CN100594434C - Method for manufacturing nano-sized metal structure with large area covered by metal film - Google Patents

Method for manufacturing nano-sized metal structure with large area covered by metal film Download PDF

Info

Publication number
CN100594434C
CN100594434C CN 200710304371 CN200710304371A CN100594434C CN 100594434 C CN100594434 C CN 100594434C CN 200710304371 CN200710304371 CN 200710304371 CN 200710304371 A CN200710304371 A CN 200710304371A CN 100594434 C CN100594434 C CN 100594434C
Authority
CN
Grant status
Grant
Patent type
Prior art keywords
metal
resist
substrate
structure
electron beam
Prior art date
Application number
CN 200710304371
Other languages
Chinese (zh)
Other versions
CN101470355A (en )
Inventor
夏晓翔
李俊杰
杨海方
强 罗
金爱子
顾长志
Original Assignee
中国科学院物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Abstract

The invention relates to a method for manufacturing a metal structure with nanoscale, wherein the large area of the metal structure is covered by metal films. The steps of the method comprises utilizing a substrate which is cleaned clearly, coating bottom-layer electron beam resist PMMA on the substrate, pre-baking and spin coating a top-layer resist HSQ layer, performing graph exposure accordinga needed metal structure pattern, then developing and fixing the exposed pattern , further reacting a resist structure with an undercut structure generated by ion etching, and realizing the final metal structure through metal layer deposition and utilizing the precipitation and peeling technique. The method utilizes a double-layer resist technique combined by negativity electron beam resist HSQ which has highest resolution at the present and positivity electron beam resist PMMA which has fine peeling effect, and accurately controls the profile structure of the double-layer resist through controlling etching conditions to form a negativity resist pattern with the undercut structure which is favorable for peeling. The method is high-efficient and reliable, is short in processing time and high in resolution, and can manufacture a nanoscale structure of which the large area is covered with metal films on the substrate.

Description

制具有纳米尺度的大面积由金属膜覆盖的金属结构的方法 The method of a metal structure made of large-area nanoscale covered by a metal film

技术领域 FIELD

本发明涉及一种采用负性剝离工艺在基片上实现大面积由金属膜覆盖的纳米尺度金属结构的制作方法,特别涉及一种利用双层抗蚀剂技术在基片上实现大面积由金属膜覆盖的纳米尺度金属结构的制作方法。 The present invention relates to a lift-off process using negative resistance implemented method of manufacturing nano-scale metal structure covered by a large area of ​​the metal film on the substrate, and particularly relates to an implementation on a substrate using a bilayer resist from large areas of the metal film the method of making the metal structure covered with nano-scale.

背景技术 Background technique

釆用电子束曝光、金属镀膜及剥离工艺在基片上实现金属结构是在基片上加工纳米尺度金属结构的标准工艺,过去人们主要是采用正性电子束抗蚀剂来实现金属图形的加工,例如正性电子束抗蚀剂-聚曱基丙烯甲酯(以下简称 Preclude the use of electron beam exposure, metal plating and stripping process to achieve a metal structure on a substrate in the substrate standard process scale metal structure processing nano past, people mainly used a positive electron beam resist to achieve metal pattern processing, e.g. positive electron beam resist - Yue poly acryl ester (hereinafter referred to as

P醒A)。 Wake P A). 对于利用剥离工艺实现金属图形加工的关键是要形成如图la所示的底切(Under-cut )抗蚀剂结构4,尽量避免如图lb所示的顶切(Over-cut )结构5,由于底切结构目标金属膜3与电子束抗蚀剂层2上的金属不粘连,从而有利于去胶液的进入顺利的实现剥离。 The key to achieving the metal pattern is processed using a lift-off process to form an undercut (Under-cut) resist structure shown in FIG. La 4, to avoid a top cut as illustrated in FIG lb (Over-cut) structures 5, Since certain undercut structure metal film 3 and the electron beam resist layer 2 on the metallic non-stick, into the glue thereby facilitating to achieve the smooth peeling. 利用P醒A/MMA双层抗蚀剂及其它多层抗蚀剂工艺形成的底切结构人们很容易实现金属正性抗蚀剂图形的剥离,如文献l "利用P應A/LOR (lift-off resist) 6双层抗蚀剂实现高分辨率图形的剥离工艺(A lift-off process for high resolution patterns using PMMA/LOR resist stack),载于《Microelectronic Engineering》,2004, Vol. 73-74, 278-281所公开",该方法利用PMMA/L0R双层抗蚀剂实现了明显的底切抗蚀剂结构,如图2所示,从而可以顺利实现高分辨率的纳米尺度金属图形的制作。 The P people wake undercut structure A / MMA bilayer resist and other multilayer resist process can be peeled off easily formed metal positive resist pattern, as described in document l "shall use P A / LOR (lift -off resist) 6 bilayer resist lift-off process to achieve high resolution pattern (a lift-off process for high resolution patterns using PMMA / LOR resist stack), contained in "Microelectronic Engineering", 2004, Vol. 73-74 , 278-281 disclosed ", the method utilizes PMMA / L0R bilayer resist achieve significant undercut resist structure shown in figure 2, a high resolution can be achieved smoothly nanoscale metal patterns made . 但采用正性抗蚀剂制作金属图形的方法一般只适用于小面积由金属覆盖的结构的加工,因为正性抗蚀剂只有曝光区域才被去除最终形成金属图案,因此, 对于大面积由金属覆盖的结构,如果釆用该方法需要耗费大量的电子束曝光时间,基本不可行。 However, the production of a metal pattern using the positive resist processing method is generally only applicable to a small area covered by a metal structure, because the positive resist is removed eventually allow only the exposed regions to form a metal pattern, and therefore, for a large area of ​​a metal covering structure, if the preclude the use of this method requires a lot of electron beam exposure time, substantially unfeasible. 而负性电子束抗蚀剂曝光的区域保留,未曝光的区域被去除, 因此如果形成具有底切结构的负性抗蚀剂图形则是制作大面积由金属覆盖的结构所追求的,如图3a所示,对于这样的金属结构,如果采用正性抗蚀剂进行剥离则需要将所有金属覆盖区域(斜划线区域)曝光,而对于负性电子束抗蚀剂只需要对没有覆盖金属的区域(如图3a中所示空白区域)进行曝光即可。 While a negative electron beam resist exposed areas reserved unexposed regions are removed, so if the negative resist pattern having undercut structure is formed by the production of large-area metal structure covered pursued as 3a, for such a metal structure, if a positive resist is peeled off the metal cover all required areas (diagonal scribe region) exposure, while for negative electron beam resist not only on the metal cover area exposed to (a blank area shown in FIG. 3a).

5但对于单纯的负性抗蚀剂曝光后所产生的抗蚀剂形貌为如图lb所示的顶切结构,因此;f艮难直接利用负性抗蚀剂实现负性金属图形的制作。 Morphology resist 5 but after simple negative resist exposure produced a top cut configuration shown in FIG lb, therefore; F Gen difficult to directly achieve negative resist pattern is made of metal negative . 所以,到目前为止还没有利用剥离方法实现纳米尺度大面积金属覆盖结构的加工方法。 Therefore, so far not achieved large-area processing method nanoscale metal covering structure using a lift-off method. 发明内容本发明的目的在于:解决利用P應A/LOR双层抗蚀剂实现高分辨率图形的剥离工艺耗费大量的电子束曝光时间缺陷,和利用已有的正性抗蚀剂剥离无法制作大面积金属覆盖图形的不足,以及单纯的负性抗蚀剂形成的抗蚀剂结构为顶切无法实现剥离的问题,从而提供一种利用hydrogen silsesquioxane (简称HSQ) /P薩A (聚甲基丙烯甲酯)双层抗蚀剂工艺,实现具有底切抗蚀剂结构的负性抗蚀剂图形,制作大面积金属覆盖的纳米尺度结构的方法;该方法是一种高效具有加工时间短、分辨率高、可靠的制作大面积金属覆盖纳米尺度结构的方法。 SUMMARY OF THE INVENTION The object of the invention is: P should be resolved using the A / LOR bilayer resist stripping process to achieve high resolution graphics of the consuming time of electron beam exposure defects, and using the existing positive resist peeling can not be produced insufficient metal covering a large area pattern, and a simple negative resist is a resist structure formed on a top cut peeling can not be realized, thus providing a by using hydrogen silsesquioxane (referred HSQ) / P Sa a (polymethylpentene methacrylate) bilayer resist process, to achieve a negative resist pattern having an undercut resist structure, manufacturing method, nanoscale metal structure of a large area covered; this is an efficient method having a short processing time, nano-scale high-resolution structure, reliable production of large area of ​​the metal cover. 本发明的目的是这样实现的:本发明提供的在基片上制作具有纳米尺度的大面积由金属膜覆盖的金属结构的方法,其流程如图4所示,包括以下步骤:1) 基片l的选择及清洗:选定要加工金属图形所用的基片,并对所选定的基片进行相应材料的清洗,之后将清洗完的基片在热板上烘烤,例如在温度为15(TC的热板上烘烤10分钟,以去除基片表面的水;2) 电子束抗蚀剂的涂覆:将步骤l)清洗好的基片放入涂胶机里,采用旋涂的方式首先将正性电子束抗蚀剂涂覆在基片表面,该正性电子束抗蚀剂为P薩A抗蚀剂,旋涂的转速为1000 - 5000rpm,或多次旋涂,旋涂P醒A抗蚀剂层(底层P画A电子束抗蚀剂层)7的厚度至少为所需金属膜厚度的一倍, 然后对旋涂有P薩A抗蚀剂的基片进行前烘烤,其中对于P丽A抗蚀剂前供的温度为150-180°C,烘烤l-5分钟;然后将供烤后的基片再次放入 Object of the present invention is implemented as follows: the present invention provides a production method of a metal on a substrate structures having nanoscale large area covered by the metal film, the process shown in Figure 4, comprising the following steps: 1) substrate l selection and cleaning: metal selected for substrate processing pattern used, and the selected substrate material appropriate for cleaning, after cleaning the substrate baked on a hot plate, for example, at a temperature of 15 ( TC baked on a hot plate for 10 minutes to remove water surface of the substrate; 2) coated with electron beam resist: the step l) the cleaned substrate into the coating machine, the spin coating manner first, a positive electron beam resist is coated on the substrate surface, the positive electron beam resist a resist is P Sa, spin coating speed of 1000 - 5000rpm, or multiple spin coating, spin coating, P a wake resist layer (underlayer P a Videos electron beam resist layer) is at least double the thickness of the 7 desired metal film thickness, P Sa and a front substrate a resist was spin-coated to bake wherein the temperature for the resist a Li P for the front of 150-180 ° C, baking l-5 min; and then the substrate was again placed for baking 旋涂设备中,再进行顶层HSQ抗蚀剂9的涂覆,HSQ层的厚度为50~ 200nm;旋涂后再将基片进行前烘,以使HSQ电子束抗蚀剂的曝光特性固定;其中对于HSQ电子束抗蚀剂其前烘温度为160-200。 Spin-coating apparatus, and then the top layer resist is coated HSQ 9, the thickness of the HSQ layer is 50 ~ 200nm; spin-coating and then baked for the front substrate to the exposure characteristics of the electron beam resist HSQ fixing; wherein the baking temperature for the front HSQ electron beam resist 160-200. C之间,烘烤时间为2-5分钟;3) 结构图形的设计:根据所需的金属结构图形设计曝光图形,曝光图形是非金属覆盖区域的图形,如图3a中斜划线区域为需要金属覆盖的部分,这样曝光图形8则是图3a的空白区域,即图3b的网格区域;64 )图形的曝光和显影及定影:将步骤2 )涂好电子束抗蚀剂P画A层和HSQ层的基片放入电子束曝光设备,其中曝光电压可根据电子束抗蚀剂的厚度在IkeV-30keV之间进行调节,光阑可选值为7. 5、 10、 20、 30、 60或120 微米;将曝光后的基片进行显影及定影,得到HSQ抗蚀剂的图形;其中显影液为2. 5%的四曱基氢氧化铵,显影时间为1分钟,定影采用去离子水清洗10秒,再用干燥氮气吹干;5 )反应离子刻蚀产生具有底切结构的抗蚀剂结构:将步骤4 )具有HSQ抗蚀剂图形的基片放入反应离子刻蚀设备中,利用HSQ抗蚀剂做掩膜,采用氧气等离子体对 Between C, baking time was 2-5 min; 3) structural design pattern: a metal structure according to a desired exposure pattern graphic design, pattern exposure pattern is a non-metal region is covered, oblique scribe region as shown in FIG 3a as required part of the metal cover, so that exposure pattern 8 is a blank area of ​​figure 3a, i.e., mesh area of ​​figure 3b; 64) and pattern exposure and development the fixing of: step 2) good coating an electron beam resist layer a P Videos HSQ layer and the substrate was placed in an electron beam exposure apparatus, wherein the exposure voltage can be adjusted according to the thickness between IkeV-30keV electron beam resist, and an optional aperture value 7.5, 10, 20, 30, 60 or 120 microns; and the exposed substrate is developed and fixed to give HSQ resist pattern; wherein the developer is a four Yue 2.5% ammonium hydroxide, the development time was 1 minute, the fixing deionized washed with water for 10 seconds, and then blown dry with dry nitrogen; 5) reactive ion etching to produce resist structures having undercut structure: step 4) HSQ resist pattern having a substrate placed in a reactive ion etching apparatus using HSQ resist as the mask, using an oxygen plasma 底层的P醒A抗蚀剂层进行刻蚀,得到所需要的底切结构;其中采用氧气的流量为20sccm-50sccm、刻蚀压力为20mTorr-50mTorr、刻蚀功率采用100W,刻蚀时间为120秒钟-300秒钟;6 )金属膜的沉积:将步骤5 )得到的具有底切结构的负性抗蚀剂图形的基片,放到金属沉积薄膜设备中进行金属膜层的沉积,沉积金属层厚度一般为P画A电子束抗蚀剂层厚度的1/3-1/2,约为几十至几百纳米;7)利用溶脱剥离工艺实现最终的金属结构:将镀好金属膜的样品放入装有丙酮的容器内,浸泡约10分钟左右,并不时晃动容器使抗蚀剂上面的金属膜随电子束抗蚀剂一起脱落,从而在基片上得到具有纳米尺度的大面积由金属膜覆盖的金属结构。 A wake P underlying resist layer is etched, the undercut to obtain the desired structure; wherein the flow of oxygen is employed 20sccm-50sccm, etching pressure 20mTorr-50mTorr, etching using power 100W, etching time was 120 -300 seconds seconds; 6) depositing a metal film: step 5) the obtained negative resist pattern having undercut structure of the substrate, the thin film deposition apparatus onto the metal deposition of the metal film layer deposited the metal layer thickness is P a Videos electron beam resist layer thickness of 1 / 3-1 / 2, about several tens to several hundred nanometers; 7) lift-off process using a stripping achieve the final metal structure: a metal-plated film good within the sample was put into a container of acetone, soaked in about 10 minutes, occasionally shaking the container resist the above metal film with electron beam resist off together, to obtain a large area of ​​nanoscale on the substrate by the a metal film covering the metal structure. 在上述的技术方案中,所述基片包括各类导电及半导体材料片,要求基片表面平整,厚度一般不超过l腿。 In the above technical solution, the substrate comprises a semiconductor material and various types of conductive sheet is required flat substrate surface, the thickness of not more than l legs. 在上述的技术方案中,所述的P醒A电子束抗蚀剂的分子量为100k、 300k、495k或950k。 In the above technical solution, the molecular weight of P A wake electron beam resist is 100k, 300k, 495k, or 950k. 在上述的技术方案中,步骤l)中所述的清洗是采用丙酮、酒精、二次去离子水三步超声清洗,每步各清洗3~5分钟。 In the above aspect, step l) is the cleaning with acetone, alcohol, secondary ultrasonic cleaning with deionized water three steps, each washing step per 3 to 5 minutes. 在上述的技术方案中,所述步骤1)中在热板上烘烤,其中烘烤温度为150°C,供烤时间为6-15分钟。 In the above aspect, the step 1) in a hot plate and baked, wherein the baking temperature is 150 ° C, for 6-15 minutes baking time. 在上述的技术方案中,步骤3)所述图形设计采用GDSII图形编辑软件, 亦可采用L-edit等图形设计软件完成,电子束曝光的最小线宽和线间距可做到十几个纳米。 In the above aspect, Step 3) using the GDSII design graphic graphics editing software, and so we can use L-edit graphic design software is completed, the minimum line width and pitch of the electron beam exposure can be achieved dozen nanometers. 但随线宽及线间距的减小,P丽A及HSQ电子束抗蚀剂层的厚度将相应的减小。 However, with decreasing line width and line spacing, P Li HSQ A thickness of the electron beam and the resist layer will be correspondingly reduced. 在上述的技术方案中,步骤5 )通过控制氧气的流量、刻蚀压力来控制PMMA抗蚀剂的刻蚀速率,而底切结构的形成主要通过控制刻蚀的时间来完成,当HSQ抗蚀剂的图形完全转移到P匿A抗蚀剂层时,抗蚀剂的剖面结构基本陡直, 然后随着刻蚀时间的增加形成底切结构,如图5所示,且底切的长度随着刻蚀时间的增加而增大。 In the above aspect, step 5) to control the etching rate of PMMA resist by controlling the flow of oxygen, pressure etching to form undercut structure primarily accomplished by controlling the etching time, when the resist HSQ graphic agent is completely transferred to the hide P a resist layer, the resist cross-sectional structure substantially steep, and with the increase of etching time, forming an undercut structure, as shown in FIG. 5, and with the length of the undercut increase of etching time increases. 在上述的技术方案中,步骤6 )沉积设备可以是溅射或蒸发等金属镀膜设备,沉积的金属材料,包括Au、 Ag、 Cr等各类金属、合金或金属化合物;所沉积金属材料层厚度在10 - 800nm之间, 一般不超过P固A电子束抗蚀剂层厚度的1/2。 In the above aspect, Step 6) may be a deposition apparatus or a sputtering apparatus evaporated metal film, the deposited metallic material, including Au, Ag, Cr and other metal, an alloy or a metal compound; the thickness of the deposited layer of metallic material in between 10 - 800nm, generally not more than 1/2 of the electron beam P a solid resist layer thickness. 在上述的技术方案中,步骤7)还包括将镀好金属膜的样品放入超声设备中,同时进行超声工艺处理,使抗蚀剂上的金属膜随电子束抗蚀剂快速、完全的脱落,对于不能进行超声的样品,釆用针头注射的方式实现去胶,也包括将丙酮溶液加温至60 。 In the above aspect, step 7) further comprises a plated metal film sample was placed in good ultrasound apparatus while ultrasonic treatment process, the metal film on the resist with an electron beam resist fast, complete fall for the samples not sonicated, to preclude the realization of plastic injection needles manner, including the acetone solution was warmed to 60. C左右,以加快剥离速度得到好的剥离结果。 About C, to speed up the release rate obtained good peeling results. 本发明的优点在于:本发明的方法采用目前分辨率最高的的负性电子束抗蚀剂hydrogen silsesquioxane (HSQ)及剥离效果好的正性电子束抗蚀剂PMMA(聚曱基丙烯曱酯)双层抗蚀剂相结合的负性剥离工艺,利用HSQ曝光高分辨率的图形,釆用氧气等离子体刻蚀的方法将HSQ的图形转移到底层的P画A抗蚀剂上,并且通过控制刻蚀的条件来精确的控制双层抗蚀剂的剖面结构,形成有利于剥离的具有底切结构的负性抗蚀剂图形,如图5的扫描电镜照片所示,该底切结构使目标金属与抗蚀剂上的金属不粘连,从而有利于去胶液的进入,在基片上实现大面积金属覆盖纳米尺度结构的制作。 Advantage of the present invention is that: the method of the present invention employs the highest resolution negative positive electron beam resist PMMA electron beam resists hydrogen silsesquioxane (HSQ) and good peeling effect (poly propylene Yue Yue-yl ester) negative bilayer resist lift-off process in combination, using a high resolution exposure pattern HSQ, preclude the oxygen plasma etching method for pattern transfer into the underlying HSQ the P picture a resist, and by controlling etching conditions to precisely control the cross-sectional structure of the bilayer resist, a negative resist pattern having undercut structure facilitates peeling of the SEM photograph shown in FIG. 5, the undercut structure of the target metals and metal not resist blocking, thereby facilitating to enter the glue, covering a large area of ​​metal produced nanoscale structures on a substrate. 因此该方法具有快速、高效实现高分辨率大面积金属覆盖纳米尺度结构的加工。 Thus the method is rapid, efficient large-area high-resolution processing of nanoscale metal covering structures. 附图说明图1 a有利于剥离工艺的底切抗蚀剂剖面结构示意图图1 b不利于剥离工艺的顶切抗蚀剂剖面结构示意图图2用P廳A/L0R双层抗蚀剂加工的具有底切结构的正性抗蚀剂SEM图片图3a本发明的一种实施例所需制备的金属结构示意图图3b与图3a所需金属结构对应的曝光图形示意图图4本发明的制作实现大面积金属覆盖结构方法的工艺流程图图5本发明的方法利用HSQ/P画A双层抗蚀剂经刻蚀后形成的具有明显底切结构剖面的SEM图片图6本发明的方法利用HSQ/P醒A双层抗蚀剂剥离得到的整个基片由金属Ag覆盖的单个金属圆孔SEM图图7本发明的方法利用HSQ/P謹A双层抗蚀剂剝离得到的整个基片由金属覆盖的光栅结构SEM图图面说明如下:1-基片2-电子束抗蚀剂层.3-金属膜4-底切结构5-顶切结构6-L0R抗蚀剂层7-P薩A抗蚀剂层8-曝光图形9-HSQ抗蚀剂层具体实施方式下面结合实施例和附图对 BRIEF DESCRIPTION OF DRAWINGS FIG 1 a lift-off process is conducive to a bottom cross-sectional schematic view of the structure cut 1 b resist lift-off process is not conducive to a top cut cross-sectional schematic view of the structure of a resist processing 2 P Hall A / L0R bilayer resist the metal structure of a desired preparation Example SEM image of a positive resist pattern having undercut structure of the present invention. 3a 3b a schematic diagram corresponding to realize making the metal structure a desired exposure pattern of FIG. 3a a schematic diagram of the invention, four large the method of FIG SEM image having a clear cross-section of the undercut structure formed after a process flow diagram showing a configuration method of a method of the area of ​​the metal cover 5 invention utilizes HSQ / P Videos a bilayer resist etched invention utilizes six HSQ / the method of FIG single metal circular SEM entire substrate P a bilayer resist stripping wake obtained metallic Ag 7 covered by the present invention using HSQ / honor the entire substrate P a bilayer resist stripping obtained by metal grating structures covering the surface SEM image of FIG follows: 1- 2- substrate electron beam resist film metal layer. 3- 4- 5- undercut structure top cut of 6-L0R structure resist layer Sa 7-P A resist pattern 9-HSQ 8- exposing the resist layer DETAILED DESCRIPTION The following Examples and drawings 本发明利用HSQ/P薩A双层抗蚀剂技术在基片上实现大面积由金属覆盖的纳米尺度金属结构的方法进行详细地说明实施例1参考图4流程,利用本发明的制备方法,采用正性电子束抗蚀剂的分子量为49化的P固A电子束抗蚀剂,在硅、砷化镓、碳化硅等半导体基片上加工整个基片由金属Ag覆盖的单个金属圆孔结构,具体包括以下步骤:1) 基片选择硅片作为基片1,将厚度为0. 5mm的单面抛光硅片依次用丙酮、酒精和去离子水,各超声清洗3分钟,清洗后并用干燥氮气吹干后,在15(TC的热板上烘烤10分钟;2) 电子束抗蚀剂的涂覆:将步骤l)清洗好的硅片放入涂胶机里,采用旋涂的方式将分子量为495k的PMMA电子束抗蚀剂涂覆在基片1的抛光面上, 旋涂的转速为5000rpm,涂覆了P固A电子束抗蚀剂的P匿A抗蚀剂层7的厚度为100mn,并将其在温度为180。 The present invention utilizes HSQ / P Sa A bilayer resist technology on a substrate method of nano-scale metal structure from a metal covered with a large area will be described with reference to FIG. 1 Example 4 Process in detail, using the method of the present invention, a the molecular weight of the positive electron beam resist 49 is of P a solid electron beam resist, a single machining metal circular structure over the substrate covered by the Ag metal on silicon, gallium arsenide, silicon carbide semiconductor substrate, It includes the following steps: 1) select the silicon substrate as the substrate 1, a thickness of 0. 5mm single side polished silicon wafer was washed successively with acetone, alcohol and deionized water, each of the ultrasonic cleaning for 3 minutes and washed with dry nitrogen after drying in air, (TC baking hot plate for 10 min; 2) 15 in the electron beam resist is applied: the step l) the cleaned wafer into the coating machine, the spin coating manner 495k molecular weight of the PMMA electron beam resist is coated on the polished surface of the substrate 1, the rotation speed of 5000 rpm for spin coating, the coated solid P a P a hiding layer resist is an electron beam resist of thickness 7 It is 100mn, and at a temperature of 180. C的热板上烘烤l分钟,然后将烘烤后的硅片再次放入旋涂设备进4于顶层抗蚀剂HSQ层的涂覆,旋涂的转速为4000rpm, HSQ 抗蚀剂层9的厚度为50nm,然后再将基片放在温度为180 。 C hot plate bake l min, and then the wafers were baked again placed in a spin coating apparatus into the top layer resist is coated HSQ layer 4, the rotational speed is 4000rpm spin coating, the resist layer 9 HSQ the thickness of 50nm, and then placed in a temperature of the substrate 180. C的热板上烘烤2 分钟,以使HSQ电子束抗蚀剂的曝光特性固定;3) 所需图形的设计:利用GDSII做图软件,设计曝光图形,本实施例的图形为直径为120mn的圆形;曝光图形8是非金属覆盖区域的图形,如图3a9中斜划线区域为需要金属覆盖的部分,这样曝光图形则是图3a的空白区域, 即图3b的网格区域; C baked on a hot plate for 2 minutes to the exposure characteristics of the electron beam resist HSQ fixed; 3) required for the design pattern: FIG done using software GDSII design exposure pattern, the present embodiment is a pattern having a diameter of 120mn circular; pattern exposure pattern region 8 is a non-metallic covering, FIG oblique scribe region 3a9 is required to cover the metal portion, so that the exposure pattern of Figure 3a is a blank area, i.e., mesh area of ​​Figure 3b;

4) 图形的曝光:将步骤2)涂好抗蚀剂的基片放入电子束曝光设备,曝光电压选择10keV、光阑尺寸选择3Q^im、曝光剂量选择为300nc/cm'进行图形的曝光;将曝光后的硅片放入浓度为2. 5%的四曱基氢氧化铵中,显影1分钟, 然后再放入去离子水中定影IO秒钟,最后用氮气吹干,得到HSQ抗蚀剂的图形; 4) an exposure pattern: The step 2) Good resist coating a substrate into an electron beam exposure apparatus, the exposure voltage selector 10 keV, aperture size selection 3Q ^ im, exposure dose was selected 300nc / cm 'exposure pattern ; exposure the wafers were placed in a concentration of 2.5% in four groups Yue ammonium hydroxide, developed for 1 minute, then the fixing IO seconds into deionized water, and finally blown dry with nitrogen to afford resist HSQ pattern agent;

5) 反应离子刻蚀:将步骤4)具有HSQ抗蚀剂图形的硅片放入反应离子刻蚀设备中,采用氧气的流量为20sccm、刻蚀压力为50mTorr、刻蚀功率采用100W,刻蚀时间为12Q秒钟,得到底切长度约为30nm的双层抗蚀剂的底切结构4;在步骤5 )中通过控制氧气的流量、刻蚀压力来控制P腿A抗蚀剂的刻蚀速率,而底切结构的形成主要通过控制刻蚀的时间来完成,当HSQ抗蚀剂的图形完全转移到P應A层时,抗蚀剂的剖面结构基本陡直,然后随着刻蚀时间的增加形成底切结构4,且底切的长度随着刻蚀时间的增加而增大; 5) reactive ion etching: step 4) HSQ silicon wafer having a resist pattern was placed in a reactive ion etching apparatus using oxygen gas flow rate of 20 sccm is, an etching pressure of 50 mTorr, using an etching power of 100W, etching 12Q second time, in the end to obtain the bilayer resist cutting length is about 30nm is undercut structure 4; in step 5) to control the leg P a resist by controlling the flow rate of oxygen gas, an etching pressure of etching rate, the undercut structure is formed mainly through the control of etching time, when the resist pattern HSQ P should be completely transferred to the layer a, a cross-sectional structure substantially steep resist, then etching time as increase undercut structure 4 is formed, and the length of the undercut increases with the increase of etching time;

6) 金属膜3的沉积:将步骤5 )得到的具有底切结构的负性抗蚀剂图形的硅片放到热蒸发的设备中进行金属Ag的沉积,沉积的金属(Ag)层3的厚度为50nm; 6) deposition of the metal film 3: obtained in step 5) silicon negative resist pattern having undercut structure is placed in a thermal evaporation apparatus for depositing metallic Ag, the deposited metal (Ag) layer 3 having a thickness of 50 nm;

7) 利用溶脱剥离工艺实现最终的金属结构:将步骤6 )镀好金属膜的样品放入装有丙酮的容器内,浸泡约10分钟左右,并不时晃动容器使抗蚀剂上面的Ag金属膜随电子束抗蚀剂一起脱落,从而在Si基片上得到整个基片由金属Ag覆盖的单个金属圆孔,如图6所示。 7) lift-off process using a stripping achieve the final metal structure: Step 6) Good plated metal film sample was placed in a container containing acetone, soaked in about 10 minutes, occasionally shaking the container above the resist agent Ag metal film with electron beam resist falling together to obtain a single circular metallic Ag entire substrate made of a metal coated on a Si substrate, as shown in FIG.

实施例2: Example 2:

本实施例的制备方法同实施例1相同,区别在于使用分子量为950k的P固A电子束抗蚀剂,在镀有ITO、 Ag、 Cu等导电膜的石英基片上制作Au金属膜的光栅结构,具体条件如下所述: Preparation method of the present embodiment is the same with the embodiment in Example 1, except that the molecular weight of 950k P A solid electron beam resist, a grating structure produced Au metal film on a quartz substrate with a conductive film of ITO, Ag, Cu plating, etc. specific conditions were as follows:

基片1选用厚度为l腿镀有导电ITO层的石英片,清洗步骤与实施例1 相同,采用旋涂转速为2000rpm,在基片1上涂覆300nm厚的950P画A电子束抗蚀剂层7,在温度为150 。 Substrate 1 having a thickness of the quartz plate selected l legs plated with a conductive layer of ITO, the same washing procedure as in Example 1 by spin-speed of 2000 rpm, a 300nm-thick coating on the substrate 1. A 950P electron beam resist Videos layer 7 at a temperature of 150. C的热板上烘烤5分钟,烘烤后采用3000rpm的转速,涂覆80nm厚的HSQ抗蚀剂层9,涂覆后在温度为200°C的热板上烘烤2分钟。 C hot plate bake for 5 minutes and baked using the rotational speed of 3000rpm, the coating thickness of 80nm HSQ resist layer 9, after the coating is baked on a hot plate at a temperature to 200 ° C for 2 minutes. 曝光图形为线宽100nm周期300 nm的光栅结构。 100nm exposure pattern line width 300 nm period grating structure. 电子束曝光参数:曝光电压20keV,光阑20萨,曝光剂量560pC/cni2。 Electron beam exposure parameters: voltage 20 keV exposure, Sa aperture 20, exposure dose 560pC / cni2. 反应离子刻蚀条件:氧气的流量为50sccm、刻蚀压力为20mTorr、刻蚀功率采用100W,刻蚀时间为180秒钟,得到底切长度约为20nm的双层抗蚀剂的底切结构。 Reactive ion etching conditions: flow rate of oxygen is 50 sccm, an etching pressure of 20 mTorr, using an etching power of 100W, etching time of 180 seconds to obtain in the end cut length of about 20nm undercut structure bilayer resist. 采用热蒸发设备生长厚度为80nm的Au的金属膜3。 Device grown by thermal evaporation of Au with a thickness of the metal film 3 of 80nm. 采用超声辅助的方式在丙酮溶液中进行图形的剥离,最终在镀有ITO膜的石英基片上制作Au的光栅结构,如图7所示。 Using ultrasound-assisted manner in the release pattern of the acetone solution, the final grating structure made of Au on quartz substrate with an ITO film is plated, as shown in FIG.

实施例3 Example 3

同本发明实施例1的制备方法,采用正性电子束抗蚀剂的分子量为495k 的P固A电子束抗蚀剂,基片为在硅片上热氧化一层厚度为500nm的二氧化硅作为基片1,在基片1上加工由金属Cr覆盖的单个金属圓孔阵列的方法,具体条件如下所述: Preparation Example 1 with the present invention, the molecular weight using a positive electron beam resist of P-495k A solid electron beam resist, the substrate is thermally oxidized in a thickness of 500nm on a silicon wafer silica as the substrate 1, in the process of a single circular array on a metal substrate covered by processing a metal Cr, specific conditions are as follows:

基片1的清洗步骤与实施例1相同,采用两次旋涂的方法,旋涂转速为2000rpm,在基片上涂覆600nm厚的950P薩A电子束抗蚀剂层7,在两次涂覆中间及旋涂结束要将样品在180°C的热板上各烘烤1分钟,烘烤后采用2000rpm 的转速,涂覆150nm厚的HSQ电子束抗蚀剂层9,涂覆后在温度为160 °C的热板上烘烤5分钟。 The washing steps of Example 1 of the substrate 1, two spin coating method, a spin coating rotational speed of 2000 rpm, is coated in a thickness of 600nm on the substrate A 950P Sa electron beam resist layer 7, the two-coat to the end of the spin coating and the intermediate samples of each baked on a hot plate to 180 ° C for 1 minute, post-baking using the rotation speed of 2000rpm, 150nm thick coated HSQ electron beam resist layer 9, after coating at a temperature of a hot plate at 160 ° C bake for 5 minutes. 曝光图形为直径为500nm周期为lOOOmn的圆孔阵列。 500nm exposure pattern having a diameter of the circular array lOOOmn period. 电子束曝光参数:曝光电压30keV,光阑60|om,曝光剂量760|_iC/cm2。 Electron beam exposure parameters: exposure voltage 30keV, diaphragm 60 | om, exposure dose 760 | _iC / cm2. 反应离子刻蚀条件:氧气的流量为30sccm、刻蚀压力为50mTorr、刻蚀功率采用100W, 刻蚀时间为300秒钟,得到底切长度约为50nm的双层抗蚀剂的底切结构。 Reactive ion etching conditions: flow rate of oxygen is 30 sccm, an etching pressure of 50 mTorr, using an etching power of 100W, etching time of 300 seconds to obtain in the end of the cut length of about 50nm undercut bilayer resist structure. 金属层3为Cr膜,生长采用磁控溅射设备,厚度为150nm。 Cr metal film layer 3, grown by magnetron sputtering apparatus, a thickness of 150nm. 在温度为60。 At a temperature of 60. C的丙酮溶液中浸泡进行图形的剥离,最终在二氧化硅的基片上得到由金属(Cr)层覆盖的金属圓孔阵列。 C acetone soaked peeling pattern, the finally obtained metal circular array covered by a metal layer (Cr) on silica substrate.

当然,本发明还可有其他多种实施例,在不背离本发明精神及其实质的情这些相应的改变和变形都应属于本发明所附的权利要求的保护范围。 Of course, the present invention may have many other embodiments, the present invention should fall within the scope of the appended claims in case such corresponding changes and modification without departing from the spirit and essence of the invention.

ii ii

Claims (7)

  1. 1.一种制具有纳米尺度的大面积由金属膜覆盖的金属结构的方法,包括以下步骤: 1)基片的选择及清洗:选定要加工金属结构图形所用的基片,并对所选定的基片进行相应材料的清洗,之后将清洗完的基片在热板上烘烤,以去除基片表面的水; 2)电子束抗蚀剂的涂覆:将步骤1)清洗好的基片放入涂胶机里,采用旋涂的方式首先将底层电子束抗蚀剂PMMA涂覆在基片表面,旋涂的转速为1000-5000rpm,或多次旋涂,旋涂的底层PMMA抗蚀剂层的厚度至少为所需金属膜厚度的一倍,然后对旋涂有底层PMMA抗蚀剂的基片进行前烘烤,其中前烘的温度为150-180℃,烘烤1-5分钟;然后将烘烤后的基片再次放入旋涂设备中,再进行顶层HSQ抗蚀剂层的涂覆,该HSQ抗蚀剂层的厚度为50~200nm;旋涂后再将基片进行前烘;其中对于HSQ抗蚀剂层的前烘温度为160-200℃,烘烤时间为2-5分钟; 1. A method of a metal structure made of large-area nanoscale covered by a metal film, comprising the following steps: 1) selection and cleaning of the substrate: a metal selected for substrate processing arrangement pattern used, and selected given substrate material appropriate for cleaning, after cleaning the substrate baked on a hot plate to remove water surface of the substrate; 2) coated with electron beam resist of: step 1) cleaned coating the substrate into the machine, the spin coating manner underlying first electron beam resist PMMA coated on the surface of the substrate, spin coating speed of 1000-5000rpm, or multiple spin coating, spin coating underlying PMMA thickness of the resist layer is at least twice the film thickness of the desired metal, and PMMA resist underlayer has a substrate pre baked spin coating, of which the first temperature is 150-180 deg.] C drying, baking 1- 5 minutes; then the substrate after baking was again placed in a spin coating apparatus, then top coated with HSQ resist layer, the thickness of the HSQ resist layer is 50 ~ 200nm; spin coating, and then the base pre-baking sheet; wherein the temperature for prebaking the resist layer of HSQ 160-200 ℃, baking time was 2-5 min; 3)结构图形的设计:根据所需的金属结构图形设计曝光图形,曝光图形是非金属覆盖区域的图形; 4)图形的曝光和显影及定影:将步骤2)涂好PMMA抗蚀剂层和HSQ抗蚀剂层的基片放入电子束曝光设备,其中曝光电压根据电子束抗蚀剂的厚度在1keV-30keV之间进行调节,光阑选值为7.5、10、20、30、60或120微米;将曝光后的基片进行显影及定影,得到具有HSQ抗蚀剂的图形;其中显影液为2.5%的四甲基氢氧化铵,显影时间为1分钟,定影采用去离子水清洗10秒,再用干燥氮气吹干; 5)反应离子刻蚀产生具有底切结构的抗蚀剂结构:将步骤4)具有HSQ抗蚀剂图形的基片放入反应离子刻蚀设备中,利用顶层HSQ抗蚀剂层做掩膜,采用氧气等离子体对底层的PMMA抗蚀剂层进行刻蚀,得到所需要的底切结构;其中采用氧气的流量为20sccm-50sccm、刻蚀压力为20mTorr-50mTorr、刻蚀功率采用 3) design pattern structure: according to the desired exposure pattern of metal structures graphic design, pattern exposure pattern is a non-metal region is covered; 4) pattern exposure and development, and the fixing of: Step 2) good coating PMMA resist layer and the HSQ the substrate of the resist layer into the electron beam exposure apparatus, wherein the exposure voltage adjustable between 1keV-30keV electron beam resist according to the thickness of the diaphragm 120 is selected or the value 7.5,10,20,30,60 microns; and the exposed substrate is developed and fixed, to obtain a resist pattern having a HSQ; wherein the developer is tetramethyl ammonium hydroxide 2.5%, the development time was 1 minute, rinsed with deionized water using the fixing 10 seconds and then blown dry with nitrogen and dried; 5) reactive ion etching to produce resist structures having undercut structure: step 4) HSQ resist pattern having a substrate placed in a reactive ion etching apparatus using a top HSQ the resist layer as the mask, an oxygen plasma using the resist layer of PMMA underlayer is etched to obtain the desired undercut structure; wherein the flow of oxygen is employed 20sccm-50sccm, etching pressure 20mTorr-50mTorr, etching using power 100W,刻蚀时间为120秒钟-300秒钟; 6)金属膜的沉积:将步骤5)得到的具有底切结构的负性抗蚀剂图形的基片,放到金属沉积薄膜设备中进行金属膜层的沉积,沉积金属层厚度为底层PMMA抗蚀剂层厚度的1/3~1/2; 7)利用溶脱剥离工艺实现最终的金属结构:将镀好金属膜的样品放入装有丙酮的容器内,浸泡约10分钟左右,并不时晃动容器使抗蚀剂上面的金属膜随电子束抗蚀剂一起脱落,从而在基片上得到具有纳米尺度的大面积由金属膜覆盖的金属结构。 100W, etching time was 120 seconds -300 seconds; 6) depositing a metal film: Step 5) The obtained negative resist pattern having undercut structure of the substrate, the thin film deposition apparatus onto the metal for depositing a metal film, a metal layer is deposited with a thickness of the bottom layer PMMA resist layer thickness 1/3 ~ 1/2; 7) lift-off process using a stripping achieve the final metal structure: a metal-plated film sample was put into a well acetone containers, soak for about 10 minutes, occasionally shaking the container resist the above metal film with electron beam resist off together, to thereby obtain a metal structure having a large area covered by the nanoscale metal film on the substrate .
  2. 2. 按权利要求1所述的制具有纳米尺度的大面积由金属膜覆盖的金属结构的方法,其特征在于,所述基片为导电或半导体材料片,要求基片表面平整,厚度在lmm以下。 2. The method of a metal structure having a large area covered by the nanoscale metal film prepared according to claim 1, wherein said substrate is a semiconductor material or a conductive sheet is required flat substrate surface, the thickness of lmm the following.
  3. 3. 按权利要求1所述的制具有纳米尺度的大面积由金属膜覆盖的金属结构的方法,其特征在于,步骤1)中所述的清洗是采用丙酮、酒精、二次去离子水三步超声清洗,每步各清洗3〜5分钟。 3. The method of a metal structure made of a large area as claimed in claim 1 having a nanoscale metal film covering, characterized in that the washing step 1) is in the use of acetone, alcohol, deionized water three secondary ultrasonic cleaning step, cleaning every 3 to 5 minutes in each step.
  4. 4. 按权利要求1所述的制具有纳米尺度的大面积由金属膜覆盖的金属结构的方法,其特征在于,步骤3)所述图形设计采用GDSII图形编辑软件, 或采用L-edit图形设计软件完成。 The method of a metal structure made of a large area 4. claimed in claim 1 having a nanoscale metal film covered, wherein the step 3) uses the graphical GDSII design graphics editing software, or using the L-edit graphic design software.
  5. 5. 按权利要求1所述的制具有纳米尺度的大面积由金属膜覆盖的金属结构的方法,其特征在于,步骤6)沉积设备是采用溅射或蒸发金属镀膜的设备,沉积的金属材料为Au、 Ag、 Cr、合金或金属化合物;所沉积金属材料层厚度在10 - 800nm之间。 The method of large-area 5. The metal structure of claim 1 prepared according to claim nanoscale covered by a metal film, wherein step 6) is deposited by sputtering or evaporation device is a metal film device, the deposited metal material as Au, Ag, Cr, an alloy or a metal compound; the material thickness of the metal layer is deposited between 10 - 800nm.
  6. 6. 按权利要求1所述的制具有纳米尺度的大面积由金属膜覆盖的金属结构的方法,其特征在于,步骤7)还包括将镀好金属膜的样品放入超声设备中,同时进行超声工艺处理,使抗蚀剂上的金属膜随电子束抗蚀剂脱落;或者对于不能进行超声的样品,采用针头注射的方式实现去胶,或将丙酮溶液加温至60 °C左右,进行浸泡实现去胶。 The method of a metal structure made of a large-area 6. as claimed in claim 1, having a nanoscale covered by a metal film, wherein step 7) further comprises a plated metal film sample was placed in good ultrasound device, simultaneously ultrasonic treatment process, the metal film on the resist with an electron beam resist off; sonicated samples can not, or for, the use of needles to injection manner gum, or acetone solution was warmed to about 60 ° C, for soaked to achieve glue.
  7. 7.按权利要求1所述的制具有納米尺度的大面积由金属膜覆盖的金属结构的方法,其特征在于,所述的P醒A电子束抗蚀剂的分子量为100k、 300k、 495k或950k。 7. The large area as claimed in claim 1, having made the nanoscale, characterized in that a metal structure of a metal film covering the molecular weight of the P-A wake electron beam resist is 100k, 300k, 495k, or 950k.
CN 200710304371 2007-12-27 2007-12-27 Method for manufacturing nano-sized metal structure with large area covered by metal film CN100594434C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200710304371 CN100594434C (en) 2007-12-27 2007-12-27 Method for manufacturing nano-sized metal structure with large area covered by metal film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200710304371 CN100594434C (en) 2007-12-27 2007-12-27 Method for manufacturing nano-sized metal structure with large area covered by metal film

Publications (2)

Publication Number Publication Date
CN101470355A true CN101470355A (en) 2009-07-01
CN100594434C true CN100594434C (en) 2010-03-17

Family

ID=40827940

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200710304371 CN100594434C (en) 2007-12-27 2007-12-27 Method for manufacturing nano-sized metal structure with large area covered by metal film

Country Status (1)

Country Link
CN (1) CN100594434C (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102540297B (en) * 2010-12-15 2015-09-09 电子科技大学 Preparation micron antireflective metal grating
CN102856245A (en) * 2011-06-28 2013-01-02 中国电子科技集团公司第九研究所 Efficient photoetching manufacturing method of ferrite base membrane circuit
CN104918686A (en) * 2012-09-06 2015-09-16 科罗拉多大学董事会,法人团体 Filtration membranes with nanoscale patterns
CN103336323B (en) * 2013-03-18 2017-03-01 内蒙古工业大学 Repeatedly scanning electron beam lithography method of making a high-frequency grating
CN103176354B (en) * 2013-03-20 2016-08-17 中国科学院上海微系统与信息技术研究所 An electron beam exposure method of patterning an insulating substrate
CN103309533B (en) * 2013-05-09 2016-05-04 晟光科技股份有限公司 Ogs one kind of method for manufacturing the insulating film touchscreen black border

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1385891A (en) 2001-05-14 2002-12-18 华邦电子股份有限公司 Method for forming semiconductor metal inner conductive wire
CN1392592A (en) 2001-06-14 2003-01-22 中国科学院微电子中心 Method for forming T-shaped gate with multilayer film and through once electronic beam exposure and multiple developing
JP2003133696A (en) 2001-10-30 2003-05-09 Japan Science & Technology Corp Metallic wiring board and method for manufacturing the same
US6670285B2 (en) 2001-03-14 2003-12-30 International Business Machines Corporation Nitrogen-containing polymers as porogens in the preparation of highly porous, low dielectric constant materials
CN1782879A (en) 2004-12-02 2006-06-07 中国科学院微电子研究所 Method for producing nano T-shape grid by single nano impression

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6670285B2 (en) 2001-03-14 2003-12-30 International Business Machines Corporation Nitrogen-containing polymers as porogens in the preparation of highly porous, low dielectric constant materials
CN1385891A (en) 2001-05-14 2002-12-18 华邦电子股份有限公司 Method for forming semiconductor metal inner conductive wire
CN1392592A (en) 2001-06-14 2003-01-22 中国科学院微电子中心 Method for forming T-shaped gate with multilayer film and through once electronic beam exposure and multiple developing
JP2003133696A (en) 2001-10-30 2003-05-09 Japan Science & Technology Corp Metallic wiring board and method for manufacturing the same
CN1782879A (en) 2004-12-02 2006-06-07 中国科学院微电子研究所 Method for producing nano T-shape grid by single nano impression

Also Published As

Publication number Publication date Type
CN101470355A (en) 2009-07-01 application

Similar Documents

Publication Publication Date Title
US6383952B1 (en) RELACS process to double the frequency or pitch of small feature formation
US20020096493A1 (en) Dry etching method, microfabrication process and dry etching mask
US4687730A (en) Lift-off technique for producing metal pattern using single photoresist processing and oblique angle metal deposition
US5277749A (en) Methods and apparatus for relieving stress and resisting stencil delamination when performing lift-off processes that utilize high stress metals and/or multiple evaporation steps
JP2007233179A (en) Photomask blank and photomask
JP2004066447A (en) Method of manufacturing structure, functional structure, and magnetic recording medium
US6383944B1 (en) Micropatterning method
JP2002110510A (en) Pattern forming method
US5017459A (en) Lift-off process
CN101823685A (en) Bionic micro/nano structure preparing method
CN1778664A (en) Micrographic treatment of carbon nanometer tubes
JP2002169265A (en) Photomask blank and method of manufacturing photomask blank
JP2001242630A (en) Lithographic structure
JP2005070650A (en) Method for forming resist pattern
Lister et al. Pattern transfer of a 23 nm-period grating and sub-15 nm dots into CVD diamond
CN102212794A (en) Copper plating substrate-based method for preparing large-area graphene film
CN101117208A (en) Method for preparation of one-dimensional silicon nanostructure
CN103346094A (en) Etching method of microwave membrane circuit
CN101852893A (en) Method for performing deep etching on silicon dioxide by taking photo-resist as mask
CN102064088A (en) Method for preparing sapphire-graph substrate by dry method and wet method
US20090252938A1 (en) Substrate structure and method of forming the same
CN103730359A (en) Manufacturing method of composite gate media SiC MISFET
US6582889B1 (en) Method for forming resist pattern and manufacturing method of thin-film element
JP2005033184A (en) Formation of narrow pattern using edges of self-organized monomolecular film
US7141275B2 (en) Imprinting lithography using the liquid/solid transition of metals and their alloys

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
C14 Granted