CN101003667A - Composite material of poly lactic acid / natural faric, and production method - Google Patents

Composite material of poly lactic acid / natural faric, and production method Download PDF

Info

Publication number
CN101003667A
CN101003667A CN 200610037894 CN200610037894A CN101003667A CN 101003667 A CN101003667 A CN 101003667A CN 200610037894 CN200610037894 CN 200610037894 CN 200610037894 A CN200610037894 A CN 200610037894A CN 101003667 A CN101003667 A CN 101003667A
Authority
CN
China
Prior art keywords
polylactic acid
fibers
composite material
parts
natural
Prior art date
Application number
CN 200610037894
Other languages
Chinese (zh)
Inventor
董卫卫
赵春贵
李俊
刘新力
Original Assignee
东丽纤维研究所(中国)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东丽纤维研究所(中国)有限公司 filed Critical 东丽纤维研究所(中国)有限公司
Priority to CN 200610037894 priority Critical patent/CN101003667A/en
Publication of CN101003667A publication Critical patent/CN101003667A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/045Reinforcing macromolecular compounds with loose or coherent fibrous material with vegetable or animal fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/06Reinforcing macromolecular compounds with loose or coherent fibrous material using pretreated fibrous materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones

Abstract

This invention discloses a poly (lactic acid)/natural fiber composite, which is mainly composed of poly (lactic acid) resin and natural fibers. The production method comprises: performing surface treatment on natural fibers with coupling agent, mixing with poly (lactic acid) resin, antioxidant, nucleating agent and lubricant, melt-extruding, and granulating to obtain the product. The method has such advantages as easy operation and high efficiency. The poly(lactic acid)/natural fiber composite has such advantages as high modulus, good heat resistance, good processability, and good biodegradability, and can be used in the fields of automobile industry, architecture and domestic decoration.

Description

聚乳酸/天然纤维复合材料及其生产方法 PLA / natural fiber composite material and production method

技术领域 FIELD

:本发明属于高分子材料领域,具体涉及一种天然纤维增强改性聚乳酸复合材料及其生产方法。 : The present invention belongs to the field of polymer materials, particularly relates to a natural fiber-reinforced composite material of polylactic acid and modified production process.

背景技术 Background technique

:聚乳酸(PLA)在自然界并不存在,是以农业经济作物(玉米、小麦、马铃薯等)的发酵产物乳酸为基本原料制备得来的一种环境友好的材料。 : Polylactic acid (PLA) does not exist in nature, based on agricultural crops (corn, wheat, potato, etc.) of lactic acid fermentation product prepared as raw materials come an environmentally friendly material. 聚乳酸具有良好的生物降解性能,同时又具有良好的生物相容性和生物可吸收性,对人体无毒无害,在体内及自然环境中逐渐降解,最终成为二氧化碳和水,不会遗留任何环保问题。 Polylactic acid has excellent biodegradability, but also has good biocompatibility and absorbability, nontoxic to humans, and the gradual degradation of the natural environment in the body, ultimately to carbon dioxide and water, will not leave any Environmental issues. 所以聚乳酸在很多领域被认为是最具潜力和最有前途的可降解高分子材料。 So polylactic acid is considered to be the most potential in many areas and the most promising biodegradable polymer materials. 但是纯聚乳酸的某些机械力学性能如耐热性(热变形温度)太低,通常不能满足使用的要求。 However, some pure PLA mechanical properties such as heat resistance (heat distortion temperature) is too low, generally not meet the requirements for use. 并且聚乳酸结晶速率很慢,用作注塑件使用时成型周期太长,难以满足成型方面的要求。 And slow crystallization rate of polylactic acid, when used as a long molding cycle using the injection molding, it is difficult to meet the requirements of the molding area. 纤维改性聚乳酸是一种有效的改善材料性能的方法,所得的复合材料具有优异的性能,尤其是天然纤维,优点更加突出。 Modified polylactic acid fiber is an effective method for improving the properties of the material, the resulting composite material has excellent properties, in particular natural fibers, more prominent advantages. 经天然纤维增强改性的聚乳酸机械力学性能、结晶性能和成型加工性等性能都得到大幅改善,同时又不会降低其生物降解性能。 By the natural fiber-reinforced polylactic acid modified mechanical mechanical properties, crystal properties, and moldability and other properties have been greatly improved, while not reducing its biodegradability.

纤维增强改性聚乳酸的研究已经引起了广泛的关注。 Study fiber reinforced modified polylactic acid has attracted wide attention. 中国专利(申请号94192896.9)公开了一种天然纤维增强的热塑性淀粉、纤维素衍生物、聚己内酯、疏水蛋白质或聚乙烯醇;中国专利(申请号01107011.0)公开了一种纤维增强的聚乳酸复合物,采用甲壳素纤维、明胶蛋白纤维、改性人发角蛋白纤维、改性纤维素或聚酰亚胺纤维来改善聚乳酸的强度;中国专利(申请号02113309.3)公开了用聚磷酸钙纤维增强改性聚L-丙交酯;中国专利(申请号03117708.5)公开了一种无机填料增强改性的聚DL-乳酸材料,其中填料包括聚磷酸钙、羟基磷灰石、碳酸钙或氧化锆,该材料保持了聚乳酸良好的生物相容性,而且强度还有显著的提高。 Chinese Patent (Application No. 94192896.9) discloses a natural fiber-reinforced thermoplastic starch, cellulose derivatives, polycaprolactone, polyvinyl alcohol, or a hydrophobic protein; Chinese Patent (Application No. 01107011.0) discloses a fiber-reinforced polylactic lactic acid complex, using chitin fiber, gelatin fibers, modified human hair keratin fibers, cellulose or modified to improve the strength of the polyimide fiber of polylactic acid; Chinese Patent (application No. 02113309.3) discloses the use of polyphosphoric acid calcium fiber reinforced modified poly L- lactide; Chinese Patent (application No. 03117708.5) discloses poly DL- lactic acid modified to enhance an inorganic filler material, wherein the filler comprises calcium polyphosphate, hydroxyapatite, calcium carbonate or zirconia, the material maintains good biocompatibility polylactic acid, and the strength also improved significantly. 但上述发明均存在操作复杂,对机械设备要求高,生产效率低,不易工业化的缺点。 However, the above-described present invention were complicated operation, high requirements on the mechanical equipment, production efficiency is low, the disadvantage of easy industrialization.

发明内容 SUMMARY

:本发明的目的在于提供一种具有较好的力学性能,较高的耐热性和改善了的成型加工性的聚乳酸/天然纤维复合材料。 : Object of the present invention is to provide a good mechanical properties, high heat resistance and improved moldability of a polylactic acid / natural fiber composites.

本发明的另一个目的在于提供上述聚乳酸/天然纤维复合材料的生产方法。 Another object of the present invention to provide a method for producing the polylactic acid / natural fiber composites.

本发明的技术解决方案是:聚乳酸/天然纤维复合材料,由60~95份聚乳酸、5~40份天然纤维、0~1份抗氧剂、0~2份成核剂、0~1份润滑剂组成。 Technical solutions of the present invention is: a polylactic acid / natural fiber composites, from 60 to 95 parts of polylactic acid, 5 to 40 parts of natural fibers, 0 to 1 part of antioxidant, 0 to 2 parts of nucleating agent, 0 to 1 parts of a lubricant.

本发明天然纤维包括大麻纤维、棉纤维、竹纤维、苎麻纤维、亚麻纤维、亚麻布纤维、黄麻纤维、剑麻纤维、丝纤维、丝线、焦麻纤维和/或它们的混合物。 The present invention comprises a natural hemp fibers, cotton fibers, bamboo fibers, ramie fibers, flax fiber, linen, jute, sisal fibers, silk fibers, silk, hemp fibers coke and / or mixtures thereof. 天然纤维可以是短纤维,也可以是长纤维(纱线)。 Natural fibers may be short fibers, long fibers may be (yarn). 天然纤维的表面一般用偶联剂进行处理。 Surface of the natural fiber is typically treated with a coupling agent. 偶联剂为硅氧烷类,如γ-氨丙基三乙氧基硅烷,γ-缩水甘油醚氧丙基三甲氧基硅烷,N-(β-氨乙基)-γ-氨丙基三甲氧基硅烷,N-(N-(β-氨乙基)-β-氨乙基)-γ-氨丙基三甲氧基硅烷;钛酸酯类,如异丙基二(甲基丙烯酰基)异硬脂酰基钛酸酯;硬脂酸类,如硬脂酸,硬脂酸钙;其它种类还可以为铝酸酯类和稀土类偶联剂等。 Silicone-based coupling agent, such as aminopropyl triethoxysilane, [gamma], [gamma] glycidoxypropyl trimethoxysilane, N- (β- aminoethyl) [gamma] aminopropyltrimethoxysilane trimethoxysilane, N- (N- (β- aminoethyl) [beta-aminoethyl) aminopropyl trimethoxysilane, [gamma]; titanate esters, such as isopropyl bis (methacryloyl group) isostearyl titanate; stearic acids such as stearic acid, calcium stearate; aluminum may also be other kinds of rare earth esters and coupling agents.

本发明中加入抗氧剂的目的是为了降低在制备复合材料的过程中聚乳酸的降解及氧化。 Object of the present invention is to reduce the added antioxidant polylactic acid during the preparation of the composite material degradation and oxidation. 加入成核剂的目的是为了提高聚乳酸的结晶速率,改善制品的成型加工性。 The purpose of the nucleating agent added is to improve the crystallization rate of polylactic acid, to improve moldability of the article. 同时,为了提高复合材料的加工性,可在配方中加入相应的润滑剂。 Meanwhile, in order to improve the workability of the composite material, the lubricant may be added in appropriate formulations. 抗氧剂可以是:四{β-(3,5-二特丁基-4-羟基苯基)丙酸}季戊四醇,(3,5-二特丁基-4-羟基苯基)丙酸十八酯,β-(3,5-二特丁基-4-羟基苯基)丙酸环己酯,硫代二丙酸二月桂酯等。 Antioxidants may be: four {[beta] (3,5-di-tert-butyl-4-hydroxyphenyl) propionic acid} pentaerythritol, (3,5-di-tert-butyl-4-hydroxyphenyl) propionic acid ten octaester, β- (3,5- di-tert.butyl-4-hydroxyphenyl) cyclohexyl propionate, dilauryl thiodipropionate and the like. 成核剂包括无机矿物如滑石粉、白炭黑、蒙脱石或高岭石等,也可以是有机成核剂如Dupont公司的沙林树脂(Surlyn)等。 Nucleating agents include inorganic minerals such as talc, silica, kaolinite, montmorillonite, or the like, may be an organic nucleating agents such as sarin by Dupont resin (Surlyn) and the like. 润滑剂为液体石蜡、石蜡、硅油、硬脂酸、硬脂酸钙等。 Lubricant is liquid paraffin, paraffin, silicone oil, stearic acid, calcium stearate.

聚乳酸/天然纤维复合材料的生产方法,包括下列步骤:①将5~40份天然纤维浸泡在偶联剂溶液中0.5~3小时,之后将其取出并干燥。 The polylactic acid / method for producing a natural fiber composite material, comprising the following: ① From 5 to 40 parts of natural fibers immersed in the coupling agent solution for 0.5 to 3 hours, after which it was taken out and dried.

②将60~95份聚乳酸树脂、0~1份抗氧剂、0~2份成核剂和0~1份润滑剂混合后输送到挤出机中,相应的短天然纤维通过侧进料装置加入到挤出机中,而长纤维(纱线)则从排气口或专门的加料口直接加入到挤出机中,进行熔融挤出造粒,制得聚乳酸/天然纤维复合材料。 ② 60 to 95 parts of polylactic acid resin, 0 to 1 part of antioxidant, 0 to 2 parts of nucleating agent and the 0 to 1 part of lubricant supplied to the mixing extruder, corresponding short natural fibers through a side feed It was added to the extruder apparatus, and the long fibers (yarn) from the exhaust port or a dedicated feed port was added directly to the extruder, melt-extruded granulation, to obtain a polylactic acid / natural fiber composites.

本发明方法具有操作简单、生产效率高等优点,制备的聚乳酸/天然纤维复合材料,具有较高的模量及耐热性,以及较好的成型加工性,同时又没有损失聚乳酸的可生物降解性,可广泛应用于汽车、建筑和居家装饰等领域。 The method of the present invention has a simple operation, high production efficiency, a polylactic acid produced / natural fiber composites having a higher modulus and heat resistance, and good moldability, while no loss of polylactic acid biodegradable degradation, can be widely used in automotive, construction and home decoration.

具体实施方式 Detailed ways

:实施例1准确称取70份聚乳酸和0.3份抗氧剂四{β-(3,5-二特丁基-4-羟基苯基)丙酸}季戊四醇混合均匀后从主料斗加入到挤出机中,同时将30份苎麻短纤维通过侧进料装置加入到挤出机中进行挤出造粒,干燥后制得产品。 : Example 1 70 parts of accurately weighed polylactic acid, and 0.3 parts of an antioxidant four {β- (3,5- di-tert.butyl-4-hydroxyphenyl) propionic acid} pentaerythrityl mixed after addition of extrusion from the main hopper to the extruder while 30 parts by ramie fibers short side feeder to the extruder in the extrusion granulation, and dried to obtain the product. 其力学性能见表一中1#所示,为了对比,表一中0#列出了纯聚乳酸的力学性能。 A mechanical properties shown in Table # 1, for comparison, Table lists the mechanical properties # 0 of pure polylactic acid.

用差示扫描量热法(DSC)测量了复合材料的结晶性能,取第一次降温和第二次升温曲线,用结晶峰的峰值(结晶温度)和半峰宽的大小表征结晶速率,结晶温度越高,半峰宽越窄则结晶速率越大。 Size characterization of the crystallization rate by differential scanning calorimetry (DSC) measurement of the crystallinity of the composite material, taking the first cooling and second heating curve, with a peak (crystallization temperature) and a crystallization peak half-width of the crystallization the higher the temperature, the narrower the half-width greater crystallization rate. 而结晶峰面积(结晶焓)和熔融峰的面积(熔融焓)表示相对结晶度的大小,焓越大则相对结晶度越高。 And the area (melting enthalpy) of the peak area of ​​crystallization (crystallization enthalpy) and the melting peak indicates the relative degree of crystallinity of the size, the larger the enthalpy is relatively higher degree of crystallinity. 其结晶性能见表二中1*所示,同时表二中0*列出了纯聚乳酸的结晶性能。 Crystallization properties shown in Table II * 1, * 0 while Table II lists the crystalline properties of pure polylactic acid.

由表一可见:本发明复合材料的力学性能如弯曲强度、弯曲模量和热变形温度等均比纯聚乳酸的性能好很多。 It is seen from the Table: mechanical properties of the composite material of the present invention is much better such as bending strength, flexural modulus and heat distortion temperature than pure polylactic acid.

由表二可见:本发明的结晶性能也明显优于纯聚乳酸的结晶性能。 From Table II: crystalline properties significantly better than the present invention, the crystalline properties of pure polylactic acid.

实施例2棉短纤维用偶联剂γ-缩水甘油醚氧丙基三甲氧基硅烷进行表面处理,具体方法如下:配制1wt%的偶联剂水溶液,滴加一定量的浓盐酸调节溶液PH3~4,将棉纤维浸泡在溶液中,浸泡处理两小时后取出置于鼓风烘箱中80℃烘干。 Example 2 cotton short fibers surface-treated with a coupling agent γ- glycidoxypropyl trimethoxysilane, specifically as follows: preparation of 1wt% aqueous solution of a coupling agent, a certain amount of concentrated hydrochloric acid was added dropwise to adjust the solution PH3 ~ 4, the cotton fibers immersed in the solution, removed after two hours soaking placed in a forced air oven dried 80 deg.] C.

准确称取90份聚乳酸和0.3份抗氧剂四{β-(3,5-二特丁基-4-羟基苯基)丙酸}季戊四醇混合均匀后从主料斗加入到挤出机中,同时将10份处理过的棉短纤维通过侧进料装置加入到挤出机中进行挤出造粒,干燥后制得产品,其余同实施例1,其力学性能见表一中2#所示,结晶性能见表二中2*所示。 Accurately weighed polylactic acid and 90 parts of 0.3 parts of an antioxidant four {β- (3,5- di-tert.butyl-4-hydroxyphenyl) propionic acid} after the addition of pentaerythritol mixed from the main hopper to the extruder, while 10 parts of the treated cotton staple fibers be added to the extruder through a side feed extrusion granulation apparatus and dried to obtain the product, the remaining cases, the mechanical properties are shown in Table 1 in a different embodiment shown in # 2 crystalline properties shown in Table II in 2 *.

由表一可见:本发明复合材料的力学性能如弯曲强度、弯曲模量和热变形温度等均比纯聚乳酸的性能好很多。 It is seen from the Table: mechanical properties of the composite material of the present invention is much better such as bending strength, flexural modulus and heat distortion temperature than pure polylactic acid.

由表二可见:本发明的结晶性能也明显优于纯聚乳酸的结晶性能。 From Table II: crystalline properties significantly better than the present invention, the crystalline properties of pure polylactic acid.

实施例3苎麻短纤维用偶联剂γ-缩水甘油醚氧丙基三甲氧基硅烷进行表面处理,浸泡时间为0.5小时。 Example 3 ramie staple fibers with a coupling agent γ- glycidoxypropyl trimethoxysilane embodiment of the surface treatment, soaking time is 0.5 hours. 具体处理方法同实施例2中棉纤维的处理。 Specific processing method with the processing of cotton fibers in Example 2.

准确称取80份聚乳酸和0.2份抗氧剂四{β-(3,5-二特丁基-4-羟基苯基)丙酸}季戊四醇混合均匀后从主料斗加入到挤出机中,同时将20份处理过的苎麻短纤维通过侧进料装置加入到挤出机中进行挤出造粒,干燥后制得产品,其余同实施例1,其力学性能见表一中3#所示,结晶性能见表二中3*所示。 Accurately weighed polylactic acid and 80 parts of 0.2 parts of an antioxidant four {β- (3,5- di-tert.butyl-4-hydroxyphenyl) propionic acid} after the addition of pentaerythritol mixed from the main hopper to the extruder, while 20 parts ramie treated short fibers were added to an extruder through a side feed extrusion granulation apparatus and dried to obtain products, the rest in Example 1, the mechanical properties shown in Table I # 3 crystalline properties shown in Table II 3 * FIG.

由表一可见:本发明复合材料的力学性能如弯曲强度、弯曲模量和热变形温度等均比纯聚乳酸的性能好很多。 It is seen from the Table: mechanical properties of the composite material of the present invention is much better such as bending strength, flexural modulus and heat distortion temperature than pure polylactic acid.

由表二可见:本发明的结晶性能也明显优于纯聚乳酸的结晶性能。 From Table II: crystalline properties significantly better than the present invention, the crystalline properties of pure polylactic acid.

实施例4苎麻短纤维的处理同实施例2。 Example 4 Processing ramie short fibers in Example 2 of the embodiment.

准确称取70份聚乳酸和0.2份抗氧剂四{β-(3,5-二特丁基-4-羟基苯基)丙酸}季戊四醇混合均匀后从主料斗加入到挤出机中,同时将30份处理过的苎麻短纤维通过侧进料装置加入到挤出机中进行挤出造粒,干燥后制得产品,其余同实施例1,其力学性能见表一中4#所示,结晶性能见表二中4*所示。 Accurately weighed polylactic acid and 70 parts of 0.2 parts of an antioxidant four {β- (3,5- di-tert.butyl-4-hydroxyphenyl) propionic acid} after the addition of pentaerythritol mixed from the main hopper to the extruder, while 30 parts ramie treated short fibers were added to an extruder through a side feed extrusion granulation apparatus and dried to obtain products, the rest in Example 1, the mechanical properties shown in Table I # 4 crystalline properties shown in Table II 4 * FIG.

由表一可见:本发明复合材料的力学性能如弯曲强度、弯曲模量和热变形温度等均比纯聚乳酸的性能好很多。 It is seen from the Table: mechanical properties of the composite material of the present invention is much better such as bending strength, flexural modulus and heat distortion temperature than pure polylactic acid.

由表二可见:本发明的结晶性能也明显优于纯聚乳酸的结晶性能。 From Table II: crystalline properties significantly better than the present invention, the crystalline properties of pure polylactic acid.

实施例5大麻短纤维用偶联剂N-(β-氨乙基)-γ-氨丙基三甲氧基硅烷进行表面处理,浸泡时间为3小时。 Example 5 hemp short fibers embodiment with a coupling agent N- (β- aminoethyl) aminopropyl trimethoxysilane, [gamma] the surface treatment, soaked for 3 hours.

准确称取80份聚乳酸、0.2份抗氧剂(3,5-二特丁基-4-羟基苯基)丙酸十八酯和0.5份成核剂滑石粉,混合均匀后从主料斗加入到挤出机中,同时将20份处理过的大麻短纤维通过侧进料装置加入到挤出机中进行挤出造粒,干燥后制得产品,其余同实施例1,其力学性能见表一中5#所示,结晶性能见表二中5*所示。 Accurately weigh 80 parts of a polylactic acid, 0.2 parts of an antioxidant (3,5-di-tert-butyl-4-hydroxyphenyl) propionate ester and 0.5 parts of a nucleating agent talc is added after mixed from the main hopper into the extruder, while the extruder and added to 20 parts by extrusion granulation hemp short fibers treated through a side feeder, and dried to obtain products, the rest in Example 1, the mechanical properties shown in Table # 5 shown in a crystalline properties shown in Table II * 5.

由表一可见:本发明复合材料的力学性能如弯曲强度、弯曲模量和热变形温度等均比纯聚乳酸的性能好很多。 It is seen from the Table: mechanical properties of the composite material of the present invention is much better such as bending strength, flexural modulus and heat distortion temperature than pure polylactic acid.

由表二可见:本发明的结晶性能也明显优于纯聚乳酸的结晶性能。 From Table II: crystalline properties significantly better than the present invention, the crystalline properties of pure polylactic acid.

实施例6 Example 6

亚麻布纤维用偶联剂N-(N-(β-氨乙基)-β-氨乙基)-γ-氨丙基三甲氧基硅烷进行表面处理,浸泡时间为2.5小时。 Linen fibers -γ- aminopropyl trimethoxy silane surface-treated with a coupling agent N- (N- (β- aminoethyl) [beta-aminoethyl) soak time of 2.5 hours.

准确称取80份聚乳酸、0.2份抗氧剂(3,5-二特丁基-4-羟基苯基)丙酸十八酯和0.5份成核剂蒙脱石,混合均匀后从主料斗加入到挤出机中,同时将20份处理过的亚麻布纤维通过侧进料装置加入到挤出机中进行挤出造粒,干燥后制得产品,其余同实施例1,其力学性能见表一中6#所示,结晶性能见表二中6*所示。 Accurately weigh 80 parts of a polylactic acid, 0.2 parts of an antioxidant (3,5-di-tert-butyl-4-hydroxyphenyl) propionate ester and 0.5 parts of a nucleating agent smectite mixed uniformly from the main hopper was added to the extruder, while 20 parts of treated linen fiber through a side feeder to the extruder in the extrusion granulation, and dried to obtain products, the rest in Example 1, the mechanical properties, see As shown in table # 6, as shown in table II crystallinity * 6.

由表一可见:本发明复合材料的力学性能如拉伸强度、弯曲强度、弯曲模量等均比纯聚乳酸的性能好很多。 It is seen from the Table: mechanical properties of composites of the present invention such properties as tensile strength, flexural strength, flexural modulus than pure polylactic acid much better.

由表二可见:本发明的结晶性能也明显优于纯聚乳酸的结晶性能。 From Table II: crystalline properties significantly better than the present invention, the crystalline properties of pure polylactic acid.

实施例7准确称取92份聚乳酸和0.3份抗氧剂(3,5-二特丁基-4-羟基苯基)丙酸十八酯,混合均匀后从主料斗加入到挤出机中,同时将8份苎麻长纤维(纱线)通过挤出机前端进料口(排气口)直接加入挤出机中挤出造粒,干燥后制得产品,其力学性能见表一中7#所示。 Example 7 92 parts of accurately weighed polylactic acid, and 0.3 parts of an antioxidant (3,5-di-tert-butyl-4-hydroxyphenyl) propionate esters, mixed evenly were added from the hopper to the main extruder while the parts 8 ramie fibers (yarn) was added directly to the front end by the extruder feed port (vent) extruder extrusion granulation, drying to obtain the product, the mechanical properties shown in Table 7 in a # shown.

由表一可见:本发明复合材料的力学性能如拉伸强度、弯曲强度、弯曲模量和热变形温度等均比纯聚乳酸的性能好很多。 It is seen from the Table: mechanical properties of composites of the present invention is much better properties, such as tensile strength, flexural strength, flexural modulus and heat distortion temperature than pure polylactic acid.

实施例8准确称取84份聚乳酸和0.3份抗氧剂四{β-(3,5-二特丁基-4-羟基苯基)丙酸}季戊四醇,混合均匀后从主料斗加入到挤出机中,同时将16份苎麻长纤维(纱线)通过挤出机前端进料口(排气口)直接加入挤出机中挤出造粒,干燥后制得产品,其余同实施例7,其力学性能见表一中8#所示。 Example 8 84 parts of accurately weighed polylactic acid, and 0.3 parts of an antioxidant four {β- (3,5- di-tert.butyl-4-hydroxyphenyl) propionic acid} pentaerythrityl after mixing uniformly added from the hopper to the main squeeze extruder while 16 parts by ramie fibers (yarn) was added directly to the front end by the extruder feed port (vent) extruder extrusion granulation, drying to obtain the product, and the rest with Example 7 the mechanical properties shown in Table I # 8.

由表一可见:本发明复合材料的力学性能如拉伸强度、弯曲强度、弯曲模量和热变形温度等均比纯聚乳酸的性能好很多。 It is seen from the Table: mechanical properties of composites of the present invention is much better properties, such as tensile strength, flexural strength, flexural modulus and heat distortion temperature than pure polylactic acid.

表一聚乳酸/天然纤维复合材料的力学性能 Table I Mechanical Properties of polylactic acid / natural fiber composites

表二聚乳酸/天然纤维复合材料的结晶性能 Table II crystalline properties of polylactic acid / natural fiber composites

实施例9丝短纤维用偶联剂异丙基二(甲基丙烯酰基)异硬脂酰基钛酸酯进行表面处理。 Example 9 embodiment silk short fiber with a coupling agent isopropyl-bis (methacryloyl) isostearoyl titanate surface treatment.

准确称取60份聚乳酸、0.5份抗氧剂β-(3,5-二特丁基-4-羟基苯基)丙酸环己酯、2份成核剂白炭黑和1份润滑剂硬脂酸,混合均匀后从主料斗加入到挤出机中,同时将40份处理过的丝短纤维通过侧进料装置加入到挤出机中进行挤出造粒,干燥后制得产品,其余同实施例1。 60 parts accurately weighed polylactic acid, 0.5 parts of an antioxidant β- (3,5- di-tert.butyl-4-hydroxyphenyl) propionic acid cyclohexyl ester, 2 parts of nucleating agent, a lubricant and 1 part of white carbon stearate, mixed uniformly added from the hopper to the main extruder, while 40 parts of treated silk short fiber through a side feeder to the extruder in the extrusion granulation, and dried to obtain the product, remaining the same as in Example 1.

实施例10 Example 10

剑麻短纤维用偶联剂硬脂酸进行表面处理。 Sisal short fibers surface-treated with a coupling agent stearate.

准确称取60份聚乳酸、0.5份抗氧剂四{β-(3,5-二特丁基-4-羟基苯基)丙酸}季戊四醇、2份成核剂高岭石和1份润滑剂硬脂酸钙,混合均匀后从主料斗加入到挤出机中,同时将40份处理过的剑麻短纤维通过侧进料装置加入到挤出机中进行挤出造粒,干燥后制得产品,其余同实施例1。 60 parts accurately weighed polylactic acid, 0.5 parts of an antioxidant four {β- (3,5- di-tert.butyl-4-hydroxyphenyl) propionic acid}, pentaerythritol, 2 parts of nucleating agent, a lubricant and 1 part of kaolinite calcium stearate, mixed uniformly added from the hopper to the main extruder, while 40 parts of the treated sisal short fibers were added to an extruder through a side feed extrusion granulation apparatus and dried to obtain product, remaining the same as in Example 1.

实施例11准确称取60份聚乳酸、1份抗氧剂四{β-(3,5-二特丁基-4-羟基苯基)丙酸}季戊四醇、0.5份成核剂白炭黑和0.5份润滑剂液体石蜡,混合均匀后从主料斗加入到挤出机中,同时将40份大麻(也可以是苎麻、亚麻、棉、竹、黄麻、剑麻、丝、焦麻和/或它们的混合物)长纤维(纱线)通过挤出机前端进料口(排气口)直接加入挤出机中挤出造粒,干燥后制得产品,其余同实施例7。 Example 11 60 parts accurately weighed polylactic acid, 1 part antioxidant four {β- (3,5- di-tert.butyl-4-hydroxyphenyl) propionic acid} pentaerythritol, 0.5 parts of white carbon and a nucleating agent 0.5 parts liquid paraffin lubricant mixed uniformly added from the hopper to the main extruder, while 40 parts of hemp (may be ramie, flax, cotton, bamboo, jute, sisal, silk, linen coke, and / or mixture) long fibers (yarn) were added through the end of the extruder feed port (vent) is directly extruded in an extruder pelletized, and dried to obtain the product, and the rest with Example 7.

实施例12准确称取70份聚乳酸和0.5份抗氧剂硫代二丙酸二月桂酯混合均匀后从主料斗加入到挤出机中,同时将30份竹长纤维(纱线)通过挤出机前端进料口(排气口)直接加入挤出机中挤出造粒,干燥后制得产品,其余同实施例7。 Example 12 Weigh accurately 70 parts of polylactic acid and 0.5 parts of an antioxidant dilauryl thiodipropionate was added uniformly mixed from the main hopper to the extruder, while 30 parts of long bamboo fiber (yarn) by extrusion the front end of the extruder feed port (vent) was added directly to the extruder extrusion granulation, drying to obtain the product, and the rest with Example 7.

Claims (10)

1.一种聚乳酸/天然纤维复合材料,其特征是该复合材料主要由下列重量组份组成:聚乳酸 60~95份天然纤维 5~40份抗氧剂 0~1份成核剂 0~2份润滑剂 0~1份。 A polylactic acid / natural fiber composite material, characterized in that the composite material mainly composed of the following parts by weight of the group consisting of: 60 to 95 parts of polylactic acid fibers from 5 to 40 parts of natural antioxidant 0 ~ 1 ~ 0 parts of a nucleating agent 2 0 parts to 1 part lubricant.
2.根据权利要求1所述的聚乳酸/天然纤维复合材料,其特征是所述的天然纤维包括大麻纤维、棉纤维、竹纤维、苎麻纤维、亚麻纤维、亚麻布纤维、黄麻纤维、剑麻纤维、丝纤维、丝线、焦麻纤维和/或它们的混合物。 The polylactic acid according to claim 1 / natural fiber composite material, characterized in that the natural fibers comprise hemp fibers, cotton fibers, bamboo fibers, ramie fibers, flax fiber, linen, jute, sisal fiber, silk fiber, silk, hemp fibers coke and / or mixtures thereof.
3.根据权利要求1或2所述的聚乳酸/天然纤维复合材料,其特征是所述的天然纤维是短纤维,或是长纤维。 According to claim 12 or polylactic acid / natural fiber composite material as claimed in claim, wherein said natural fibers are short fibers or long fibers.
4.根据权利要求1或2所述的聚乳酸/天然纤维复合材料,其特征是所述的天然纤维一般用偶联剂溶液进行表面处理,偶联剂为硅氧烷类、钛酸酯类、硬酯酸类、铝酸酯类或稀土类偶联剂。 According to claim 12 or polylactic acid / natural fiber composite material as claimed in claim, wherein the natural fiber surface-treated with a general coupling agent solution, a silicone-based coupling agent, titanate , stearic acid, esters or rare earth aluminum coupling agent.
5.根据权利要求4所述的聚乳酸/天然纤维复合材料,其特征是所述的偶联剂中硅氧烷类为γ-氨丙基三乙氧基硅烷,γ-缩水甘油醚氧丙基三甲氧基硅烷,N-(β-氨乙基)-γ-氨丙基三甲氧基硅烷,N-(N-(β-氨乙基)-β-氨乙基)-γ-氨丙基三甲氧基硅烷;偶联剂钛酸酯类为异丙基二(甲基丙烯酰基)异硬脂酰基钛酸酯;偶联剂硬脂酸类为硬脂酸,硬脂酸钙。 The polylactic acid according to claim / natural fiber composite material of claim 4, wherein said coupling agent is a siloxane-based [gamma] aminopropyl triethoxysilane, [gamma] propan-glycidoxypropyl trimethoxysilane, N- (β- aminoethyl) [gamma] aminopropyl trimethoxysilane, N- (N- (β- aminoethyl) [beta-aminoethyl) [gamma] aminopropyl trimethoxysilane; a titanate coupling agent is isopropyl bis (methacryloyl) isostearoyl titanate; coupling agent is stearic acid, calcium stearate.
6.根据权利要求1所述的聚乳酸/天然纤维复合材料,其特征是所述的抗氧剂是四{β-(3,5-二特丁基-4-羟基苯基)丙酸}季戊四醇,(3,5-二特丁基-4-羟基苯基)丙酸十八酯,β-(3,5-二特丁基-4-羟基苯基)丙酸环己酯,硫代二丙酸二月桂酯。 According to claim 1 PLA / natural fiber composite material as claimed in claim, wherein said antioxidant is a four {β- (3,5- di-tert.butyl-4-hydroxyphenyl) propionic acid} pentaerythritol, (3,5-di-tert-butyl-4-hydroxyphenyl) propionate esters, [beta] (3,5-di-tert-butyl-4-hydroxyphenyl) propionic acid cyclohexyl ester, thio dilauryl dipropionate.
7.根据权利要求1所述的聚乳酸/天然纤维复合材料,其特征是所述的成核剂为无机矿物或有机成核剂。 The polylactic acid according to claim 1 / natural fiber composite material, wherein said nucleating agent is an inorganic mineral or organic nucleating agents.
8.根据权利要求1或7所述的聚乳酸/天然纤维复合材料,其特征是所述的无机矿物成核剂为滑石粉、白炭黑、蒙脱石或高岭石,有机成核剂为沙林树脂。 According to claim 17 or polylactic acid / natural fiber composite material as claimed in claim, wherein said inorganic mineral nucleating agent is talc, silica, montmorillonite or kaolinite, organic nucleating agent sarin is a resin.
9.如权利要求1所述的聚乳酸/天然纤维复合材料,其特征是所述的润滑剂为液体石蜡、石蜡、硅油、硬脂酸、硬脂酸钙。 The polylactic acid as claimed in claim 1 / natural fiber composite material, wherein the lubricant is liquid paraffin, paraffin, silicone oil, stearic acid, calcium stearate.
10.一种制备权利要求1所述的聚乳酸/天然纤维复合材料的生产方法,其特征是所述的生产方法包括下列步骤:①将5~40份天然纤维浸泡在偶联剂溶液中0.5~3小时,之后将其取出并干燥。 The polylactic acid / method for producing a natural fiber composite material 10. A preparation as claimed in claim 1, wherein said producing method comprising the following: ① From 5 to 40 parts of natural fibers immersed in the coupling agent solution in 0.5 to 3 hours, after which it was taken out and dried. ②将60~95份聚乳酸树脂、0~1份抗氧剂、0~2份成核剂和0~1份润滑剂混合后输送到挤出机中,相应的短天然纤维通过侧进料装置加入到挤出机中,而长纤维(纱线)则从排气口或专门的加料口直接加入到挤出机中,进行熔融挤出造粒,制得聚乳酸/天然纤维复合材料。 ② 60 to 95 parts of polylactic acid resin, 0 to 1 part of antioxidant, 0 to 2 parts of nucleating agent and the 0 to 1 part of lubricant supplied to the mixing extruder, corresponding short natural fibers through a side feed It was added to the extruder apparatus, and the long fibers (yarn) from the exhaust port or a dedicated feed port was added directly to the extruder, melt-extruded granulation, to obtain a polylactic acid / natural fiber composites.
CN 200610037894 2006-01-20 2006-01-20 Composite material of poly lactic acid / natural faric, and production method CN101003667A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200610037894 CN101003667A (en) 2006-01-20 2006-01-20 Composite material of poly lactic acid / natural faric, and production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200610037894 CN101003667A (en) 2006-01-20 2006-01-20 Composite material of poly lactic acid / natural faric, and production method

Publications (1)

Publication Number Publication Date
CN101003667A true CN101003667A (en) 2007-07-25

Family

ID=38703057

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200610037894 CN101003667A (en) 2006-01-20 2006-01-20 Composite material of poly lactic acid / natural faric, and production method

Country Status (1)

Country Link
CN (1) CN101003667A (en)

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009137382A1 (en) * 2008-05-05 2009-11-12 International Paper Company Thermoformed article made from bio-based biodegradable polymer composition
CN101602882A (en) * 2008-06-13 2009-12-16 中国科学院宁波材料技术与工程研究所 Bamboo powder filled biomass-based resin composite material and preparation method thereof
EP2186846A1 (en) * 2008-11-17 2010-05-19 Cheil Industries Inc. Natural Fiber-Reinforced Polylactic Acid Resin Composition and Molded Product Made Using the Same
CN101942184A (en) * 2010-09-21 2011-01-12 中国科学院宁波材料技术与工程研究所 Bamboo powder filling biodegradable compound material and preparation method thereof
CN102002223A (en) * 2010-11-02 2011-04-06 奇瑞汽车股份有限公司 Full-biodegradable polylactic acid composite material and preparation method thereof
CN101200578B (en) 2007-11-26 2011-05-25 同济大学 Method for preparing fully-degradable natural fibre/montmorillonite/polylactic acid composite material
CN101200579B (en) 2007-11-26 2011-05-25 同济大学 Natural fibre reinforced polylactic acid composite material and method for making same
CN101638508B (en) 2008-07-29 2011-07-06 比亚迪股份有限公司 Polylactic acid material composite and material prepared from same
CN102414257A (en) * 2009-03-06 2012-04-11 日本电气株式会社 Polysiloxane-modified polylactic acid composition, composition utilizing same, molded article, and production method
US8231954B2 (en) 2009-12-08 2012-07-31 International Paper Co. Thermoformed articles made from reactive extrusion products of biobased materials
CN102719064A (en) * 2012-07-04 2012-10-10 北京汽车股份有限公司 Fully degradable automobile internal and external decoration material and preparation method and application thereof
CN102717577A (en) * 2012-07-04 2012-10-10 北京汽车股份有限公司 Environment-friendly composite material for automobile decoration and preparation method as well as application thereof
CN102729449A (en) * 2012-07-04 2012-10-17 北京汽车股份有限公司 Vehicle green internal and external decoration material, and preparation method and application thereof
CN102839646A (en) * 2011-06-22 2012-12-26 东丽纤维研究所(中国)有限公司 Sand-barrier manufactured by biodegradable material
CN103061162A (en) * 2011-10-19 2013-04-24 上海杰事杰新材料(集团)股份有限公司 Biodegradable composite prepreg cloth, and preparation method and device for the same
CN103073863A (en) * 2013-02-04 2013-05-01 同济大学 Natural fiber/thermosetting polylactic acid composite material and preparation method thereof
CN103102660A (en) * 2011-11-11 2013-05-15 上海杰事杰新材料(集团)股份有限公司 Fibrilia/polylactic acid biodegradable composite material and preparation method thereof
CN103102663A (en) * 2013-02-04 2013-05-15 湖南省憨豆农林科技有限公司 Sumac seed shell fiber-reinforced polylactic acid composite material and preparation method as well as application thereof
CN103317801A (en) * 2013-05-28 2013-09-25 同济大学 Blend fiber plate and preparation method thereof
CN103421284A (en) * 2012-05-14 2013-12-04 黑龙江鑫达企业集团有限公司 Preparation method for heat-resistant easily-processed natural fiber reinforced polylactic acid composite material
CN103467948A (en) * 2013-09-04 2013-12-25 上海悦萌环保科技有限公司 Degradable plastic with blended cotton fibers and polylactic acid
CN103467944A (en) * 2013-09-04 2013-12-25 上海悦萌环保科技有限公司 Ramie fiber enhanced polyactic acid degradable plastic
CN103509317A (en) * 2012-06-28 2014-01-15 上海杰事杰新材料(集团)股份有限公司 Natural fiber/polylactic acid composite material and preparation method thereof
US8637126B2 (en) 2006-02-06 2014-01-28 International Paper Co. Biodegradable paper-based laminate with oxygen and moisture barrier properties and method for making biodegradable paper-based laminate
CN104559099A (en) * 2015-01-07 2015-04-29 南京理工大学 Polylactic acid-based flax fiber composite material and preparation process thereof
CN104592723A (en) * 2014-10-31 2015-05-06 浙江铧淳塑料有限公司 Rapid-crystallization polylactic acid plastic and preparation method thereof
US9040072B2 (en) 2007-12-07 2015-05-26 Ethicon, Inc. Use of coupling agents to improve the interface in absorbable polymer composites
CN105295107A (en) * 2015-12-01 2016-02-03 惠安华晨贸易有限公司 Degradable garbage bag and preparation method thereof
CN105398161A (en) * 2015-11-16 2016-03-16 昆山洁圣医疗科技有限公司 High-strength durable environment-friendly non-woven fabric
CN105524440A (en) * 2016-01-26 2016-04-27 芜湖跃飞新型吸音材料股份有限公司 Stain-resistant and easy-to-scrub automotive interior material
CN105713359A (en) * 2014-11-30 2016-06-29 黑龙江鑫达企业集团有限公司 Method for preparing long natural fiber/polylactic acid-based composite material
CN105754145A (en) * 2016-03-10 2016-07-13 浙江理工大学 Preparation method of degradable composite materials for cars
CN107236267A (en) * 2017-06-06 2017-10-10 绍兴文理学院 A kind of surface is modified the preparation method of jute lactic acid composite material
CN108017795A (en) * 2017-11-23 2018-05-11 丹阳市华诚包装有限公司 A kind of environment-friendly preparation process of degradable cellulose packaging film
CN108070231A (en) * 2016-11-18 2018-05-25 汉达精密电子(昆山)有限公司 Plant fiber enhancing lactic acid composite material and products thereof
WO2019218290A1 (en) * 2018-05-17 2019-11-21 福建华彩新材料有限公司 Process for preparing blended polymer fibers

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8637126B2 (en) 2006-02-06 2014-01-28 International Paper Co. Biodegradable paper-based laminate with oxygen and moisture barrier properties and method for making biodegradable paper-based laminate
CN101200579B (en) 2007-11-26 2011-05-25 同济大学 Natural fibre reinforced polylactic acid composite material and method for making same
CN101200578B (en) 2007-11-26 2011-05-25 同济大学 Method for preparing fully-degradable natural fibre/montmorillonite/polylactic acid composite material
US9040072B2 (en) 2007-12-07 2015-05-26 Ethicon, Inc. Use of coupling agents to improve the interface in absorbable polymer composites
WO2009137382A1 (en) * 2008-05-05 2009-11-12 International Paper Company Thermoformed article made from bio-based biodegradable polymer composition
CN101602882A (en) * 2008-06-13 2009-12-16 中国科学院宁波材料技术与工程研究所 Bamboo powder filled biomass-based resin composite material and preparation method thereof
CN101602882B (en) 2008-06-13 2012-03-21 中国科学院宁波材料技术与工程研究所 Bamboo powder filled biomass-based resin composite material and preparation method thereof
CN101638508B (en) 2008-07-29 2011-07-06 比亚迪股份有限公司 Polylactic acid material composite and material prepared from same
EP2186846A1 (en) * 2008-11-17 2010-05-19 Cheil Industries Inc. Natural Fiber-Reinforced Polylactic Acid Resin Composition and Molded Product Made Using the Same
CN102414257A (en) * 2009-03-06 2012-04-11 日本电气株式会社 Polysiloxane-modified polylactic acid composition, composition utilizing same, molded article, and production method
CN102414257B (en) * 2009-03-06 2014-03-05 日本电气株式会社 Polysiloxane-modified polylactic acid composition, composition utilizing same, molded article, and production method
US8231954B2 (en) 2009-12-08 2012-07-31 International Paper Co. Thermoformed articles made from reactive extrusion products of biobased materials
CN101942184A (en) * 2010-09-21 2011-01-12 中国科学院宁波材料技术与工程研究所 Bamboo powder filling biodegradable compound material and preparation method thereof
CN101942184B (en) 2010-09-21 2012-07-04 中国科学院宁波材料技术与工程研究所 Bamboo powder filling biodegradable compound material and preparation method thereof
CN102002223A (en) * 2010-11-02 2011-04-06 奇瑞汽车股份有限公司 Full-biodegradable polylactic acid composite material and preparation method thereof
CN102839646A (en) * 2011-06-22 2012-12-26 东丽纤维研究所(中国)有限公司 Sand-barrier manufactured by biodegradable material
CN103061162A (en) * 2011-10-19 2013-04-24 上海杰事杰新材料(集团)股份有限公司 Biodegradable composite prepreg cloth, and preparation method and device for the same
CN103061162B (en) * 2011-10-19 2016-09-28 上海杰事杰新材料(集团)股份有限公司 A kind of degradable composite material prepreg cloth and preparation method thereof and device
CN103102660B (en) * 2011-11-11 2015-11-25 上海杰事杰新材料(集团)股份有限公司 A kind of Fibrilia/polylactic acid biodegradable composite material and preparation method thereof
CN103102660A (en) * 2011-11-11 2013-05-15 上海杰事杰新材料(集团)股份有限公司 Fibrilia/polylactic acid biodegradable composite material and preparation method thereof
CN103421284A (en) * 2012-05-14 2013-12-04 黑龙江鑫达企业集团有限公司 Preparation method for heat-resistant easily-processed natural fiber reinforced polylactic acid composite material
CN103509317A (en) * 2012-06-28 2014-01-15 上海杰事杰新材料(集团)股份有限公司 Natural fiber/polylactic acid composite material and preparation method thereof
CN102729449B (en) * 2012-07-04 2014-12-10 北京汽车研究总院有限公司 Vehicle green internal and external decoration material, and preparation method and application thereof
CN102717577B (en) * 2012-07-04 2016-05-18 北京汽车研究总院有限公司 Green Composites and preparation method thereof and application for automobile decoration
CN102719064A (en) * 2012-07-04 2012-10-10 北京汽车股份有限公司 Fully degradable automobile internal and external decoration material and preparation method and application thereof
CN102729449A (en) * 2012-07-04 2012-10-17 北京汽车股份有限公司 Vehicle green internal and external decoration material, and preparation method and application thereof
CN102719064B (en) * 2012-07-04 2014-07-23 北京汽车研究总院有限公司 Fully degradable automobile internal and external decoration material and preparation method and application thereof
CN102717577A (en) * 2012-07-04 2012-10-10 北京汽车股份有限公司 Environment-friendly composite material for automobile decoration and preparation method as well as application thereof
CN103073863A (en) * 2013-02-04 2013-05-01 同济大学 Natural fiber/thermosetting polylactic acid composite material and preparation method thereof
CN103102663A (en) * 2013-02-04 2013-05-15 湖南省憨豆农林科技有限公司 Sumac seed shell fiber-reinforced polylactic acid composite material and preparation method as well as application thereof
CN103317801A (en) * 2013-05-28 2013-09-25 同济大学 Blend fiber plate and preparation method thereof
CN103317801B (en) * 2013-05-28 2015-07-29 同济大学 A kind of Blend fiber plate and preparation method thereof
CN103467948A (en) * 2013-09-04 2013-12-25 上海悦萌环保科技有限公司 Degradable plastic with blended cotton fibers and polylactic acid
CN103467944A (en) * 2013-09-04 2013-12-25 上海悦萌环保科技有限公司 Ramie fiber enhanced polyactic acid degradable plastic
CN103467948B (en) * 2013-09-04 2016-08-31 上海悦萌环保科技有限公司 Cotton fiber and the degradation plastic of polylactic acid blend
CN103467944B (en) * 2013-09-04 2016-07-06 上海悦萌环保科技有限公司 Poly lacltic acid enhanced by ramie fiber degradation plastic
CN104592723A (en) * 2014-10-31 2015-05-06 浙江铧淳塑料有限公司 Rapid-crystallization polylactic acid plastic and preparation method thereof
CN105713359A (en) * 2014-11-30 2016-06-29 黑龙江鑫达企业集团有限公司 Method for preparing long natural fiber/polylactic acid-based composite material
CN104559099A (en) * 2015-01-07 2015-04-29 南京理工大学 Polylactic acid-based flax fiber composite material and preparation process thereof
CN105398161B (en) * 2015-11-16 2017-08-08 昆山洁圣医疗科技有限公司 A kind of high-strength durable environment-friendlynon-woven non-woven fabric
CN105398161A (en) * 2015-11-16 2016-03-16 昆山洁圣医疗科技有限公司 High-strength durable environment-friendly non-woven fabric
CN105295107A (en) * 2015-12-01 2016-02-03 惠安华晨贸易有限公司 Degradable garbage bag and preparation method thereof
CN105524440A (en) * 2016-01-26 2016-04-27 芜湖跃飞新型吸音材料股份有限公司 Stain-resistant and easy-to-scrub automotive interior material
CN105754145A (en) * 2016-03-10 2016-07-13 浙江理工大学 Preparation method of degradable composite materials for cars
CN108070231A (en) * 2016-11-18 2018-05-25 汉达精密电子(昆山)有限公司 Plant fiber enhancing lactic acid composite material and products thereof
CN107236267A (en) * 2017-06-06 2017-10-10 绍兴文理学院 A kind of surface is modified the preparation method of jute lactic acid composite material
CN108017795A (en) * 2017-11-23 2018-05-11 丹阳市华诚包装有限公司 A kind of environment-friendly preparation process of degradable cellulose packaging film
WO2019218290A1 (en) * 2018-05-17 2019-11-21 福建华彩新材料有限公司 Process for preparing blended polymer fibers

Similar Documents

Publication Publication Date Title
Pandey et al. Recent advances in the application of natural fiber based composites
Cao et al. Starch-based nanocomposites reinforced with flax cellulose nanocrystals
Poole et al. Environmentally sustainable fibers from regenerated protein
Yu et al. Polymer blends and composites from renewable resources
Petinakis et al. Biodegradation and thermal decomposition of poly (lactic acid)-based materials reinforced by hydrophilic fillers
CN101942184B (en) Bamboo powder filling biodegradable compound material and preparation method thereof
CN101760037B (en) Completely degraded plant powder modified thermoplastics composite material and preparation method thereof
DE69910434T2 (en) Composition containing strength mixer
JP2009527594A (en) Environmentally degradable polymer composition and method for obtaining an environmentally degradable polymer composition
CN101089038B (en) Antibacterial polypropylene material and its preparation process
TW200403299A (en) Biodegradable resin composition, filler therefor and molded article thereof
Girones et al. Natural fiber-reinforced thermoplastic starch composites obtained by melt processing
CN101747644A (en) Plant powder modified thermoplastic wood-plastic composite and preparation method and application
CN101020780A (en) Prepn process of polylactic acid-base thermoplastic wood-plastic composite material
CN101754599A (en) Application of injection molding wood plastic composite in producing electric appliance housing
CN102120841B (en) Degradable synthetic paper material and preparation method thereof
CN101914240A (en) Regenerated wire drawing modified material of waste polypropylene woven bags and preparation method thereof
CN101602884B (en) A heat-resistant polylactic acid composite material and its preparation method
CN102585348A (en) Toughened conducting material and preparation method for toughened conducting material
CN1784447A (en) Molded or extruded articles comprising polyhydroxyalkanoate copolymer compositions having short annealing cycle times.
CN100338132C (en) Full biological degradable composition and its preparing method and use
Jane et al. Biodegradable plastics made from agricultural biopolymers
CN102352094A (en) High-toughness and highly heat-resistant polylactic acid (PLA) alloy material and preparation method thereof
CN101195707A (en) Glass fiber-reinforced nylon 6-polypropylene alloy material
CN101608027A (en) Degradable plastic film prepared by taking plant rind, fiber and plant powder as raw materials and preparation method thereof

Legal Events

Date Code Title Description
C06 Publication
C02 Deemed withdrawal of patent application after publication (patent law 2001)