CN101006915A - Non-contact measurement method of key physiological parameters - Google Patents

Non-contact measurement method of key physiological parameters Download PDF

Info

Publication number
CN101006915A
CN101006915A CN 200610007174 CN200610007174A CN101006915A CN 101006915 A CN101006915 A CN 101006915A CN 200610007174 CN200610007174 CN 200610007174 CN 200610007174 A CN200610007174 A CN 200610007174A CN 101006915 A CN101006915 A CN 101006915A
Authority
CN
China
Prior art keywords
signal
pulse wave
non
system according
contact
Prior art date
Application number
CN 200610007174
Other languages
Chinese (zh)
Inventor
张元亭
滕晓菲
Original Assignee
香港中文大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 香港中文大学 filed Critical 香港中文大学
Priority to CN 200610007174 priority Critical patent/CN101006915A/en
Publication of CN101006915A publication Critical patent/CN101006915A/en

Links

Abstract

The invention relates to a method for measuring key physiological parameters in noncontact manner, such as blood pressure and its change rate, electrocardiogram, blood oxygen saturation, respiratory frequency, and heart rate and its change rate. The key physiological parameters can be measured by analyzing plethysmographic signals and bioelectric signals collected by a sensor or a probe without contacting human body. The device adopted in the method has wider application scope than the conventional contact measurements, can be applied in particular environments such as mobile ambulance or battle field treatment, and can also be integrated in auxiliary facilities such as bathtub, bed and coach in everyday life. The device has the advantages of simple and easy operation, no affect to users' activities during measurements of physiological parameters, and no requirement of active intervention of users, and can provide safe, economical and practical, nondestructive real time continuous monitoring of physiological parameters for users.

Description

非接触式关键生理参数测量方法 Non-contact method of measuring physiological parameters critical

发明领域本发明涉及多个生理参数的监测,特别涉及多个关键生理参数的实时非接触式连续监测。 Field of the Invention The present invention relates to monitoring a plurality of physiological parameters, in particular, relates to a non-contact real-time critical plurality of continuous monitoring of physiological parameters.

背景技术 Background technique

生理参数的监测,尤其是对反映心血管系统机能的关键生理参数变化的监测可为使用者提供及时的信息反馈,以便了解其健康情况。 Monitoring of physiological parameters, especially for key physiological parameters to reflect changes in the cardiovascular system function monitoring can provide timely feedback to the user, in order to understand their health conditions. 对中老年人而言,心脑血管疾病是对健康造成最大威胁的疾病之一。 For the elderly, cardiovascular disease is one of the diseases pose the greatest threat to health. 美国心脏协会的统计数据显示,每年全球有16,600,000人死于心血管疾病,它已经成为危害人类健康的头号杀手。 American Heart Association statistics show that there are 16,600,000 people worldwide each year die of cardiovascular disease, it has become the number one killer of harm to human health. 在中国,目前因心脑血管疾病而导致的死亡率占人口总死亡率的34.5%,预计到2040年每年将有9,500,000人死于心脑血管疾病,约占35-74岁人口总死亡人数的一半。 In China, the mortality rate due to cardiovascular disease caused 34.5% of the total mortality of the population projected to 2040 will be 9.5 million people die each year from cardiovascular and cerebrovascular diseases, accounting for the total number of deaths of people aged 35-74 half.

反映心血管系统机能的生理参数通常包括,心率、血压、血氧饱和度和呼吸频率等。 Reflect a physiological function of the cardiovascular system parameters typically include, heart rate, blood pressure, oxygen saturation, respiratory rate, and the like. 通过对这些生理参数进行日常监测,可以使人们早发现、早治疗可能导致严重后果的心血管疾病。 By daily monitoring of these physiological parameters, it allows people to early detection and early treatment can lead to serious consequences of cardiovascular disease. 这些生理参数的测量通常要通过不同的仪器或装置来完成,而且绝大多数测量装置都需要与人体直接接触。 These physiological parameter measurement is usually accomplished by various instruments or devices, and most measuring devices require direct contact with the human body. 在某些特殊情况下,生理参数的测量希望可以通过非接触方式来实现。 In some special cases, the desired physiological parameter measurement may be implemented by non-contact manner. 而且,非接触式测量也可大大拓宽生理参数测量的应用领域和范围,方便特殊群体,如车辆驾驶员,长期伏案工作者以及需要长途乘坐飞机的乘客的需要。 Moreover, non-contact measurement can also be greatly broaden the range of applications and measurement of physiological parameters, easy to special groups, such as the driver of the vehicle, and the need for long-term desk workers need to fly long-haul passengers.

目前,一些关键生理参数的测量已可以通过非接触的方式来实现。 At present, some measure key physiological parameters can already be achieved by non-contact manner. 如美国专利4,958,638公开了一种非接触式关键生理参数测量装置。 U.S. Patent No. 4,958,638 discloses a non-contact critical physiological parameter measuring means. 它无需使用任何电极或传感器与身体直接接触,而是将调频电磁波打到人体上,从而同步测得心率和呼吸。 It electrodes or sensors without using any direct contact with the body, but the FM waves hit the body, thereby synchronizing the measured heart rate and respiration. 该方法的原理在于,利用电磁波进行的非接触式生理参数测量对由呼吸和心脏活动所产生的运动非常敏感。 The principle of this method is that the electromagnetic wave for non-contact measuring physiological parameters very sensitive to motion of respiration and cardiac activity generated. 呼吸与心跳可以使从人体反射回来的电磁波的相位发生改变,而该相位改变是可测量的。 Breathing and heart rate from the human body can make the phase of reflected wave is changed, and the phase change is measurable. 也就是说,该调频信号的反射信号中包含了表征人体表面如何运动的相位信息,而心率和呼吸频率的估计正是利用该相位信息而得到的。 That is, the reflected signal of the frequency modulated signal contains the phase information characterizing how the surface of the body movement, heart rate and breathing frequency estimate is the use of the phase information obtained. 与传统的利用超声波或光学方法进行的测量相比,利用电磁波的测量具有信号在空气中损耗小,微波级带宽信号的穿透率好等特点。 Compared with the conventional measurement using ultrasonic waves or an optical method using the measured electromagnetic wave having small signal loss in the air, good penetration class band microwave signal characteristics. 容积描计法(plethysmography),特别是光电容积描计法(photoplethysmography)的非接触式应用近年来得到人们的广泛关注。 Volume plethysmographic method (plethysmography), especially PPG meter method (photoplethysmography) of contactless applications in recent years to get people's attention. 它通过发光二极管和光电监测器记录对应于心脏每博的末端血容积变化情况。 It is recorded by a light emitting diode and the photo detectors corresponds to the end of the blood volume changes in stroke heart. 由于该信号与心脏的每博同步且隐含了呼吸的信息,它不仅可应用于非接触式心率测量,更可应用于非接触式呼吸频率测量。 Since this signal is synchronized with the heart of each blog and information implicitly breathing, it is not only applicable to non-contact measurement of heart rate, but may be applied to non-contact measurement of respiratory rate.

除了心率和呼吸频率的非接触式测量,非接触式心电信号的测量方法近年来也被提出。 In addition to non-contact measurement of the heart rate and respiratory rate, non-contact method of measuring the ECG has also been proposed in recent years. 传统的心电图测量需要将传导电极固定在使用者身体上裸露的皮肤表面。 Conventional ECG measurement needs on the user's body will conduct exposed skin surface electrode is fixed. 该电极的输入阻抗一般为106或者107欧姆并且需要向身体表面导入电流。 The input impedance of the electrode is generally from 106 or 107 ohms, and current is introduced to the surface of the body needs. 尽管该阻抗很大,但仍然不能破坏掉人体体表的电势。 Despite the large impedance, but still can not destroy the potential of the body surface. 采用该方法的测量很难应用于患有新生婴儿猝死症(Sudden infant deathsyndrome)的婴儿以及烧伤病人,因为很难在他们身上固定电极来测量信号。 Baby and burn patients using this measuring method is difficult to apply with newborn sudden infant death syndrome (Sudden infant deathsyndrome), because in them the fixed electrode is difficult to measure the signal. 而且,传导电极的金属表面限制了它们在潮湿环境下的应用,因为高质量的信号只有在良好电接触的条件下才可以得到。 Further, the surface of the metal conductive electrodes limits their use in wet environments, since it can be obtained only under conditions of high signal quality in good electrical contact. 为了解决上述问题,人们提出将SQUID磁力计用于人体传感。 In order to solve the above problems, the SQUID magnetometers have been proposed for sensing the human body. SQUID磁力计可以实现非接触式心电信号测量,但是该技术只适用于低温环境,并且价钱昂贵。 SQUID magnetometer can achieve non-contact measuring cardiac electrical signals, but this technique is only applicable to low-temperature environment, and the price is expensive. 在实际应用中,低阻抗的充电放大器[1]、超低噪声,超高输入阻抗(频率为1赫兹时,阻抗为1015欧姆)传感器[2]和电耦合电极[3]被提出来。 In practical applications, the low impedance of the charge amplifier [1], low noise, high input impedance (frequency of 1 Hz, the impedance is 1015 ohms) sensor [2] and electrically coupled to the electrode [3] have been proposed. 这些技术的出现,使得非接触式心电信号的测量成为可能。 The emergence of these technologies, such non-contact measurement of the ECG signal becomes possible.

在所有关键生理参数的测量中,目前只有血压的非接触是测量还不能实现。 In the measurement of all critical physiological parameters, only a non-contact measuring blood pressure can not be achieved.

传统的脉搏血压测量法需要使用可充放气的袖带。 Traditional pulse pressure method require the use of inflated and deflated cuff. 该方法可以通过两种不同的技术来实现,一种是听诊法,一种是振荡法。 The method can be achieved by two different techniques, one is the auscultatory method, oscillometric method one is. 听诊法的原理在于收集柯氏音。 Principle auscultation is to collect korotkoff. 测量上肢血压时,将袖带内的气体先行驱尽,然后将袖带平整无褶地缠于上臂,摸清肱动脉的搏动,置听诊器的胸件于该处,打开水银柱开关,当通过握有活阀的气球向袖带充气时,水银柱或表针随即移动,当水银柱上升至默认值时,即停止充气,然后,微微开启气球活阀慢慢放气,水银柱则慢慢下降,如果听到肱动脉的第一音响,所示刻度即为收缩期血压,简称收缩压;当水银柱下降到音响突然变弱或听不到时,刻度指示为舒张期血压,简称舒张压。 Measuring upper limb blood pressure, the gas in the first drive to make the cuff, the cuff is then wrapped around the pleated flat arm, to find out the brachial artery pulsation, opposite to where the stethoscope chest piece, the mercury switch is opened, as by when the balloon holds the cuff inflation valve live, then move the hands or mercury when the mercury column was raised to default values, i.e. to stop inflation, then, the valve opens slightly live slowly deflated balloon, the mercury gradually decreases , hear if the first acoustic brachial artery, that is, the scale shown in the systolic blood pressure, systolic Acronym; when the mercury drops suddenly weakened or inaudible sound, to a scale indicating the diastolic blood pressure, referred to as diastolic pressure. 但是,该方法只能确定收缩压和舒张压,并且不适用于某些第5柯氏音较弱甚至听不到的患者。 However, this method can only determine the systolic and diastolic pressure, and does not apply to patients with certain 5 korotkoff weak even heard of.

振荡法可以弥补听诊法的上述不足,对于柯氏音较弱的病人也可测量到血压。 Oscillation method can make up for these shortcomings auscultation of Korotkoff sounds weak for the patient but also to measure blood pressure. 使用时将袖带平整无褶地缠于上臂,对袖带进行充放气。 When using flat pleated cuff wrapped around the upper arm, the cuff for inflation and deflation. 通过测量在膨胀的袖带中压力的振荡幅度来确定血压值,压力的振荡是由动脉血管的收缩和扩张所引起的。 In the oscillation amplitude expandable cuff pressure in blood pressure value is determined by measuring the oscillating pressure by contraction and expansion of arteries caused. 收缩压、平均压和舒张压的数值可以从该袖带缓慢放气时监测该袖带中的压力而获得。 Systolic blood pressure, mean pressure and diastolic pressure values ​​may be obtained to monitor the pressure in the cuff while the cuff is slowly deflated from. 平均压对应于该包络峰值时刻在该袖带的衰减装置中的压力。 The average pressure corresponding to a pressure point in the peak envelope of the damping means in the cuff. 收缩压通常被估计为在该包络峰值之前对应于该包络的幅度等于该峰值幅度的一个比例的时刻处该袖带的衰减装置中的压力。 Systolic blood pressure is generally estimated as corresponding to the envelope before the envelope peak amplitude of a time equal to the ratio of the peak amplitude of the cuff pressure decay means of. 舒张压通常被估计为在该包络的峰值之后对应于该包络的幅度等于该峰值幅度的一个比例的时刻处该袖带的衰减装置中的压力。 Corresponding to the envelope after the diastolic pressure is generally estimated as the peak amplitude of the envelope is equal to a ratio of the peak amplitude at the time of the cuff pressure attenuation device in. 使用不同的比例值会影响到血压测量的准确度。 Using different scale value affects the accuracy of blood pressure measurement.

目前市场上的大部分产品都采用听诊法或振荡法测量血压。 Currently, most products on the market are using auscultation or oscillation method to measure blood pressure. 其测量频率受到舒适地对该袖带进行充放气所需要的时间的限制。 The measurement frequency is limited comfort time the cuff inflated and deflated as needed. 通常,一次完整的血压测量需要1分钟左右。 Typically, a complete blood pressure measurement takes about 1 minute. 此外,袖带尺寸的大小对血压的测量结果也会造成影响。 Moreover, the size of cuff size measurement result of the blood pressure also affects. 由于这两种方法都需要对袖带进行充放气,因此难以进行频繁测量及连续测量,更不要说实现非接触式测量。 Since these two methods require inflation and deflation of the cuff, it is difficult to perform frequent measurement and continuous measurement, not to mention the non-contact measurement.

基于脉搏波传输时间的血压测量法根据动脉血压与脉搏波传输速度之间的关系来确定血压。 The blood pressure pulse wave transmission time measurement method to determine the relationship between blood pressure and arterial blood pressure pulse wave transmission speed. 当血压上升时,血管扩张,脉搏波传输速度加快,反之,脉搏波传输速度减慢。 When blood pressure, vasodilation, accelerated pulse wave transmission, whereas a transmission pulse wave velocity. 该方法的基本原理可参见[4,5],这两篇参考文献因此被引入本文以作为参考。 The basic principle of this method can be found in [4,5], both of which are hereby incorporated by reference herein by reference. 在使用基于该方法的血压计测量血压之前,先要用标准血压计对其进行校准,即找到上臂血压与脉搏波传输时间之间的关系。 Before measurement of blood pressure using a sphygmomanometer based on this method, first be calibrated standard sphygmomanometer, i.e. to find the relationship between the upper arm blood pressure and pulse wave transmission time. 然后在测量过程中再利用校准过程中所确定的关系计算出实际血压值。 Then the measurement process to calculate the actual blood pressure value and then using the relationship determined in the calibration process. 血压测量的其它相关内容,可参考如下文献[6,7],这些文献同时被引入本文以作为参考。 Other related content blood pressure measurement, refer to the following literature [6,7], while these documents are incorporated herein by reference.

从前述综述中可知,目前并没有一种装置可以对多个关键生理参数进行非干扰的非接触式连续监测,尤其是血压的测量。 From the foregoing review, an apparatus can not currently key physiological parameters for a plurality of non-contact type non-continuous monitoring of interference, especially the blood pressure measurement. 本发明正是为实现该目的而提出了利用脉搏波相关信息来实现非接触式血压测量,该方法并可同时提供连续心电图,心率,心率变化率和呼吸频率等关键生理参数。 The present invention has been proposed to achieve this object by using the pulse wave-related information to implement non-contact measurement of blood pressure, the method may also provide critical physiological parameter continuous ECG, heart rate, respiratory rate and heart rate variability frequency. 由于本发明中生理参数的测量采用非接触式,而非采用传统的电极或袖带接触式,所以使用者可在日常生活的不同环境下实现完全无干扰的测量,从而弥补了上述所有装置或技术的不足。 Since the present invention for measuring physiological parameters using non-contact, rather than the traditional cuff electrode or contact, so that the user can be completely interference-free measurements in different environments of everyday life, which make up the device, or all of the above technical deficiencies. 对于本身有心血管疾病的司机、长期伏案工作者和需要乘坐飞机长途旅行的乘客,该技术更显示出它的优势。 For the driver itself has cardiovascular disease, long-term desk workers and the need for long-distance travel by plane passengers, the technology also demonstrated its advantages.

发明内容 SUMMARY

本发明是针对现有技术中存在的上述问题而做出的。 The present invention is directed to the above-described problems of the prior art made in the presence of. 其目的是提供一种可对关键生理参数进行无干扰测量的系统。 Its purpose is to provide an interference free measurement of physiological parameters of key system.

为了实现上述目的,本发明提出了非接触式测量,包括对血压、血压变化率、心率、心率变化率、血氧饱和度和呼吸频率等的测量。 To achieve the above object, the present invention proposes a non-contact measurement, including measurement of blood pressure, rate of change of blood pressure, heart rate, heart rate change rate, respiratory rate and oxygen saturation and the like. 因为非接触式测量系统可以集成在生活辅助设施中,因此在日常使用中,无需干预该监测装置即可实时连续地获得上述生理参数的数值,同时也不会干扰使用者的日常活动。 Because the non-contact measurement system may be integrated in an assisted living facility, so in daily use, without the intervention of the monitoring device can be obtained continuously in real time value of said physiological parameter, but also will not interfere with the user's daily activities.

该方法包括3个主要步骤:(a)通过非接触方式测量被测者的脉搏波相关信号;(b)通过非接触方式测量被测者的生物电信号;(c)根据所测量到的信号计算关键生理参数,包括血压、血压变化率、心率、心率变化率、血氧饱和度和呼吸频率等。 The method comprises three main steps: (a) measuring the subject's pulse wave signal related non-contact manner; (b) measuring the bioelectric signal of the subject by a non-contact manner; (c) based on the measured signal calculating key physiological parameters, including blood pressure, rate of change of blood pressure, heart rate, heart rate change rate, respiratory rate and oxygen saturation and the like. 此发明中,脉搏波相关信号可以但不局限于通过非接触式容积描记法得到;而生物电信号可以但不局限于通过高输入阻抗电路、低阻抗充电放大器或耦合电极得到。 In this invention, a pulse wave signal may be related but not limited to non-contact obtained by plethysmography; bioelectric signals can be but is not limited by the high input impedance circuit, the low impedance coupling electrode or charge amplifier obtained. 获取脉搏波相关信号和生物电信号的传感器可以集成为一体,从而使得上述生理参数的测量可以通过一个集成传感器得到。 Obtaining a pulse wave signal and the associated sensor bioelectric signal may be integrated into one, so that the above-described measuring physiological parameters can be obtained by an integrated sensor. 这里,生物电信号是指由非接触方式测量到的心电信号。 Here, the bioelectrical signal is measured by means of a non-contact manner to the ECG signal. 通过非接触方式获得的信号首先要对其进行自适应滤波,之后才可用于生理参数的计算。 The signal obtained by the first non-contact manner adaptive filtering them out before they are used to calculate the physiological parameter.

心率、心率变化率和呼吸频率可通过脉搏波相关信号和生物电信号以双信号方式计算得到;血氧饱和度可通过脉搏波相关信号得到;而血压测量是通过脉搏波相关信息获得的。 Heart rate, respiratory rate and heart rate variability frequency pulse wave-related electrical signals and biological signals in a manner calculated by the Dual; oxygen saturation can be obtained by pulse wave correlation signal; blood pressure measurement by the pulse wave information obtained. 心率和心率变化率的测量可分别通过计算一列容积描记信号波形顶点之间的时间间隔或者是一列心电信号R型波顶点之间的时间间隔来实现;呼吸频率的测量可以分别通过对心电信号或容积描记信号在一定频带内进行滤波而得到的;血氧饱和度的测量可利用脉冲血氧仪的原理实现。 Measuring heart rate and a rate of change of the heart rate, respectively, by calculating the time between a PPG signal waveform vertex interval or a time between ECG R wave in the vertex spacing achieved; measuring respiration frequency by ECG, respectively, signal or the PPG signal, within a frequency band filter is obtained; measuring blood oxygen saturation level may be utilized to achieve the principles of pulse oximetry. 对心率、心率变化率和呼吸频率采用双信号测量模式,可以在一定程度上减少运动噪声对测量准确性的影响。 Heart rate, respiratory rate and heart rate variability dual frequency signal measurement mode, can reduce the influence of noise on measurement accuracy motion to some extent.

脉搏波相关信息为脉搏波传输时间,它是通过与被测者的脉搏波相关的信号上的第一参考点和同时测得的生物电信号上的第二参考点之间在同一心动周期内的时间间隔来确定的。 The pulse wave information transmission time of the pulse wave, the cardiac cycle it is the same between the second reference point by point on a first reference signal related to the pulse wave of the subject, and the bioelectrical signal measured simultaneously in the time interval determined. 所述第一参考点选自容积描记信号波形的顶点、中间点和底点之一。 The first reference point is selected from one of the PPG signal waveform apex, an intermediate point and a bottom point. 所述生物电信号上的第二参考点为心电信号中的R型波上的顶点。 The second bioelectrical signal reference point on the apex of the ECG R-wave type. 或者,脉搏波相关信息为脉搏波特征变量,它是仅通过与被测者的脉搏波相关的信号来确定的。 Alternatively, the pulse wave information of the pulse wave characteristic variable, which is determined only by the signal associated with the pulse wave of the subject. 脉搏波特征变量是指脉搏波上升沿或下降沿时间,或所定义时间参量的比值以及在频域上所提取的特征值。 Pulse wave wherein the leading edge of the pulse wave is variable or falling time, or the time parameters defined in the frequency domain, and the ratio of the extracted feature value. 采用上述两种方法的血压测量需要进行个人化校准,校准公式为预先所确定的。 With the above two methods of blood pressure measurement required personal calibration, the calibration equation is determined in advance. 本发明中所述的系统,可以集成在日常生活辅助设施中,如浴缸,床和座椅等,提供特殊环境下的无干扰的生理参数监测。 The system of the present invention, may be integrated into auxiliary facilities in daily life, such as bathtubs, beds and seats, to provide interference-free monitoring of physiological parameters under special circumstances. 传感器在上述设施中的位置式可调节的,以适合不同对象得到最优的信号。 Sensor-position in the above facility can be adjusted to suit different objects to get the best signal.

与以前的装置不同,该系统除了可以以非接触方式实现心率、心率变化率和呼吸频率的测量,还可以非接触方式测量血压、血压变化率、血氧饱和度等。 Unlike previous devices, the system may be implemented in addition to measurements of heart rate, heart rate and respiratory rate of change in a non-contact manner, a non-contact manner can measure blood pressure, rate of change of blood pressure, blood oxygen saturation. 本发明的有益效果在于,由于所使用的传感器体积小、易于操作,因此,该系统可以有机地结合在不同的日常生活设施中(如椅子、汽车座椅、衣服、床、鞋),无需其他人的帮助即可辅助不同环境下的监测要求,同时不会对使用者有任何限制。 Advantageous effects of the present invention is that, due to the small volume of the sensor used, easy to operate, and therefore, the system may be incorporated in different organic daily life facilities (such as chairs, car seats, clothes, bed, shoes), no other help people to assist monitoring requirements under different circumstances, but will not have any restrictions on the user.

附图说明 BRIEF DESCRIPTION

下面将结合附图对本发明的具体实施方案进行详细说明。 The following specific embodiments of the present invention will be described in detail in conjunction with the accompanying drawings. 通过这些说明,本发明的上述目的、优点及特征将变得更加清楚。 With these instructions, the above-described objects, advantages and features of the present invention will become more apparent. 在以下的附图中:图1是本发明设计思想的整体结构示意图;图2是非接触式测量所得到的信号与接触式测量所得到的信号的比较;图3是各种信号在被测者身体记录位置的示意图;图4是本发明在普通座椅上及汽车中的座椅上实现的示意图;图5是本发明在床上实现的示意图;图6是非接触式电极的示意图;图7是非接触式电势传感器的示意图;图8是确定脉搏波传输时间的示意图;图9是容积描记信号的特征变量在时域上的说明;图10是同步测量到的两列容积描记信号的说明以及呼吸信号的说明。 In the following drawings: FIG. 1 is an overall schematic structural design of the present invention; FIG. 2 Comparison of the non-contact measuring signal obtained with the touch of the obtained measurement signal; FIG. 3 is the subject of various signals in the a schematic view of the recording body position; FIG. 4 is a schematic diagram of the present invention is implemented on an ordinary car seat and a seat; FIG. 5 is a schematic view of the present invention is implemented in the bed; FIG. 6 a schematic view of non-contact electrodes; FIG. 7 is a non a schematic view of contact potential sensor; FIG. 8 is a schematic view of a pulse wave transmission time is determined; FIG. 9 is a characteristic variable plethysmography signal in the time domain; FIG. 10 is a synchronous measurement to two PPG signal and respiration Description signal.

具体实施方案本发明所述的设计思想可以集成在不同的生活辅助设施中为使用者提供生理参数信息的及时反馈,尤其适用于需要对生理参数进行日常监测或在特殊情况下需要监测的人群。 Specific embodiments of the present invention, the design may be integrated to provide timely feedback to a physiological parameter of the user information in different assisted-living facilities, especially for applications that require daily monitoring of physiological parameters in special cases or the need to monitor the crowds. 相关生理参数信息可以通过其他外部终端以有线或无线的方式传达给使用者。 Related physiological parameter information may be communicated to another user via the external terminal in a wired or wireless manner. 在有需要的情况下,也可以传送给远程终端或进行报警。 In case of need, it can be transmitted to the remote terminal or alarm. 以下将参考图1至图10对根据本发明实施方案所述的方法进行具体说明。 Below with reference to FIG. 1 to FIG. 10 will be specifically described based on a method according to embodiments of the invention.

首先图1给出了本发明的整体设计思想。 First, FIG. 1 shows the overall design concept of the present invention. 本发明的关键在于非接触式地获取生理信号,主要包括生物电信号和脉搏波信号。 The key of the present invention is a non-contact acquire physiological signals, the bioelectric signal including the pulse wave signal. 与接触式信号采集不同,以非接触方式获得的信号在波形上会与接触式有一些不同,这主要取决于具体所采用的非接触式测量方法以及传感器与信号采集部位之间的距离。 Contact with different signal acquisition, signal will be obtained in a non-contact manner with the contact in a number of different waveforms, depending on the distance between the non-contact measurement of the particular methods employed and a sensor signal collection site. 图2为接触式和非接触方式所采集的信号的对比。 FIG 2 is a comparison of contact and non-contact signal is acquired. 从中可以看出用光电容积描记法所采集的脉搏波信号基本保持了其原有的波形,尤其是其顶点的位置;而该信号的底点位置却有一定程度的漂移。 It can be seen that a photoelectric pulse wave signals acquired plethysmography substantially maintains its original waveform, especially the location of its apex; the position of the bottom point of the signal, there is a certain degree of drift. 利用超高阻抗输入方式所采集的心电信号与用传统的接触式电极所采集的信号相比,噪声较大,而且该噪声的程度取决于非接触式传感器与身体的距离。 Ultra high impedance input mode using the acquired ECG signal as compared with the conventional contact-type electrode collected, noisy, and the degree of the noise depends on the distance of the proximity sensor with the body. 在非接触方式采集的心电信号中,R型波的位置仍然清晰可见,而它是许多生理参数计算中的一个最重要的特征点。 In the non-contact ECG signal acquisition, the position of the R-wave type are still visible, but it is a most important feature points in many physiological parameter calculation.

在信号采集之后,原始信号要经过滤波与预处理,尤其是非接触式得到的信号通常较弱,而且取决于不同的应用条件,可能在一定程度上受到运动噪声的干扰。 After signal acquisition, the original signal to be filtered with a pretreatment, in particular, non-contact signal obtained generally weak, and depending on the application conditions may be disturbed motion noise to some extent. 如图2所看到,非接触式采集的信号噪声较大,在某些情况下甚至可能出现信号失真。 2 can be seen, the non-contact acquisition signal noise is large, in some cases even the signal distortion may occur. 因此,利用原始信号进行生理参数计算前,对其进行滤波、放大等预处理就显得尤为重要。 Thus, before the physiological parameters calculated by the original signal, filters it, pre-amplification, is particularly important.

图3用于说明各种信号在被测者身体记录的位置。 3 for explaining the position of the subject body of various signals recorded. 如图3所示,位置301和位置302分别代表被测者的背部的位置及左手手指位置,用于非接触式记录被测者的心电信号和末梢动脉的光电容积描记信号。 As shown in FIG. 3, position 301 and position 302 represent the position of the left finger and the position of the subject's back, photoplethysmography signal for the non-contact recording of the subject ECG signal and peripheral arteries. 当然,心电信号也可以从胸部或指端测得,而光电容积描记信号也可以从手腕处或身体其它部位测得。 Of course, the ECG signal may be measured from a fingertip or the chest, and the photoplethysmography signal may be measured from the wrist or elsewhere in the body.

图4是本发明在普通座椅上及汽车中的座椅上实现的示意图。 FIG 4 is a schematic diagram of the present invention is implemented on an ordinary car seat and the seat. 如图所示:心电信号的测量是通过内嵌于椅背上的前置放大电极和置于座位上的传导金属板来实现的。 As shown: measuring the ECG electrodes is amplified and a conductive metal plate disposed on the seat realized by the pre-embedded in the seat back. 获取心电信号时,使用者只需将背部接近或靠在椅背上,心电信号就可以透过衣服测量到。 Acquiring ECG, the user need only close to or against the back of the seat back, the ECG signal can be measured through clothing. 测量心电信号的传感器在椅子上的位置是可以调节的,以适应不同使用者获得最佳的信号质量。 ECG sensor measures the position in the chair can be adjusted to accommodate different users have the best signal quality. 在不同的应用情境下,获取光电容积描记信号的传感器可以放置于不同的位置。 In different application contexts, obtain photosensor PPG signal can be placed at different positions. 例如在驾驶座位上,传感器可以内嵌于方向盘上,而在一般的座椅上,传感器可以内嵌于座椅扶手上。 For example, in the driver's seat, the sensor can be embedded in the steering wheel, and in general the seat, the sensor can be embedded in the armrest. 置于座椅扶手上的传感器位置也是可调节的。 A position sensor disposed on the armrest is adjustable. 通过对这两个信号进行处理和分析,就可以得到我们感兴趣的生理参数,如心率、心率变化率、呼吸频率、血氧饱和度和血压等数值。 By processing and analyzing the two signals, we can obtain a physiological parameter of interest, such as heart rate, heart rate change rate, respiratory rate, oxygen saturation, and blood pressure values. 上述参数的具体计算过程将在下面详细介绍。 Details of the calculation of the above parameters will be described in detail below.

图5是本发明在床上实现的示意图。 FIG 5 is a schematic diagram of the present invention is implemented in bed. 此时,心电信号可以分别从手上和脚上得到。 In this case, the ECG can be obtained separately from the hands and feet. 其中,脚上位置的传感器可以置于床尾上,并且其位置是可调节的。 Wherein the position of the sensor can be placed on the foot end of the bed, and its position is adjustable. 获取光电容积描记信号的传感器可以与一个获取心电信号的电极集成在一个传感器装置上,至于手腕处或手指处。 Get photoplethysmogram signal electrode may be integrated with a sensor acquires ECG signals on a sensor device, as the wrist or finger.

非接触式心电信号的测量有几种不同的方式。 Non-contact measurement of the ECG signal in several different ways. 如图6所示,其中一种方法是通过利用低阻抗的充电放大器。 6, by using one of the methods is to charge a low impedance amplifier. 通过选取合适的参数,可以使运算放大器的输入端和输出端电容为最小。 By selecting the appropriate parameters, the input of the operational amplifier and an output capacitor to a minimum. 如图所示,由于源电容值小于1pF,所以在该电路中采用一个低阻抗充电放大器。 As shown, since the capacitance value of the source is less than 1pF, so the use of a low impedance of the charge amplifier circuit. 这种低阻抗的配置,使得负反馈回路可以去除放大器的共模输入阻抗和差模输入阻抗。 This low impedance configuration, can be removed so that the negative feedback loop of the amplifier and the common mode input impedance differential input impedance. 这与高阻抗配置的情形不同,因为在这种情况下,共模阻抗并不能去除。 This is the case of high impedance different configuration, as in this case, the common mode impedance and can not be removed. 另外,尽管正反馈在高阻抗配置中可以使输入阻抗为零,但是整个系统的稳定性却受到破坏。 Further, although the input impedance of the positive feedback may be zero in a high impedance configuration, but the stability of the whole system was damaged. 而图6中的放大器在负反馈配置中是无条件稳定。 And FIG. 6 in the amplifier in a negative feedback configuration is unconditionally stable. 运算放大器OPA129的输入偏流是30fA,电流噪声是0.1fA/Hz1/2。 OPA129 input bias current of the operational amplifier is 30fA, the noise current is 0.1fA / Hz1 / 2. 因此该运算放大器从输入端到输出端的电容被最小化了。 Thus the operational amplifier from the input terminal to the output terminal of the capacitor is minimized. 0.35pF反馈电容并不是一个实际的元件,而是一个与500Gohm反馈电阻相关联的电容。 0.35pF capacitor feedback element is not a practical, but a resistor and capacitor feedback 500Gohm associated. 该反馈回路的截止频率是0.9Hz。 The feedback loop cutoff frequency is 0.9Hz. 当该电极与身体的距离为0.5cm时,该充电放大器的增益为2。 When the distance of the electrode and the body is 0.5cm, the gain of the charge amplifier 2. 系统在1Hz和10Hz时的输出噪声分别是70μF/Hz1/29.4μF/Hz1/2,这里主要的噪声源是500Gohm电阻的热噪声。 And noise in the system output 1Hz and 10Hz respectively 70μF / Hz1 / 29.4μF / Hz1 / 2, where the main source of noise is thermal noise 500Gohm resistance. 理想情况是去掉反馈电阻,但这时必须注意防止放大器饱和。 Ideally remove the feedback resistor, but then care must be taken to prevent amplifier saturation. 为了最小化输出端的噪声,在这个电极上可以应用一个5到35Hz的带通滤波器。 To minimize noise at the output, the electrode may be applied in a 5 to 35Hz band pass filter.

非接触式生物电势信号测量的另一种方法是利用超低噪声,超高输入阻抗(频率为1赫兹时,阻抗为1015欧姆)传感器,如图7所示。 Another non-contact method of measuring the biopotential signal is to use ultra-low noise, high input impedance (frequency of 1 Hz, the impedance is 1015 ohms) the sensor, as shown in FIG. 超高阻抗的优点在于,身体本身电信号的衰减可忽略不计。 The advantage is that the ultra-high impedance, attenuation of the body's own electrical signals can be ignored. 该配置具有高达1015欧姆的输入阻抗,在最优耦合条件下,1Hz的最低噪声为70μF/Hz1/2。 This configuration has the high input impedance of 1015 ohms, under optimal coupling conditions, for lowest noise 1Hz 70μF / Hz1 / 2. 由于该配置对身体产生可忽略不计的并行负荷,因此它可以在远离身体达1m的情况下测到信号。 Since the configuration of the body produces a negligible parallel load is not counted, so that a signal can be measured at a distance from the body of up to 1m.

非接触式生物电势信号测量的另一种方法是利用电耦合电极。 Another non-contact method of measuring a bio signal using an electrical potential is coupled to the electrodes. 其基本思想是人体本身和测量使用的电极可以组成一个电容。 The basic idea is the body itself and the measuring electrode can be used to form a capacitor. 反映皮肤表层上电势信号变化的心电信号可以通过放大器传给一个电容器。 Reflect on the potential of the signal changes in the skin surface ECG signal can pass through a capacitor amplifier. 通常情况下,该电容器的电容值非常小,所以放大器的输入阻抗要非常大。 Normally, the capacitance value of the capacitor is very small, the input impedance of the amplifier to be very large. 因此电压输出跟随器的输入阻抗要远远小于所使用电极的阻抗以便得到较高的增益。 Thus the input impedance of the voltage follower output is much smaller than the impedance of the electrode is used in order to obtain a higher gain.

参考图8对脉搏波传输时间的检测进行简要说明。 Referring to FIG. 8 detect the pulse wave transmission time will be briefly described. 脉搏波传输时间可用于非接触式血压测量。 The pulse wave transmission time can be used for non-contact measurement of blood pressure. 在图8所示的本发明的实施方案中,脉搏波传输时间可根据被测者的心电信号和光电容积描记信号而得到。 In an embodiment of the present invention shown in FIG. 8, the pulse wave transmission time can be obtained according to the subject ECG signal and photoplethysmography signal. 在图8中,时间801和时间802分别代表心电信号和光电容积描记信号的特征点在时间轴上的位置。 In FIG. 8, 802 times and 801 times respectively represent positions of the feature points and the ECG photoplethysmogram signal on the time axis. 心电信号的特征点在本发明的实施方案中可以优选为心电信号上R型波的顶点。 ECG feature points in an embodiment of the present invention may preferably vertex R wave in the ECG signal. 光电容积描记信号的特征点在本发明的实施方案中可以是光电容积描记信号波形的顶点、底点及中间点。 Feature point photoplethysmogram signal in embodiments of the present invention may be a vertex, the intermediate point and the end point photoplethysmogram signal waveform. 时间T803为时间801与时间802之间的时间间隔,该时间间隔即为脉搏波传输时间。 T803 is the time period between time 801 and time interval 802, the time interval is the pulse wave transmission time.

本领域的普通技术人员应该明白,对脉搏波传输时间的测量可以采用多种方法而不仅限于上述内容。 Those skilled in the art will appreciate, the transmission time of the pulse wave measurement can use a variety of methods not limited to the above. 例如光电容积描记信号也可以用电阻抗信号或心音信号替代,在这些信号上取适当的参考点,然后通过计算该参考点与心电信号中的参考点在时间轴上的时间间隔就可以确定出脉搏波传输时间。 E.g. photoplethysmogram signal electric impedance signal may be alternatively or heart sound signal, taking suitable reference points on these signals, and then calculating the reference point and the reference point in the ECG time intervals can be determined on the time axis a pulse wave transit time.

非接触式血压测量可通过以下三种方式实现:实施例一利用脉搏波传输时间来计算血压。 Non-contact measurement of blood pressure can be achieved by the following three ways: Example using a pulse wave transmission time to calculate the blood pressure. 许多文献和专利中都介绍过利用脉搏波传输时间的理论来计算血压的方法。 Many are described in the literature and patents theoretical transmission time of the pulse wave is calculated by utilizing the blood pressure. 脉搏波传输时间是指脉搏沿同一个动脉传输时到达两个不同点之间的时间差。 The pulse wave transmission time is the arrival time difference between two different points along the same arterial pulse when the transmission. 该时延被证明与血压有一定的关系,它会随血压的升高而减小。 The delay proved to have a certain relationship with the blood, it decreases with the increase in blood pressure. 因此,通过利用标准血压仪,对脉搏波传输时间与血压之间的关系进行校准,即找到脉搏波传输时间与血压之间的关系。 Thus, for the pulse wave transmission time to calibrate the relationship between blood pressure and blood pressure meter using standard, i.e. to find the relationship between blood pressure and pulse wave transmission time. 之后,就可利用该时间估计血压值。 Thereafter, the time can be estimated by using the blood pressure value. 其具体计算方法可参见美国专利4,869,262和5,649,543等,这里不再赘述。 Specific calculation methods can be found in U.S. Patent No. 4,869,262 and 5,649,543, etc., is not repeated here.

实施例二利用与脉搏波相关的其它特征量,如光电容积描记信号本身的特征值来来估计血压。 Other embodiments utilizing two pulse wave feature amount related to the embodiment, as the feature value photoplethysmogram signal itself to be estimated blood pressure. 在这种情况下,无需利用生物电信号,即可实现非接触式连续动脉血压测量。 In this case, without the use of bio-electric signals, to achieve non-contact continuous arterial blood pressure measurement. 图9给出了一些光电容积描记信号特征值的定义。 Figure 9 shows some definitions photoelectric characteristic values ​​of the signal trace volume. 由于本申请的重点在于非接触式生理参数的测量,因此这里不再对该方法作详细说明,其相关信息可通过附录中的参考文献[8-11]获得。 Since the present application is focused on non-contact measurement of physiological parameters, this method will therefore not be described in detail, the relevant information may be obtained by reference to the Appendix [8-11].

实施例三计算血压的另一种方法是,利用上臂血压的波形对光电容积描记信号波形进行校正。 Another embodiment of a method of calculating the blood pressure of the three embodiments is that for a photoplethysmography signal waveform is corrected using blood pressure waveform of the upper arm. 从而只利用一列波形,即一个传感器来获得血压的信息。 Thereby using only a waveform, i.e., a blood pressure sensor to obtain the information. 已经发表的文献指出,桡动脉血压波形与由手指处得到的光电容积描记信号的波形之间存在着一定的关系, 可参见文献[12,13],该关系可以用一个传递函数来表示。 Published literature that exists between the radial arterial blood pressure waveform and a waveform of the photoplethysmogram signal obtained by the finger at a certain relationship can be found in the literature [12,13], the relationship can be represented by a transfer function. 通过利用一个可以从手腕处进行连续血压测量的装置得到桡动脉血压波形,并与光电容积描记信号波形相比较,可以得到该传递函数,完成校准步骤。 It means a continuous blood pressure measurement can be carried out at the wrist by using the radial artery pressure waveform obtained, and compared with the photoplethysmography signal waveform, the transfer function can be obtained, to complete the calibration procedure. 需要指出的是,该校准过程是对象依赖的。 It should be noted that the calibration process is dependent on the object. 因此使用前,要对每个使用者进行分别校准。 Thus prior to use, to be individually calibrated for each user. 其具体计算方法可参见美国专利6,616,613。 Specific calculation methods can be found in U.S. Patent No. 6,616,613.

下面结合图9来说明本发明中其他各生理参数测量的原理。 The principles of the present invention will be described below in each of the other physiological parameters measured in connection with FIG. 本发明中,心率、心率变化率、呼吸频率和血氧饱和度的测量都可以利用光电容积描记法实现。 In the present invention, heart rate, heart rate change rate, respiratory rate and oxygen saturation measurements may implement photoelectric plethysmography. 同时,心率、心率变化率和呼吸频率也可以通过心电图得到。 At the same time, heart rate, respiratory rate and heart rate variation can be obtained by an electrocardiogram. 光电容积描记法使用简便、安全,而且长时间使用也不会造成使用者的不适。 Optoelectronic plethysmography easy to use, safe, and long-term use will not cause discomfort to the user. 其检测信号的装置通常包括一个传感器单元,它有一个发光装置,如光敏晶体管,把光射入到测量位置的表面,如手指,耳垂或前额,和一个接收光装置,如光电检测器,检测从测量位置反射或透射的光。 Means for detecting a signal typically comprises a sensor unit having a light emitting device, such as a phototransistor, light incident to the measurement position of the surface, such as a finger, earlobe, or the forehead, and a light receiving device, such as a photodetector, detects or reflected from the measurement position of the transmitted light. 由于动脉搏动导致血管中血流量的变化,因此光的吸收、反射和散射也相应改变。 Since arterial pulse causes a change in blood flow in the blood vessel, so that the light absorption, reflection and scattering are also changed accordingly. 因此,接收光装置检测到的光强也相应发生变化,该信号与心脏的搏动同步。 Thus, the light receiving means detects light intensity is also changed accordingly, the signal synchronized with the heart beat. 该光强信号被转换成电信号后可进行进一步的处理和分析。 After the light intensity signal is converted into an electric signal may be subjected to further processing and analysis.

如图10(a)所示,通过计算光电容积描记信号相邻两个顶点或相邻两个底点之间的时间间隔(intervali)即可计算出心率值。 FIG 10 (a), the apex or two adjacent time intervals (intervali) between the bottom two points can be calculated by calculating the values ​​of the adjacent heart photoplethysmography signal. 为了减小计算误差,我们可以采用多个时间间隔的平均(Ave_interval)来计算瞬时心率(HR),如公式(1)和(2)所示。 In order to reduce the calculation error, we can calculate the instantaneous heart rate (HR), as shown in equation (1) and (2) Average (Ave_interval) a plurality of time intervals. 通过该时间间隔亦可计算心率变化率,其为一定个数的时间间隔的标准方差。 It may also be calculated by the rate of change of the heart rate interval, standard deviation of time intervals of a predetermined number.

Ave_interval=Σi=1nintervalin,n=10---(1)]]>HR=1Ave_interval×60---(2)]]>同样的,通过计算心电图上相邻两个R型波的顶点之间的时间间隔(intervali)也可计算出心率值,进而计算出心率变化率,即一定时间内心率方差与均值的比值。 Ave_interval = & Sigma; i = 1nintervalin, n = 10 --- (1)]]> HR = 1Ave_interval & times; 60 --- (2)]]> Similarly, by calculating the R wave in the ECG two adjacent vertices time interval (intervali) can also be calculated between the heart rate value, and then calculate the rate of change of the heart rate, i.e. the ratio of a certain time and mean heart rate variance. 我们提出采用双信号模式计算心率和心率变化率,以保证在存在杂波的情况下,仍然可以准确地得到所需要的生理参数的数值。 We propose dual mode signal calculating heart rate and heart rate variability, to ensure that in the presence of clutter, still can be accurately obtained physiological parameter values ​​required. 双信号模式是指利用光电容积描记信号和心电信号分别计算心率和心率变化率,如果二者的计算结果相差超过5%或10%,即确认测量有效。 Dual mode signal is the use of photoplethysmography ECG signal and calculate heart rate and heart rate variability, if both the results differ by more than 5% or 10%, i.e., to confirm valid measurement.

如图10(b)所示,光电容积描记信号中明显的还包括有呼吸的信息。 FIG 10 (b), the photoplethysmography signal further comprises evident breathing information. 健康成年人的的呼吸频率在每分钟10-20次。 Healthy adult respiratory rate of 10-20 beats per minute. 利用光电容积描记信号提取呼吸频率的方法近年来在文献中被广泛讨论,如文献[14,15]。 Photoplethysmogram using respiratory rate signal extraction methods are widely discussed in the literature in recent years, as the literature [14,15]. 选取适当的滤波器进行低通滤波,即可得到呼吸波形,从而计算出呼吸频率。 Select the appropriate filter low-pass filtering, to obtain a respiration waveform, to calculate the respiratory frequency. 与心率计算相同,呼吸频率的计算我们同样地采取双信号模式确保计算的准确性。 The same heart rate calculation, calculation of respiratory rate we take the same two-mode signal to ensure the accuracy of the calculation.

由于血液中的两种主要吸光的物质,氧合血红蛋白和血红蛋白在红光范围和红外光范围对光的吸收程度不一样,因此通过利用两种波长的光即可确定动脉血氧饱和度。 Since both the main substance in the blood absorbs light, hemoglobin, and oxyhemoglobin is not the same degree of absorption in the red light range and the infrared range, and therefore can determine the arterial oxygen saturation by using two wavelengths of light. 放置具有不同波长的光敏晶体管,即红光和红外光的两个光敏晶体管在同一测量位置,可同时得到两列光电容积描记信号。 Placing phototransistor having different wavelengths, i.e., the two red and infrared phototransistor at the same measurement position, which can obtain two signals photoplethysmogram. 首先对这两列信号进行滤波和放大。 First, two columns signal is filtered and amplified. 然后将红光和红外光信号的直流和交流部分分开,再根据脉冲血氧仪的原理,我们就可以通过这两个信号得到动脉血氧饱和度。 Then separating the direct and alternating red and infrared portions of the optical signal, and then according to the principles of a pulse oximeter, we can get through the arterial oxygen saturation of these two signals. 其具体电路实现可在”Design of Pulse Oximeters”by JG Webseter中查到。 The specific circuit implementations can be found in "Design of Pulse Oximeters" by JG Webseter in. 图10(a)即为由不同波长的光得到的光电容积描记信号的交流部分的示意图。 FIG. 10 (a) is the schematic diagram obtained by light of different wavelengths alternating component photoplethysmogram signal. 动脉血氧饱和度的计算可通过下式完成:R=ACRDCRACIRDCIR---(3)]]>SpO2=110-25R (4)其中ACR代表由红光得到的光电容积描记信号的交流部分,DCR代表由红光得到的光电容积描记信号的直流部分;ACIR代表由红外光得到的光电容积描记信号的交流部分,DCIR代表由红外光得到的光电容积描记信号的直流部分。 Arterial oxygen saturation calculation can be completed by the following formula: R = ACRDCRACIRDCIR --- (3)]]> SpO2 = 110-25R (4) wherein the alternating component of the photoplethysmogram signal obtained from the red light representative of ACR, DCR Representative photoplethysmogram DC component signal obtained by the red light; alternating component photoplethysmogram signal representative of ACIR obtained by the infrared light, the DC component of the photoplethysmogram signal representative of DCIR obtained by the infrared light. 通过求取它们之间的比值(3),并利用经验公式(4),可求得动脉血氧饱和度。 By obtaining the ratio (3) between them, and the empirical formula (4), arterial oxygen saturation can be obtained.

参考文献[1]WJSmith and JRLaCourse,Non-contact biopotential measurement fromthe human body using a low-impedance charge amplifier,BioengineeringConference,2004.Proceedings of the IEEE 30th Annual Northeast,pp.31-32,17-18 April 2004. References [1] WJSmith and JRLaCourse, Non-contact biopotential measurement fromthe human body using a low-impedance charge amplifier, BioengineeringConference, 2004.Proceedings of the IEEE 30th Annual Northeast, pp.31-32,17-18 April 2004.

[2]CJHarland,TDClark and RJPrance,Electric potential probes-newdirections in the remote sensing of the human body,Measurement Science andTechnology,vol.13,pp.163-169,2002. [2] CJHarland, TDClark and RJPrance, Electric potential probes-newdirections in the remote sensing of the human body, Measurement Science andTechnology, vol.13, pp.163-169,2002.

[3]Yong Kyu Lim,Ko Keun Kim and Kwang Suk Park,“The electrically non-contacting ECG measurement in daily life,”in Proceedings of the InternationalUbiquitous-Healthcare Conference 2004,Seoul,Korea,Oct.2004. [3] Yong Kyu Lim, Ko Keun Kim and Kwang Suk Park, "The electrically non-contacting ECG measurement in daily life," in Proceedings of the InternationalUbiquitous-Healthcare Conference 2004, Seoul, Korea, Oct.2004.

[4]JCBramwell and AVHill,“The Velocity of the Pulse Wave in Man”,Proceedings of the Royal Society,London,pp.298-306,1922. [4] JCBramwell and AVHill, "The Velocity of the Pulse Wave in Man", Proceedings of the Royal Society, London, pp.298-306,1922.

[5]B.Gribbin,A.StEptoe,and P.Sleight,“Pulse Wave Velocity as aMeasure of Blood Pressure Change”,Psychophysiology,vol.13,no.1,pp.86-90,1976. [5] B.Gribbin, A.StEptoe, and P.Sleight, "Pulse Wave Velocity as aMeasure of Blood Pressure Change", Psychophysiology, vol.13, no.1, pp.86-90,1976.

[6]Norman M.Kaplan,“Clinical Hypertension”;J Woo,“Nutrition and healthissues in the general Hong Kong population”,HKMJ,Vol4,No4,pp.383-388,1998. [6] Norman M.Kaplan, "Clinical Hypertension"; J Woo, "Nutrition and healthissues in the general Hong Kong population", HKMJ, Vol4, No4, pp.383-388,1998.

[7]“Non-invasive blood pressure”,ANSI/AAMI,SP10,1992. [7] "Non-invasive blood pressure", ANSI / AAMI, SP10,1992.

[8]US 4,418,700,Method and apparatus for measurement of heart-relatedparameters. [8] US 4,418,700, Method and apparatus for measurement of heart-relatedparameters.

[9]US 4,834,107,Heart-related parameters monitoring apparatus. [9] US 4,834,107, Heart-related parameters monitoring apparatus.

[10]US 5,269,310 Method of measuring blood pressure with aplethysmograph. [10] US 5,269,310 Method of measuring blood pressure with aplethysmograph.

[11]US 6,616,613,Physiological signal monitoring system. [11] US 6,616,613, Physiological signal monitoring system.

[12]Modeling the relationship between peripheral blood pressure and bloodvolume pulses using linear and neural network system identification techniques,John Allen and Alan Murray,Physiol.Meas.,vol.20,pp.287-300,1999. [12] Modeling the relationship between peripheral blood pressure and bloodvolume pulses using linear and neural network system identification techniques, John Allen and Alan Murray, Physiol.Meas., Vol.20, pp.287-300,1999.

[13]Noninvasive assessment of the digital volume pulse comparison with theperipheral pressure pulse,Sandrine C.Millasseau and Franck G.Guigui,et al.,Hypertension,vol.36,pp.952-956,2000. [13] Noninvasive assessment of the digital volume pulse comparison with theperipheral pressure pulse, Sandrine C.Millasseau and Franck G.Guigui, et al., Hypertension, vol.36, pp.952-956,2000.

[14]Respiratory rhythm detection with photoplethysmographic methods,DieterBarschdorff and Wei Zhang,Proceedings of IEEE-EMBS,pp.912-913,1994. [14] Respiratory rhythm detection with photoplethysmographic methods, DieterBarschdorff and Wei Zhang, Proceedings of IEEE-EMBS, pp.912-913,1994.

[15]Monitoring of heart and respiratory rates by photoplethysmography using adigital filtering technique,K.Nakajima,T.Tamura and H.Miike,Med.Eng.Phys.Vol.18,No.5,pp.365-372,1996. [15] Monitoring of heart and respiratory rates by photoplethysmography using adigital filtering technique, K.Nakajima, T.Tamura and H.Miike, Med.Eng.Phys.Vol.18, No.5, pp.365-372,1996.

Claims (18)

1.一种非接触式关键生理参数测量方法,包括:(a)通过非接触方式测量被测者的脉搏波相关信号;(b)通过非接触方式测量被测者的生物电信号;(c)根据所测量到的信号计算关键生理参数。 1. A non-contact method of measuring critical physiological parameter, comprising: (a) measuring the subject's pulse wave signal related non-contact manner; (b) measuring the bioelectric signal of the subject by a non-contact manner; (c ) key physiological parameters calculated from the measured signal.
2.如权利要求1所述的系统,其特征在于,非接触是指非直接电接触或非机械接触。 2. The system according to claim 1, wherein the non-contact means is a non-direct electrical contact or a mechanical contact.
3.如权利要求1所述的系统,其特征在于,脉搏波相关信号可以但不局限于通过非接触式容积描记法得到。 The system according to claim 1, wherein the pulse wave-related signal may be obtained by but not limited to non-contact plethysmography.
4.如权利要求1所述的系统,其特征在于,生物电信号可以但不局限于通过高输入阻抗电路、低阻抗充电放大器或耦合电极得到。 4. The system according to claim 1, characterized in that the bio-electrical signal may be but is not limited by the high input impedance circuit, the low impedance coupling electrode or charge amplifier obtained.
5.如权利要求3和4所述的系统,其特征在于,获取脉搏波相关信号和生物电信号的传感器可以集成为一体。 5. The system of claim 3 and claim 4, wherein the sensor acquires pulse wave-related electrical signals and biological signals may be integrated into one.
6.如权利要求1所述的系统,其特征在于,其可计算的关键生理参数包括血压、血压变化率、心率、心率变化率、血氧饱和度和呼吸频率等。 6. The system according to claim 1, characterized in that the key computable physiological parameters including blood pressure, rate of change of blood pressure, heart rate, heart rate change rate, respiratory rate and oxygen saturation and the like.
7.如权利要求5和6所述的系统,其特征在于,关键生理参数:血压、血压变化率、心率、心率变化率、血氧饱和度和呼吸频率等的测量可通过一个集成传感器以非接触方式得到。 5 and 7. The system according to claim 6, characterized in that the key physiological parameters: measurement of blood pressure, rate of change of blood pressure, heart rate, heart rate change rate, respiratory rate and oxygen saturation and the like can be integrated by a non-sensor get in contact mode.
8.如权利要求4所述的系统,其特征在于,生物电信号是指由非接触方式测量到的心电信号。 8. The system according to claim 4, wherein the bioelectric signal is measured by means of a non-contact manner to the ECG signal.
9.如权利要求5所述的系统,其特征在于,心率、心率变化率和呼吸频率是通过双信号,即脉搏波相关信号和心电信号两个信号得到。 9. The system according to claim 5, characterized in that the heart rate, heart rate variability and respiration rate by a double frequency signal, i.e. the pulse wave signal and the correlation of the two signals obtained ECG signals.
10.如权利要求5所述的系统,其特征在于,血氧饱和度可通过脉搏波相关信号得到。 10. The system according to claim 5, characterized in that the oxygen saturation can be obtained by pulse wave-related signals.
11.如权利要求5所述的系统,其特征在于,血压测量是通过脉搏波相关信息获得的。 11. The system according to claim 5, characterized in that the blood pressure measurement by the pulse wave information is obtained.
12.如权利要求11所述的系统,其特征在于,脉搏波相关信息为脉搏波传输时间,它是通过与被测者的脉搏波相关信号上的第一参考点和被测者的生物电信号上的第二参考点之间在同一心动周期内的时间间隔来确定的。 12. The system of claim 11, wherein the pulse wave of the pulse wave information transmission time, which is the first reference point and the bioelectrical the subject on the subject by the pulse wave correlation signal between the second reference point on the signal in the same time interval of the cardiac cycle is determined.
13.如权利要求11所述的系统,其特征在于,脉搏波相关信息为脉搏波特征变量,它是仅通过与被测者的脉搏波相关的信号来确定的。 13. The system of claim 11, wherein the pulse wave of the pulse wave information characteristic variable, which is determined only by the signal associated with the pulse wave of the subject.
14.如权利要求12所述的系统,其特征在于,所述第一参考点选自容积描记信号波形的顶点、中间点和底点之一。 14. The system of claim 12, wherein said first reference point is selected from PPG signal waveform vertex, one of the intermediate point and the bottom point.
15.根据权利要求12所述的系统,其特征在于,所述生物电信号上的第二参考点为心电信号中的R型波的顶点。 15. The system according to claim 12, characterized in that a second reference point on the vertex of the bioelectric signal of the ECG R-wave type.
16.如权利要求13所述的系统,其特征在于,脉搏波特征变量是指时域上脉搏波上升沿或下降沿时间,或所定义时间参量的比值以及在频域上所提取的特征值。 16. The system according to claim 13, characterized in that the characteristic variable refers to a pulse wave rising or falling time of the pulse wave, or a ratio of the time parameter is defined in the frequency domain and the extracted feature value of the time domain .
17.如权利要求1所述的系统,其特征在于,该方法可以集成在日常生活辅助设施中,如浴缸,床和座椅等,提供特殊环境下的生理参数监测。 17. The system according to claim 1, characterized in that the method may be integrated auxiliary facilities in daily life, such as bathtubs, beds and seats, providing monitoring physiological parameters under special circumstances.
18.如权利要求17所述的系统,其特征在于,集成于生活辅助设施中测量信号的传感器位置是可调节的。 18. The system according to claim 17, wherein the position sensor is integrated in an assisted living facility measurement signal is adjustable.
CN 200610007174 2006-01-26 2006-01-26 Non-contact measurement method of key physiological parameters CN101006915A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200610007174 CN101006915A (en) 2006-01-26 2006-01-26 Non-contact measurement method of key physiological parameters

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200610007174 CN101006915A (en) 2006-01-26 2006-01-26 Non-contact measurement method of key physiological parameters

Publications (1)

Publication Number Publication Date
CN101006915A true CN101006915A (en) 2007-08-01

Family

ID=38695744

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200610007174 CN101006915A (en) 2006-01-26 2006-01-26 Non-contact measurement method of key physiological parameters

Country Status (1)

Country Link
CN (1) CN101006915A (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102283642A (en) * 2011-06-10 2011-12-21 中国科学院深圳先进技术研究院 A continuous measurement system wearable physiological parameters based on network sense footer
CN101627902B (en) 2009-07-15 2011-12-28 深圳先进技术研究院 Based on ambient light, low-power, high-precision optical plethysmography signal processing front end module
CN102499687A (en) * 2011-11-17 2012-06-20 江苏大学 Pig respirator rate detecting method and device on basis of machine vision
ES2384834A1 (en) * 2009-09-08 2012-07-13 Universitat Politècnica De Catalunya Method and apparatus for continuous continuous detection of heart frequency for impedance pletismography with hid electrodes.
CN103083010A (en) * 2013-01-14 2013-05-08 深圳美粹科技有限公司 Portable electrocardiogram measuring device and remote health monitoring system
US8665098B2 (en) 2010-09-20 2014-03-04 Industrial Technology Research Institute Non-contact motion detection apparatus
CN103767696A (en) * 2013-11-05 2014-05-07 深圳市倍轻松科技股份有限公司 Heart rate detection method and device
CN103815888A (en) * 2012-11-19 2014-05-28 株式会社东芝 Biosignal measuring device and biosignal measuring method
US8754772B2 (en) 2010-09-20 2014-06-17 Industrial Technology Research Institute Non-contact vital sign sensing system and sensing method using the same
CN104055499A (en) * 2014-06-16 2014-09-24 朱宇东 Wearable intelligent hand ring and method for continuously monitoring human body physiological signs
CN104123536A (en) * 2009-08-20 2014-10-29 皇家飞利浦电子股份有限公司 System and method for image analysis
CN104173036A (en) * 2014-09-11 2014-12-03 重庆大学 Pulse wave acquisition device, and non-invasive blood pressure continuous beat-to-beat measuring system and method
CN104490373A (en) * 2014-12-17 2015-04-08 辛勤 Method and device for judging pulse signals and physiological parameter measuring equipment
CN104706348A (en) * 2015-03-20 2015-06-17 宁波市美灵思医疗科技有限公司 Multi-mode continuous blood pressure measurement device and self-calibration method thereof
CN104769596A (en) * 2012-12-07 2015-07-08 英特尔公司 Physiological cue processing
CN104837403A (en) * 2012-11-27 2015-08-12 佛吉亚汽车座椅有限责任公司 Vehicle seat with integrated sensors
CN105105784A (en) * 2015-07-20 2015-12-02 广州丰谱信息技术有限公司 Bathing equipment based on ultrasonic human body physiological data acquisition and auxiliary health protection
CN105286829A (en) * 2015-11-05 2016-02-03 南京理工大学 Non-contact vital sign intelligent detection device
CN105391916A (en) * 2014-08-21 2016-03-09 索尼公司 Method and system for video data processing
US9375153B2 (en) 2010-05-17 2016-06-28 Industrial Technology Research Institute Motion/vibration sensor
US9448053B2 (en) 2010-09-20 2016-09-20 Industrial Technology Research Institute Microwave motion sensor
CN106068097A (en) * 2014-02-20 2016-11-02 佛吉亚汽车座椅有限责任公司 Vehicle seat with integrated sensors
CN106527105A (en) * 2015-09-14 2017-03-22 深圳市美达尔前海医疗科技有限公司 Intelligent watch and blood oxygen detection method
US9603555B2 (en) 2010-05-17 2017-03-28 Industrial Technology Research Institute Motion/vibration detection system and method with self-injection locking
CN106901705A (en) * 2017-01-11 2017-06-30 南京邮电大学 A kind of unaware human Body Physiology Multi-parameter harvester and acquisition method and application
CN107256021A (en) * 2017-07-25 2017-10-17 陕西舜洋电子科技有限公司 Study of Intelligent Robot Control method for volleyball training
CN108932803A (en) * 2018-07-27 2018-12-04 广东交通职业技术学院 A kind of method that preventing sudden death of the baby, warning device and system

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101627902B (en) 2009-07-15 2011-12-28 深圳先进技术研究院 Based on ambient light, low-power, high-precision optical plethysmography signal processing front end module
CN104123536A (en) * 2009-08-20 2014-10-29 皇家飞利浦电子股份有限公司 System and method for image analysis
CN104123536B (en) * 2009-08-20 2018-09-21 皇家飞利浦电子股份有限公司 System and method for image analysis
ES2384834A1 (en) * 2009-09-08 2012-07-13 Universitat Politècnica De Catalunya Method and apparatus for continuous continuous detection of heart frequency for impedance pletismography with hid electrodes.
US9375153B2 (en) 2010-05-17 2016-06-28 Industrial Technology Research Institute Motion/vibration sensor
US9603555B2 (en) 2010-05-17 2017-03-28 Industrial Technology Research Institute Motion/vibration detection system and method with self-injection locking
US9448053B2 (en) 2010-09-20 2016-09-20 Industrial Technology Research Institute Microwave motion sensor
US8665098B2 (en) 2010-09-20 2014-03-04 Industrial Technology Research Institute Non-contact motion detection apparatus
US8754772B2 (en) 2010-09-20 2014-06-17 Industrial Technology Research Institute Non-contact vital sign sensing system and sensing method using the same
CN102283642A (en) * 2011-06-10 2011-12-21 中国科学院深圳先进技术研究院 A continuous measurement system wearable physiological parameters based on network sense footer
CN102283642B (en) * 2011-06-10 2014-12-10 中国科学院深圳先进技术研究院 Wearable system capable of continuously measuring multiple physiological parameters based on body sensor network
CN102499687B (en) 2011-11-17 2014-05-28 江苏大学 Pig respirator rate detecting method and device on basis of machine vision
CN102499687A (en) * 2011-11-17 2012-06-20 江苏大学 Pig respirator rate detecting method and device on basis of machine vision
CN103815888A (en) * 2012-11-19 2014-05-28 株式会社东芝 Biosignal measuring device and biosignal measuring method
CN103815888B (en) * 2012-11-19 2016-01-20 株式会社东芝 And a biological signal measuring apparatus biological signal measuring method
CN104837403A (en) * 2012-11-27 2015-08-12 佛吉亚汽车座椅有限责任公司 Vehicle seat with integrated sensors
US9640218B2 (en) 2012-12-07 2017-05-02 Intel Corporation Physiological cue processing
CN104769596A (en) * 2012-12-07 2015-07-08 英特尔公司 Physiological cue processing
CN103083010A (en) * 2013-01-14 2013-05-08 深圳美粹科技有限公司 Portable electrocardiogram measuring device and remote health monitoring system
CN103767696B (en) * 2013-11-05 2016-08-17 深圳市倍轻松科技股份有限公司 Method and apparatus for detecting heart rate
WO2015066876A1 (en) * 2013-11-05 2015-05-14 W¼£Væ·V½bVØýY¨|W¸´XxjW«ØYb~U|¨WæiZr°VeÐV±½ Heart rate detection method and device
CN103767696A (en) * 2013-11-05 2014-05-07 深圳市倍轻松科技股份有限公司 Heart rate detection method and device
CN106068097A (en) * 2014-02-20 2016-11-02 佛吉亚汽车座椅有限责任公司 Vehicle seat with integrated sensors
CN104055499A (en) * 2014-06-16 2014-09-24 朱宇东 Wearable intelligent hand ring and method for continuously monitoring human body physiological signs
CN105391916B (en) * 2014-08-21 2018-10-12 索尼公司 Method and system for video data processing
CN105391916A (en) * 2014-08-21 2016-03-09 索尼公司 Method and system for video data processing
CN104173036A (en) * 2014-09-11 2014-12-03 重庆大学 Pulse wave acquisition device, and non-invasive blood pressure continuous beat-to-beat measuring system and method
CN104490373A (en) * 2014-12-17 2015-04-08 辛勤 Method and device for judging pulse signals and physiological parameter measuring equipment
CN104706348A (en) * 2015-03-20 2015-06-17 宁波市美灵思医疗科技有限公司 Multi-mode continuous blood pressure measurement device and self-calibration method thereof
CN105105784A (en) * 2015-07-20 2015-12-02 广州丰谱信息技术有限公司 Bathing equipment based on ultrasonic human body physiological data acquisition and auxiliary health protection
CN106527105A (en) * 2015-09-14 2017-03-22 深圳市美达尔前海医疗科技有限公司 Intelligent watch and blood oxygen detection method
CN105286829A (en) * 2015-11-05 2016-02-03 南京理工大学 Non-contact vital sign intelligent detection device
CN106901705A (en) * 2017-01-11 2017-06-30 南京邮电大学 A kind of unaware human Body Physiology Multi-parameter harvester and acquisition method and application
CN107256021A (en) * 2017-07-25 2017-10-17 陕西舜洋电子科技有限公司 Study of Intelligent Robot Control method for volleyball training
CN108932803A (en) * 2018-07-27 2018-12-04 广东交通职业技术学院 A kind of method that preventing sudden death of the baby, warning device and system

Similar Documents

Publication Publication Date Title
US7060035B2 (en) Signal processing method and device for signal-to-noise improvement
Elgendi On the analysis of fingertip photoplethysmogram signals
US8562526B2 (en) Apparatus, system, and method for monitoring physiological signs
Kranjec et al. Non-contact heart rate and heart rate variability measurements: A review
US6616613B1 (en) Physiological signal monitoring system
EP1304074B1 (en) Apparatus for determining the left-ventricular ejection time of a heart of a subject
US9596999B2 (en) Body-worn pulse oximeter
US8740802B2 (en) Body-worn system for measuring continuous non-invasive blood pressure (cNIBP)
US6553242B1 (en) Physiological stress detector device and method
JP4395068B2 (en) Body surface probe, apparatus, and method for non-invasive detection of medical conditions
CN101495034B (en) Sensor for detecting the passing of a pulse wave from a subject's arterial system
US8602997B2 (en) Body-worn system for measuring continuous non-invasive blood pressure (cNIBP)
AU708285B2 (en) Detecting atherosclerosis in humans
Naschitz et al. Pulse transit time by R-wave-gated infrared photoplethysmography: review of the literature and personal experience
US6120459A (en) Method and device for arterial blood pressure measurement
Ding et al. Continuous cuffless blood pressure estimation using pulse transit time and photoplethysmogram intensity ratio
KR100519758B1 (en) Method and apparatus for evaluating human stress using PPG
Johansson Neural network for photoplethysmographic respiratory rate monitoring
US10052041B2 (en) Body-worn system for continuous, noninvasive measurement of cardiac output, stroke volume, cardiac power, and blood pressure
DE10392677B4 (en) Device and method for monitoring the autonomic nervous system
US20150366469A1 (en) System for measurement of cardiovascular health
US20080183232A1 (en) Method and system for determining cardiac function
Mukkamala et al. Toward ubiquitous blood pressure monitoring via pulse transit time: theory and practice
EP1860999B1 (en) Mobile diagnosis device
JP6130474B2 (en) Weight scale device and pulse wave velocity acquisition method

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
C12 Rejection of an application for a patent