dried for 12 hours at 120 ℃, and then calcined in the air at 500 ℃ 5h, to obtain oxide precursor.

催化剂制备氧化物前体经压片制成0.3~0.5毫米颗粒,称取0.8克装入内径8毫米的非平衡等离子体反应器。 Oxide catalyst precursor prepared by tableting granules made of 0.3 to 0.5 mm, weighed 0.8 g non-equilibrium plasma reactor charged with an inner diameter of 8 mm. 等离子体反应器极间距3mm,放电电压10kV,频率11kHz。 The plasma reactor pole pitch 3mm, the discharge voltage of 10kV, frequency 11kHz. 通入氢气,流量为150ml/min。 Introducing hydrogen flow rate of 150ml / min. 在自生温度和常压下还原60分钟,得到深色的MoP催化剂。 For 60 minutes at the reduction temperature and autogenous pressure, to give a dark MoP catalyst.

催化剂评价以催化剂的加氢脱硫反应活性评价为例。 The catalyst evaluated in hydrodesulfurization catalyst reactivity as examples. 床层温度降至反应温度(360℃)后,将氢气压力增加至4.0MPa,然后用高压计量泵向反应器中输送含0.8wt%二苯并噻吩的十氢萘溶液,在反应器出口处经气液分离器分离出液体用于产物分析。 After the bed temperature was lowered to the reaction temperature (360 deg.] C), hydrogen pressure is increased to 4.0MPa, and then conveyed containing 0.8wt% dibenzothiophene in decalin was added to the reactor using a high pressure metering pump, at the outlet of the reactor through the gas-liquid separator for separating the liquid product was analyzed. 其他反应条件:液体空速(WHSV)为21h-1,H2/料液比为1600Nm3/m3。 Other reaction conditions: liquid space velocity (WHSV) of 21h-1, H2 / feed ratio of liquid to 1600Nm3 / m3. 原料和产物用Agilent 6890气相色谱分析,加氢脱硫反应活性用二苯并噻吩的转化率表示。 Starting material and product was analyzed by Agilent 6890 gas chromatograph, the hydrodesulfurization activity of the reaction conversion of thiophene dibenzothiophene FIG.

该反应条件下二苯并噻吩的转化率大于99%,说明该催化剂具有很高的加氢脱硫反应活性,是一种理想的加氢精制催化剂。 Under the reaction conditions dibenzothiophene conversion was greater than 99%, indicating that the catalyst has high activity hydrodesulfurization reaction, is an ideal hydrorefining catalyst.

Claims (3)

1.一种氢等离子体还原法制备金属磷化物加氢精制催化剂的方法,其特征在于使用氢等离子体法还原金属氧化物和磷氧化物前体制备金属磷化物。 1. A method of reducing hydrogen plasma prepared metal phosphide hydrotreating catalyst, wherein said reducing metal oxide and phosphorus oxide precursors metal phosphide hydrogen plasma method.
2.一种氢等离子体还原法制备金属磷化物加氢精制催化剂的方法,其特征在于金属是指一种过渡金属或多种金属的组合。 2. A method of reducing hydrogen plasma metal phosphides prepared hydrotreating catalyst, wherein the metal is a combination of a transition metal or metals.
3.一种氢等离子体还原法制备金属磷化物加氢精制催化剂的方法,其特征在于金属磷化物加氢精制催化剂是负载型的或是非负载型的。 3. A method hydrogen plasma reduction method of the metal phosphide hydrotreating catalyst, wherein the metal phosphide hydrotreating catalyst is a supported or unsupported type.
CN 200710010082 2007-01-09 2007-01-09 Method for preparing metal phosphide hydrogenation refining catalyst by using hydrogen plasma reduction method CN100479918C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200710010082 CN100479918C (en) 2007-01-09 2007-01-09 Method for preparing metal phosphide hydrogenation refining catalyst by using hydrogen plasma reduction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200710010082 CN100479918C (en) 2007-01-09 2007-01-09 Method for preparing metal phosphide hydrogenation refining catalyst by using hydrogen plasma reduction method

Publications (2)

Publication Number Publication Date
CN101011664A true CN101011664A (en) 2007-08-08
CN100479918C CN100479918C (en) 2009-04-22

Family

ID=38699492

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200710010082 CN100479918C (en) 2007-01-09 2007-01-09 Method for preparing metal phosphide hydrogenation refining catalyst by using hydrogen plasma reduction method

Country Status (1)

Country Link
CN (1) CN100479918C (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102812536A (en) * 2009-12-15 2012-12-05 Sdc材料公司 Pinning And Affixing Nano-active Material
CN103495427A (en) * 2013-10-17 2014-01-08 大连理工大学 Method for using low-temperature plasma to prepare supported metal sulfide catalyst
US9180423B2 (en) 2005-04-19 2015-11-10 SDCmaterials, Inc. Highly turbulent quench chamber
US9302260B2 (en) 2007-10-15 2016-04-05 SDCmaterials, Inc. Method and system for forming plug and play metal catalysts
US9308524B2 (en) 2009-12-15 2016-04-12 SDCmaterials, Inc. Advanced catalysts for automotive applications
US9332636B2 (en) 2009-12-15 2016-05-03 SDCmaterials, Inc. Sandwich of impact resistant material
US9427732B2 (en) 2013-10-22 2016-08-30 SDCmaterials, Inc. Catalyst design for heavy-duty diesel combustion engines
US9433938B2 (en) 2011-02-23 2016-09-06 SDCmaterials, Inc. Wet chemical and plasma methods of forming stable PTPD catalysts
US9498751B2 (en) 2011-08-19 2016-11-22 SDCmaterials, Inc. Coated substrates for use in catalysis and catalytic converters and methods of coating substrates with washcoat compositions
US9511352B2 (en) 2012-11-21 2016-12-06 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9517448B2 (en) 2013-10-22 2016-12-13 SDCmaterials, Inc. Compositions of lean NOx trap (LNT) systems and methods of making and using same
US9533299B2 (en) 2012-11-21 2017-01-03 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9586179B2 (en) 2013-07-25 2017-03-07 SDCmaterials, Inc. Washcoats and coated substrates for catalytic converters and methods of making and using same
US9687811B2 (en) 2014-03-21 2017-06-27 SDCmaterials, Inc. Compositions for passive NOx adsorption (PNA) systems and methods of making and using same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103240076A (en) * 2013-05-12 2013-08-14 大连理工大学 Method for preparing supported molybdenum-oxide-based and tungsten-oxide-based oxidation desulfurization catalysts

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1256971A (en) 1998-12-14 2000-06-21 中国科学院成都有机化学研究所 Activation method for inactive catalyst
CN1492025A (en) 2003-08-27 2004-04-28 大连理工大学 Process for preparing load type transition metal phoshpide deep hydrogenation desulfurizing catalyst
CN1539553A (en) 2003-10-28 2004-10-27 天津大学 Method for preparing polymolecularity metal catalyst in load type from plasma
CN1660695A (en) 2004-02-26 2005-08-31 中国科学院大连化学物理研究所 Method for preparing phosphide of transition metal
CN1327958C (en) 2004-03-12 2007-07-25 中国科学院大连化学物理研究所 Method for preparing transition metal phosphide

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9719727B2 (en) 2005-04-19 2017-08-01 SDCmaterials, Inc. Fluid recirculation system for use in vapor phase particle production system
US9180423B2 (en) 2005-04-19 2015-11-10 SDCmaterials, Inc. Highly turbulent quench chamber
US9216398B2 (en) 2005-04-19 2015-12-22 SDCmaterials, Inc. Method and apparatus for making uniform and ultrasmall nanoparticles
US9599405B2 (en) 2005-04-19 2017-03-21 SDCmaterials, Inc. Highly turbulent quench chamber
US9592492B2 (en) 2007-10-15 2017-03-14 SDCmaterials, Inc. Method and system for forming plug and play oxide catalysts
US9737878B2 (en) 2007-10-15 2017-08-22 SDCmaterials, Inc. Method and system for forming plug and play metal catalysts
US9302260B2 (en) 2007-10-15 2016-04-05 SDCmaterials, Inc. Method and system for forming plug and play metal catalysts
US9597662B2 (en) 2007-10-15 2017-03-21 SDCmaterials, Inc. Method and system for forming plug and play metal compound catalysts
US9332636B2 (en) 2009-12-15 2016-05-03 SDCmaterials, Inc. Sandwich of impact resistant material
US9308524B2 (en) 2009-12-15 2016-04-12 SDCmaterials, Inc. Advanced catalysts for automotive applications
CN102812536A (en) * 2009-12-15 2012-12-05 Sdc材料公司 Pinning And Affixing Nano-active Material
US9522388B2 (en) 2009-12-15 2016-12-20 SDCmaterials, Inc. Pinning and affixing nano-active material
US9533289B2 (en) 2009-12-15 2017-01-03 SDCmaterials, Inc. Advanced catalysts for automotive applications
US9433938B2 (en) 2011-02-23 2016-09-06 SDCmaterials, Inc. Wet chemical and plasma methods of forming stable PTPD catalysts
US9498751B2 (en) 2011-08-19 2016-11-22 SDCmaterials, Inc. Coated substrates for use in catalysis and catalytic converters and methods of coating substrates with washcoat compositions
US9511352B2 (en) 2012-11-21 2016-12-06 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9533299B2 (en) 2012-11-21 2017-01-03 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9586179B2 (en) 2013-07-25 2017-03-07 SDCmaterials, Inc. Washcoats and coated substrates for catalytic converters and methods of making and using same
CN103495427B (en) * 2013-10-17 2015-11-18 大连理工大学 Using the method of preparation of low temperature plasma of a supported metal sulfide catalyst
CN103495427A (en) * 2013-10-17 2014-01-08 大连理工大学 Method for using low-temperature plasma to prepare supported metal sulfide catalyst
US9517448B2 (en) 2013-10-22 2016-12-13 SDCmaterials, Inc. Compositions of lean NOx trap (LNT) systems and methods of making and using same
US9566568B2 (en) 2013-10-22 2017-02-14 SDCmaterials, Inc. Catalyst design for heavy-duty diesel combustion engines
US9427732B2 (en) 2013-10-22 2016-08-30 SDCmaterials, Inc. Catalyst design for heavy-duty diesel combustion engines
US9950316B2 (en) 2013-10-22 2018-04-24 Umicore Ag & Co. Kg Catalyst design for heavy-duty diesel combustion engines
US9687811B2 (en) 2014-03-21 2017-06-27 SDCmaterials, Inc. Compositions for passive NOx adsorption (PNA) systems and methods of making and using same

Also Published As

Publication number Publication date
CN100479918C (en) 2009-04-22

Similar Documents

Publication Publication Date Title
CA2579998C (en) Highly active slurry catalyst composition
CN101787307B (en) Gasoline hydrodesulfurization method
CN101862684B (en) Aluminum oxide-activated carbon composite carrier, preparation method and prepared catalyst
CN100345946C (en) Coal tar whole fraction hydrotreatment process
JP2007153928A (en) Method for producing low environmental load type fuel and low environmental load type fuel
CN1043359C (en) Hydrodevulcanizing catalyst for hydro-carbons and preparation method thereof
CN101321847B (en) Hydrorefining process and hydrorefined oil
KR101696662B1 (en) Hydroconversion process and catalyst
CN100532509C (en) Method of producing fuel oil by coal tar hydrogenation modifying
CN101885982B (en) Hydrogenation method for coal tar suspension bed of heterogeneous catalyst
CN101210198B (en) Hydrogenation method for producing high grade diesel oil and high grade reforming raw material
CN100412168C (en) Coal tar hydrogenation process and catalyst therefor
JP4987485B2 (en) Preparation and ultra low sulfur gas oil composition of the ultra-low-sulfur diesel base material or ultra low sulfur gas oil composition
CN101768468B (en) Hydrogenation method for residual oil
CN101270300B (en) Hydrogenation deoxidation catalyst for producing biological diesel oil
CN1100122C (en) Process for hydrogenating poor-quality raw material for catalytic cracking
CN100558863C (en) Combined method for producing cleaning oil from coal-tar oil
CN100337747C (en) Coal tar hydrogenating modification catalyst and its prepn and application
CN101544904B (en) Composite metal oxide catalyst, preparation and application thereof
KR20070004619A (en) Hydrogenation desulfurization catalyst for petroleum hydrocarbon and method of hydrogenation desulfurization using the same
WO2006011300A1 (en) Catalyst and method for hydrodesulfurization of petroleum hydrocarbons
CN101307255A (en) Process for producing sweet gas for poor-quality gasoline distillate
CN1205312C (en) Process for coking full fraction oil hydrogenation refining
CN1184843A (en) Catalyst for hydrogenation conversion of diesel
CN104383923A (en) Gasoline and diesel hydrogenation iron-based catalyst and application thereof

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
C14 Granted
C17 Cessation of patent right